Never have the challenges and opportunities of engineering been more exciting or more critical to the long-term well-being of society than they are today. An engineering education from MIT provides students with exceptional opportunities to define and impact the future.

Technology’s enormous influence on society is creating an increasing demand for engineering graduates. Engineers provide important leadership to society through their central role in scientific and technological innovation. By creating, developing, and managing complex technologies and products, engineers contribute directly to the betterment of humanity and to shaping our world. Seeking solutions to the most difficult challenges of our day in the context of physical, economic, human, political, legal, and cultural realities makes engineering a tremendously rewarding endeavor.

The first-year curriculum for all MIT undergraduates includes physics, chemistry, mathematics, biology, and the humanities, arts, and social sciences. An undergraduate student normally becomes affiliated with a particular department or course of study at the beginning of sophomore year and works closely with an advisor from that department or program to shape their course of study. Students who would like to explore an engineering major are encouraged to seek out and get involved with one of the engineering departments during their first year. Every department offers exciting subjects that introduce first-year students to engineering; they also offer First-Year Advising Seminars that bring students together in small groups to discuss their field with department faculty. The Undergraduate Research Opportunities Program (UROP) (http://catalog.mit.edu/mit/undergraduate-education/academic-research-options/undergraduate-research-opportunities-program) is a great way to delve into cutting-edge engineering research.

Once a student chooses an undergraduate major, there are many opportunities for individual initiatives. For example, the New Engineering Education Transformation (NEET) (http://neet.mit.edu) program aims to reimagine and rethink what and how undergraduate engineering students learn by focusing on preparing them to develop the new machines and systems that they will build in the middle of the 21st century. Also, the School’s flexible engineering degree programs offer students in several departments the opportunity to satisfy department-based core requirements and declare an additional concentration, which can be broad and interdisciplinary in nature (e.g., energy, health, or the environment), or focused on areas that can be applied to multiple fields (e.g., robotics and controls, computational engineering, or engineering management). Students may also elect to create their own concentrations under supervision from department faculty. In addition, many undergraduates combine their primary major with a second one in another area, such as management, political science, economics, one of the sciences, or another area of engineering. Others organize their programs so they can receive both undergraduate and graduate degrees simultaneously. A series of minor programs from across the Institute is also available.

Pioneering Programs in Engineering Education

Engineering education has been at the core of the Institute’s mission since its founding in 1861. MIT created the contemporary model of engineering education grounded in a dynamic, changing base of science. It pioneered the modern model of the research university, with externally sponsored research programs and a matrix of academic departments and research laboratories working across various disciplines. MIT also contributed in significant ways to the creation of entire new fields, for example, chemical engineering, sanitary engineering, naval architecture and marine engineering, and soil mechanics; the Institute also offered the first course in aeronautical engineering. More recently, MIT has created new avenues for students to pursue concentrations in broad, interdisciplinary areas such as computing, energy, medical science and engineering, robotics, computational engineering, or poverty alleviation.

The School of Engineering has distinguished itself as a leader in engineering education, where the teaching of applied, hands-on engineering is of the utmost importance. In 1916, it created one of the first industrial internship programs, now the David H. Koch School of Chemical Engineering Practice. Over the last several decades, the School of Engineering has launched numerous pioneering programs, many in partnership with industry, such as Leaders for Global Operations (1988), System Design and Management (1997), the Deshpande Center for Technological Innovation (2001), the Undergraduate Practice Opportunities Program (2001), the Bernard M. Gordon–MIT Engineering Leadership Program (2008), MITx and edX (2011), SuperUROP (2012), StartMIT (2014), the MIT Sandbox Innovation Fund Program (2016), and the New Engineering Education Transformation program (2017).

The School of Engineering is constantly innovating in engineering education, developing novel pedagogical approaches, designing new subject offerings to strengthen current programs, and creating new disciplines, fields of study, majors, and graduate programs. Today, the School offers more than two dozen exciting engineering degree programs for its undergraduates. For example, the flexible SB in Engineering degree is offered by Mechanical Engineering, Aeronautics and Astronautics, Chemical Engineering, or Civil and Environmental Engineering.

The School of Engineering also offers a range of co-curricular activities designed to enhance students’ academic and non-academic experiences at MIT. The MIT Sandbox Innovation Fund Program (http://sandbox.mit.edu) seeks to help students develop the knowledge, skills, and attitudes to be successful innovators and entrepreneurs by providing up to $25,000 for student-initiated ideas and mentoring from within MIT and from a broad network of committed partners. The Undergraduate Practice Opportunities Program (UPOP) (http://upop.mit.edu) is a program
for sophomores that provides opportunities for students to learn first-hand about engineering practice outside the academic context through internships and intensive experiential-learning workshops that emphasize development of professional abilities and attitudes required in engineering work. And SuperUROP (https://superurop.mit.edu), an expanded version of UROP, was launched in 2012 for juniors and seniors to have the time, training, resources, and guidance necessary for deep scientific and engineering inquiry leading to publication-worthy findings.

The School of Engineering is generally ranked at the top of its fields by third-party rankings and surveys. US News and World Report has placed the School at the top of its engineering rankings every year they have run their survey, as has the QS World University Rankings. Nearly a third of the School’s current and emeritus faculty and research staff have been inducted into the National Academy of Engineering.

Interdepartmental Research Programs

Within the School of Engineering, students may develop a program that satisfies their own intellectual and professional objectives. Those interested in an interdepartmental program should study the department descriptions and interdisciplinary program description for opportunities that combine disciplines from MIT’s four other schools or the MIT Stephen A. Schwarzman College of Computing with those of the School of Engineering.

While the School’s academic departments provide continuity and stability for the basic engineering disciplines, they increasingly share interests in the way their individual disciplines are expressed and applied. Interdepartmental centers, laboratories, and programs provide opportunities for faculty, students, and research staff to undertake collaborative research and engage in educational programs dealing with these and other interdisciplinary applications of importance to society.

Interdisciplinary centers and laboratories in which School of Engineering faculty play leading roles include the following:

- Center for Advanced Nuclear Energy Systems
- Center for Computational Science and Engineering
- Center for Ocean Engineering
- Center for Transportation and Logistics
- Computer Science and Artificial Intelligence Laboratory
- Deshpande Center for Technological Innovation
- Industrial Performance Center
- Institute for Data, Systems, and Society
- Institute for Medical Engineering and Science
- Koch Institute for Integrative Cancer Research
- Laboratory for Information and Decision Systems
- Laboratory for Manufacturing and Productivity
- Materials Processing Center
- Materials Research Laboratory
- Microsystems Technology Laboratories
- MIT Climate and Sustainability Consortium
- MIT Energy Initiative
- MIT Stephen A. Schwarzman College of Computing
- Research Laboratory of Electronics
- Singapore-MIT Alliance
- Sociotechnical Systems Research Center

More information on interdepartmental research programs (http://catalog.mit.edu/mit/research) is available under Research and Study.

Degrees Offered in the School of Engineering

Aeronautics and Astronautics (Course 16)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Aerospace Engineering</td>
</tr>
<tr>
<td>SB</td>
<td>Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Aeronautics and Astronautics</td>
</tr>
<tr>
<td>SM/MBA</td>
<td>Engineering/Management—dual degree with Leaders for Global Operations Program</td>
</tr>
<tr>
<td>Engineer</td>
<td>Aeronautics and Astronautics</td>
</tr>
<tr>
<td>PhD</td>
<td>Aeronautics, Astronautics, and Statistics</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Aerospace Computational Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Aerospace, Energy, and the Environment</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Air-Breathing Propulsion</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Aircraft Systems Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Air Transportation Systems</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Autonomous Systems</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Communications and Networks</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Controls</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Engineering Systems</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Humans in Aerospace</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Materials and Structures</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Oceanographic Engineering (Jointly with WHOI)</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Space Propulsion</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Space Systems</td>
</tr>
</tbody>
</table>

Biological Engineering (Course 20)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Biological Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Toxicology</td>
</tr>
<tr>
<td>SM/MBA</td>
<td>Engineering/Management—dual degree with Leaders for Global Operations Program</td>
</tr>
<tr>
<td>MEng</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Biological Engineering</td>
</tr>
</tbody>
</table>

Chemical Engineering (Course 10)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>SB</td>
<td>Chemical-Biological Engineering</td>
</tr>
</tbody>
</table>
SB Engineering
SM Chemical Engineering
SM Chemical Engineering Practice
SM/MBA Engineering/Management—dual degree with Leaders for Global Operations Program
PhD, ScD Chemical Engineering
PhD, ScD Chemical Engineering and Computation
PhD, ScD Chemical Engineering Practice

Civil and Environmental Engineering (Course 1)
SB General Engineering
SM Civil and Environmental Engineering
SM/MBA Engineering/Management—dual degree with Leaders for Global Operations Program
MEng Civil and Environmental Engineering
Civil Engineer
Environmental Engineer
PhD, ScD Biological Oceanography (jointly with WHOI)
PhD, ScD Chemical Oceanography (jointly with WHOI)
PhD, ScD Civil and Environmental Engineering
PhD, ScD Civil and Environmental Systems
PhD, ScD Civil Engineering
PhD, ScD Civil Engineering and Computation
PhD, ScD Coastal Engineering
PhD, ScD Construction Engineering and Management
PhD, ScD Environmental Biology
PhD, ScD Environmental Chemistry
PhD, ScD Environmental Engineering
PhD, ScD Environmental Engineering and Computation
PhD, ScD Environmental Fluid Mechanics
PhD, ScD Geotechnical and Geoenvironmental Engineering
PhD, ScD Hydrology
PhD, ScD Information Technology
PhD, ScD Oceanographic Engineering (jointly with WHOI)
PhD, ScD Structures and Materials
PhD, ScD Transportation

Climate System Science and Engineering (Course 1-12)
SB Climate System Science and Engineering

Computation and Cognition (Course 6-9)
SB Computation and Cognition
MEng Computation and Cognition

Computational and Systems Biology
PhD Computational and Systems Biology

Computational Science and Engineering
SM Computational Science and Engineering
PhD, ScD Aerospace Engineering and Computational Science
PhD, ScD Chemical Engineering and Computation
PhD, ScD Civil Engineering and Computation
PhD, ScD Computational Earth, Science and Planetary Sciences
PhD, ScD Computational Materials Science and Engineering
PhD, ScD Computational Nuclear Science and Engineering
PhD, ScD Environmental Engineering and Computation
PhD, ScD Mathematics and Computational Science
PhD, ScD Mechanical Engineering and Computation
PhD, ScD Nuclear Engineering and Computation

Computer Science and Molecular Biology (Course 6-7P)
MEng Computer Science and Molecular Biology

Computer Science, Economics, and Data Science (Course 6-14)
SB Computer Science, Economics, and Data Science

Data, Systems, and Society
SM Technology and Policy
PhD, ScD Social and Engineering Systems
PhD Social and Engineering Systems and Statistics
PhD Aeronautics and Astronautics and Statistics
PhD Cognitive Science and Statistics
PhD Economics and Statistics
PhD Mathematics and Statistics
PhD Mechanical Engineering and Statistics
PhD Neuroscience and Statistics
PhD Physics, Statistics, and Data Science
PhD Political Science and Statistics

Design and Management (System Design and Management & Integrated Design and Management)
SM Engineering and Management

Electrical Engineering and Computer Science (Course 6)
SB Artificial Intelligence and Decision Making
SB Computer Science and Engineering
SB Electrical Engineering and Computer Science
SB Electrical Science and Engineering
SM Electrical Engineering and Computer Science
MASc Artificial Intelligence and Decision Making
SM/MBA Engineering/Management—dual degree with Leaders for Global Operations Program
MEng Computer Science, Economics, and Data Science
MEng Electrical Engineering and Computer Science
SCHOOL OF ENGINEERING

Electrical Engineer
Engineer in Computer Science
PhD, ScD Computer Science
PhD, ScD Computer Science and Engineering
PhD, ScD Electrical Engineering
PhD, ScD Electrical Engineering and Computer Science

Health Sciences and Technology (HST)
SM Health Sciences and Technology
MD Medical Sciences (degree from Harvard Medical School)
ScD, PhD Health Sciences and Technology
ScD, PhD Health Sciences and Technology—Bioastronautics
ScD, PhD Health Sciences and Technology—Medical Engineering and Medical Physics

Materials Science and Engineering (Course 3)
SB Archaeology and Materials
SB Materials Science and Engineering
SM Materials Science and Engineering
PhD, ScD Archaeological Materials
PhD, ScD Computational Materials Science and Engineering
PhD, ScD Materials Science and Engineering
PhD, ScD Polymers and Soft Matter

Mechanical Engineering (Course 2)
SB Engineering
SB Mechanical and Ocean Engineering
SB Mechanical Engineering
SM Mechanical Engineering
SM Naval Architecture and Marine Engineering
SM Ocean Engineering
SM Oceanographic Engineering (jointly with WHOI)
SM/MBA Engineering/Management—dual degree with Leaders for Global Operations Program
MEng Manufacturing
Mechanical Engineer
Naval Engineer
PhD Mechanical Engineering and Statistics
PhD, ScD Mechanical Engineering
PhD, ScD Mechanical Engineering and Computation
PhD, ScD Naval Architecture and Marine Engineering
PhD, ScD Ocean Engineering
PhD, ScD Oceanographic Engineering (jointly with WHOI)

Microbiology
PhD Microbiology

Nuclear Science and Engineering (Course 22)
SB Engineering
SB Nuclear Science and Engineering
SM Nuclear Science and Engineering
SM/MBA Engineering/Management—dual degree with Leaders for Global Operations Program
Nuclear Engineer
PhD, ScD Computational Nuclear Science and Engineering
PhD, ScD Nuclear Science and Engineering
PhD, ScD Nuclear Engineering and Computation

Polymers and Soft Matter
PhD, ScD Polymers and Soft Matter

Supply Chain Management
MA Sc Supply Chain Management
MEng Supply Chain Management

Transportation
SM Transportation
PhD, ScD Transportation

Urban Science and Planning with Computer Science (Course 11-6)
SB Urban Science and Planning with Computer Science

Notes
Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.

Several departments also offer undesignated degrees, which lead to the Bachelor of Science without departmental designation. The curricula for these programs offer students opportunities to pursue broader programs of study than can be accommodated within a four-year departmental program.

1 See Interdisciplinary Programs (http://catalog.mit.edu/interdisciplinary).

2 Students who matriculated in the Department of Aeronautics and Astronautics doctoral program and the Computational Science and Engineering (CSE) doctoral program in academic year 2023–2024 or earlier can choose either PhD/ScD in Computational Science and Engineering or the PhD/ScD in Aerospace Engineering and Computational Science. AeroAstro/CSE students who matriculate in academic year 2024–2025 or later will receive the PhD/ScD in Aerospace Engineering and Computational Science.
Admissions
The selection process at MIT is holistic and student centered; each application is evaluated within its unique context. Selection is based on outstanding academic achievement as well as a strong match between the applicant and the Institute.

Undergraduate applicants do not apply to a particular school, department, or program. Although the application asks about a preferred field of study, admitted undergraduates are not required to choose a major until their sophomore year. Admissions information for regular and transfer applicants (http://catalog.mit.edu/mit/undergraduate-education/admissions) is provided in the Undergraduate section (http://catalog.mit.edu/mit/undergraduate-education), as well as on the undergraduate admissions website (https://mitadmissions.org).

Applicants for graduate study apply directly to their particular department or program of interest. See the individual department and program descriptions for specific requirements.

Office of the Dean
Anantha P. Chandrakasan, PhD
Vannevar Bush Professor in Electrical Engineering
Dean, School of Engineering

Maria Yang, PhD
Gail E. Kendall Professor of Mechanical Engineering
Associate Dean, School of Engineering

Nandi Bynoe
Assistant Dean for Diversity, Equity, and Inclusion

Heather Kispert Hagerty
Assistant Dean for Development

Catherine Kim
Assistant Dean for Human Resources and Administration

Mary Ellen Sinkus
Assistant Dean for Finance and Administration