MATHEMATICS (COURSE 18)

Summer Session Representative
Theresa Cummings (galina@math.mit.edu)
Room 2-110
617-253-4977

Current MIT students can take arranged-unit subjects such as UROP, Special Studies, Research, Internship, Co-op, Independent Study, Thesis Preparation, or Thesis during the Summer Session by prior arrangement with a faculty member.

The following subjects have subsidized tuition: 18.999 Research in Mathematics and 18.THG Graduate Thesis. See Tuition (http://catalog.mit.edu/summer/tuition-financial-aid) for details of the policy concerning these subjects.

General Mathematics

18.085 Computational Science and Engineering I
Subject meets with 18.0851
Prereq: Calculus II (GIR); 18.03 or 18.034
U (Fall, Spring, Summer)
3-0-9 units
06/12/2017–08/18/2017, MWF 9:30 am-11 am, 2-131, No final examination.

Review of linear algebra, applications to networks, structures, and estimation, finite difference and finite element solution of differential equations, Laplace’s equation and potential flow, boundary-value problems, Fourier series, discrete Fourier transform, convolution. Frequent use of MATLAB in a wide range of scientific and engineering applications.
Summer: P. Gallagher

18.089 Review of Mathematics
Prereq: Permission of instructor
G (Summer)
5-0-7 units
Meets MTWTh in Room 2-132, 9:00 AM-12:30 PM from 06/05/2017 to 06/08/2017, then MTWThF in Room 2-132, 12:30 PM-2:30 PM from 06/12/2017 to 07/14/2017. No (Registrar-scheduled) final examination.

One-week review of one-variable calculus (18.01), followed by concentrated study covering multivariable calculus (18.02), two hours per day for five weeks. Primarily for graduate students in Course 2N. Degree credit allowed only in special circumstances.
Summer: L. Panchev

18.0851 Computational Science and Engineering I
Subject meets with 18.085
Prereq: Calculus II (GIR); 18.03 or 18.034
G (Fall, Spring, Summer)
3-0-9 units
06/12/2017–08/18/2017, MWF 9:30 am-11 am, 2-131, No final examination.

Review of linear algebra, applications to networks, structures, and estimation, finite difference and finite element solution of differential equations, Laplace’s equation and potential flow, boundary-value problems, Fourier series, discrete Fourier transform, convolution. Frequent use of MATLAB in a wide range of scientific and engineering applications. Students in Course 18 must register for the undergraduate version, 18.085.
Summer: P. Gallagher