MATHEMATICS (COURSE 18)

Summer Session Representative
Theresa Cummings (galina@math.mit.edu)
Room 2-110
617-253-4977

Current MIT students can take arranged-unit subjects such as UROP, Special Studies, Research, Internship, Co-op, Independent Study, Thesis Preparation, or Thesis during the Summer Session by prior arrangement with a faculty member.

The following subjects have subsidized tuition: 18.999 Research in Mathematics and 18.THG Graduate Thesis. See Tuition (http://catalog.mit.edu/summer/tuition-financial-aid) for details of the policy concerning these subjects.

General Mathematics

18.085 Computational Science and Engineering I
Subject meets with 18.0851
Prereq: Calculus II (GIR) and (18.03 or 18.032)
U (Fall, Spring, Summer)
3-0-9 units
06/07/2021–08/13/2021, MWF 9:30-11 am, 2-190

Review of linear algebra, applications to networks, structures, and estimation, finite difference and finite element solution of differential equations, Laplace’s equation and potential flow, boundary-value problems, Fourier series, discrete Fourier transform, convolution. Frequent use of MATLAB in a wide range of scientific and engineering applications.

18.0851 Computational Science and Engineering I
Subject meets with 18.085
Prereq: Calculus II (GIR) and (18.03 or 18.032)
G (Fall, Spring, Summer)
3-0-9 units
06/07/2021–08/13/2021, MWF 9:30-11 am, 2-190

Review of linear algebra, applications to networks, structures, and estimation, finite difference and finite element solution of differential equations, Laplace’s equation and potential flow, boundary-value problems, Fourier series, discrete Fourier transform, convolution. Frequent use of MATLAB in a wide range of scientific and engineering applications. Students in Course 18 must register for the undergraduate version, 18.085.

18.089 Review of Mathematics
Prereq: Permission of instructor
G (Summer)
5-0-7 units
Meets remotely 9 am-12:30 pm Tues-Fri from 06/01/2021 to 06/04/2021, then in room 4-163 12:30-2:30 pm Mon-Fri from 06/07/2021 to 07/09/2021

One-week review of one-variable calculus (18.01), followed by concentrated study covering multivariable calculus (18.02), two hours per day for five weeks. Primarily for graduate students in Course 2N. Degree credit allowed only in special circumstances.