20.001 Introduction to Professional Success and Leadership in Biological Engineering
Prereq: None
U (Fall)
1-0-2 units
Interactive introduction to the discipline of Biological Engineering through presentations by alumni practitioners, with additional panels and discussions on skills for professional development. Presentations emphasize the roles of communication through writing and speaking, building and maintaining professional networks, and interpersonal and leadership skills in building successful careers. Provides practical advice about how to prepare for job searches and graduate or professional school applications from an informed viewpoint. Prepares students for UROPs, internships, and selection of BE electives. Subject can count toward the 9-unit discovery-focused credit limit for first-year students.
L. Griffith

20.005 Ethics for Engineers
Subject meets with 1.082[J], 2.900[J], 6.904[J], 6.904[J], 10.01[J], 16.676[J], 22.014[J]
Prereq: None
U (Fall, Spring)
2-0-7 units
Integrates classical readings that provide an overview of ethics with a survey of case studies that focus on ethical problems arising in the practice of engineering. Readings taken from a variety of sources, such as Aristotle, Machiavelli, Bacon, Hobbes, Locke, the Founding Fathers, and the Bible. Case studies include written analyses and films that address engineering disasters, biotechnology, court cases, ethical codes, and the ultimate scope and aims of engineering. Students taking independent inquiry version 6.9041 expand the scope of their term project. Students taking 20.005 focus their term project on a problem in biological engineering in which there are intertwined ethical and technical issues.
D. Doneson, B. L. Trout

20.020 Introduction to Biological Engineering Design Using Synthetic Biology
Subject meets with 20.385
Prereq: None
U (Spring)
Not offered regularly; consult department
3-3-3 units
Project-based introduction to the engineering of synthetic biological systems. Throughout the term, students develop projects that are responsive to real-world problems of their choosing, and whose solutions depend on biological technologies. Lectures, discussions, and studio exercises will introduce components and control of prokaryotic and eukaryotic behavior; DNA synthesis, standards, and abstraction in biological engineering; and issues of human practice, including biological safety, security, ethics, and ownership, sharing, and innovation. Preference to freshmen.
N. Kuldell

20.051 NEET Sophomore Seminar: Living Machines
Prereq: None
U (Fall, Spring)
6-0-6 units
Seminar spanning fall and spring terms for sophomores enrolled in the Living Machines New Engineering Education Transformation (NEET) thread. Focuses on topics around "body-on-a-chip" technology via guest lectures and research discussions.
E. Alm, L. Griffith, M. Salek, T. Kassis

20.052 NEET Junior Seminar: Living Machines
Prereq: None
U (Fall, Spring)
6-0-6 units
Seminar spanning fall and spring terms for juniors enrolled in the Living Machines New Engineering Education Transformation (NEET) thread. Focuses on topics around "body-on-a-chip" technology via guest lectures and research discussions.
E. Alm, L. Griffith, T. Kassis

20.053 NEET Senior Seminar: Living Machines
Prereq: None
U (Fall, Spring)
6-0-6 units
Seminar spanning fall and spring terms for seniors enrolled in the Living Machines New Engineering Education Transformation (NEET) thread. Focuses on topics around "body-on-a-chip" technology via guest lectures and research discussions.
E. Alm, L. Griffith, T. Kassis
20.101 Metakaryotic Biology and Epidemiology
Subject meets with 20.02
Prereq: None
U (Fall)
2-0-4 units
Introduces non-eukaryotic, "metakaryotic" cells with hollow bell-shaped nuclei that serve as the stem cells of human fetal/juvenile growth and development as well as of tumors and atherosclerotic plaques. Studies the relationship of lifetime growth and mutations of metakaryotic stem cells to age-specific death rates. Considers the biological bases of treatment protocols found to kill metakaryotic cancer stem cells in vitro and in human pancreatic cancers in vivo.
W. G. Thilly

20.102 Metakaryotic Stem Cells in Carcinogenesis: Origins and Cures
Subject meets with 20.215
Prereq: Biology (GIR), Calculus II (GIR), and Chemistry (GIR)
U (Fall)
3-0-9 units
E. V. Gostjева, W. G. Thilly

20.104[J] Environmental Cancer Risks, Prevention, and Therapy
Same subject as 1.081][J]
Prereq: Biology (GIR), Calculus II (GIR), and Chemistry (GIR)
U (Spring)
3-0-9 units
Analysis of the history of cancer and vascular disease mortality rates in predominantly European- and African-American US cohorts, 1895-2016, to discover specific historical shifts. Explored in terms of contemporaneously changing environmental risk factors: air-, food- and water-borne chemicals; subclinical infections; diet and lifestyles. Special section on occupational risk factors. Considers the hypotheses that genetic and/or environmental factors affect metakaryotic stem cell mutation rates in fetuses and juveniles and/or their growth rates of preneoplastic in adults.
W. Thilly, R. McCunney

20.106[J] Applied Microbiology
Same subject as 1.084][J]
Prereq: Biology (GIR) and Chemistry (GIR)
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: U (Fall)
3-0-9 units
Introductory microbiology from a systems perspective - considers microbial diversity and the integration of data from a molecular, cellular, organismal, and ecological context to understand the interaction of microbial organisms with their environment. Special emphasis on specific viral, bacterial, and eukaryotic microorganisms and their interaction with animal hosts with focus on contemporary problems in areas such as vaccination, emerging disease, antimicrobial drug resistance, and toxicology.
J. C. Niles, K. Ribbeck

20.109 Laboratory Fundamentals in Biological Engineering
Prereq: Biology (GIR), Chemistry (GIR), 6.0002, 18.03, and 20.110[J]
U (Fall, Spring)
2-8-5 units. Institute LAB
Introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Experimental design, data analysis, and scientific communication form the underpinnings of this subject. Examples of discovery-based experimental modules include DNA engineering in which students design, construct, and use genetic material; parts engineering, which emphasizes protein design and quantitative assessment of protein performance; systems engineering, in which students consider genome-wide consequences of genetic perturbations; and biomaterials engineering, in which students use biologically-encoded devices to design and build materials. Students complete some laboratory time online in advance of each class. Enrollment limited; priority to Course 20 majors.
A. Belcher, B. Engelward, M. Jonas, N. Lyell, L. McClain, A. Belcher, L. Samson, M. Jonas, N. Lyell, L. McClain

20.110[J] Thermodynamics of Biomolecular Systems
Same subject as 2.772][J]
Prereq: Calculus II (GIR), Chemistry (GIR), and Physics I (GIR)
U (Fall)
5-0-7 units. REST
Introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Experimental design, data analysis, and scientific communication form the underpinnings of this subject. Examples of discovery-based experimental modules include DNA engineering in which students design, construct, and use genetic material; parts engineering, which emphasizes protein design and quantitative assessment of protein performance; systems engineering, in which students consider genome-wide consequences of genetic perturbations; and biomaterials engineering, in which students use biologically-encoded devices to design and build materials. Students complete some laboratory time online in advance of each class. Enrollment limited; priority to Course 20 majors.
A. Belcher, B. Engelward, M. Jonas, N. Lyell, L. McClain, A. Belcher, L. Samson, M. Jonas, N. Lyell, L. McClain

M. Birnbaum, C. Voigt
20.129[J] Biological Circuit Engineering Laboratory
Same subject as 6.129[J]
Prereq: Biology (GIR) and Calculus II (GIR)
U (Spring)
2-8-2 units. Institute LAB
See description under subject 6.129[J]. Enrollment limited.
T. Lu, R. Weiss

20.200 Biological Engineering Seminar
Prereq: Permission of instructor
G (Fall, Spring)
1-0-2 units
Can be repeated for credit.
Weekly one-hour seminars covering graduate student research and presentations by invited speakers. Limited to BE graduate students.
B. Engelward

20.201 Fundamentals of Drug Development
Prereq: Permission of instructor
G (Fall, Spring)
4-0-8 units
Team-based exploration of the scientific basis for developing new drugs. First portion of term covers fundamentals of target identification, drug discovery, pharmacokinetics, pharmacodynamics, regulatory policy, and intellectual property. Industry experts and academic entrepreneurs then present case studies of specific drugs, drug classes, and therapeutic targets. In a term-long project, student teams develop novel therapeutics to solve major unmet medical needs, with a trajectory to a "start-up" company. Culminates with team presentations to a panel of industry and scientific leaders.
P. C. Dedon, R. Sasisekharan

20.203[J] Neurotechnology in Action
Same subject as 9.123[J]
Prereq: Permission of instructor
G (Spring)
3-6-3 units
See description under subject 9.123[J].
E. Boyden, M. Jonas

20.205[J] Principles and Applications of Genetic Engineering for Biotechnology and Neuroscience
Same subject as 9.26[J]
Prereq: Biology (GIR)
U (Spring)
3-0-9 units
See description under subject 9.26[J].
F. Zhang

20.213 Genome Stability and Engineering in the Context of Diseases, Drugs, and Public Health
Prereq: 5.07[J], 7.05, or permission of instructor
U (Spring; second half of term)
4-0-5 units
Studies how DNA damage leads to diseases, and how DNA repair modulates cancer risk and treatment. Also covers how DNA repair impacts genetic engineering, whether by targeted gene therapy or CRISPR-mediated genetic changes. Students gain a public health perspective by examining how DNA-damaging agents in our environment can lead to downstream cancer. Explores the underlying chemical, molecular and biochemical processes of DNA damage and repair, and their implications for disease susceptibility and treatment.
B. P. Engelward

Prereq: Permission of instructor
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Spring)
1-1-4 units
Selected aspects of anatomy, histology, immuno-cytochemistry, in situ hybridization, physiology, and cell biology of mammalian organisms and their pathogens. Subject material integrated with principles of toxicology, in vivo genetic engineering, and molecular biology. A lab/demonstration period each week involves experiments in anatomy (in vivo), physiology, and microscopy to augment the lectures. Offered first half of spring term.
J. G. Fox, B. Marini, M. Whary
20.215 Macroepidemiology, Population Genetics, and Stem Cell Biology of Human Clonal Diseases
Subject meets with 20.102
Prereq: Calculus II (GIR) and 1.00
G (Fall)
3-0-15 units
Studies the logic and technology needed to discover genetic and environmental risks for common human cancers and vascular diseases. Includes an introduction to metakaryotic stem cell biology. Analyzes large, organized historical public health databases using quantitative cascade computer models that include population stratification of stem cell mutation rates in fetal/juvenile tissues and growth rates in preneoplastic colonies and atherosclerotic plaques. Means to test hypotheses (CAST) that certain genes carry mutations conferring risk for common cancers via genetic analyses in large human cohorts. Involves *de novo* computer modeling of a lifetime disease experience or test of a student-developed hypothesis.
W. G. Thilly

20.219 Selected Topics in Biological Engineering
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged
Can be repeated for credit.
Detailed discussion of selected topics of current interest. Classwork in various areas not covered by regular subjects.
Staff

20.230[J] Immunology
Same subject as 7.23[J]
Subject meets with 7.63[J], 20.630[J]
Prereq: 7.06
U (Spring)
5-0-7 units
See description under subject 7.23[J].
S. Spranger, M. Birnbaum

20.260 Computational Analysis of Biological Data
Prereq: Permission of instructor
U (IAP)
3-0-3 units
Presents foundational methods for analysis of complex biological datasets. Covers fundamental concepts in probability, statistics, and linear algebra underlying computational tools that enable generation of biological insights. Assignments focus on practical examples spanning basic science and medical applications. Assumes basic knowledge of calculus and programming.
E. Alm, D. Lauffenburger

20.305[J] Principles of Synthetic Biology
Same subject as 6.580[J]
Subject meets with 6.589[J], 20.405[J]
Prereq: None
U (Fall)
3-0-9 units
Introduces the basics of synthetic biology, including quantitative cellular network characterization and modeling. Considers the discovery and genetic factoring of useful cellular activities into reusable functions for design. Emphasizes the principles of biomolecular system design and diagnosis of designed systems. Illustrates cutting-edge applications in synthetic biology and enhances skills in analysis and design of synthetic biological applications. Students taking graduate version complete additional assignments.
R. Weiss

20.309[J] Instrumentation and Measurement for Biological Systems
Same subject as 2.673[J]
Subject meets with 20.409
Prereq: (Biology (GIR), Physics II (GIR), 6.0002, and 18.03) or permission of instructor
U (Fall, Spring)
3-6-3 units
Sensing and measurement aimed at quantitative molecular/cell/tissue analysis in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopes, and electro-mechanical probes (atomic force microscopy, optical traps, MEMS devices). Application of statistics, probability, signal and noise analysis, and Fourier techniques to experimental data. Enrollment limited; preference to Course 20 undergraduates.
P. Blainey, S. Manalis, E. Frank, S. Wasserman, J. Bagnall, E. Boyden, P. So

20.310[J] Molecular, Cellular, and Tissue Biomechanics
Same subject as 2.797[J], 3.053[J], 6.024[J]
Prereq: Biology (GIR), (2.370 or 20.110[J]), and (3.016B or 18.03)
U (Spring)
4-0-8 units
Develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. Experimental methods for probing structures at the tissue, cellular, and molecular levels.
M. Bathe, A. Grodzinsky
20.315 Physical Biology
Subject meets with 8.241, 20.415
Prereq: 5.60, 20.110[J], or permission of instructor
U (Spring)
Not offered regularly; consult department
3-0-9 units
Focuses on current major research topics in quantitative, physical biology. Covers synthetic structural biology, synthetic cell biology, microbial systems biology and evolution, cellular decision making, neuronal circuits, and development and morphogenesis. Emphasizes current motivation and historical background, state-of-the-art measurement methodologies and techniques, and quantitative physical modeling frameworks. Experimental techniques include structural biology, next-generation sequencing, fluorescence imaging and spectroscopy, and quantitative biochemistry. Modeling approaches include stochastic rate equations, statistical thermodynamics, and statistical inference. Students taking graduate version complete additional assignments.
J. Gore, I. Cisse

20.320 Analysis of Biomolecular and Cellular Systems
Prereq: 6.0002, 18.03, and 20.110[J]; Coreq: 5.07[J] or 7.05
U (Fall)
4-0-8 units
Analysis of molecular and cellular processes across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis on experimental methods, quantitative analysis, and computational modeling.
F. White, K. D. Wittrup

Same subject as 2.793[J], 6.023[J]
Prereq: Physics II (GIR) and (2.005, 6.021[J], or permission of instructor); Coreq: 20.309[J]
U (Spring)
4-0-8 units
Introduction to electric fields, fluid flows, transport phenomena and their application to biological systems. Flux and continuity laws, Maxwell’s equations, electro-quasistatics, electro-chemical-mechanical driving forces, conservation of mass and momentum, Navier-Stokes flows, and electrokinetics. Applications include biomolecular transport in tissues, electrophoresis, and microfluidics.
J. Han, S. Manalis

20.334 Biological Systems Modeling
Prereq: 20.330[J] or permission of instructor
U (Fall; first half of term)
1-0-5 units
Practices the use of modern numerical analysis tools (e.g., COMSOL) for biological systems with multi-physics behavior. Covers modeling of diffusion, reaction, convection and other transport mechanisms. Analysis of microfluidic devices as examples. Discusses practical issues and challenges in numerical modeling. No prior knowledge of modeling software required. Includes weekly modeling homework and one final modeling project.
J. Han

20.345[J] Bioinstrumentation Project Lab
Same subject as 6.123[J]
Prereq: 20.309[J], (Biology (GIR) and (2.004 or 6.003)), or permission of instructor
U (Spring)
2-7-3 units
In-depth examination of instrumentation design, principles and techniques for studying biological systems, from single molecules to entire organisms. Lectures cover optics, advanced microscopy techniques, electronics for biological measurement, magnetic resonance imaging, computed tomography, MEMs, microfluidic devices, and limits of detection. Students select two lab exercises during the first half of the semester and complete a final design project in the second half. Lab emphasizes design process and skillful realization of a robust system. Enrollment limited; preference to Course 20 majors and minors.
E. Boyden, M. Jonas, S. F. Nagle, P. So, S. Wasserman, M. F. Yanik

20.352 Principles of Neuroengineering
Subject meets with 9.422[J], 20.452[J], MAS.881[J]
Prereq: Permission of instructor
U (Fall)
3-0-9 units
Covers how to innovate technologies for brain analysis and engineering, for accelerating the basic understanding of the brain, and leading to new therapeutic insight and inventions. Focuses on using physical, chemical and biological principles to understand technology design criteria governing ability to observe and alter brain structure and function. Topics include optogenetics, noninvasive brain imaging and stimulation, nanotechnologies, stem cells and tissue engineering, and advanced molecular and structural imaging technologies. Includes design projects. Students taking graduate version complete additional assignments. Designed for students with engineering maturity who are ready for design.
E. S. Boyden, III
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisites</th>
<th>Instructor(s)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.361[J]</td>
<td>Molecular and Engineering Aspects of Biotechnology</td>
<td>Same subject as 7.37[J], 10.441[J]</td>
<td></td>
<td>U (Spring)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prereq: (7.06 and (2.005, 3.012, 5.60, or 20.110[J])) or permission of instructor</td>
<td></td>
<td>Credit cannot be received for 7.371</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U (Spring) Not offered regularly; consult department</td>
<td></td>
<td>See description under subject 7.37[J].</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-0-8 units</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subject meets with 3.963[J], 20.463[J]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prereq: 3.034, 20.110[J], or permission of instructor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U (Fall)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-0-9 units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Covers, at a molecular scale, the analysis and design of materials used in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>contact with biological systems, and biomimetic strategies aimed at creating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>new materials based on principles found in biology. Topics include molecular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>interaction between bio- and synthetic molecules and surfaces; design,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>synthesis, and processing approaches for materials that control cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>functions; and application of materials science to problems in tissue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>engineering, drug delivery, vaccines, and cell-guiding surfaces. Students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>taking graduate version complete additional assignments.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D. Irvine, K. Ribbeck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.365</td>
<td>Engineering the Immune System in Cancer and Beyond</td>
<td>Subject meets with 20.465</td>
<td>L. Griffith</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prereq: (5.60 or 20.110[J]) and permission of instructor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U (Spring)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-0-6 units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examines strategies in clinical and preclinical development for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>manipulating the immune system to treat and protect against disease.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Begins with brief review of immune system. Discusses interaction of tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with the immune system, followed by approaches by which the immune system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>can be modulated to attack cancer. Also covers strategies based in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>biotechnology, chemistry, materials science, and molecular biology to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>induce immune responses to treat infection, transplantation, and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>autoimmunity. Students taking graduate version complete additional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>assignments. D. Irvine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subject meets with 2.794[J], 6.521[J], 9.021[J], 20.470[J], HST.541[J]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prereq: (Physics II (GIR), 18.03, and (2.005, 6.002, 6.003, 10.301, or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.110[J]) or permission of instructor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U (Fall)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-2-5 units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See description under subject 6.021[J]. Preference to juniors and seniors.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. Han, T. Heldt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.375</td>
<td>Applied Developmental Biology and Tissue Engineering</td>
<td>Subject meets with 20.475</td>
<td>L. Griffith</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prereq: (7.06, 20.320, and (7.003[J] or 20.109)) or permission of instructor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U (Fall)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-0-9 units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Addresses the integration of engineering and biology design principles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to create human tissues and organs for regenerative medicine to drug</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>development. Provides an overview of embryogenesis, how morphogenic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>phenomena are governed by biochemical and biophysical cues. Analyzes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>generation of human brain, gut, and other organoids from stem cells.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Studies the roles of biomaterials and microreactors in improving organoid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>formation and function; organoid use in modeling disease and physiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>generation of human brain, gut, and other organoids from stem cells.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Includes select applications, such as liver disease, brain disorders, and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>others. Students taking graduate version complete additional assignments.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L. Griffith</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U (Fall, Spring)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-0-7 units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Illustrates how knowledge and principles of biology, biochemistry, and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>engineering are integrated to create new products for societal benefit.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uses case study format to examine recently developed products of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pharmaceutical and biotechnology industries: how a product evolves</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>from initial idea, through patents, testing, evaluation, production, and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>marketing. Emphasizes scientific and engineering principles, as well as</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the responsibility scientists, engineers, and business executives have for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the consequences of their technology. Instruction and practice in written</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and oral communication provided. Enrollment limited; preference to Course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 undergraduates.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. Collins, A. Koehler, J. Essigmann, K. Ribbeck</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20.381 Biological Engineering Design II
Prereq: 20.380 or permission of instructor
U (Spring)
0-12-0 units
Continuation of 20.380 that focuses on practical implementation of design proposals. Student teams choose a feasible scope of work related to their 20.380 design proposals and execute it in the lab.
M. Jonas, J. Sutton, S. Wasserman

20.385 Understanding Current Research in Synthetic Biology
Subject meets with 20.020
Prereq: (20.109 and 20.320) or permission of instructor
U (Spring)
Not offered regularly; consult department
3-3-3 units
Provides an in-depth understanding of the state of research in synthetic biology. Critical evaluation of primary research literature covering a range of approaches to the design, modeling and programming of cellular behaviors. Focuses on developing the skills needed to read, present and discuss primary research literature, and to manage and lead small teams. Students mentor a small undergraduate team of 20.020 students. Open to advanced students with appropriate background in biology.
Staff

20.390[J] Computational Systems Biology: Deep Learning in the Life Sciences
Same subject as 6.802[J]
Subject meets with 6.874[J], 20.490, HST.506[J]
Prereq: (7.05 and (6.0002 or 6.01)) or permission of instructor
U (Spring)
3-0-9 units
Presents innovative approaches to computational problems in the life sciences, focusing on deep learning-based approaches with comparisons to conventional methods. Topics include protein-DNA interaction, chromatin accessibility, regulatory variant interpretation, medical image understanding, medical record understanding, therapeutic design, and experiment design (the choice and interpretation of interventions). Focuses on machine learning model selection, robustness, and interpretation. Teams complete a multidisciplinary final research project using TensorFlow or other framework. Provides a comprehensive introduction to each life sciences problem, but relies upon students understanding probabilistic problem formulations. Students taking graduate version complete additional assignments.
D. K. Gifford

20.405[J] Principles of Synthetic Biology
Same subject as 6.589[J]
Subject meets with 6.580[J], 20.305[J]
Prereq: None
G (Fall)
3-0-9 units
Introduces the basics of synthetic biology, including quantitative cellular network characterization and modeling. Considers the discovery and genetic factoring of useful cellular activities into reusable functions for design. Emphasizes the principles of biomolecular system design and diagnosis of designed systems. Illustrates cutting-edge applications in synthetic biology and enhances skills in analysis and design of synthetic biological applications. Students taking graduate version complete additional assignments.
R. Weiss

20.409 Biological Engineering II: Instrumentation and Measurement
Subject meets with 2.673[J], 20.309[J]
Prereq: Permission of instructor
G (Fall, Spring)
2-7-3 units
Sensing and measurement aimed at quantitative molecular/cell/tissue analysis in terms of genetic, biochemical, and biophysical properties. Methods include light and fluorescence microscopies, electronic circuits, and electro-mechanical probes (atomic force microscopy, optical traps, MEMS devices). Application of statistics, probability, signal and noise analysis, and Fourier techniques to experimental data. Limited to 5 graduate students.
P. Blainey, S. Manalis, S. Wasserman, J. Bagnall, E. Frank, E. Boyden, P. So

20.410[J] Molecular, Cellular, and Tissue Biomechanics
Same subject as 2.798[J], 3.971[J], 6.524[J], 10.537[J]
Prereq: Biology (GIR) and (2.002, 2.006, 6.013, 10.301, or 10.302)
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Fall)
3-0-9 units
Develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. Experimental methods for probing structures at the tissue, cellular, and molecular levels.
R. D. Kamm, K. J. Van Vliet
20.415 Physical Biology
Subject meets with 8.241, 20.315
Prereq: Permission of instructor
G (Spring)
Not offered regularly; consult department
3-0-9 units
Focuses on current major research topics in quantitative, physical biology. Topics include synthetic structural biology, synthetic cell biology, microbial systems biology and evolution, cellular decision making, neuronal circuits, and development and morphogenesis. Emphasizes current motivation and historical background, state-of-the-art measurement methodologies and techniques, and quantitative physical modeling frameworks. Experimental techniques include structural biology, next-generation sequencing, fluorescence imaging and spectroscopy, and quantitative biochemistry. Modeling approaches include stochastic rate equations, statistical thermodynamics, and statistical inference. Students taking graduate version complete additional assignments.
J. Gore, I. Cisse

20.416[J] Topics in Biophysics and Physical Biology
Same subject as 7.74[J], 8.590[J]
Prereq: None
G (Fall)
2-0-4 units
Provides broad exposure to research in biophysics and physical biology, with emphasis on the critical evaluation of scientific literature. Weekly meetings include in-depth discussion of scientific literature led by distinct faculty on active research topics. Each session also includes brief discussion of non-research topics including effective presentation skills, writing papers and fellowship proposals, choosing scientific and technical research topics, time management, and scientific ethics.
I. Cisse, N. Fakhri, M. Guo

20.420[J] Principles of Molecular Bioengineering
Same subject as 10.538[J]
Prereq: 7.06 and 18.03
G (Fall)
3-0-9 units
Provides an introduction to the mechanistic analysis and engineering of biomolecules and biomolecular systems. Covers methods for measuring, modeling, and manipulating systems, including biophysical experimental tools, computational modeling approaches, and molecular design. Equips students to take systematic and quantitative approaches to the investigation of a wide variety of biological phenomena.
A. Jasanoﬀ, E. Fraenkel

Same subject as 2.795[J], 6.561[J], 10.539[J]
Prereq: Permission of instructor
G (Fall)
3-0-9 units
Molecular diffusion, diffusion-reaction, conduction, convection in biological systems; ﬁelds in heterogeneous media; electrical double layers; Maxwell stress tensor, electrical forces in physiological systems. Fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies of membrane transport, electrode interfaces, electrical, mechanical, and chemical transduction in tissues, convective-diﬀusion/reaction, electrophoretic, electroosmotic ﬂows in tissues/MEMs, and ECG. Electromechanical and physicochemical interactions in cells and biomaterials; musculoskeletal, cardiovascular, and other biological and clinical examples. Prior undergraduate coursework in transport recommended.
M. Bathe, A. J. Grodzinsky

20.440 Analysis of Biological Networks
Prereq: Permission of instructor
G (Spring)
6-0-9 units
Explores computational and experimental approaches to analyzing complex biological networks and systems. Includes genomics, transcriptomics, proteomics, metabolomics and microscopy. Stresses the practical considerations required when designing and performing experiments. Also focuses on selection and implementation of appropriate computational tools for processing, visualizing, and integrating diﬀerent types of experimental data, including supervised and unsupervised machine learning methods, and multi-omics modelling. Students use statistical methods to test hypotheses and assess the validity of conclusions. In problem sets, students read current literature, develop their skills in Python and R, and interpret quantitative results in a biological manner. In the second half of term, students work in groups to complete a project in which they apply the computational approaches covered.
B. Bryson, P. Blainey

20.445[J] Methods and Problems in Microbiology
Same subject as 1.86[J], 7.492[J]
Prereq: None
G (Fall)
3-0-9 units
See description under subject 7.492[J]. Preference to ﬁrst-year Microbiology and Biology students.
M. Laub
20.446[J] Microbial Genetics and Evolution
Same subject as 1.87[J], 7.493[J], 12.493[J]
Prereq: 7.03, 7.05, or permission of instructor
G (Fall)
4-0-8 units
See description under subject 7.493[J].
A. D. Grossman, O. Cordero

20.450 Applied Microbiology
Prereq: (20.420[J] and 20.440) or permission of instructor
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Fall)
4-0-8 units
Compares the complex molecular and cellular interactions in health and disease between commensal microbial communities, pathogens and the human or animal host. Special focus is given to current research on microbe/host interactions, infection of significant importance to public health, and chronic infectious disease. Classwork will include lecture, but emphasize critical evaluation and class discussion of recent scientific papers, and the development of new research agendas in the fields presented.
J. C. Niles, K. Ribbeck

20.452[J] Principles of Neuroengineering
Same subject as 9.422[J], MAS.881[J]
Subject meets with 20.352
Prereq: Permission of instructor
G (Fall)
3-0-9 units
See description under subject MAS.881[J].
E. S. Boyden, III

20.454[J] Revolutionary Ventures: How to Invent and Deploy Transformative Technologies
Same subject as 9.455[J], 15.128[J], MAS.883[J]
Prereq: Permission of instructor
G (Fall)
2-0-7 units
See description under subject MAS.883[J].
E. Boyden, J. Bonsen, J. Jacobson

20.463[J] Biomaterials Science and Engineering
Same subject as 3.963[J]
Subject meets with 3.055[J], 20.363[J]
Prereq: 3.034, 20.110[J], or permission of instructor
Acad Year 2019-2020: G (Fall)
Acad Year 2020-2021: Not offered
3-0-9 units
Covers, at a molecular scale, the analysis and design of materials used in contact with biological systems, and biomimetic strategies aimed at creating new materials based on principles found in biology. Topics include molecular interaction between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces. Students taking graduate version complete additional assignments.
D. Irvine, K. Ribbeck

20.465 Engineering the Immune System in Cancer and Beyond
Subject meets with 20.365
Prereq: Permission of instructor
G (Spring)
3-0-6 units
Examines strategies in clinical and preclinical development for manipulating the immune system to treat and protect against disease. Begins with brief review of immune system. Discusses interaction of tumors with the immune system, followed by approaches by which the immune system can be modulated to attack cancer. Also covers strategies based in biotechnology, chemistry, materials science, and molecular biology to induce immune responses to treat infection, transplantation, and autoimmunity. Students taking graduate version complete additional assignments.
D. Irvine

20.470[J] Cellular Neurophysiology and Computing
Same subject as 2.794[J], 6.521[J], 9.021[J], HST.541[J]
Subject meets with 2.791[J], 6.021[J], 9.21[J], 20.370[J]
Prereq: (Physics II (GIR), 18.03, and (2.005, 6.002, 6.003, 10.301, or 20.110[J])) or permission of instructor
G (Fall)
5-2-5 units
See description under subject 6.521[J].
J. Han, T. Heldt
20.475 Applied Developmental Biology and Tissue Engineering
Subject meets with 20.375
Prereq: Permission of instructor
Acad Year 2019-2020: G (Spring)
Acad Year 2020-2021: Not offered
3-0-9 units

This subject addresses the integration of engineering and biology design principles to create human tissues and organs for regenerative medicine to drug development. Overview of embryogenesis; how morphogenic phenomena are governed by biochemical and biophysical cues. Analysis of in vitro generation of human brain, gut, and other organoids from stem cells. Roles of biomaterials and microreactors in improving organoid formation and function. Organoid use in modeling disease and physiology in vitro. Engineering and biological principles of reconstructing tissues and organs from postnatal donor cells using biomaterials scaffolds and bioreactors. Select applications such as liver disease, brain disorders, and others. Graduate students will have additional assignments.

L. Griﬃth

20.486[J] Case Studies and Strategies in Drug Discovery and Development
Same subject as 7.549[J], 15.137[J], HST.916[J]
Prereq: None
G (Spring)
2-0-4 units

Aims to develop appreciation for the stages of drug discovery and development, from target identiﬁcation, to the submission of preclinical and clinical data to regulatory authorities for marketing approval. Following introductory lectures on the process of drug development, students working in small teams analyze how one of four new drugs or drug candidates traversed the discovery/development landscape. For each case, an outside expert from the sponsoring drug company or pivotal clinical trial principal investigator provides guidance and critiques the teams’ presentations to the class.

A. W. Wood

20.490 Computational Systems Biology: Deep Learning in the Life Sciences
Subject meets with 6.802[J], 6.874[J], 20.390[J], HST.506[J]
Prereq: Biology (GIR) and (6.041 or 18.600)
G (Spring)
3-0-9 units

Presents innovative approaches to computational problems in the life sciences, focusing on deep learning-based approaches with comparisons to conventional methods. Topics include protein-DNA interaction, chromatin accessibility, regulatory variant interpretation, medical image understanding, medical record understanding, therapeutic design, and experiment design (the choice and interpretation of interventions). Focuses on machine learning model selection, robustness, and interpretation. Teams complete a multidisciplinary ﬁnal research project using Tensor ﬂow or other framework. Provides a comprehensive introduction to each life sciences problem, but relies upon students understanding probabilistic problem formulations. Students taking graduate version complete additional assignments.

D. K. Giﬀord

20.507[J] Introduction to Biological Chemistry
Same subject as 5.07[J]
Prereq: 5.12
U (Fall)
5-0-7 units. REST
Credit cannot also be received for 7.05

See description under subject 5.07[J].

A. Krishtal, B. Pentelute

20.554[J] Frontiers in Chemical Biology
Same subject as 5.54[J], 7.540[J]
Prereq: 5.07[J], 5.13, 7.06, and permission of instructor
G (Fall)
3-0-9 units

See description under subject 5.54[J].

L. Kiessling, M. Shoulders
20.560 Statistics for Biological Engineering
Prereq: Permission of instructor
G (IAP)
Not offered regularly; consult department
2-0-2 units
Provides basic tools for analyzing experimental data, interpreting statistical reports in the literature, and reasoning under uncertain situations. Topics include probability theory, statistical tests, data exploration, Bayesian statistics, and machine learning. Emphasizes discussion and hands-on learning. Experience with MATLAB, Python, or R recommended.
S. Olesen

Same subject as 7.61[J]
Prereq: Permission of instructor
G (Fall)
4-0-8 units
See description under subject 7.61[J]. Enrollment limited.
R. Hynes, M. Krieger, M. Yaffe

20.586[J] Science and Business of Biotechnology
Same subject as 7.546[J], 15.480(J)
Prereq: None. Coreq: 15.401; permission of instructor
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Spring)
3-0-6 units
See description under subject 15.480[J].
A. Lo, H. Lodish

20.630[J] Immunology
Same subject as 7.63[J]
Subject meets with 7.23[J], 20.230[J]
Prereq: 7.06 and permission of instructor
G (Spring)
5-0-7 units
See description under subject 7.63[J].
S. Spranger, M. Birnbaum

20.902 Independent Study in Biological Engineering
Prereq: Permission of instructor
U (Fall, Spring)
Units arranged
Can be repeated for credit.
Opportunity for independent study under regular supervision by a faculty member. Projects require prior approval, as well as a substantive paper. Minimum 12 units required.
Staff

20.903 Independent Study in Biological Engineering
Prereq: Permission of instructor
U (Fall, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.
Opportunity for independent study under regular supervision by a faculty member. Projects require prior approval, as well as a substantive paper. Minimum 6-12 units required.
Staff

20.920 Practical Work Experience
Prereq: None
U (Fall, IAP, Spring, Summer)
0-1-0 units
For Course 20 students participating in off-campus professional experiences in biological engineering. Before registering for this subject, students must have an offer from a company or organization and must identify a BE supervisor. Upon completion, student must submit a letter from the company or organization describing the experience, along with a substantive final report from the student approved by the MIT supervisor. Subject to departmental approval. Consult departmental undergraduate office.
Staff

20.930[J] Research Experience in Biopharma
Same subject as 7.930[J]
Prereq: None
G (Fall)
2-10-0 units
Provides exposure to industrial science and develops skills necessary for success in such an environment. Under the guidance of an industrial mentor, students participate in on-site research at a local biopharmaceutical company where they observe and participate in industrial science. Serves as a real-time case study to internalize the factors that shape R&D in industry, including the purpose and scope of a project, key decision points in the past and future, and strategies for execution. Students utilize company resources and work with a scientific team to contribute to the goals of their assigned project; they then present project results to the company and class, emphasizing the logic that dictated their work and their ideas for future directions. Lecture component focuses on professional development.
S. Clarke
20.950 Research Problems in Biological Engineering
Prereq: Permission of instructor
G (Fall, Spring, Summer)
Units arranged
Can be repeated for credit.
Directed research in the fields of bioengineering and environmental health. Limited to BE students.
Staff

20.951 Thesis Proposal
Prereq: Permission of instructor
G (Fall, Spring, Summer)
0-24-0 units
Thesis proposal research and presentation to the thesis committee.
Staff

20.960 Teaching Experience in Biological Engineering
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged
Can be repeated for credit.
For qualified graduate students interested in teaching. Tutorial, laboratory, or classroom teaching under the supervision of a faculty member. Enrollment limited by availability of suitable teaching assignments.
Staff

20.BME Undergraduate Research in Biomedical Engineering
Prereq: None
U (Fall, Spring)
Units arranged [P/D/F]
Can be repeated for credit.
Individual research project with biomedical or clinical focus, arranged with appropriate faculty member or approved supervisor. Forms and instructions for the proposal and final report are available in the BE Undergraduate Office.
Consult

20.EPE UPOP Engineering Practice Experience
Engineering School-Wide Elective Subject.
Offered under: 1.EPE, 2.EPE, 3.EPE, 6.EPE, 8.EPE, 10.EPE, 15.EPE, 16.EPE, 20.EPE, 22.EPE
Prereq: 2.EPW or permission of instructor
U (Fall, Spring)
0-0-1 units
See description under subject 2.EPE.
Staff

20.EPW UPOP Engineering Practice Workshop
Engineering School-Wide Elective Subject.
Offered under: 1.EPW, 2.EPW, 3.EPW, 6.EPW, 10.EPW, 16.EPW, 20.EPW, 22.EPW
Prereq: None
U (Fall, IAP)
1-0-0 units
See description under subject 2.EPW. Enrollment limited.
Staff

20.S900 Special Subject in Biological Engineering
Prereq: Permission of instructor
U (Fall, Spring)
Units arranged [P/D/F]
Can be repeated for credit.
Detailed discussion of selected topics of current interest. Classwork in various areas not covered by regular subjects.
L. Griffith, G. McKinley

20.S901 Special Subject in Biological Engineering
Prereq: None
U (Spring)
Units arranged [P/D/F]
Can be repeated for credit.
Detailed discussion of selected topics of current interest. Classwork in various areas not covered by regular subjects.
S. Clarke

20.S940 Special Subject in Biological Engineering
Prereq: Permission of instructor
U (Fall, Spring)
Units arranged
Can be repeated for credit.
Detailed discussion of selected topics of current interest. Classwork in various areas not covered by regular subjects.
Staff

20.S947 Special Subject in Biological Engineering
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged
Can be repeated for credit.
Detailed discussion of selected topics of current interest. Classwork in various areas not covered by regular subjects.
Staff
20.S948 Special Subject in Biological Engineering
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged
Can be repeated for credit.
Detailed discussion of selected topics of current interest. Classwork in various areas not covered by regular subjects.
Staff

20.S949 Special Subject in Biological Engineering
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged
Can be repeated for credit.
Detailed discussion of selected topics of current interest. Classwork in various areas not covered by regular subjects.
Staff

20.S952 Special Subject in Biological Engineering
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged [P/D/F]
Can be repeated for credit.
Detailed discussion of selected topics of current interest. Classwork in various areas not covered by regular subjects.
Staff

20.THG Graduate Thesis
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.
Program of research leading to the writing of an SM or PhD thesis; to be arranged by the student and the MIT faculty advisor.
Staff

20.THU Undergraduate BE Thesis
Prereq: None
U (Fall, IAP, Spring)
Units arranged
Can be repeated for credit.
Program of research leading to the writing of an SB thesis; to be arranged by the student under approved supervision.
Staff

20.UR Undergraduate Research Opportunities
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.
Laboratory research in the fields of bioengineering or environmental health. May be extended over multiple terms.
S. Manalis

20.URG Undergraduate Research Opportunities
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.
Emphasizes direct and active involvement in laboratory research in bioengineering or environmental health. May be extended over multiple terms.
Consult S. Manalis

20.UR Undergraduate Research Opportunities
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.
Laboratory research in the fields of bioengineering or environmental health. May be extended over multiple terms.
S. Manalis