The Department of Mathematics (http://math.mit.edu) offers training at the undergraduate, graduate, and postgraduate levels. Its expertise covers a broad spectrum of fields ranging from the traditional areas of 'pure' mathematics, such as analysis, algebra, geometry, and topology, to applied mathematics areas such as combinatorics, computational biology, fluid dynamics, theoretical computer science, and theoretical physics.

Course 18 includes two undergraduate degrees: a Bachelor of Science in Mathematics and a Bachelor of Science in Mathematics with Computer Science. Undergraduate students may choose one of three options leading to the Bachelor of Science in Mathematics: applied mathematics, pure mathematics, or general mathematics. The general mathematics option provides a great deal of flexibility and allows students to design their own programs in conjunction with their advisors. The Mathematics with Computer Science degree is offered for students who want to pursue interests in mathematics and theoretical computer science within a single undergraduate program.

At the graduate level, the Mathematics Department offers the PhD in Mathematics, which culminates in the exposition of original research in a dissertation. Graduate students also receive training and gain experience in the teaching of mathematics. The CLE Moore instructorships and Applied Mathematics instructorships bring mathematicians at the postdoctoral level to MIT and provide them with training in research and teaching.

Undergraduate Study

An undergraduate degree in mathematics provides an excellent basis for graduate work in mathematics or computer science, or for employment in such fields as finance, business, or consulting. Students’ programs are arranged through consultation with their faculty advisors.

Undergraduates in mathematics are encouraged to elect an undergraduate seminar during their junior or senior year. The experience gained from active participation in a seminar conducted by a research mathematician has proven to be valuable for students planning to pursue graduate work as well as for those going on to other careers. These seminars also provide training in the verbal and written communication of mathematics and may be used to fulfill the Communication Requirement.

Many mathematics majors take 18.821, which fulfills the Institute's Laboratory Requirement and counts toward the Communication Requirement.

Bachelor of Science in Mathematics (Course 18)

General Mathematics Option

In addition to the General Institute Requirements, the requirements consist of Differential Equations, plus eight additional 12-unit subjects in Course 18 of essentially different content, including at least six advanced subjects (first decimal digit one or higher) that are distributed over at least three distinct areas (at least three distinct first decimal digits). One of these eight subjects must be Linear Algebra. This leaves available 84 units of unrestricted electives. The requirements are flexible in order to accommodate students who pursue programs that combine mathematics with a related field (such as physics, economics, or management) as well as students who are interested in both pure and applied mathematics. More details can be found on the degree chart (http://catalog.mit.edu/degree-charts/mathematics-course-18/#generalmathematicstext).

Applied Mathematics Option

Applied mathematics focuses on the mathematical concepts and techniques applied in science, engineering, and computer science. Particular attention is given to the following principles and their mathematical formulations: propagation, equilibrium, stability, optimization, computation, statistics, and random processes.

Sophomores interested in applied mathematics typically enroll in 18.200 and 18.300. Subject 18.200 is devoted to the discrete aspects of applied mathematics and may be taken concurrently with 18.03. Subject 18.300, offered in the spring term, is devoted to continuous aspects and makes considerable use of differential equations.

The subjects in Group I of the program correspond roughly to those areas of applied mathematics that make heavy use of discrete mathematics, while Group II emphasizes those subjects that deal mainly with continuous processes. Some subjects, such as probability or numerical analysis, have both discrete and continuous aspects.

Students planning to go on to graduate work in applied mathematics should also take some basic subjects in analysis and algebra.

More detail on the Applied Mathematics option can be found on the degree chart (http://catalog.mit.edu/degree-charts/mathematics-course-18/#appliedmathematicstext).

Pure Mathematics Option

Pure (or 'theoretical') mathematics is the study of the basic concepts and structure of mathematics. Its goal is to arrive at a deeper understanding and an expanded knowledge of mathematics itself.

Traditionally, pure mathematics has been classified into three general fields: analysis, which deals with continuous aspects of mathematics; algebra, which deals with discrete aspects; and geometry. The undergraduate program is designed so that students
become familiar with each of these areas. Students also may wish to explore other topics such as logic, number theory, complex analysis, and subjects within applied mathematics.

The subjects 18.701 and 18.901 are more advanced and should not be elected until a student has had experience with proofs, as in Real Analysis (18.100A, 18.100B, 18.100P or 18.100Q) or 18.700.

For more details, see the degree chart (http://catalog.mit.edu/degree-charts/mathematics-course-18/#theoreticalmathematicstext).

Bachelor of Science in Mathematics with Computer Science (Course 18-C)

Mathematics and computer science are closely related fields. Problems in computer science are often formalized and solved with mathematical methods. It is likely that many important problems currently facing computer scientists will be solved by researchers skilled in algebra, analysis, combinatorics, logic and/or probability theory, as well as computer science.

The purpose of this program is to allow students to study a combination of these mathematical areas and potential areas of application in computer science. Required subjects include linear algebra (18.06 or 18.700) because it is so broadly used, and discrete mathematics (18.602 or 18.200) to give experience with proofs and the necessary tools for analyzing algorithms. The required subjects covering complexity (18.404 or 18.400) and algorithms (18.410) provide an introduction to the most theoretical aspects of computer science. We also require exposure to other areas of computer science (6.031, 6.033, 6.034, or 6.036) where mathematical issues may also arise. More details can be found on the degree chart (http://catalog.mit.edu/degree-charts/mathematics-computer-science-course-18-c).

Some flexibility is allowed in this program. In particular, students may substitute the more advanced subject 18.701 for 18.06, and, if they already have strong theorem-proving skills, may substitute 18.211 or 18.212 for 18.062 or 18.200.

Minor in Mathematics

The requirements for a Minor in Mathematics are as follows: six 12-unit subjects in mathematics, beyond the Institute’s Mathematics Requirement, of essentially different content, including at least three advanced subjects (first decimal digit one or higher).

See the Undergraduate Section for a general description of the minor program (http://catalog.mit.edu/mit/undergraduate-education/academic-programs/minors).

Inquiries

For further information, see the department’s website (http://math.mit.edu/academics/undergrad) or contact Math Academic Services, 617-253-2416.

Graduate Study

The Mathematics Department offers programs covering a broad range of topics leading to the Doctor of Philosophy or Doctor of Science degree. Candidates are admitted to either the Pure or Applied Mathematics programs but are free to pursue interests in both groups. Of the roughly 115-125 doctoral students, about two thirds are in Pure Mathematics, one third in Applied Mathematics.

The programs in Pure and Applied Mathematics offer basic and advanced classes in analysis, algebra, geometry, Lie theory, logic, number theory, probability, statistics, topology, astrophysics, combinatorics, fluid dynamics, numerical analysis, theoretical physics, and the theory of computation. In addition, many mathematically oriented subjects are offered by other departments. Students in Applied Mathematics are especially encouraged to take subjects in engineering and scientific subjects related to their research.

All students pursue research under the supervision of the faculty and are encouraged to take advantage of the many seminars and colloquia at MIT and in the Boston area.

Doctor of Philosophy or Doctor of Science

The requirements for these degrees are described on the department’s website (http://math.mit.edu/academics/grad/timeline). In outline, they consist of an oral qualifying examination, a thesis proposal, completion of a minimum of 96 units (8 graduate subjects), experience in classroom teaching, and a thesis containing original research in mathematics.

Interdisciplinary Programs

Computational Science and Engineering

Students with primary interest in computational science may also consider applying to the interdisciplinary Computational Science and Engineering (CSE) program, with which the Mathematics Department is affiliated. For more information, see the CSE website (http://gradadmissions.mit.edu/programs/cse).

Mathematics and Statistics

The Interdisciplinary Doctoral Program in Statistics provides training in statistics, including classical statistics and probability as well as computation and data analysis, to students who wish to integrate these valuable skills into their primary academic program. The program is administered jointly by the departments of Aeronautics and Astronautics, Economics, Mathematics, Mechanical Engineering, and Political Science, and the Statistics and Data Science Center within the Institute for Data, Systems, and Society. It is open to current doctoral students in participating departments. For more information, including department-specific requirements, see the full program description (http://catalog.mit.edu/interdisciplinary/
graduate-programs/phd-statistics) under Interdisciplinary Graduate Programs.

Financial Support
Financial support is guaranteed for up to five years to students making satisfactory academic progress. Financial aid after the first year is usually in the form of a teaching or research assistantship.

Inquiries
For further information, see the department’s website (http://math.mit.edu/academics/grad) or contact Math Academic Services, 617-253-2416.

Faculty and Teaching Staff
Michel X. Goemans, PhD
Professor of Mathematics
Head, Department of Mathematics

William Minicozzi, PhD
Singer Professor of Mathematics
Associate Head, Department of Mathematics

Professors
Michael Artin, PhD
Professor Post-Tenure of Mathematics

Martin Z. Bazant, PhD
E. G. Roos Professor
Professor of Chemical Engineering
Professor of Mathematics

Bonnie Berger, PhD
Simons Professor of Mathematics
Member, Health Sciences and Technology Faculty

Roman Bezrukavnikov, PhD
Professor of Mathematics

Alexei Borodin, PhD
Professor of Mathematics

John W. M. Bush, PhD
Professor of Mathematics

Hung Cheng, PhD
Professor of Mathematics

Tobias Colding, PhD
Cecil and Ida Green Distinguished Professor
Professor of Mathematics

Laurent Demanet, PhD
Professor of Mathematics
Professor of Earth, Atmospheric and Planetary Sciences

Alan Edelman, PhD
Professor of Mathematics
(On leave, spring)

Pavel I. Etingof, PhD
Professor of Mathematics

Victor W. Guillemin, PhD
Professor of Mathematics

Lawrence Guth, PhD
Claude E. Shannon (1940) Professor of Mathematics

Anette E. Hosoi, PhD
Neil and Jane Pappalardo Professor
Professor of Mechanical Engineering
Professor of Mathematics

Associate Dean, School of Engineering
Member, Institute for Data, Systems, and Society

David S. Jerison, PhD
Professor of Mathematics

Steven G. Johnson, PhD
Professor of Mathematics
Professor of Physics

Victor Kac, PhD
Professor of Mathematics

Jonathan Adam Kelner, PhD
Professor of Mathematics

Ju-Lee Kim, PhD
Professor of Mathematics

Frank Thomson Leighton, PhD
Professor of Mathematics
(On leave, spring)

George Lusztig, PhD
Edward A. AbduNur (1924) Professor of Mathematics

Davesh Maulik, PhD
Professor of Mathematics

Richard B. Melrose, PhD
Professor of Mathematics

Haynes R. Miller, PhD
Professor of Mathematics

Elchanan Mossel, PhD
Member, Institute for Data, Systems, and Society

Tomasz S. Mrowka, PhD
Professor of Mathematics
Pablo A. Parrilo, PhD
Joseph F. and Nancy P. Keithley Professor
Professor of Electrical Engineering and Computer Science
Professor of Mathematics
Core Faculty, Institute for Data, Systems, and Society

Bjorn Poonen, PhD
Distinguished Professor in Science
Professor of Mathematics

Alexander Postnikov, PhD
Professor of Mathematics

Philippe Rigollet, PhD
Professor of Mathematics
Member, Institute for Data, Systems, and Society

Rodolfo R. Rosales, PhD
Professor of Mathematics

Paul Seidel, PhD
Levinson Professor of Mathematics

Scott Roger Sheffield, PhD
Leighton Family Professor of Mathematics
Member, Institute for Data, Systems, and Society

Peter W. Shor, PhD
Henry Adams Morss and Henry Adams Morss, Jr. (1934) Professor
Professor of Mathematics

Michael Sipser, PhD
Donner Professor of Mathematics
Dean, School of Science

Gigliola Staffilani, PhD
Abby Rockefeller Mauzé Professor of Mathematics

Gilbert Strang, PhD
MathWorks Professor of Mathematics
Member, Institute for Data, Systems, and Society

Daniel W. Stroock, PhD
Professor Post-Tenure of Mathematics

Chenyang Xu, PhD
Professor of Mathematics
(On leave)

Zhiwei Yun, PhD
Professor of Mathematics

Wei Zhang, PhD
Professor of Mathematics

Associate Professors

Joern Dunkel, PhD
Associate Professor of Mathematics
(On leave, spring)

Semyon Dyatlov, PhD
Associate Professor of Mathematics

Ankur Moitra, PhD
Associate Professor of Mathematics

Andrei Negut, PhD
Class of 1947 Career Development Chair
Associate Professor of Mathematics

Nike Sun, PhD
Associate Professor of Mathematics

Assistant Professors

Tristan Collins, PhD
Assistant Professor of Mathematics

Peter Hintz, PhD
Assistant Professor of Mathematics
(On leave, fall)

Andrew Lawrie, PhD
Assistant Professor of Mathematics

Dor Minzer, PhD
Assistant Professor of Mathematics

Lisa Piccirillo, PhD
Assistant Professor of Mathematics

Yufei Zhao, PhD
Class of 1956 Career Development Chair
Assistant Professor of Mathematics

Visiting Professors

Thomas Lam, PhD
Visiting Professor of Mathematics

David Sanders, PhD
Visiting Professor of Mathematics

Visiting Associate Professors

Thibaut Le Gouic, PhD
Visiting Associate Professor of Mathematics

Adjunct Professors

Henry Cohn, PhD
Adjunct Professor of Mathematics
Lecturers
Jennifer French, PhD
Lecturer in Digital Learning
Slava Gerovitch, PhD
Lecturer in Mathematics
Peter J. Kempthorne, PhD
Lecturer in Mathematics
Tanya Khovanova, PhD
Lecturer in Mathematics

CLE Moore Instructors
Charlotte Chan, PhD
CLE Moore Instructor of Mathematics
Tony Feng, PhD
CLE Moore Instructor of Mathematics
Promit Ghosal, PhD
CLE Moore Instructor of Mathematics
Jeremy Hahn, PhD
CLE Moore Instructor of Mathematics
Pei-Ken Hung, PhD
CLE Moore Instructor of Mathematics
Benjamin Landon, PhD
CLE Moore Instructor of Mathematics
Yang Li, PhD
CLE Moore Instructor of Mathematics
Tristan Ozuch-Meersseman, PhD
CLE Moore Instructor of Mathematics
Casey Rodriguez, PhD
CLE Moore Instructor of Mathematics
Matthew Rosenzweig, PhD
CLE Moore Instructor of Mathematics
Junliang Shen, PhD
CLE Moore Instructor of Mathematics
Yair Shenfeld, PhD
CLE Moore Instructor of Mathematics
Alexander Smith, PhD
CLE Moore Instructor of Mathematics
Minh-Tam Trinh, PhD
CLE Moore Instructor of Mathematics
Chen Wan, PhD
CLE Moore Instructor of Mathematics

Yilin Wang, PhD
CLE Moore Instructor of Mathematics
Abigail Ward, PhD
CLE Moore Instructor of Mathematics
Junho Whang, PhD
CLE Moore Instructor of Mathematics
Xueying Yu, PhD
CLE Moore Instructor of Mathematics
Yiming Zhao, PhD
CLE Moore Instructor of Mathematics
Ziquan Zhuang, PhD
CLE Moore Instructor of Mathematics

Instructors of Applied Mathematics
Peter Baddoo, PhD
Instructor of Applied Mathematics
Keaton Burns, PhD
Instructor of Applied Mathematics
Gary Choi, PhD
Instructor of Applied Mathematics
Diego Cifuentes, PhD
Instructor of Applied Mathematics
Souvik Dhara, PhD
Schramm Fellow Instructor
Matthew Durey, PhD
Instructor of Applied Mathematics
William Cole Franks, PhD
Instructor of Applied Mathematics
Nir Gadish, PhD
Instructor of Applied Mathematics
Julia Gaudio, PhD
Instructor of Applied Mathematics
Felix Gotti, PhD
Instructor of Applied Mathematics
Vili Heinonen, PhD
Instructor of Applied Mathematics
Ziilin Jiang, PhD
Instructor of Applied Mathematics
Ousmane Kodio, PhD
Instructor of Applied Mathematics
Lu Lu, PhD
Instructor of Applied Mathematics

Tyler Maunu, PhD
Instructor of Applied Mathematics

Christopher Rackauckas, PhD
Instructor of Applied Mathematics

Instructors of Pure Mathematics

Daniel Alvarez-Gavela, PhD
Instructor of Pure Mathematics

Li Chen, PhD
Instructor of Pure Mathematics

Anthony Conway, PhD
Instructor of Pure Mathematics

Irving Dai, PhD
Instructor of Pure Mathematics

Daniel Kriz, PhD
Instructor of Pure Mathematics

Dominique Maldague, PhD
Instructor of Pure Mathematics

Jonathan Wang, PhD
Instructor of Pure Mathematics

Nicholas Wilkins, PhD
Instructor of Pure Mathematics

Research Staff

Principal Research Scientists

Andrew Victor Sutherland II, PhD
Principal Research Scientist of Mathematics

Research Scientists

Pawan Bharadwaj Pisupati, PhD
Research Scientist of Mathematics

Edgar Costa, PhD
Research Scientist of Mathematics

Francesc Fité, PhD
Research Scientist of Mathematics

Wanlin Li, PhD
Research Scientist of Mathematics

Philippe Ricoux, PhD
Research Scientist of Mathematics

David Roe, PhD
Research Scientist of Mathematics

Samuel Schiavone, PhD
Research Scientist of Mathematics

David I. Spivak, PhD
Research Scientist of Mathematics

Raymond van Bommel, PhD
Research Scientist of Mathematics

Professors Emeriti

Daniel Z. Freedman, PhD
Professor Emeritus of Mathematics
Professor Emeritus of Physics

Harvey P. Greenspan, PhD
Professor Emeritus of Mathematics

Sigurdur Helgason, PhD
Professor Emeritus of Mathematics

Steven L. Kleiman, PhD
Professor Emeritus of Mathematics

Daniel J. Kleitman, PhD
Professor Emeritus of Mathematics

Arthur P. Mattuck, PhD
Professor Emeritus of Mathematics

James R. Munkres, PhD
Professor Emeritus of Mathematics

Isadore Manuel Singer, PhD
Institute Professor Emeritus
Professor Emeritus of Mathematics

Richard P. Stanley, PhD
Professor Emeritus of Mathematics

Harold Stark, PhD
Professor Emeritus of Mathematics

Alar Toomre, PhD
Professor Emeritus of Mathematics

David A. Vogan, PhD
Norbert Wiener Professor Emeritus of Mathematics