Chemistry is the study of the nanoworld, the world of atoms and molecules spanning sizes from one to several thousand angstroms. Chemists study the architecture of this miniature universe, explore the changes that occur, discover the principles that govern these chemical changes, and devise ways to create entirely new classes of compounds and materials. Previous triumphs of chemistry include the synthesis of pharmaceuticals and agricultural products, while current challenges include chemical memory, solar cells, superconductors, clean fuels, batteries, and the solution of numerous important problems relating to health and the environment.

The Department of Chemistry offers the Bachelor of Science and Doctor of Philosophy degrees. The department’s program of teaching and research spans the breadth of chemistry. General areas covered include biological chemistry, inorganic chemistry, organic chemistry, and physical chemistry. Some of the activities of the department, especially those that involve “translational research” (the application of basic science to practical problems) are carried out in association with interdisciplinary laboratories and centers. These interdepartmental units include the Center for Materials Science and Engineering, Francis Bitter Magnet Laboratory, Center for Ultracold Atoms, Institute for Medical Engineering and Science, Institute for Soldier Nanotechnologies, MIT Energy Initiative, Center for Environmental Health Sciences, Koch Institute for Integrative Cancer Research, and Laser Biomedical Research Facility. See the section on Research and Study for more information.

The undergraduate program aims to provide rigorous education in the fundamental areas of chemical and biochemical knowledge and experimentation. Undergraduate students are encouraged to participate in the Undergraduate Research Opportunities Program (UROP) and to take graduate-level chemistry classes as well as subjects in other departments at the Institute, Harvard University, or Wellesley College.

The Department of Chemistry graduate program admits applicants for the Doctor of Philosophy degree. In addition to formal coursework, each student undertakes a research problem that forms the core of graduate work. Graduate- and postgraduate-level research is often carried out in collaboration with scientists in other facilities and interdisciplinary laboratories.

Undergraduate Study

Bachelor of Science in Chemistry (Course 5)

The Department of Chemistry offers an undergraduate program (http://catalog.mit.edu/degree-charts/chemistry-course-5) sufficiently flexible in its electives to provide excellent preparation for careers in many different areas of chemistry. Course 5 is designed to provide an education based on science, both for those who intend to go on to graduate study and those who intend to pursue a professional career immediately in either chemistry or an allied field, such as medicine, in which a sound knowledge of chemistry is important. Students receive thorough instruction in the principles of chemistry, supplemented by a strong foundation in mathematics, physics, biology, and the humanities. A Certification in Biochemistry by the American Chemical Society can be received with a bachelor’s degree for students who have concentrated in this area. The Department of Chemistry also teaches courses jointly with the departments of Biology, Chemical Engineering, Biological Engineering, and Materials Science and Engineering.

Unrestricted electives allow students to extend their knowledge in areas of special interest. Those intending to do graduate work may elect subjects in the department or in other departments that give them more detailed knowledge in the areas in which they plan to specialize. Students who expect to enter industry may elect subjects that offer the fundamentals in a selected field of science, engineering, or the humanities and social sciences. Programs may also be elected that lead to a double major in two fields of specialization.

The student's faculty advisor can offer suggestions for elective subjects that are of value in preparation for specialization in the various broad areas of chemistry. The proper choice of electives is particularly important for students planning to continue their education in a graduate program.

Students at all levels are encouraged to undertake original research under the supervision of a member of the chemistry faculty, and students carrying out research over at least three semesters have the option of preparing an undergraduate thesis.

Minor in Chemistry

The requirements for a Minor in Chemistry are as follows:

<table>
<thead>
<tr>
<th>Requirements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.03 Principles of Inorganic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>5.12 Organic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>5.310 Laboratory Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>5.60 Thermodynamics and Kinetics</td>
<td>12</td>
</tr>
</tbody>
</table>

Select two of the following:

5.04 Principles of Inorganic Chemistry II	24
5.07[J] Biological Chemistry I	
5.08[J] Biological Chemistry II	
5.13 Organic Chemistry II	
5.36 Biochemistry and Organic Laboratory	
5.36U Biochemistry and Organic Laboratory	
5.37 Organic and Inorganic Laboratory	
The Department of Chemistry offers the Doctor of Philosophy degree. The subjects offered aim to develop a sound knowledge of fundamentals and a familiarity with current progress in the most active and important areas of chemistry. In addition to studying formal subjects, each student undertakes a research problem that forms the core of graduate work. Through the experience of conducting an investigation leading to the doctoral thesis, a student learns general methods of approach and acquires training in some of the specialized techniques of research.

The areas of research (http://chemistry.mit.edu/research/overview) in the department include organic, inorganic, physical, and biological chemistry, broadly defined.

Chemical research frequently involves more than one of the four traditional subfields. Some research activities of the department are carried out in association with interdisciplinary laboratories and centers as described in the Overview and in the section on Research and Study. These interdisciplinary research laboratories provide stimulating interaction among the research programs of several MIT departments and give students opportunities to become familiar with research work in disciplines other than chemistry. The department also participates in the interdisciplinary graduate Program in Polymers and Soft Matter, the Biotechnology Training Program, the Microbiology Program, and the Biophysics Certificate Program.

During the first term of residence, all graduate students are encouraged to select research supervisors who serve as their advisors for the balance of their graduate careers. In particular, the overall program of graduate subjects is established by each student in consultation with the research supervisor. In planning this program and in establishing the thesis problem, careful consideration is given to the candidate's academic record and professional experience, as well as to long-range objectives.

Admission Requirements for Graduate Study
Students intending to do graduate work in the Chemistry Department should have excellent undergraduate preparation in chemistry. The department is flexible with respect to specific course preparation; the essential requirement is demonstration of ability to progress with advanced study and research in some area of special interest. However, mathematics and physics are important prerequisites for graduate work in physical chemistry or chemical physics, whereas less preparation in these areas is required for work in organic chemistry.

Applicants to the Chemistry Department are required to submit scores from the verbal and quantitative sections of the Graduate Record Examination. Scores on the advanced examinations are optional.

Doctor of Philosophy
The Chemistry Department does not have any formal subject requirements for the doctoral degree. Each student, with the advice of a research supervisor, pursues an individual program of study that is pertinent to the student's long-range research interests. All students are required to serve as a teaching assistant for two terms, usually during the first year.

Written qualifying examinations are cumulative. Separate examinations in biological, inorganic, organic, and physical chemistry are offered each month from October through May. The examinations demonstrate an understanding of the important principles of each field. Six cumulative examinations must be passed to complete the written major examination. No fixed time limit is set for completion of this requirement; however, progress is reviewed periodically and the department expects a demonstrated passing performance in cumulative exams before a student takes their second-year oral exam. It is normal to have passed at least four cumulative exams by that time. No other written general examinations are required. In particular, no entrance examinations are given.

A comprehensive oral examination in the candidate's major field of advanced study is held generally in the fourth term of residence. Progress in the student's research is also examined at that time. A final oral presentation on the subject of the doctoral research is scheduled after the thesis has been submitted and evaluated by a committee of examiners.
Interdisciplinary Programs

Polymers and Soft Matter
The Program in Polymers and Soft Matter (PPSM) (http://polymerscience.mit.edu) offers students from participating departments an interdisciplinary core curriculum in polymer science and engineering, exposure to the broader polymer community through seminars, contact with visitors from industry and academia, and interdepartmental collaboration while working towards a PhD or ScD degree.

Research opportunities include functional polymers, controlled drug delivery, nanostructured polymers, polymers at interfaces, biomaterials, molecular modeling, polymer synthesis, biomimetic materials, polymer mechanics and rheology, self-assembly, and polymers in energy. The program is described in more detail under Interdisciplinary Graduate Programs (http://catalog.mit.edu/interdisciplinary/graduate-programs/polymers-soft-matter).

Financial Support
The department usually appoints first-year graduate students as teaching assistants (TAs). TAs are assigned either to laboratory subjects or to discussion sections of lecture subjects. Most students receive appointments to research assistantships after their first year, and departmental fellowships are also available. Financial support after the first academic year is subject to the availability of funds and provided for students who maintain a satisfactory record.

Inquiries
Correspondence about the graduate program or appointments should be addressed to the Chemistry Education Office, Room 6-205, 617-253-1851.

Timothy F. Jamison, PhD
Head, Department of Chemistry
Professor of Chemistry

Faculty and Teaching Staff

Professors
Moungi G. Bawendi, PhD
Lester Wolfe Professor
Professor of Chemistry

Stephen Leffler Buchwald, PhD
Camille Dreyfus Professor of Chemistry

Jianshu Cao, PhD
Professor of Chemistry

Sylvia Ceyer, PhD
John C. Sheehan Professor
Professor of Chemistry

Arup K. Chakraborty, PhD
Robert T. Haslam (1911) Professor
Director, Institute for Medical Engineering and Science
Robert T. Haslam Professor of Chemical Engineering
Professor of Biological Engineering
Professor of Chemistry
Professor of Physics

Christopher C. Cummins, PhD
Henry Dreyfus Professor of Energy
Professor of Chemistry

Rick Lane Danheiser, PhD
Arthur C. Cope Professor
Professor of Chemistry

Catherine L. Drennan, PhD
Professor of Biology
Professor of Chemistry

John M. Essigmann, PhD
William R. (1956) and Betsy P. Leitch Professor in Residence
Professor of Toxicology and Biological Engineering
Professor of Chemistry

Robert W. Field, ScD, PhD
Robert T. Haslam and Bradley Dewey Professor of Chemistry

Robert G. Griffin, PhD
Professor of Chemistry

Mei Hong, PhD
Professor of Chemistry

Barbara Imperiali, PhD
Class of 1922 Professor
Professor of Biology
Professor of Chemistry

Alexander M. Klibanov, PhD
Novartis Professor of Chemistry
Professor of Bioengineering

Stephen J. Lippard, PhD
Arthur Amos Noyes Professor
Professor of Chemistry

Mohammad Movassaghi, PhD
Professor of Chemistry

Keith Adam Nelson, PhD
Robert T. Haslam and Bradley Dewey Professor of Chemistry

Richard Royce Schrock, PhD
Frederick George Keyes Professor
Professor of Chemistry
Susan Solomon, PhD
Ellen Swallow Richards (1873) Professor
Professor of Atmospheric Chemistry and Climate Science
Professor of Chemistry

JoAnne Stubbe, PhD
Novartis Professor of Chemistry
Professor of Biology

Timothy M. Swager, PhD
John D. MacArthur Professor
Professor of Chemistry

Steven R. Tannenbaum, PhD
Underwood-Prescott Professor
Professor of Toxicology and Biological Engineering
Professor of Chemistry

Alice Y. Ting, PhD
Ellen Swallow Richards (1873) Professor
Professor of Chemistry

Troy Van Voorhis, PhD
Robert T. Haslam and Bradley Dewey Professor of Chemistry

Associate Professors
Mircea Dinca, PhD
Associate Professor of Chemistry

Elizabeth M. Nolan, PhD
Associate Professor of Chemistry

Assistant Professors
Jeremiah A. Johnson, PhD
Roger and Georges Firmenich Professor of Natural Product Chemistry
Assistant Professor of Chemistry

Bradley L. Pentelute, PhD
Pfizer-Laubach Career Development Professor
Assistant Professor of Chemistry

Gabriela Schlau-Cohen, PhD
Assistant Professor of Chemistry

Alex K. Shalek, PhD
Hermann L. F. von Helmholtz Career Development Professor
Assistant Professor of Chemistry

Matthew D. Shoulders, PhD
Assistant Professor of Chemistry

Yogesh Surendranath, PhD
Assistant Professor of Chemistry

Jeff Van Humbeck, PhD
Roger and Georges Firmenich Professor of Natural Product Chemistry
Assistant Professor of Chemistry

Adam P. Willard, PhD
Assistant Professor of Chemistry

Visiting Associate Professors
Malika Jeffries-El, PhD
Visiting Associate Professor of Chemistry

Instructors
Elizabeth Vogel, PhD
Instructor of Chemistry

Technical Instructors
John J. Dolhun, PhD
Technical Instructor of Chemistry

Michael Stopa, PhD
Technical Instructor of Chemistry

Mariusz Twardowski, PhD
Technical Instructor of Chemistry

Research Staff

Principal Research Scientists
Ramachandra Rao Dasari, PhD
Principal Research Scientist of Chemistry

Peter Mueller, PhD
Principal Research Scientist of Chemistry

Research Scientists
Rachel L. Beingessner, PhD
Research Scientist of Chemistry

Oliver Thomas Bruns, PhD
Research Scientist of Chemistry

Ou Chen, PhD
Research Scientist of Chemistry

Jeon Woong Kang, PhD
Research Scientist of Chemistry

Alexei Maznev, PhD
Research Scientist of Chemistry

Christine Nguyen, PhD
Research Scientist of Chemistry

Joseph John Walish, PhD
Research Scientist of Chemistry
Zahid Yaqoob, PhD
Research Scientist of Chemistry

Research Specialists
Li Li, BS
Research Specialist of Chemistry
Gang Liu, PhD
Research Specialist of Chemistry

Technical Associates
Randy Scanga, BS
Technical Associate of Chemistry

Technical Assistants
Catherine Amaya, BS
Technical Assistant of Chemistry
Austin Draycott, BS
Technical Assistant of Chemistry
Brian Pretti
Technical Assistant of Chemistry

Professors Emeriti
Klaus Biemann, PhD
Professor Emeritus of Chemistry
John M. Deutch, PhD
Institute Professor Emeritus
Professor Emeritus of Chemistry
Carl W. Garland, PhD
Professor Emeritus of Chemistry
Frederick D. Greene, ScD, PhD
Professor Emeritus of Chemistry
Daniel S. Kemp, PhD
Professor Emeritus of Chemistry
Dietmar Seyferth, PhD
Robert T. Haslam and Bradley Dewey Professor Emeritus
Professor Emeritus of Chemistry
Jeffrey I. Steinfeld, PhD
Professor Emeritus of Chemistry
Gerald N. Wogan, PhD
Professor Emeritus of Biological Engineering
Professor Emeritus of Chemistry

5.00[J] Energy Technology and Policy: From Principles to Practice
Same subject as 6.929[J], 10.579[J], 22.813[J], ESD.174[J]
Prereq: None
G (Spring)
3-0-6 units
See description under subject 22.813[J].
J. Deutch

5.03 Principles of Inorganic Chemistry I
Prereq: 5.12
U (Spring)
5-0-7 units
Presents principles of chemical bonding and molecular structure, and their application to the chemistry of representative elements of the periodic system.
C. C. Cummins, S. Lippard

5.04 Principles of Inorganic Chemistry II
Prereq: 5.03
U (Fall)
4-0-8 units
Systematic presentation of the chemical applications of group theory. Emphasis on the formal development of the subject and its applications to the physical methods of inorganic chemical compounds. Against the backdrop of electronic structure, the electronic, vibrational, and magnetic properties of transition metal complexes are presented and their investigation by the appropriate spectroscopy described.
M. Dinca, Y. Surendranath

5.05 Principles of Inorganic Chemistry III
Prereq: 5.03, 5.04
G (Spring; partial term)
2-0-4 units
Principles of main group (s and p block) element chemistry with an emphasis on synthesis, structure, bonding, and reaction mechanisms.
C. C. Cummins

5.061 Principles of Organometallic Chemistry
Prereq: 5.03
G (Spring; first half of term)
2-0-4 units
A comprehensive treatment of organometallic compounds of the transition metals with emphasis on structure, bonding, synthesis, and mechanism.
R. Schrock
5.062 Principles of Bioinorganic Chemistry
Prereq: 5.03
G (Fall)
3-0-9 units
Delineates principles that form the basis for understanding how metal ions function in biology. Includes the choice, uptake and assembly of metal-containing units; metal-induced folding of biomolecules; control of metal ion concentrations in cells; electron-transfer chemistry; atom and group transfer chemistry; protein tuning of metal properties; and applications to diagnosis and treatment of disease. Introduces additional topics to expose students to exciting new advances in the field, such as medicinal application of inorganic chemistry; multi-component enzyme systems (e.g., nitrogenase, hydrogenase, and photosystem II); and metalloprotein engineering and design (e.g., the conversion by mutagenesis of existing metalloprotein scaffolds to achieve novel functions).
S. Lippard, E. Nolan

5.063 Organometallic Compounds in Catalytic Reactions
Prereq: 5.061
Acad Year 2016-2017: G (Spring; first half of term)
Acad Year 2017-2018: Not offered
2-0-4 units
An exploration of organometallic chemistry from the perspective of catalytic reactions in organic and polymer chemistry.
R. Schrock

5.067 Crystal Structure Refinement
Prereq: 5.068, 5.069, or permission of instructor
G (Fall)
2-3-1 units
Practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and inorganic molecules.
P. Mueller

5.068 Physical Inorganic Chemistry
Prereq: 5.03, 5.04
G (Spring; second half of term)
3-0-3 units
Discusses the physical methods used to probe the electronic and geometric structures of inorganic compounds, with additional techniques employed in the characterization of inorganic solids and surfaces. Includes vibrational spectroscopy, solid state and solution magnetochemical methods, Mössbauer spectroscopy, electron paramagnetic resonance spectroscopy, electrochemical methods, and a brief survey of surface techniques. Applications to current research problems in inorganic and solid-state chemistry.
M. Dinca

5.069 Crystal Structure Analysis
Prereq: 5.03, 5.04
G (Spring; first half of term)
2-0-4 units
Introduction to X-ray crystallography: symmetry in real and reciprocal space, space and Laue groups, geometry of diffraction, structure factors, phase problem, direct and Patterson methods, electron density maps, structure refinement, crystal growth, powder methods, limits of diffraction methods, structure data bases.
P. Mueller

5.07[J] Biological Chemistry I
Same subject as 20.507[J]
Prereq: 5.12
U (Fall)
5-0-7 units. REST
Credit cannot also be received for 7.05
Chemical and physical properties of the cell and its building blocks. Structures of proteins and principles of catalysis. The chemistry of organic/inorganic cofactors required for chemical transformations within the cell. Basic principles of metabolism and regulation in pathways, including glycolysis, gluconeogenesis, fatty acid synthesis/degradation, pentose phosphate pathway, Krebs cycle and oxidative phosphorylation, DNA replication, and transcription and translation.
A. Ting, A. Klibanov
5.08[J] Biological Chemistry II
Same subject as 7.08[J]
Subject meets with 7.80
Prereq: 5.12; 5.07[J] or 7.05
U (Spring)
4.0-8 units

More advanced treatment of biochemical mechanisms that underlie biological processes. Topics include macromolecular machines such as the ribosome, the proteosome, fatty acid synthases as a paradigm for polyketide synthases and non-ribosomal polypeptide synthases, and polymerases. Emphasis is on experimental methods used to unravel these processes and how these processes fit into the cellular context and coordinate regulation.

J. Stubbe, E. Nolan

5.11 Principles of Chemical Science
Prereq: None
U (Fall, Spring)
5.0-7 units. CHEMISTRY
Credit cannot also be received for 3.091, 5.112, CC.5111, ES.3091, ES.5111, ES.5112

Introduction to chemistry, with emphasis on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. Introduction to the chemistry of biological, inorganic, and organic molecules.

Fall: M. Shoulders, T. Van Voorhis
Spring: M. Bawendi, M. Hong

5.112 Principles of Chemical Science
Prereq: None
U (Fall)
5.0-7 units. CHEMISTRY
Credit cannot also be received for 3.091, 5.112, CC.5111, ES.3091, ES.5111, ES.5112

Introduction to chemistry for students with an unusually strong background in chemistry. Knowledge of calculus equivalent to 18.01 is recommended. Emphasis on basic principles of atomic and molecular electronic structure, thermodynamics, acid-base and redox equilibria, chemical kinetics, and catalysis. Applications of basic principles to problems in metal coordination chemistry, organic chemistry, and biological chemistry.

R. Schrock, K. Nelson

5.12 Organic Chemistry I
Prereq: Chemistry (GIR)
U (Fall, Spring)
5.0-7 units. REST
Credit cannot also be received for CC.512

Introduction to organic chemistry. Development of basic principles to understand the structure and reactivity of organic molecules. Emphasis on substitution and elimination reactions and chemistry of the carbonyl group. Introduction to the chemistry of aromatic compounds.
Fall: T. Swager
Spring: R. Danheiser, E. Vogel Taylor

5.13 Organic Chemistry II
Prereq: 5.12
U (Fall)
5.0-7 units

Focuses on synthesis, structure determination, mechanism, and the relationships between structure and reactivity. Selected topics illustrate the role of organic chemistry in biological systems and in the chemical industry.

M. Movassaghi

5.24[J] Archaeological Science
Same subject as 3.985[J], 12.011[J]
Prereq: Chemistry (GIR) or Physics I (GIR)
U (Spring)
3.1-5 units. HASS-S

See description under subject 3.985[J].

H. N. Lechtman

5.301 Chemistry Laboratory Techniques
Prereq: Chemistry (GIR), permission of instructor
U (IAP)
1.4-1 units

Practical training in basic chemistry laboratory techniques. Intended to provide freshmen with the skills necessary to undertake original research projects in chemistry. Freshmen only.

J. Dolhun
5.310 Laboratory Chemistry
Prereq: None. Coreq: 5.12
U (Fall, Spring)
2-8-2 units. Institute LAB
Introduces experimental chemistry for students who are not majoring in Course 5. Principles and applications of chemical laboratory techniques, including preparation and analysis of chemical materials, measurement of pH, gas and liquid chromatography, visible-ultraviolet spectrophotometry, infrared spectroscopy, kinetics, data analysis, and elementary synthesis.
J. Dolhun

5.35 Introduction to Experimental Chemistry
Subject meets with 5.35U
Prereq: See module descriptions
U (Fall, Spring)
Units arranged
Can be repeated for credit.
This 12-unit subject consists of 3 modules, which may be taken during different terms. Modules and prerequisites are as follows:
Module 1 (Prereq: 5.111, 5.112 or 3.091) Survey of spectroscopy.
Module 2 (Prereq: 5.111, 5.112 or 3.091; Module 1) Synthesis of coordination compounds and kinetics.
Module 3 (Prereq: 5.111, 5.112 or 3.091; 5.12, Module 2) Fabrication of a polymeric light emitting device.
K. Nelson (Module 1), Y. Surendranath, M. Twardowski (Module 2), T. Swager (Module 3)

5.35U Introduction to Experimental Chemistry
Subject meets with 5.35
Prereq: See module descriptions under subject 5.35
U (Fall, Spring)
Units arranged
Can be repeated for credit.
For students who might not take all modules of 5.35. Consult department when choosing a version of 5.35. See description for 5.35. May be taken for 8 or 4 units and repeated for credit up to a total of 12 units.
K. Nelson (Module 1), Y. Surendranath, M. Twardowski (Module 2), T. Swager (Module 3)

5.36 Biochemistry and Organic Laboratory
Subject meets with 5.36U
Prereq: See module descriptions
U (Fall, Spring)
Units arranged
Can be repeated for credit.
This 12-unit subject consists of 3 modules, which may be taken during different terms. Instruction and practice in the written and oral presentation of experimental results provided. Modules and prerequisites are as follows:
Module 4 Spring (Prereq: 5.07[1] or 7.05, Module 2 or 5.310, Module 5) Expression and Purification of Enzyme Mutants. Must be taken simultaneously with Module 5.
Module 5 Spring (Prereq: 5.07[1] or 7.05, Module 2 or 5.310, Module 4) Kinetics of Enzyme Inhibition. Must be taken simultaneously with Module 4.
Module 6 Fall (Prereq: 5.12, Module 2 or 5.310, 5.13) Organic Structure Determination.
Fall: R. L. Danheiser (Module 6)
Spring: B. Pentelute (Modules 4 & 5)

5.36U Biochemistry and Organic Laboratory
Subject meets with 5.36
Prereq: See module descriptions under subject 5.36
U (Fall, Spring)
Units arranged
Can be repeated for credit.
For students who might not take all modules of 5.36. Consult department when choosing a version of 5.36. See description for 5.36. May be taken for 8 or 4 units and repeated for credit up to a total of 12 units.
Fall: R. L. Danheiser (Module 6)
Spring: B. Pentelute (Modules 4 & 5)

5.37 Organic and Inorganic Laboratory
Subject meets with 5.37U
Prereq: See module descriptions
U (Fall, Spring)
Units arranged
Can be repeated for credit.
This 12-unit subject consists of 3 modules, which may be taken during different terms. Modules and prerequisites are as follows:
Module 7 Spring (Prereq: 5.13, Module 6) Continuous Flow Chemistry: Sustainable Conversion of Reclaimed Vegetable Oil into Biodiesel.
Module 8 Fall (Prereq: 5.03, Module 6, 5.61) Two Electron Bond.
Module 9 Fall (Prereq: 5.03, Module 6, 5.61) Dinitrogen Cleavage.
Fall: Y. Surendranath (Module 8); C. C. Cummins (Module 9)
Spring: T. Jamison (Module 7)
5.37U Organic and Inorganic Laboratory
Subject meets with 5.37
Prereq: See module descriptions under subject 5.37
U (Fall, Spring)
Units arranged
Can be repeated for credit.
For students who might not take all modules of 5.37. Consult department when choosing a version of 5.37. See description for 5.37. May be taken for 8 or 4 units and repeated for credit up to a total of 12 units.
Fall: Y. Surendranath (Module 8); C. C. Cummins (Module 9)
Spring: T. Jamison (Module 7)

5.38 Biological and Physical Chemistry Laboratory
Prereq: See module descriptions
U (Spring)
Units arranged
Can be repeated for credit.
This 12-unit subject consists of 3 modules, which may be taken during different terms. Instruction and practice in the written and oral presentation of experimental results provided. Modules and prerequisites are as follows:
Module 10 (Prereq: 5.61, Module 6) Quantum Dots.
Module 11 (Prereq: 5.61, 5.07[J] or 7.05, Module 5) Time Resolved Molecular Spectroscopy.
Module 12 (Prereq: 5.07[J] or 7.05, Module 6) Fast Flow Peptide and Protein Synthesis.
M. G. Bawendi (Module 10), K. Nelson (Module 11), B. Pentelute (Module 12)

5.43 Advanced Organic Chemistry
Prereq: 5.13
U (Fall)
4.0-8 units
Credit cannot also be received for 5.53
Reaction mechanisms in organic chemistry: methods of investigation, relation of structure to reactivity, and reactive intermediates. Photochemistry and organometallic chemistry, with an emphasis on fundamental reactivity, mechanistic studies, and applications in organic chemistry.
J. Johnson, J. Van Humbeck

5.44 Organometallic Chemistry
Prereq: 5.43, 5.47, 5.061, or permission of instructor
G (Spring; first half of term)
2.0-4 units
Examination of the most important transformations of organotransition-metal species. Emphasizes basic mechanisms of their reactions, structure-reactivity relationships, and applications in synthesis.
K. Khan

5.45 Heterocyclic Chemistry
Prereq: 5.511, 5.53
G (Spring; second half of term)
2.0-4 units
Provides an introduction to the chemistry of heterocyclic compounds. Surveys synthesis and reactivity of the major classes of heterocyclic organic compounds. Discusses the importance of these molecules in the pharmaceutical and other industries.
D. T. Cohen

5.46 NMR Spectroscopy and Organic Structure Determination
Prereq: 5.43
G (Spring; first half of term)
2.0-4 units
Applications of 1-D and 2-D 1H and 13C NMR spectroscopy to organic structure determination.
J. H. Simpson

5.47 Tutorial in Organic Chemistry
Prereq: 5.43, permission of instructor
G (Fall; partial term)
2.0-4 units
Systematic review of basic principles concerned with the structure and transformations of organic molecules. Problem-solving workshop format. The program is intended primarily for first-year graduate students with a strong interest in organic chemistry. Meets during the month of September.
R. Danheiser

5.511 Synthetic Organic Chemistry I
Prereq: 5.43
G (Fall; partial term)
3.0-9 units
Introduction to the design of syntheses of complex organic compounds.
R. L. Danheiser
5.512 Synthetic Organic Chemistry II
Prereq: 5.511
G (Spring; second half of term)
2-0-4 units
General methods and strategies for the synthesis of complex organic compounds.
Staff

5.52 Advanced Biological Chemistry
Prereq: Permission of instructor
G (Fall)
2-2-8 units
Concepts and methods of biochemistry, with emphasis on quantitative aspects of problem analysis and fundamentals of experimental methods. Intended for first-year graduate students with a strong interest in biological chemistry.
A. M. Klibanov

5.53 Molecular Structure and Reactivity
Prereq: 5.13, 5.60
G (Fall; partial term)
3-0-6 units
Credit cannot also be received for 5.43
Reaction mechanisms in organic chemistry: methods of investigation, relation of structure to reactivity, and reactive intermediates.
J. Van Humbeck

5.54[J] Frontiers in Chemical Biology
Same subject as 7.540[J], 20.554[J]
Prereq: 5.13, 5.07[J], 7.06, permission of instructor
G (Fall)
4-0-8 units
Introduction to current research at the interface of chemistry, biology, and bioengineering. Topics include imaging of biological processes, metabolic pathway engineering, protein engineering, mechanisms of DNA damage, RNA structure and function, macromolecular machines, protein misfolding and disease, metabolomics, and methods for analyzing signaling network dynamics. Lectures are interspersed with class discussions and student presentations based on current literature.
B. Pentelute, M. Shoulders

5.56 Molecular Structure and Reactivity II
Prereq: Permission of Instructor
G (Spring)
Not offered regularly; consult department
2-0-4 units
Application of physical principles and methods to contemporary problems of interest in organic chemistry.
Staff

5.561 Chemistry in Industry
Prereq: 5.03; 5.07[J] or 7.05; 5.13
G (Spring; second half of term)
2-0-4 units
Examination of recent advances in organic, biological, and inorganic and physical chemical research in industry. Taught in seminar format with participation by scientists from industrial research laboratories.
R. L. Danheiser

5.60 Thermodynamics and Kinetics
Prereq: Calculus II (GIR), Chemistry (GIR)
U (Fall, Spring)
5-0-7 units. REST
Equilibrium properties of macroscopic systems. Basic thermodynamics: state of a system, state variables. Work, heat, first law of thermodynamics, thermochemistry. Second and third law of thermodynamics: entropy and free energy, including the molecular basis for these thermodynamic functions. Phase equilibrium and properties of solutions. Chemical equilibrium of reactions in gas and solution phases. Rates of chemical reactions. Special attention to thermodynamics related to global energy issues.
Fall: M. Bawendi, A. Shalek
Spring: R. Field, A. Willard

5.61 Physical Chemistry
Prereq: Physics II (GIR), Calculus II (GIR), Chemistry (GIR)
U (Fall)
5-0-7 units. REST
Introductory quantum chemistry; particles and waves; wave mechanics; atomic structure and the Periodic Table; valence and molecular orbital theory; molecular structure; and photochemistry.
R. Field, M. Hong
5.62 Physical Chemistry
Prereq: 5.60, 5.61
U (Spring)
4-0-8 units
Elementary statistical mechanics; transport properties; kinetic theory; solid state; reaction rate theory; and chemical reaction dynamics.
K. Nelson, J. Cao

5.64[J] Frontiers of Interdisciplinary Science in Human Health and Disease
Same subject as HST.539[J]
Prereq: 5.13, 5.60; 5.07[J] or 7.05
G (Spring)
3-0-9 units
Introduces major principles, concepts, and clinical applications of biophysics, biophysical chemistry, and systems biology. Emphasizes biological macromolecular interactions, biochemical reaction dynamics, and genomics. Discusses current technological frontiers and areas of active research at the interface of basic and clinical science. Provides integrated, interdisciplinary training and core experimental and computational methods in molecular biochemistry and genomics.
A. Shalek

5.68[J] Kinetics of Chemical Reactions
Same subject as 10.652[J]
Prereq: 5.62, 10.37, or 10.65
Acad Year 2016-2017: G (Spring)
Acad Year 2017-2018: Not offered
3-0-6 units
Experimental and theoretical aspects of chemical reaction kinetics, including transition-state theories, molecular beam scattering, classical techniques, quantum and statistical mechanical estimation of rate constants, pressure-dependence and chemical activation, modeling complex reacting mixtures, and uncertainty/sensitivity analyses. Reactions in the gas phase, liquid phase, and on surfaces are discussed with examples drawn from atmospheric, combustion, industrial, catalytic, and biological chemistry.
W. H. Green

5.697[J] Quantum Chemical Simulation
Same subject as 10.637[J]
Subject meets with 5.698[J], 10.437[J]
Prereq: None
G (Fall)
3-0-9 units
See description under subject 10.637[J].
H. J. Kulik

5.698[J] Quantum Chemical Simulation
Same subject as 10.637[J]
Subject meets with 5.697[J], 10.437[J]
Prereq: None
G (Fall)
3-0-9 units
See description under subject 10.637[J].
H. J. Kulik

5.70[J] Statistical Thermodynamics
Same subject as 10.546[J]
Prereq: 5.60 or permission of instructor
G (Fall)
3-0-9 units
Develops classical equilibrium statistical mechanical concepts for application to chemical physics problems. Basic concepts of ensemble theory formulated on the basis of thermodynamic fluctuations. Examples of applications include Ising models, lattice models of binding, ionic and non-ionic solutions, liquid theory, polymer and protein conformations, phase transition, and pattern formation. Introduces computational techniques with examples of liquid and polymer simulations.
A. Willard, J. Cao

5.72 Statistical Mechanics
Prereq: 5.70[J], 5.73, 18.075
Acad Year 2016-2017: G (Spring; second half of term)
Acad Year 2017-2018: Not offered
2-0-4 units
Staff

5.73 Introductory Quantum Mechanics I
Prereq: 5.61, 8.03, 18.03
G (Fall)
3-0-9 units
Presents the fundamental concepts of quantum mechanics: wave properties, uncertainty principles, Schrodinger equation, and operator and matrix methods. Includes applications to one-dimensional potentials (harmonic oscillator), three-dimensional centrosymmetric potentials (hydrogen atom), and angular momentum and spin. Approximation methods include WKB, variational principle, and perturbation theory.
R. G. Griffin
5.74 Introductory Quantum Mechanics II
Prereq: 5.73
G (Spring)
3-0-9 units
Time-dependent quantum mechanics and spectroscopy. Topics include perturbation theory, two-level systems, light-matter interactions, relaxation in quantum systems, correlation functions and linear response theory, and nonlinear spectroscopy.
G. Schlau-Cohen

5.78 Biophysical Chemistry Techniques
Subject meets with 7.71
Prereq: 5.07[J] or 7.05
Acad Year 2016-2017: G (Spring; first half of term)
Acad Year 2017-2018: Not offered
2-0-4 units
Presents principles of macromolecular crystallography that are essential for structure determinations. Topics include crystallization, diffraction theory, symmetry and space groups, data collection, phase determination methods, model building, and refinement. Discussion of crystallography theory complemented with exercises such as crystallization, data processing, and model building. Meets with 7.71 when offered concurrently.
C. Drennan, T. Schwartz

5.80 Advanced Topics of Current Special Interest
Prereq: 5.61 or 8.04; 18.03
G (Fall, Spring)
3-0-9 units
Advanced topics of current special interest.
Staff

5.891 Independent Study in Chemistry for Undergraduates
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

5.892 Independent Study in Chemistry for Undergraduates
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.
Program of independent study under direction of Chemistry faculty member. May not substitute for required courses for the Chemistry major or minor.
Staff

5.90 Problems in Chemistry
Prereq: Permission of instructor
G (Fall, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.
Directed research and study of special chemical problems. For Chemistry graduate students only.
R. W. Field

5.913 Seminar in Organic Chemistry
Prereq: Permission of instructor
G (Fall, Spring)
2-0-1 units
Can be repeated for credit.
Discusses current journal publications in organic chemistry by graduate students and staff members.
R. L. Danheiser

5.921 Seminar in Biological Chemistry
Prereq: Permission of instructor
G (Fall, Spring)
2-0-1 units
Can be repeated for credit.
Discusses topics of current interest in biological chemistry by graduate students and staff.
Fall: M. Shoulders
Spring: J. Stubbe

5.931 Seminar in Physical Chemistry
Prereq: 5.60
G (Fall, Spring)
2-0-1 units
Can be repeated for credit.
Discusses topics of current interest in physical chemistry by staff members and students.
J. Cao

5.941 Seminar in Inorganic Chemistry
Prereq: 5.03
G (Fall, Spring)
2-0-1 units
Can be repeated for credit.
Discusses current research in inorganic chemistry by graduate students and staff.
S. Lippard
5.95[J] Teaching College-Level Science and Engineering
Same subject as 1.95[J], 6.982[J], 7.59[J], 8.395[J], 18.094[J]
Subject meets with 2.978
Prereq: None
G (Fall)
2-0-2 units

Participatory seminar focuses on the knowledge and skills necessary for teaching science and engineering in higher education. Topics include theories of adult learning; course development; promoting active learning, problem solving, and critical thinking in students; communicating with a diverse student body; using educational technology to further learning; lecturing; creating effective tests and assignments; and assessment and evaluation. Students research and present a relevant topic of particular interest. Appropriate for both novices and those with teaching experience.

J. Rankin

5.THG Graduate Thesis
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Program of research leading to the writing of a PhD thesis; to be arranged by the student and an appropriate MIT faculty member.

R. W. Field

5.THU Undergraduate Thesis
Prereq: Permission of instructor
U (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Program of original research under supervision of a chemistry faculty member, culminating with the preparation of a thesis. Ordinarily requires equivalent of two terms of research with chemistry department faculty member.

Staff

5.UR Undergraduate Research
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

Program of research to be arranged by the student and a departmental faculty member. Research can be applied toward undergraduate thesis.

C. C. Cummins

5.URG Undergraduate Research
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Program of research to be arranged by the student and a departmental faculty member. May be taken for 9 to 12 units per term, not to exceed a cumulative total of 24 units. A 10-page paper summarizing research is required.

C. C. Cummins