DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES

The study of mind, brain, and behavior has grown in recent years with unprecedented speed. New avenues of approach, opened by developments in the biological and computer sciences, raise the hope that human beings, having achieved considerable mastery over the world around them, may also come closer to an understanding of themselves. The goal of the Department of Brain and Cognitive Sciences is to answer fundamental questions concerning intelligent processes and brain organization. To this end, the department focuses on four themes: molecular and cellular neuroscience, systems neuroscience, cognitive science, and computation. Several members of the department’s faculty are affiliated with two major research centers: the Picower Institute for Learning and Memory and the McGovern Institute for Brain Research.

Research in cellular neuroscience deals with the biology of neurons, emphasizing the special properties of these cells as encoders, transmitters, and processors of information. Departmental researchers apply techniques of contemporary molecular and cellular biology to problems of neuronal development, structure, and function, resulting in a new understanding of the underlying basic components of the nervous system and their interactions. These studies have profound clinical implications, in part by generating a framework for the treatment of neurological and psychiatric disorders. Primary areas of interest include the development and plasticity of neuronal morphology and connectivity, the cellular and molecular bases of behavior in simple neuronal circuits, neurochemistry, and cellular physiology.

In the area of systems neuroscience, departmental investigators use a number of new approaches ranging from computation through electrophysiology to biophysics. Of major interest are the visual and motor systems where the scientific goals are to understand transduction and encoding of sensory stimuli into nerve messages, organization and development of sensorimotor systems, processing of sensorimotor information, and the sensorimotor performance of organisms. Also of major interest is neuromodulatory regulation, where the scientific goal is to understand the effects of rewarding or stressful environments on brain circuits.

In computation and cognitive science, particularly strong interactions exist between the Department of Brain and Cognitive Sciences, the Computer Science and Artificial Intelligence Laboratory, and the Center for Biological and Computational Learning, providing new intellectual approaches in areas including vision and motor control, and biological and computer learning. Computational theories are developed and tested within the framework of neurophysiological, psychological, and other experimental approaches. In the study of vision and motor control, complementary experimental work includes single-cell and multiple-cell neurophysiological recording as well as functional brain imaging. In the area of learning, which is seen as central to intelligent behavior, departmental researchers are working to develop theories of vision, motor control, neural circuitry, and language within an experimental framework.

In cognitive science, human experimentation is combined with formal and computational analyses to understand complex intelligent processes such as language, reasoning, memory, and visual information processing. There are applications in the fields of education, artificial intelligence, human-machine interaction, and in the treatment of language, cognitive, and other disorders.

Subfields in cognitive science include psycholinguistics, comprising sentence and word processing, language acquisition, and aphasia; visual cognition, including reading, imagery, attention, and perception of complex patterns such as faces, objects, and scenes; spatial cognition; memory; and the nature and development of concepts. Another key field is the study of perception—developmental and processing approaches focus on human and machine vision, and how visual images are encoded, stored, and retrieved, with current topics that include motion analysis, stereopsis, perceptual organization, and perceptual similarity. Other research includes functional brain imaging in normal subjects as well as studies of neurologically impaired patients in an attempt to understand brain mechanisms underlying normal human sensation, perception, cognition, action, and affect.

Undergraduate Study

Bachelor of Science in Brain and Cognitive Sciences (Course 9)

Brain science and cognitive science are complementary and interactive in their research objectives. Both approaches examine perception, performance, and intervening processes in humans and animals. Central issues in the discipline include the interpretation of sensory experience; the reception, manipulation, storage, and retrieval of information within the nervous system; and the planning and execution of motor activity. Higher-level functions include the development of formal and informal reasoning skills; and the structure, acquisition, use, and internal representation of human language.

The Bachelor of Science in Brain and Cognitive Sciences (http://catalog.mit.edu/degree-charts/brain-cognitive-sciences-course-9) prepares students to pursue advanced degrees or careers in artificial intelligence, machine learning, neuroscience, medicine, cognitive science, psychology, linguistics, philosophy, education research and technology, and human-machine interaction.

Methods of inquiry in the brain and cognitive sciences are drawn from molecular, cellular, and systems neuroscience; cognitive and perceptual psychology; computer science and artificial intelligence; linguistics; philosophy of language and mind; and mathematics. The undergraduate program is designed to provide instruction in the relevant aspects of these various disciplines. The program is administered by an Undergraduate Officer and an Undergraduate...
The Department of Brain and Cognitive Sciences (BCS) major incorporates programming and computational skills to meet the increasing demands for those skills in both graduate school and the workforce. The major offers a tiered system of subjects with enough flexibility to allow multiple avenues through the Brain and Cognitive Sciences curriculum, meeting the divergent goals of BCS students. Individual guidance regarding career goals is available from faculty and from Career Advising and Professional Development.

Bachelor of Science in Computation and Cognition (Course 6-9)

The Department of Electrical Engineering and Computer Science (http://catalog.mit.edu/schools/engineering/electrical-engineering-computer-science) and the Department of Brain and Cognitive Sciences (p. 3) offer a joint curriculum leading to a Bachelor of Science in Computation and Cognition (http://catalog.mit.edu/degree-charts/computation-cognition-6-9) that focuses on the emerging field of computational and engineering approaches to brain science, cognition and machine intelligence. The curriculum provides flexibility to accommodate students with a wide diversity of interests in this area—from biologically-inspired approaches to artificial intelligence, to reverse engineering circuits in the brain. This joint program prepares students for careers that include advanced applications of artificial intelligence and machine learning, as well as further graduate study in systems and cognitive neuroscience. Students in the program are full members of both departments, with one academic advisor from each department.

Minor in Brain and Cognitive Sciences

The Minor in Brain and Cognitive Sciences consists of six subjects arranged in two levels of study, intended to provide students breadth in the field as a whole and some depth in an area of specialization.

Core Subjects

9.00 Introduction to Psychological Science 12
9.01 Introduction to Neuroscience 12
9.40 Introduction to Neural Computation 12

Specialized Subjects

Select any combination of three subjects from Tier 2 and/or Tier 3 of the undergraduate degree program: 36

<table>
<thead>
<tr>
<th>Tier 2 Subjects</th>
<th>Tier 3 Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.13 The Human Brain</td>
<td>9.28 Current Topics in Developmental Neurobiology</td>
</tr>
<tr>
<td>9.18[J] Developmental Neurobiology</td>
<td>9.32 Genes, Circuits, and Behavior</td>
</tr>
<tr>
<td>9.19 Computational Psycholinguistics</td>
<td>9.42 The Brain and Its Interface with the Body</td>
</tr>
</tbody>
</table>

Total Units 72

Graduate Study

The Department of Brain and Cognitive Sciences offers programs of study leading to the doctoral degree in neuroscience or cognitive science. Areas of research specialization include cellular and molecular neuroscience, systems neuroscience, computation, and cognitive science. The graduate programs are designed to prepare students to pursue careers in research, teaching, or industry.

Doctor of Philosophy

The departmental PhD program can normally be completed with four to six years of full-time work, including summers. Institute requirements for the PhD are given in the section on General Degree Requirements (http://catalog.mit.edu/mit/graduate-education/general-degree-requirements). Formal coursework, described below, is intended to prepare the student to pass the general examinations and do original thesis research. The written general examinations will be due in August of the second year.

All students start with first-year intensive core subjects that provide an introduction to brain and cognitive studies from the viewpoint of systems neuroscience, molecular and cellular neuroscience, cognition, and computation. Incoming graduate students are required to take at least two of these subjects but encouraged to take all within the first two years of study. Further coursework will be diversified to give each individual the appropriate background for research in his or her own area.

Coursework in cellular and molecular neuroscience emphasizes the current genetic, molecular, and cellular approaches to biological systems that are necessary to generate advances in neuroscience.
Training in systems neuroscience covers neuroanatomy, neurophysiology, and neurotransmitter chemistry, concentrating on the major sensory, motor, memory, and executive systems in the vertebrate brain. Specific ties to molecular neurobiology or computation may be emphasized, depending upon the research interests of the student.

Coursework for students in computation is intended to give both an understanding of empirical approaches to the study of the brain and animal behavior and a theoretical background for analyzing computational aspects of biological information processing.

Candidates studying cognitive science take coursework covering such topics as language processing, language acquisition, cognitive development, natural computation, neural networks, connectionist models, and visual information processing. Students also choose seminars and coursework in linguistics, philosophy, logic, mathematics, or computer science, depending on the individual student’s research program.

Graduate students begin a research apprenticeship immediately upon arrival with lab rotations in the first year, after which time advisor choices are made based upon a match of interests. These assignments may change as a student’s goals become more focused. At the end of the first year, an advisory committee of two to four faculty members is formed. This committee monitors progress and, with membership changing as necessary, evolves into the thesis committee. Thesis research normally requires 24-48 months of full-time activity after the qualifying examinations have been passed. It is expected that the research embodied in the PhD dissertation be original and significant work, publishable in scientific journals.

Financial Support
Financial assistance is provided to qualified applicants in the form of traineeships, research assistantships, teaching assistantships, and a limited number of fellowships, subject to availability of funds. Prospective students are encouraged to apply for individual fellowships such as those sponsored by the National Science Foundation and the National Defense Science and Engineering Graduate Fellowship Program to cover all or part of the cost of their education. The department’s financial resources for non-US citizens are limited; international students are strongly encouraged to seek financial assistance for all or part of the cost of their education from non-MIT sources.

Inquiries
For additional information regarding teaching and research programs, contact the Academic Administrator, Department of Brain and Cognitive Sciences, Room 46-2005, 617-253-5741, or visit the department’s website (http://web.mit.edu/bcs).
Edward A. Gibson, PhD
Professor of Cognitive Science

Ann M. Graybiel, PhD
Institute Professor
Professor of Brain and Cognitive Sciences

Susan Hockfield, PhD
President Emerita
Professor of Neuroscience

Neville Hogan, PhD
Sun Jae Professor in Mechanical Engineering
Professor of Brain and Cognitive Sciences

Alan P. Jasanoff, PhD
Professor of Biological Engineering
Professor of Nuclear Science and Engineering
Professor of Brain and Cognitive Sciences

Nancy Kanwisher, PhD
Walter A. Rosenblith Professor
Professor of Cognitive Neuroscience

J. Troy Littleton, MD, PhD
Menicon Professor in Neuroscience
Professor of Biology

Earl K. Miller, PhD
Picower Professor
Professor of Neuroscience

Elly Nedivi, PhD
William R. (1964) and Linda R. Young Professor of Neuroscience
Professor of Biology

Tomaso A. Poggio, ScD
Eugene McDermott Professor in the Brain Sciences and Human Behavior

Drazen Prelec, PhD
Digital Equipment Corp. Leaders for Global Operations Professor of Management
Professor of Management Science
Professor of Economics
Professor of Brain and Cognitive Sciences
(On leave, fall)

Laura E. Schulz, PhD
Professor of Cognitive Science

Pawan Sinha, PhD
Professor of Vision and Computational Neuroscience

Jean-Jacques E. Slotine, PhD
Professor of Mechanical Engineering
Professor of Information Sciences

Mriganka Sur, PhD
Paul E. (1965) and Lilah Newton Professor
Professor of Neuroscience
(On leave, spring)

Joshua B. Tenenbaum, PhD
Professor of Cognitive Science and Computation

Susumu Tonegawa, PhD
Picower Professor
Professor of Biology
Professor of Neuroscience

Li-Huei Tsai, PhD
Picower Professor
Professor of Neuroscience

Matthew A. Wilson, PhD
Sherman Fairchild Professor
Professor of Neuroscience
Professor of Biology

Feng Zhang, PhD
James and Patricia Poitras (1963) Professor of Neuroscience
Professor of Biological Engineering

Associate Professors

Gloria Choi, PhD
Samuel A. Goldblith Career Development Professor
Associate Professor of Neuroscience

Kwanghun Chung, PhD
Associate Professor of Chemical Engineering
Associate Professor of Brain and Cognitive Sciences
Core Faculty, Institute for Medical Engineering and Science

Evelina Fedorenko, PhD
Frederick A. (1971) and Carole J. Middleton Career Development Professor
Associate Professor of Cognitive Neuroscience

Michael Halassa, PhD
Associate Professor of Neuroscience

Mark Thomas Harnett, PhD
Associate Professor of Neuroscience

Myriam Heiman, PhD
Latham Career Development Professor
Associate Professor of Neuroscience

Mehrdad Jazayeri, PhD
Robert A. Swanson Career Development Professor
Associate Professor of Neuroscience

Roger Levy, PhD
Associate Professor of Brain and Cognitive Sciences
Josh McDermott, PhD
Associate Professor of Cognitive Science

Alexander Rakhlin, PhD
Associate Professor of Brain and Cognitive Sciences
Member, Institute for Data, Systems, and Society

David Rand, PhD
Erwin H. Schell Professor
Associate Professor of Marketing
Associate Professor of Brain and Cognitive Sciences
Member, Institute for Data, Systems, and Society

Assistant Professors
Steven Flavell, PhD
Assistant Professor of Brain and Cognitive Sciences

Adjunct Professors
Shimon Ullman, PhD
Adjunct Professor of Brain and Cognitive Sciences

Senior Lecturers
Thomas Byrne, PhD
Senior Lecturer in Brain and Cognitive Sciences

Lecturers
Aida Khan, PhD
Lecturer in Brain and Cognitive Sciences

Mandana Sassanfar, PhD
Lecturer in Biology

Research Staff

Principal Research Scientists
Vikash Kumar Mansinghka, PhD
Principal Research Scientist of Brain and Cognitive Sciences

Ruth Rosenholtz, PhD
Principal Research Scientist of Brain and Cognitive Sciences

Research Scientists
Christopher Baker Lawrence, PhD
Research Scientist of Brain and Cognitive Sciences

James A. Traer, PhD
Research Scientist of Brain and Cognitive Sciences

Ilker Yildirim, PhD
Research Scientist of Brain and Cognitive Sciences

Professors Emeriti

Emilio Bizzi, MD, PhD
Institute Professor Emeritus
Professor Emeritus of Brain and Cognitive Sciences

Martha Constantine-Paton, PhD
Professor Emerita of Neuroscience
Professor Emerita of Biology

Alan V. Hein, PhD
Professor Emeritus of Experimental Psychology

Nelson Yuan-Sheng Kiang, PhD
Eaton Peabody Professor Emeritus
Professor Emeritus of Health Sciences and Technology
Professor Emeritus of Brain and Cognitive Sciences
Professor Emeritus of Physiology, HMS, MEEI

Mary C. Potter, PhD
Professor Emerita of Psychology

William G. Quinn, PhD
Professor Emeritus of Neurobiology
Professor Emeritus of Biology

Peter H. Schiller, PhD
Dorothy W. Poitras Professor Emeritus
Professor Emeritus of Medical Physiology

Gerald Edward Schneider, PhD
Professor Emeritus of Neuroscience

Kenneth Wexler, PhD
Professor Emeritus of Psychology
Professor Emeritus of Linguistics

Richard J. Wurtman, PhD
Cecil H. Green Distinguished Professor Emeritus
Professor Emeritus of Neuropharmacology