DEPARTMENT OF BIOLOGY

The Department of Biology offers undergraduate, graduate, and postdoctoral training in basic biology, and in a variety of biological fields of specialization. The quantitative aspects of biology, including molecular biology, biochemistry, genetics, and cell biology, represent the core of the program. Students in the department are encouraged to acquire a solid background in the physical sciences not only to master the applications of mathematics, physics, and chemistry to biology, but also to develop an integrated scientific perspective. The various programs, which emphasize practical experimentation, combine a minimum of formal laboratory exercises with ample opportunities for research work both in project-oriented laboratory subjects and in the department’s research laboratories. Students at all levels are encouraged to acquire familiarity with advanced research techniques and to participate in seminar activities.

Undergraduate Study

Bachelor of Science in Biology (Course 7)
The curriculum leading to the Bachelor of Science in Biology is designed to prepare students for a professional career in the area of the biological sciences. Graduates of this program are well prepared for positions in industrial or research institutes. However, experience has shown that many graduates choose to continue their education at a graduate school in order to obtain a PhD in an area such as biochemistry, microbiology, genetics, biophysics, cell biology, or physiology, followed by research or teaching in one of those areas. The undergraduate curriculum is also excellent preparation for students who wish to continue their education toward an MD, particularly if their career plans include laboratory investigations bearing on human disease. Students are encouraged to use their elective subjects for more advanced subjects in their field and for additional study in basic and advanced subjects offered in various departments.

Bachelor of Science in Chemistry and Biology (Course 5-7)
The Departments of Biology and Chemistry jointly offer a Bachelor of Science in Chemistry and Biology. A detailed description of the requirements for this degree program can be found in the section on Interdisciplinary Programs.

Bachelor of Science in Computer Science and Molecular Biology (Course 6-7)
The Department of Biology jointly offers a Bachelor of Science in Computer Science and Molecular Biology with the Department of Electrical Engineering and Computer Science. A detailed description of the requirements for this degree program can be found in the section on Interdisciplinary Programs.

Minor in Biology
The department offers a Minor in Biology; the requirements are as follows:

<table>
<thead>
<tr>
<th>Course Code(s)</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12</td>
<td>Organic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>7.03</td>
<td>Genetics</td>
<td>12</td>
</tr>
<tr>
<td>7.05 or 5.07</td>
<td>General Biochemistry / Introduction to Biological Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td>24-30</td>
</tr>
<tr>
<td>7.002 & 7.003</td>
<td>Fundamentals of Experimental Molecular Biology and Applied Molecular Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td>7.06</td>
<td>Cell Biology</td>
<td></td>
</tr>
<tr>
<td>7.08</td>
<td>Fundamentals of Chemical Biology</td>
<td></td>
</tr>
<tr>
<td>7.093 & 7.094</td>
<td>Modern Biostatistics and Modern Computational Biology</td>
<td></td>
</tr>
<tr>
<td>7.20</td>
<td>Human Physiology</td>
<td></td>
</tr>
<tr>
<td>7.21</td>
<td>Microbial Physiology</td>
<td></td>
</tr>
<tr>
<td>7.23</td>
<td>Immunology</td>
<td></td>
</tr>
<tr>
<td>7.26</td>
<td>Molecular Basis of Infectious Disease</td>
<td></td>
</tr>
<tr>
<td>7.27</td>
<td>Principles of Human Disease and Aging</td>
<td></td>
</tr>
<tr>
<td>7.28</td>
<td>Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>7.29</td>
<td>Cellular and Molecular Neurobiology</td>
<td></td>
</tr>
<tr>
<td>7.30</td>
<td>Fundamentals of Ecology</td>
<td></td>
</tr>
<tr>
<td>7.31</td>
<td>Current Topics in Mammalian Biology: Medical Implications</td>
<td></td>
</tr>
<tr>
<td>7.32</td>
<td>Systems Biology</td>
<td></td>
</tr>
<tr>
<td>7.33</td>
<td>Evolutionary Biology: Concepts, Models and Computation</td>
<td></td>
</tr>
<tr>
<td>7.37</td>
<td>Molecular and Engineering Aspects of Biotechnology</td>
<td></td>
</tr>
<tr>
<td>or 7.371</td>
<td>Biological and Engineering Principles Underlying Novel Biotherapeutics</td>
<td></td>
</tr>
<tr>
<td>7.45</td>
<td>The Hallmarks of Cancer</td>
<td></td>
</tr>
<tr>
<td>7.46</td>
<td>Building with Cells</td>
<td></td>
</tr>
<tr>
<td>7.49</td>
<td>Developmental Neurobiology</td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 60-66

For a general description of the minor program, see Undergraduate Education.
Departments

Inquiries

Additional information regarding undergraduate academic programs and research opportunities may be obtained from the Biology Education Office (undergradbio@mit.edu), Room 68-120, 617-253-4718.

Graduate Study

The Department of Biology offers graduate work leading to the Doctor of Philosophy. Students may choose from among the following fields of specialization.

Biochemistry, Biophysics, and Structural Biology focus on improving our understanding of molecular processes central to life. Using in vitro approaches, biochemists and biophysicists analyze the mechanisms of biological information transfer, from maintenance and replication of the genome to protein synthesis, sorting, and processing. Structural biologists elucidate the molecular shapes of biological macromolecules and complexes and determine how structure enables function. Applying principles and tools from chemistry and physics, biochemists and biophysicists elaborate the details of protein and nucleic acid folding and interactions, biomolecular dynamics, catalysis, and macromolecular assembly.

Cancer Biology involves the discovery of genes implicated in cancer, the identification of cell biological processes affected during tumorigenesis, and the development of potential new therapeutic targets. Cancer biologists employ genetic approaches, including classical genetics, to determine the components of growth control pathways in model organisms, cloning of human oncogenes and tumor suppressor genes, and generating mutant mouse strains to study these and other cancer-associated genes. They also perform biochemical and cell biological studies to elucidate the function of cancer genes, the details of proliferation, cell cycle and cell death pathways, the nature of cell-cell and cell-matrix interactions, and the mechanisms of chromosome stability and of DNA repair, replication, and transcription.

Cell Biology is the study of processes carried out by individual cells, such as cell division, organelle inheritance and biogenesis, signal transduction, and motility. These processes are often affected by components in the environment, including nutrients, growth signals, and cell-cell contact. Cell biologists study these processes using single-celled organisms, such as bacteria and yeast; multicellular organisms, such as zebrafish and mice; established mammalian tissue culture lines; and primary cell cultures derived from recombinant animals.

Computational Biology applies quantitative methods to the study of molecular, cellular, and organismal biology. Computational biologists develop and apply models, analyze data, and run simulations to study nucleic acid and protein sequences, biomolecular structures and functions, cellular information processing, tissue morphogenesis, and emergent behaviors.

Genetics is the study of genes, genetic variation, and heredity in living organisms that range in complexity from viruses to single-celled organisms to multicellular organisms, including humans. Geneticists seek to understand the transmission of genes by analyzing DNA replication, DNA repair, chromosome segregation, and cell division. They also use genetic and genomic tools to identify and analyze the genes and gene regulators required for normal biological processes, including development, sex determination, and aging, as well as for the etiology of disease.

Human Disease applies molecular genetics to the problems of human disease. The range of disease areas includes developmental defects, cancer, atherosclerosis and heart disease, neuromuscular diseases, and diseases of other organ systems. Researchers use genetic and genomic strategies to identify, isolate, and characterize genes that cause and contribute to the etiology of human diseases. They explore the mechanisms underlying developmental defects and diseases through the comparison of the genetic pathways in humans and model organisms. They also isolate cells from affected patients to generate novel assay systems to examine gene-function-pathology relationships.

Immunology focuses on the genetic, cellular, and molecular mechanisms by which organisms respond to and eliminate infections by a large number of pathogens. The immune response requires an elaborate collaboration of different cells of the immune system, including macrophages, B lymphocytes, and T lymphocytes. Immunologists study the role of the immune system not just in response to infection but also in a range of human diseases, including cancer.

Microbiology is the study of microscopic organisms, such as bacteria, viruses, archaea, fungi, and protozoa. Exploiting sophisticated genetic, molecular biological, and biochemical systems available for microorganisms, microbiologists obtain high-resolution insights into the fundamental processes necessary for life and explore ways to manipulate microorganisms to achieve particular desired ends. They also determine how aspects of the microbial life cycle and lifestyle enable their survival within particular biological niches and facilitate interactions with their environment.

Neurobiology seeks to understand how the remarkable diversity in neuronal cell types and their connections are established and how changes in them underlie learning and thinking. Neurobiologists identify and characterize the molecules involved in specifying neuronal cell fate in vertebrates and invertebrates, and in guiding axons to their correct targets.

Stem Cell and Developmental Biology explores how a germ line stem cell develops into a multicellular organism, which requires that cells divide, differentiate, and assume their proper positions relative to one another as they produce organ systems and entire
organisms. Stem cells are unusual cells in the body that retain the capacity to both self-renew and differentiate. Stem cell researchers identify the molecular mechanisms underlying stem cell renewal and differentiation, and use stem cells for disease modeling and regenerative medicine.

Admission Requirements for Graduate Study

In the Department of Biology, the Master of Science is not a prerequisite for a program of study leading to the doctorate.

The department modifies the General Institute Requirements for admission to graduate study as follows: 18.01, 18.02; one year of college physics; 5.12; professional subjects including general biochemistry, genetics, and physical chemistry. However, students may make up some deficiencies over the course of their graduate work.

Doctor of Philosophy

The General Degree Requirements for the Doctor of Philosophy (http://catalog.mit.edu/mit/graduate-education/general-degree-requirements) are listed under Graduate Education. In the departmental program, each graduate student is expected to acquire solid foundations sufficient for approaching biological questions using the methods of biochemistry, genetics, and quantitative analysis. Most students take subjects in these areas during the first year. All students are required to take three subjects:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.50</td>
<td>Method and Logic in Molecular Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.51</td>
<td>Principles of Biochemical Analysis</td>
<td>12</td>
</tr>
<tr>
<td>7.52</td>
<td>Genetics for Graduate Students</td>
<td>12</td>
</tr>
</tbody>
</table>

7.50 is a seminar designed specifically to introduce graduate students to in-depth discussion and analysis of topics in molecular biology.

Students have a choice of several elective subjects, which have been designed for the entering graduate student. One of the elective subjects must focus on computational and quantitative approaches to biology. Typically, students choose one of the following subjects:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.571</td>
<td>Quantitative Analysis of Biological Data</td>
<td>12</td>
</tr>
<tr>
<td>7.572</td>
<td>and Quantitative Measurements and Modeling of Biological Systems</td>
<td>12</td>
</tr>
<tr>
<td>7.81[J]</td>
<td>Systems Biology</td>
<td>12</td>
</tr>
</tbody>
</table>

In addition to providing a strong formal background in biology, the first-year program serves to familiarize the students with faculty and students in all parts of the department.

Interdisciplinary Programs

Joint Program with the Woods Hole Oceanographic Institution

The Joint Program with the Woods Hole Oceanographic Institution (WHOI) (http://mit.whoi.edu) is intended for students whose primary career objective is oceanography or oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in their home department. The program is described in more detail (http://catalog.mit.edu/interdisciplinary/graduate-programs/joint-program-woods-hole-oceanographic-institution) under Interdisciplinary Graduate Programs.

Master of Engineering in Computer Science and Molecular Biology (Course 6-7P)

The Departments of Biology and Electrical Engineering and Computer Science jointly offer a Master of Engineering in Computer Science and Molecular Biology (6-7P) (http://catalog.mit.edu/degree-charts/master-computer-science-molecular-biology-course-6-7p). A detailed description of the program (http://catalog.mit.edu/interdisciplinary/graduate-programs/computer-science-molecular-biology) requirements may be found under the section on Interdisciplinary Programs.

Financial Support

Students who are accepted into the graduate program are provided with support from departmental training grants, departmental funds for teaching assistants, and research grants. In addition, some students bring National Science Foundation and other competitive fellowships. Through these sources, full tuition plus a stipend for living expenses are provided.

Students are encouraged to apply for outside fellowships for which they are eligible, such as the NSF Fellowships. Information regarding graduate student fellowships is available at most colleges from the career planning office.

Inquiries

Additional information regarding graduate academic programs, research activities, admissions, financial aid, and assistantships may be obtained from the Biology Education Office (gradbio@mit.edu), Room 68-120, 617-253-3717.

Faculty and Teaching Staff

Alan D. Grossman, PhD
Praecis Professor
Head, Department of Biology
Michael T. Laub, PhD
Professor of Biology
Associate Head, Department of Biology
(On leave, spring)

Jacqueline Lees, PhD
Virginia and Daniel K. Ludwig Professor for Cancer Research
Professor of Biology
Associate Head, Department of Biology

Peter Reddien, PhD
Professor of Biology
Associate Head, Department of Biology

Professors
Angelika B. Amon, PhD
Kathleen and Curtis (1963) Marble Professor of Cancer Research
Professor of Biology
(On leave, fall)

Tania Baker, PhD
E.C. Whitehead Professor
Professor of Biology

David Bartel, PhD
Professor of Biology

Stephen P. Bell, PhD
Uncas (1923) and Helen Whitaker Professor
Professor of Biology

Laurie Boyer, PhD
Professor of Biology
Professor of Biological Engineering

Christopher B. Burge, PhD
Professor of Biology
Professor of Biological Engineering

Iain Cheeseman, PhD
Professor of Biology

Jianzhu Chen, PhD
Professor of Biology

Sallie W. Chisholm, PhD
Institute Professor
Professor of Civil and Environmental Engineering
Professor of Biology

Catherine L. Drennan, PhD
Professor of Biology
Professor of Chemistry

Gerald R. Fink, PhD
Professor Post-Tenure of Biology

Leonard Pershing Guarente, PhD
Novartis Professor of Biology

H. Robert Horvitz, PhD
David H. Koch Professor
Professor of Biology

David E. Housman, PhD
Virginia and Daniel K. Ludwig Professor for Cancer Research
Professor of Biology

Richard O. Hynes, PhD
Daniel K. Ludwig Professor for Cancer Research

Barbara Imperiali, PhD
Class of 1922 Professor
Professor of Biology
Professor of Chemistry

Tyler E. Jacks, PhD
David H. Koch Professor
Professor of Biology

Rudolf Jaenisch, MD
Professor of Biology

Chris Kaiser, PhD
Amgen Professor
Professor of Biology

Amy E. Keating, PhD
Professor of Biology
Professor of Biological Engineering

Monty Krieger, PhD
Whitehead Professor
Professor of Biology

Eric S. Lander, PhD
Professor of Biology

Douglas A. Lauffenburger, PhD
Ford Foundation Professor
Professor of Biological Engineering
Professor of Chemical Engineering
Professor of Biology

Ruth E. Lehmann, PhD
Professor of Biology

J. Troy Littleton, MD, PhD
Menicon Professor in Neuroscience
Professor of Biology

Harvey F. Lodish, PhD
Professor of Biology
Professor of Biological Engineering
Elly Nedivi, PhD
William R. (1964) and Linda R. Young Professor of Neuroscience
Professor of Biology

David C. Page, MD
Professor of Biology
Member, Health Sciences and Technology Faculty
(On leave, spring)

Uttam L. RajBhandary, PhD
Lester Wolfe Professor of Molecular Biology

Aviv Regev, PhD
Professor of Biology
(On leave)

David M. Sabatini, MD, PhD
Professor of Biology

Robert T. Sauer, PhD
Salvador E. Luria Professor
Professor of Biology

Thomas Schwartz, PhD
Boris Magasanik Professor in Biology

Phillip A. Sharp, PhD
Institute Professor
Professor of Biology
Affiliate Faculty, Institute for Medical Engineering and Science

Anthony J. Sinskey, ScD
Professor of Biology

Frank Solomon, PhD
Professor of Biology

Lisa A. Steiner, MD
Professor of Immunology

Susumu Tonegawa, PhD
Picower Professor
Professor of Biology
Professor of Neuroscience

Graham C. Walker, PhD
Professor of Biology

Robert A. Weinberg, PhD
Daniel K. Ludwig Professor for Cancer Research

Matthew A. Wilson, PhD
Sherman Fairchild Professor
Professor of Neuroscience
Professor of Biology

Michael B. Yaffe, MD, PhD
David H. Koch Professor in Science
Professor of Biology
Professor of Biological Engineering

Yukiko Yamashita, PhD
Professor of Biology

Richard A. Young, PhD
Professor of Biology

Associate Professors

Ibrahim I. Cissé, PhD
Associate Professor of Physics
Associate Professor of Biology

Mary Gehring, PhD
Associate Professor of Biology
(On leave)

Michael Hemann, PhD
Associate Professor of Biology

Gene-Wei Li, PhD
Associate Professor of Biology

Adam C. Martin, PhD
Associate Professor of Biology

Matthew G. Vander Heiden, MD, PhD
Associate Professor of Biology

Jing-Ke Weng, PhD
Associate Professor of Biology

Omer Yilmaz, PhD
Eisen and Chang Career Development Professor
Associate Professor of Biology

Assistant Professors

Eliezer Calo, PhD
Irwin W. and Helen W. Sizer Career Development Professor
Assistant Professor of Biology

Lindsay Case, PhD
Assistant Professor of Biology

Joseph Davis, PhD
Whitehead Career Development Professor
Assistant Professor of Biology

Ankur Jain, PhD
Thomas D. and Virginia M. Cabot Career Development Professor
Assistant Professor of Biology
Rebecca Lamason, PhD
Robert A. Swanson (1969) Career Development Professor of Life Sciences
Assistant Professor of Biology

Pulin Li, PhD
Eugene Bell Career Development Professor of Tissue Engineering
Assistant Professor of Biology

Sebastian Lourido, PhD
Latham Family Career Development Professor
Assistant Professor of Biology

Stefani Spranger, PhD
Howard S. (1953) and Linda B. Stern Career Development Professor
Assistant Professor of Biology

Seychelle Vos, PhD
Assistant Professor of Biology

Lecturers
Mandana Sassanfar, PhD
Lecturer in Biology

Mary Ellen Wiltrout, PhD
Lecturer in Biology

Instructors
Darcy Gordon, PhD
Instructor of Biology

Stuart S. Levine, PhD
Instructor of Biology

Summer Morrill, PhD
Instructor of Biology

Technical Instructors
Vanessa J. Cheung, PhD
Technical Instructor of Biology

Wai Keung Chu, PhD
Technical Instructor of Biology

Anthony Fuccione, BS
Technical Instructor of Biology

Diviya Sinha, PhD
Technical Instructor of Biology

Meredith Sweeney, PhD
Technical Instructor of Biology

Ayce Yesilaltay, PhD
Technical Instructor of Biology

Research Staff

Research Scientists
Vincent Butty, MD, PhD
Research Scientist of Biology

Huiming Ding, PhD
Research Scientist of Biology

Robert A. Grant, PhD
Research Scientist of Biology

Janet L. Smith, PhD
Research Scientist of Biology

Alexei Stortchevoi, PhD
Research Scientist of Biology

Mohan Viswanathan, PhD
Research Scientist of Biology

Professors Emeriti

David Baltimore, PhD
Professor Emeritus of Biology

Gene M. Brown, PhD
Professor Emeritus of Biochemistry

Martha Constantine-Paton, PhD
Professor Emerita of Neuroscience

Professor Emerita of Biology

Malcolm L. Geiger, PhD
Professor Emeritus of Biochemistry

Frank Gertler, PhD
Professor Emeritus of Biology

Nancy Haven Hopkins, PhD
Amgen Professor Emerita

Professor Emerita of Biology

Jonathan Alan King, PhD
Professor Emeritus of Molecular Biology

Terry L. Orr-Weaver, PhD
Professor Emerita of Biology

Mary-Lou Pardue, PhD
Boris Magasanik Professor Emerita

Professor Emerita of Biology

Sheldon Penman, PhD
Professor Emeritus of Cell Biology
William G. Quinn, PhD
Professor Emeritus of Neurobiology
Professor Emeritus of Biology

Phillips W. Robbins, PhD
Professor Emeritus of Biochemistry

Leona D. Samson, PhD
Uncas (1923) and Helen Whitaker Professor Emerita
Professor Emerita of Biological Engineering
Professor Emerita of Biology

Paul R. Schimmel, PhD
John D. MacArthur Professor Emeritus
Professor Emeritus of Biochemistry and Biophysics

Edward Mark Scolnick, MD
Professor of the Practice Emeritus of Biology

Ethan R. Signer, PhD
Professor Emeritus of Biology

Hazel L. Sive, PhD
Professor Emerita of Biology

JoAnne Stubbe, PhD
Novartis Professor Emerita
Professor Emerita of Chemistry
Professor Emerita of Biology