DEPARTMENT OF BIOLOGY

The Department of Biology (https://biology.mit.edu) offers undergraduate, graduate, and postdoctoral training in basic biology, and in a variety of biological fields of specialization. The quantitative aspects of biology, including molecular biology, biochemistry, genetics, and cell biology, represent the core of the program. Students in the department are encouraged to acquire a solid background in the physical sciences not only to master the applications of mathematics, physics, and chemistry to biology, but also to develop an integrated scientific perspective. The various programs, which emphasize practical experimentation, combine a minimum of formal laboratory exercises with ample opportunities for research work both in project-oriented laboratory subjects and in the department’s research laboratories. Students at all levels are encouraged to acquire familiarity with advanced research techniques and to participate in seminar activities.

Undergraduate Study

Bachelor of Science in Biology (Course 7)

The curriculum leading to the Bachelor of Science in Biology (http://catalog.mit.edu/degree-charts/biology-course-7) is designed to prepare students for a professional career in the area of the biological sciences. Graduates of this program are well prepared for positions in industrial or research institutes. However, experience has shown that many graduates choose to continue their education at a graduate school in order to obtain a PhD in an area such as biochemistry, microbiology, genetics, biophysics, cell biology, or physiology, followed by research or teaching in one of those areas. The undergraduate curriculum is also excellent preparation for students who wish to continue their education toward an MD, particularly if their career plans include laboratory investigations bearing on human disease.

Bachelor of Science in Biology (Course 7-A)

Course 7-A (http://catalog.mit.edu/degree-charts/biology-course-7-a) is designed for students who wish to obtain a background in biology as preparation for careers without laboratory research. Course 7-A has the same core requirements as Course 7, but does not require a 30-unit laboratory subject within its Restricted Electives.

Students are encouraged to use their elective subjects for more advanced subjects in their field and for additional study in basic and advanced subjects offered in various departments.

Bachelor of Science in Computer Science and Molecular Biology (Course 6-7)

The Department of Biology jointly offers a Bachelor of Science in Computer Science and Molecular Biology (http://catalog.mit.edu/interdisciplinary/undergraduate-programs/degrees/computer-science-molecular-biology) with the Department of Electrical Engineering and Computer Science. A detailed description of the requirements for this degree program can be found in the section on Interdisciplinary Programs (http://catalog.mit.edu/interdisciplinary).

Minor in Biology

The department offers a Minor in Biology; the requirements are as follows:

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12</td>
<td>Organic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>7.03</td>
<td>Genetics</td>
<td>12</td>
</tr>
<tr>
<td>7.05</td>
<td>General Biochemistry</td>
<td>12</td>
</tr>
<tr>
<td>7.02[J]</td>
<td>Introduction to Experimental Biology and Communication</td>
<td>24</td>
</tr>
<tr>
<td>7.06</td>
<td>Cell Biology</td>
<td></td>
</tr>
<tr>
<td>7.08[J]</td>
<td>Biological Chemistry II</td>
<td></td>
</tr>
<tr>
<td>7.09</td>
<td>Quantitative and Computational Biology</td>
<td></td>
</tr>
<tr>
<td>7.20[J]</td>
<td>Human Physiology</td>
<td></td>
</tr>
<tr>
<td>7.21</td>
<td>Microbial Physiology</td>
<td></td>
</tr>
<tr>
<td>7.22</td>
<td>Developmental Biology</td>
<td></td>
</tr>
<tr>
<td>7.23</td>
<td>Immunology</td>
<td></td>
</tr>
<tr>
<td>7.26</td>
<td>Molecular Basis of Infectious Disease</td>
<td></td>
</tr>
<tr>
<td>7.27</td>
<td>Principles of Human Disease</td>
<td></td>
</tr>
<tr>
<td>7.28</td>
<td>Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>7.29[J]</td>
<td>Cellular and Molecular Neurobiology</td>
<td></td>
</tr>
<tr>
<td>& 7.30[B][J]</td>
<td>and Fundamentals of Ecology II</td>
<td></td>
</tr>
<tr>
<td>7.31</td>
<td>Current Topics in Mammalian Biology: Medical Implications</td>
<td></td>
</tr>
<tr>
<td>7.32</td>
<td>Systems Biology</td>
<td></td>
</tr>
<tr>
<td>7.37[J]</td>
<td>Molecular and Engineering Aspects of Biotechnology</td>
<td></td>
</tr>
<tr>
<td>or 7.371</td>
<td>Biological and Engineering Principles Underlying Novel Biotherapeutics</td>
<td></td>
</tr>
<tr>
<td>7.38</td>
<td>Mechanical Cell Biology</td>
<td></td>
</tr>
<tr>
<td>7.41</td>
<td>Principles of Chemical Biology</td>
<td></td>
</tr>
<tr>
<td>7.45</td>
<td>The Hallmarks of Cancer</td>
<td></td>
</tr>
<tr>
<td>7.49[J]</td>
<td>Developmental Neurobiology</td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 60

For a general description of the minor program, see Undergraduate Education (http://catalog.mit.edu/mit/undergraduate-education/academic-programs/minors).
The Chemistry/Biology Interface is designed to maintain academic depth within the core areas of investigation are well represented at MIT, where a common theme of biomedicine, cell and developmental biology, bioimaging, and the molecular basis of various diseases.

Cell biology refers to molecular biological, genetic, and cell biological analysis of eukaryotic cells. The specific areas of research include the organization, expression, and regulation of eukaryotic genomes; structure and function of membranes and cytoskeletons; molecular basis of cellular structure, organization, proliferation, and movement; differentiation and functions of specialized cell types; and the molecular basis of various diseases.

Chemistry/Biology interface research area pervades the fields of biomedicine, cell and developmental biology, bioimaging, structural biology, enzymology, and synthetic biology. These areas of investigation are well represented at MIT, where a common theme is the application of rigorous physical and chemical methods to the molecular dissection of biological pathways, reactions, and circuitry. The Chemistry/Biology Interface program at MIT provides a training mechanism that maintains academic depth within the core areas of chemistry, physics, biology, and engineering, but also provides disciplinary breadth. The Chemistry/Biology Interface is designed to bring together faculty and students from the Departments of Chemistry, Biology, and Biological Engineering, spanning the Schools of Science and Engineering.

Computational and systems biology is a recent area of emphasis in the department offered jointly with the Department of Electrical Engineering and Computer Science and the Division of Biological Engineering as part of the Computational and Systems Biology Initiative (CSBi). Computational and systems biology combines biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis of complex biological phenomena. Equal emphasis is placed on computational and experimental research and on molecular and systematic views of biological function. One major role of CSBi research is to develop methods and devices that can measure, in a systematic and precise manner, the biochemical properties of large numbers of biomolecules in cells, tissues, and whole organisms. A second major CSBi goal is to build mathematical models of biological systems that link mechanistic understanding of molecular function to systems-wide knowledge of networks and interactions. Like models in mature engineering disciplines, CSBi models will capture empirical knowledge as it accumulates and will have the ability to predict experimental outcomes.

Developmental biology refers to the cellular, genetic, and molecular mechanisms responsible for generating the diversity of cell types that arise during development, and controlling the ways in which cells interact to produce organ systems and whole organisms. These problems are studied using vertebrates, invertebrates, and plants. Specific topics of interest include the regulation of gene expression, cell interactions, cell lineages, cell migrations, sex determination, stem cells, and cloning.

Genetics/microbiology includes genetic analyses of fundamental problems in bacteria, bacteriophages, viruses, and yeast. Areas of specific interest include protein secretion, DNA transposition, protein turnover, DNA synthesis and repair, mechanisms of genetic recombination, and electron transport in mitochondria. More complex problems under study are cellular responses to stress, plant-bacterial interactions, high resolution structure-function studies of proteins and RNAs, and the control circuits regulating gene expression. A new area of study is the application of high resolution molecular techniques to problems in human genetics.

Immunology is the study of the genetic, cellular, and molecular mechanisms underlying the exquisite sensitivity and specificity of the immune system. The immunology group studies the chemistry of antigen-antibody and antigen-T cell receptor interactions, using the tools of molecular biology as well as classical immunological approaches. Of particular interest is the role of idiotypic and cellular interactions in the regulation of the immune system as studied by organ culture, hybridoma technology, and the behavior of transgenic mice.

Neurobiology is an area of recent emphasis in the department. The subject in general neurobiology is supplemented by a seminar
series and an interlaboratory journal club. Students admitted to the Biology graduate program can join the Molecular and Cellular Neurosciences Program, offering access to participating faculty and neuroscience coursework across campus. The emphasis is on neuronal development, synaptic plasticity, and neurological and psychiatric disease, primarily using cell-biological, electrophysiological, imaging, and genetic approaches. Current areas of research interest include the molecular determinants of neuronal diversity and shape; the formation and function of synapses and neural networks; and the genetic and molecular determinants of memory storage, sensory transduction, and neuropsychiatric disease.

Admission Requirements for Graduate Study

In the Department of Biology, the Master of Science is not a prerequisite for a program of study leading to the doctorate.

The department modifies the General Institute Requirements for admission to graduate study as follows: 18.01 Calculus, 18.02 Calculus; one year of college physics; 5.12 Organic Chemistry I; professional subjects including general biochemistry, genetics, and physical chemistry. However, students may make up some deficiencies over the course of their graduate work.

Doctor of Philosophy

The General Degree Requirements for the Doctor of Philosophy are listed under Graduate Education (http://catalog.mit.edu/mit/graduate-education/general-degree-requirements). In the departmental program, each graduate student is expected to acquire a solid background in four fundamental areas of biology: biochemistry, genetics, cell biology, and molecular biology. Most students take subjects in these areas during the first year. All students are required to take three subjects:

- 7.50 Method and Logic in Molecular Biology 12
- 7.51 Principles of Biochemical Analysis 12
- 7.52 Genetics for Graduate Students 12

7.50 is a seminar designed specifically to introduce graduate students to in-depth discussion and analysis of topics in molecular biology.

Students have a choice of several elective subjects, which have been designed for the entering graduate student. One of the elective subjects must focus on computational and quantitative approaches to biology. Typically students choose one of the following subjects:

- 7.57 Quantitative Biology for Graduate Students 12
- 7.81[J] Systems Biology 12

In addition to providing a strong formal background in biology, the first-year program serves to familiarize the students with faculty and students in all parts of the department.

Interdisciplinary Programs

Joint Program with the Woods Hole Oceanographic Institution

The Joint Program with the Woods Hole Oceanographic Institution (WHOI) (http://mit.whoi.edu) is intended for students whose primary career objective is oceanography or oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in their home department. The program is described in more detail under Interdisciplinary Graduate Programs (http://catalog.mit.edu/interdisciplinary/graduate-programs/joint-program-woods-hole-oceanographic-institution).

Master of Engineering in Computer Science and Molecular Biology (Course 6–7P)

The Department of Electrical Engineering and Computer Science jointly offers a Master of Engineering in Computer Science and Molecular Biology (http://catalog.mit.edu/interdisciplinary/graduate-programs/computer-science-molecular-biology) with the Department of Biology (Course 7). A detailed description of the list of requirements for this degree program may be found under Interdisciplinary Graduate Programs.

Financial Support

Students who are accepted into the graduate program are provided with support from departmental training grants, departmental funds for teaching assistants, and research grants. In addition, some students bring National Science Foundation and other competitive fellowships. Through these sources, full tuition plus a stipend for living expenses are provided.

Students are encouraged to apply for outside fellowships for which they are eligible, such as the NSF Fellowships. Information regarding graduate student fellowships is available at most colleges from the career planning office.

Inquiries

Additional information regarding graduate academic programs, research activities, admissions, financial aid, and assistantships may be obtained from the Biology Education Office (gradbio@mit.edu), Room 68-120, 617-253-3717.
Faculty and Teaching Staff

Alan D. Grossman, PhD
Praecis Professor
Head, Department of Biology

Michael T. Laub, PhD
Professor of Biology
Associate Head, Department of Biology

Jacqueline Lees, PhD
Virginia and Daniel K. Ludwig Professor for Cancer Research
Professor of Biology
Associate Head, Department of Biology

Peter Reddien, PhD
Professor of Biology
Associate Head, Department of Biology

Angelika B. Amon, PhD
Kathleen and Curtis (1963) Marble Professor of Cancer Research
Professor of Biology

Tania Baker, PhD
E.C. Whitehead Professor
Professor of Biology

David Bartel, PhD
Professor of Biology

Stephen P. Bell, PhD
Professor of Biology

Christopher B. Burge, PhD
Professor of Biology
Professor of Biological Engineering

Jianzhu Chen, PhD
Professor of Biology
(On leave, spring)

Sallie W. Chisholm, PhD
Institute Professor
Professor of Civil and Environmental Engineering
Professor of Biology

Martha Constantine-Paton, PhD
Professor of Neuroscience
Professor of Biology

Catherine L. Drennan, PhD
Professor of Biology
Professor of Chemistry

Gerald R. Fink, PhD
Professor of Biology

Frank Gertler, PhD
Professor of Biology

Leonard Pershing Guarente, PhD
Novartis Professor of Biology

H. Robert Horvitz, PhD
David H. Koch Professor
Professor of Biology

David E. Housman, PhD
Virginia and Daniel K. Ludwig Scholar for Cancer Research
Member, Health Sciences and Technology Faculty

Richard O. Hynes, PhD
Daniel K. Ludwig Professor for Cancer Research

Barbara Imperiali, PhD
Class of 1922 Professor
Professor of Biology
Professor of Chemistry

Tyler E. Jacks, PhD
David H. Koch Professor
Professor of Biology

Rudolf Jaenisch, MD
Professor of Biology

Chris Kaiser, PhD
Amgen Professor
Professor of Biology

Amy E. Keating, PhD
Professor of Biology
Professor of Biological Engineering

Dennis H. Kim, MD, PhD
Ivan R. Cottrell Professor of Immunology
Professor of Biology

Jonathan Alan King, PhD
Professor of Molecular Biology

Monty Krieger, PhD
Whitehead Professor
Professor of Biology

Eric S. Lander, PhD
Professor of Biology
Douglas A. Lauffenburger, PhD
Ford Foundation Professor of Engineering
Head, Department of Biological Engineering
Professor of Biological Engineering
Professor of Chemical Engineering
Professor of Biology

Susan Lindquist, PhD
Professor of Biology

J. Troy Littleton, MD, PhD
Professor of Biology
Professor of Brain and Cognitive Sciences

Harvey F. Lodish, PhD
Professor of Biology
Professor of Biological Engineering

Elly Nedivi, PhD
Professor of Neuroscience
Professor of Biology

Terry L. Orr-Weaver, PhD
Professor of Biology
(On leave, spring)

David C. Page, MD
Professor of Biology
Member, Health Sciences and Technology Faculty

Hidde Ploegh, PhD
Professor of Biology

Uttam L. RajBhandary, PhD
Lester Wolfe Professor in Molecular Biology

Aviv Regev, PhD
Professor of Biology

David M. Sabatini, MD, PhD
Professor of Biology

Leona D. Samson, PhD
Uncas (1923) and Helen Whitaker Professor
Associate Head, Department of Biological Engineering
Professor of Toxicology and Biological Engineering
Professor of Biology

Robert T. Sauer, PhD
Salvador E. Luria Professor
Professor of Biology

Thomas Schwartz, PhD
Professor of Biology

Phillip A. Sharp, PhD
Institute Professor
Professor of Biology
Member, Health Sciences and Technology Faculty

Anthony J. Sinskey, ScD
Professor of Biology

Hazel L. Sive, PhD
Professor of Biology

Frank Solomon, PhD
Professor of Biology

Lisa A. Steiner, MD
Professor of Immunology

JoAnne Stubbe, PhD
Novartis Professor Post-Tenure of Chemistry
Professor Post-Tenure of Biology

Susumu Tonegawa, PhD
Picower Professor
Professor of Biology
Professor of Neuroscience

Graham C. Walker, PhD
Professor of Biology

Robert A. Weinberg, PhD
Daniel K. Ludwig Professor for Cancer Research

Matthew A. Wilson, PhD
Sherman Fairchild Professor
Professor of Neuroscience
Professor of Biology

Michael B. Yaffe, MD, PhD
David H. Koch Professor in Science
Professor of Biology
Professor of Biological Engineering

Richard A. Young, PhD
Professor of Biology

Associate Professors

Laurie Boyer, PhD
Associate Professor of Biological Engineering
Associate Professor of Biology

Iain Cheeseman, PhD
Associate Professor of Biology
(On leave)

Mary Gehring, PhD
Associate Professor of Biology

Department of Biology | 7
Wendy Gilbert, PhD
Associate Professor of Biology

Piyush Gupta
Howard S. (1953) and Linda B. Stern Career Development Professor
Associate Professor of Biology

Michael Hemann, PhD
Associate Professor of Biology

Adam C. Martin, PhD
Associate Professor of Biology

Matthew G. Vander Heiden, MD, PhD
Eisen and Chang Career Development Professor
Associate Professor of Biology

Assistant Professors
Gene-Wei Li, PhD
Irwin W. and Helen W. Sizer Career Development Professor
Assistant Professor of Biology

Jing-Ke Weng, PhD
Thomas D. and Virginia W. Cabot Professor
Assistant Professor of Biology

Omer Yilmaz, PhD
Assistant Professor of Biology

Professors of the Practice
Edward Mark Scolnick, MD
Professor of the Practice of Biology

Visiting Associate Professors
Jacquelyn Taylor
Martin Luther King, Jr. Visiting Associate Professor

Lecturers
Mandana Sassanfar, PhD
Lecturer in Biology
Instructor in Brain and Cognitive Sciences

Instructors
Stuart S. Levine, PhD
Instructor of Biology

Technical Instructors
Vanessa J. Cheung, PhD
Technical Instructor of Biology

Anthony Fuccione, BS
Technical Instructor of Biology

Diviya Sinha, PhD
Technical Instructor of Biology

Meredith Sweeney, PhD
Technical Instructor of Biology

Mary Ellen Wiltrout, PhD
Technical Instructor of Biology

Ayce Yesilaltay, PhD
Technical Instructor of Biology

Research Staff

Research Scientists
Vincent Butty, MD, PhD
Research Scientist of Biology

Huiming Ding, PhD
Research Scientist of Biology

Robert A. Grant, PhD
Research Scientist of Biology

Cameron A. Haase-Pettingell, MS
Research Scientist of Biology

Branwen M. Hall, PhD
Research Scientist of Biology

Caroline Koehrer, PhD
Research Scientist of Biology

Vera V. Koledova, PhD
Research Scientist of Biology

Shuo Luo, PhD
Research Scientist of Biology

Adrián O. Olivares, PhD
Research Scientist of Biology

Nicolas Paquin, PhD
Research Scientist of Biology

Jon Penterman, PhD
Research Scientist of Biology

John Westlake Quimby, PhD
Research Scientist of Biology

Christian Rueckert, PhD
Research Scientist of Biology

Ana Corrionero Saiz, PhD
Research Scientist of Biology

T. G. Sambandan, PhD
Research Scientist of Biology
Mohammed Shabab, PhD
Research Scientist of Biology

Janet L. Smith, PhD
Research Scientist of Biology

Mohan Viswanathan, PhD
Research Scientist of Biology

Robert Paul Weinberg, PhD
Research Scientist of Biology

Eric O. Williams, PhD
Research Scientist of Biology

Jie Wu, PhD
Research Scientist of Biology

Professors Emeriti

David Baltimore, PhD
Professor Emeritus of Biology

Gene M. Brown, PhD
Professor Emeritus of Biochemistry

Arnold L. Demain, PhD
Professor Emeritus of Industrial Microbiology

Maurice S. Fox, PhD
Professor Emeritus of Molecular Biology

Malcolm L. Gefter, PhD
Professor Emeritus of Biochemistry

Nancy Haven Hopkins, PhD
Amgen Professor Emerita
Professor Emerita of Biology

Irving M. London, PhD
Grover M. Hermann Professor Emeritus
Professor Emeritus of Health Sciences and Technology
Professor Emeritus of Biology and Medicine

Mary-Lou Pardue, PhD
Boris Magasanik Professor Emerita
Professor Emerita of Biology

Sheldon Penman, PhD
Professor Emeritus of Cell Biology

William G. Quinn, PhD
Professor Emeritus of Neurobiology
Professor Emeritus of Biology

Phillips W. Robbins, PhD
Professor Emeritus of Biochemistry

Robert Daniel Rosenberg, MD, PhD
Professor Emeritus of Biology

Paul R. Schimmel, PhD
John D. MacArthur Professor Emeritus
Professor Emeritus of Biochemistry and Biophysics

Ethan R. Signer, PhD
Professor Emeritus of Biology

Undergraduate Subjects

Introductory Biology
All five subjects cover the same core material, comprising about 50% of the course, while the remaining material is specialized for each version as described below. Core material includes fundamental principles of biochemistry, genetics, molecular biology, and cell biology. These topics address structure and regulation of genes, structure and synthesis of proteins, how these molecules are integrated into cells and how cells communicate with one another.

7.012 Introductory Biology
Prereq: None
U (Fall)
5-0-7 units. BIOLOGY
Credit cannot also be received for 7.013, 7.014, 7.015, 7.016, ES.7012, ES.7013

Exploration into areas of current research in molecular and cell biology, immunology, neuroscience, tissue repair and stem cells, tissue engineering, and evolution. Enrollment limited to seating capacity of classroom. Admittance may be controlled by lottery.
E. Lander, R. Weinberg

7.013 Introductory Biology
Prereq: None
U (Spring)
5-0-7 units. BIOLOGY
Credit cannot also be received for 7.012, 7.014, 7.015, 7.016, ES.7012, ES.7013

Genomic approaches to human biology, including neuroscience, development, immunology, tissue repair and stem cells, tissue engineering, and infectious and inherited diseases, including cancer. Enrollment limited to seating capacity of classroom. Admittance may be controlled by lottery.
A. Amon, H. Sive
7.014 Introductory Biology
U (Spring)
5-0-7 units. BIOLOGY
Credit cannot also be received for 7.012, 7.013, 7.015, 7.016, ES.7012, ES.7013

Studies the fundamental principles of biology and their application towards understanding the Earth as a dynamical system shaped by life. Focuses on molecular ecology in order to show how processes at the molecular level can illuminate macroscopic properties, including evolution and maintenance of biogeochemical cycles, and ecological interactions in ecosystems ranging from the ocean to the human gut. Includes quantitative analysis of population growth, community structure, competition, mutualism and predation; highlights their role in shaping the biosphere. Enrollment limited to seating capacity of classroom. Admittance may be controlled by lottery.
G. C. Walker, S. W. Chisholm, M. Polz

7.015 Introductory Biology
Prereq: Advanced high school course covering cellular and molecular biology, or permission of instructor
U (Fall)
5-0-7 units. BIOLOGY
Credit cannot also be received for 7.012, 7.013, 7.014, 7.016, ES.7012, ES.7013

Emphasizes the application of fundamental biological principles to trending topics in microbiology and immunology. Specific modules focus on antibiotic resistance, influenza, genome-wide association studies, biotechnology (such as genetically modified organisms and personal genomics), the microbiome, and diabetes. Includes discussion of the social and ethical issues surrounding modern biology. Limited to 60; admittance may be controlled by lottery.
M. Laub, H. Ploegh

7.016 Introductory Biology
Prereq: None
U (Fall)
5-0-7 units. BIOLOGY
Credit cannot also be received for 7.012, 7.013, 7.014, 7.015, ES.7012, ES.7013

Introduction to fundamental principles of biochemistry, molecular biology and genetics for understanding the functions of living systems. Covers examples of the use of chemical biology and 21st-century molecular genetics in understanding human health and therapeutic intervention. Enrollment limited to seating capacity of classroom. Admittance may be controlled by lottery.
L. Boyer, B. Imperiali

7.02[J] Introduction to Experimental Biology and Communication
Same subject as 10.702[J]
Prereq: Biology (GIR)
U (Fall, Spring)
4-8-6 units. Institute LAB

Introduction to the experimental concepts and methods of molecular biology, biochemistry, and genetic analysis. Emphasis on experimental design, critical data analysis, and the development of written communications skills. 12 units may be applied to the General Institute Laboratory Requirement. Concurrent registration with 7.03 strongly recommended. Enrollment limited.
Fall: T. Baker, M. Gehring, K. D. Wittrup
Spring: T. Baker, O. Yilmaz, K. D. Wittrup

7.03 Genetics
Prereq: Biology (GIR)
U (Fall, Spring)
4-0-8 units. REST

The principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. Structure and function of genes, chromosomes, and genomes. Biological variation resulting from recombination, mutation, and selection. Population genetics. Use of genetic methods to analyze protein function, gene regulation, and inherited disease.
Fall: G. Fink, P. Gupta, P. Reddien
Spring: M. Hemann, A. Regev

7.05 General Biochemistry
Prereq: 5.12, Biology (GIR), or permission of instructor
U (Spring)
5-0-7 units. REST
Credit cannot also be received for 5.07[J], 20.507[J]

Contributions of biochemistry toward an understanding of the structure and functioning of organisms, tissues, and cells. Chemistry and functions of constituents of cells and tissues and the chemical and physical-chemical basis for the structures of nucleic acids, proteins, and carbohydrates. Basic enzymology and biochemical reaction mechanisms involved in macromolecular synthesis and degradation, signaling, transport, and movement. General metabolism of carbohydrates, fats, and nitrogen-containing materials such as amino acids, proteins, and related compounds.
M. Vander Heiden, M. Yaffe
7.06 Cell Biology
Prereq: 7.03, 7.05
U (Fall, Spring)
4-0-8 units

Presents the biology of cells of higher organisms. Studies the structure, function, and biosynthesis of cellular membranes and organelles; cell growth and oncogenic transformation; transport, receptors, and cell signaling; the cytoskeleton, the extracellular matrix, and cell movements; cell division and cell cycle; functions of specialized cell types. Emphasizes the current molecular knowledge of cell biological processes as well as the genetic, biochemical, and other experimental approaches that resulted in these discoveries.
A. Martin, F. Solomon

7.09 Quantitative and Computational Biology
Prereq: 7.03, 7.05
U (Spring)
3-0-9 units

Quantitative and computational analysis of biological systems at the molecular and cellular level. Includes models of biological processes across different time scales, from steady-state to kinetics of gene expression, circadian clock, cell growth, and evolutionary dynamics. Methods include physical, systems, and synthetic biology. Also covers second-generation sequencing technologies, and topics in computational analysis of genomes, including sequence alignment, motif finding, information theory and RNA secondary structure prediction.
C. Burge, G. W. Li

7.102 Laboratory in Molecular Biology (New)
Prereq: None
U (IAP)
0-5-1 units. 1/2 Institute LAB

Introduces basic methods of experimental molecular biology. Specific experiments vary from year-to-year, but will focus on the molecular genetic characterization of fundamental biological processes. Biology GIR or Chemistry GIR recommended. Limited to 30.
M. Sassanfar, D. Kim

7.11 Biology Teaching
Prereq: None
U (Fall, Spring)
Units arranged
Can be repeated for credit.

For qualified undergraduate students interested in gaining some experience in teaching. Laboratory, tutorial, or classroom teaching under the supervision of a faculty member. Students selected by interview.
Consult Biology Education Office

7.15 Experimental Molecular Genetics
Prereq: 7.02[J], 7.03
U (Spring)
4-16-10 units

In this project-based laboratory subject, students carry out independent molecular genetics experiments that develop skills in the planning, execution, and analysis of original experimental biological research. Specific research topic, which is determined by teaching staff, involves the application of modern biological methods, such as next-generation sequencing and metabolomics. Reading and writing assignments focus on the critical evaluation and discussion of relevant scientific literature. Emphasizes instruction in laboratory methods and the testing of hypotheses, as well as the critical analysis of experimental results.
J. Weng

7.18 Topics in Experimental Biology
Subject meets with 7.19
Prereq: 7.02[J], 7.03, 7.05
U (Fall, Spring)
4-16-10 units

Independent experimental study under the direction of a member of the Biology Department faculty. Allows students with a strong interest in independent research to fulfill the project laboratory requirement for the Biology Department Program in the context of a research laboratory at MIT. The research must be conducted on the MIT campus and be a continuation of a previous 12-unit UROP project or full-time work over the summer. Written and oral presentation of the research results is required. Journal club discussions are used to help students evaluate and write scientific papers. Instruction and practice in written and oral communication is provided. Permission of the faculty research supervisor and the Biology Education Office must be obtained in advance.
Fall: D. Kim, A.J. Sinskey, C. Kaiser
Spring: D. Kim, C. Kaiser, U. Rajbhandary
7.19 Communication in Experimental Biology
Subject meets with 7.18
Prereq: 7.02[J], 7.03, 7.05
U (Fall, Spring)
4-4-4 units
Students carry out independent literature research. Meets with the seminar and writing tutorial portions of 7.18. Journal club discussions are used to help students evaluate and write scientific papers. Instruction and practice in written and oral communication is provided. Permission of the instructor and the Biology Education Office must be obtained in advance.
Fall: D. Kim, A. J. Sinskey, C. Kaiser
Spring: D. Kim, C. Kaiser, U. Rajbhandary

7.20[J] Human Physiology
Same subject as HST.540[J]
Prereq: 7.05
U (Fall)
5-0-7 units
Comprehensive exploration of human physiology, emphasizing the molecular basis and applied aspects of organ function and regulation in health and disease. Includes a review of cell structure and function, as well as the mechanisms by which the endocrine and nervous systems integrate cellular metabolism. Special emphasis on examining the cardiovascular, pulmonary, gastrointestinal, and renal systems, as well as liver function, drug metabolism, and pharmacogenetics.
M. Krieger, D. Sabatini

7.21 Microbial Physiology
Subject meets with 7.62
Prereq: 7.03, 7.05
U (Fall)
4-0-8 units
Biochemical properties of bacteria and other microorganisms that enable them to grow under a variety of conditions. Interaction between bacteria and bacteriophages. Genetic and metabolic regulation of enzyme action and enzyme formation. Structure and function of components of the bacterial cell envelope. Protein secretion with a special emphasis on its various roles in pathogenesis. Additional topics include bioenergetics, symbiosis, quorum sensing, global responses to DNA damage, and biofilms. Students taking the graduate version are expected to explore the subject in greater depth.
G. C. Walker, A. J. Sinskey

7.22 Developmental Biology
Prereq: 7.06
Acad Year 2016-2017: Not offered
Acad Year 2017-2018: U (Fall)
5-0-7 units
Topics include development of animal body plans, tissue patterning, cell type determination, organogenesis, morphogenesis, stem cells, and the evolution of developmental diversity and processes. Covers experimental approaches to problems of development and evolution, such as the study of vertebrate (mouse, chick, frog, fish) and invertebrate (fly, worm) models.
R. O. Hynes, P. Reddien

7.23 Immunology
Subject meets with 7.63
Prereq: 7.06
U (Fall)
5-0-7 units
Comprehensive survey of molecular, genetic, and cellular aspects of the immune system. Topics include innate and adaptive immunity; cells and organs of the immune system; immunoglobulin, T cell receptor, and major histocompatibility complex (MHC) proteins and genes; development and functions of B and T lymphocytes; immune responses to infections and tumors; hypersensitivity, autoimmunity, and immunodeficiencies. Particular attention to the development and function of the immune system as a whole, as studied by modern methods and techniques. Students taking the graduate version are expected to explore the subject in greater depth.
H. Ploegh, L. Steiner

7.26 Molecular Basis of Infectious Disease
Subject meets with 7.66
Prereq: 7.06
U (Spring)
4-0-8 units
Focuses on the principles of host-pathogen interactions with an emphasis on infectious diseases of humans. Presents key concepts of pathogenesis through the study of various human pathogens. Includes critical analysis and discussion of assigned readings. Students taking the graduate version are expected to explore the subject in greater depth.
D. Kim
7.27 Principles of Human Disease
Prereq: 7.06
U (Spring)
4-0-8 units
Covers current understanding of and modern approaches to human disease, emphasizing the molecular and cellular basis of both genetic disease and cancer. Topics include the genetics of simple and complex traits; karyotypic analysis and positional cloning; genetic diagnosis; the roles of oncogenes and tumor suppressors in tumor initiation, progression, and treatment; the interaction between genetics and environment; animal models of human disease; cancer; aging and disease; and conventional and gene therapy treatment strategies.
D. Housman, L. Guarente

7.28 Molecular Biology
Subject meets with 7.58
Prereq: 7.03; Coreq: 7.05
U (Spring)
5-0-7 units
Detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. Topics covered in lecture and readings of relevant literature include: gene regulation, DNA replication, genetic recombination, and mRNA translation. Logic of experimental design and data analysis emphasized. Presentations include both lectures and group discussions of representative papers from the literature. Students taking the graduate version are expected to explore the subject in greater depth.
S. Bell

7.29[J] Cellular and Molecular Neurobiology
Same subject as 9.09[J]
Prereq: 7.05 or 9.01
U (Spring)
4-0-8 units
Introduction to the structure and function of the nervous system. Emphasizes the cellular properties of neurons and other excitable cells. Includes the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, integration of information in simple systems, and detection and information coding during sensory transduction.
T. Littleton, M. Heiman

Same subject as 1.018A[J], 12.031A[J]
Prereq: None
U (Fall; first half of term)
2-0-4 units
See description under subject 1.018A[J].
O. Cordero, M. Follows

Same subject as 1.018B[J], 12.031B[J]
Prereq: 1.018A[J]
U (Fall; second half of term)
2-0-4 units
See description under subject 1.018B[J].
O. Cordero, M. Follows

7.31 Current Topics in Mammalian Biology: Medical Implications
Prereq: 7.06 or permission of instructor
U (Fall)
4-0-8 units
Covers recent advances in mammalian cell and developmental biology with particular emphasis on approaches that utilize mouse genetics. Combines formal lectures on selected topics with readings of original papers which are discussed in class. Major emphasis on the implications of mechanisms of human genetic diseases. Topics include early mammalian development; genomic imprinting; X inactivation; embryonic stem cells; nuclear reprogramming of somatic cells; cell migration; nervous system development; and central nervous system degenerative diseases such as Alzheimer’s and Huntington’s disease. Limited to 20.
F. Gertler, R. Jaenisch

7.32 Systems Biology
Subject meets with 7.81[J], 8.591[J]
Prereq: 18.03, 18.05; or permission of instructor
U (Fall)
3-0-9 units
Introduction to cellular and population-level systems biology with an emphasis on synthetic biology, modeling of genetic networks, cell-cell interactions, and evolutionary dynamics. Cellular systems include genetic switches and oscillators, network motifs, genetic network evolution, and cellular decision-making. Population-level systems include models of pattern formation, cell-cell communications, and evolutionary systems biology. Students taking graduate version explore the subject in more depth.
J. Gore
Same subject as 6.049[J]
Prereq: 7.03; 6.0001 or permission of instructor
U (Spring)
3-0-9 units
Explores and illustrates how evolution explains biology, with an emphasis on computational model building for analyzing evolutionary data. Covers key concepts of biological evolution, including adaptive evolution, neutral evolution, evolution of sex, genomic conflict, speciation, phylogeny and comparative methods, life's history, coevolution, human evolution, and evolution of disease.
R. Berwick, D. Bartel

7.331[J] Infections and Inequalities: Interdisciplinary Perspectives on Global Health
Same subject as 21A.331[J], HST.431[J]
Prereq: None
Acad Year 2016-2017: Not offered
Acad Year 2017-2018: U (Spring)
3-0-9 units. HASS-S
See description under subject 21A.331[J]. Limited to 25.
E. James, D. Kim, A. Chakraborty

7.340-7.344 Advanced Undergraduate Seminar
Prereq: 7.06 or 7.28
U (Fall, Spring)
2-0-4 units
Can be repeated for credit.
Seminars covering topics of current interest in biology with a focus on how to understand experimental methods and design and how to critically read the primary research literature. Small class size facilitates discussions and interactions with an active research scientist. Students visit research laboratories to see firsthand how biological research is conducted. Contact Biology Education Office for topics.
H. R. Horvitz

7.345-7.349 Advanced Undergraduate Seminar
Prereq: 7.06 or 7.28
U (Fall, Spring)
2-0-4 units
Can be repeated for credit.
Seminars covering topics of current interest in biology with a focus on how to understand experimental methods and design and how to critically read the primary research literature. Small class size facilitates discussions and interactions with an active research scientist. Students visit research laboratories to see firsthand how biological research is conducted. Contact Biology Education Office for topics.
H. R. Horvitz

7.37[J] Molecular and Engineering Aspects of Biotechnology
Same subject as 10.441[J], 20.361[J]
Prereq: 2.005, 3.012, 5.60, or 20.110[J]; 7.06; or permission of instructor
Acad Year 2016-2017: Not offered
Acad Year 2017-2018: U (Spring)
4-0-8 units
Credit cannot also be received for 7.371
Covers biological and bioengineering principles underlying the development and therapeutic use of recombinant proteins and stem cells; glycoengineering of recombinant proteins; normal and pathological signaling by growth factors and their receptors; receptor trafficking; monoclonal antibodies as therapeutics; protein pharmacology and delivery; stem cell-derived tissues as therapeutics; RNA therapeutics; combinatorial protein engineering; and new antitumor drugs.
H. Lodish, L. Griffith

7.371 Biological and Engineering Principles Underlying Novel Biotherapeutics
Prereq: 7.06
U (Fall)
4-0-8 units
Credit cannot also be received for 7.37[J], 10.441[J], 20.361[J]
Covers biological and bioengineering principles underlying the development and therapeutic use of recombinant proteins and immune cells. Special attention to monoclonal antibodies and engineered immune system cells as therapeutics; protein and glyco- engineering to enhance protein function; protein pharmacology and delivery; nucleic acid-based biotherapeutics; generation of functional cells and tissues from embryonic stem cells and iPS cells; and immune cell-cancer cell interactions in cancer immunotherapy.
J. Chen, H. Lodish
7.38 Mechanical Cell Biology
Subject meets with 7.83
Prereq: 7.06
Acad Year 2016-2017: Not offered
Acad Year 2017-2018: U (Spring)
3-0-9 units

Covers current topics in eukaryotic cell biology, with a focus on understanding how physical forces are generated in cells and how these forces organize and shape cells and tissues. Combines lectures and the analysis of the primary literature to explore concepts and experimental approaches related to forces in cell biology at the molecular, cellular, and organismal level. Also considers the journal publication process, providing insights and experience into writing a cover letter, paper submission, reviewer critique, and communicating the significance of one's research. Students taking the graduate version explore the subject in greater depth.

I. Cheeseman, A. Martin

7.41 Principles of Chemical Biology
Subject meets with 7.73
Prereq: 7.05
U (Spring)
3-0-9 units

Spanning the fields of biology, chemistry and engineering, class addresses the principles of chemical biology and its application of chemical and physical methods and reagents to the study and manipulation of biological systems. Topics include bioorthogonal reactions and activity-based protein profiling, small molecule inhibitors and chemical genetics, fluorescent probes for biological studies, and unnatural amino acid mutagenesis. Also covers chemical biology approaches for studying dynamic post-translational modification reactions, natural product biosynthesis and mutasynthesis, and high-throughput drug screening. Students taking the graduate version are expected to explore the subject in greater depth

B. Imperiali, J. K. Weng

7.45 The Hallmarks of Cancer
Subject meets with 7.85
Prereq: None. Coreq: 7.06
U (Fall)
4-0-8 units

Provides a comprehensive introduction to the fundamentals of cancer biology and cancer treatment. Topics include cancer genetics, genomics, and epigenetics; familial cancer syndromes; signal transduction, cell cycle control, and apoptosis; cancer metabolism; stem cells and cancer; metastasis; cancer immunology and immunotherapy; conventional and molecularly-targeted therapies; and early detection and prevention. Students taking graduate version complete additional assignments.

T. Jacks, M. Vander Heiden

7.458[J] Advances in Biomanufacturing (New)
Same subject as 10.03[J]
Subject meets with 7.548[J], 10.53[J]
Prereq: None
U (Fall, Spring; second half of term)
1-0-2 units

See description under subject 10.03[J].

J. C. Love, A. Sinskey, S. Springs

7.49[J] Developmental Neurobiology
Same subject as 9.18[I]
Subject meets with 7.69[J], 9.181[J]
Prereq: 9.01, 7.03, 7.05, or permission of instructor
U (Spring)
3-0-9 units

Considers molecular control of neural specification, formation of neuronal connections, construction of neural systems, and the contributions of experience to shaping brain structure and function. Topics include: neural induction and pattern formation, cell lineage and fate determination, neuronal migration, axon guidance, synapse formation and stabilization, activity-dependent development and critical periods, development of behavior. Students taking graduate version complete additional readings that will be addressed in their mid-term and final exams.

E. Nedivi, M. Heiman

7.391 Independent Study in Biology
Prereq: None
U (Fall, Spring)
Units arranged [P/D/F]
Can be repeated for credit.
7.392 Independent Study in Biology
Prereq: None
U (Fall, Spring)
Units arranged
Can be repeated for credit.

7.393 Independent Study in Genetics
Prereq: None
U (Fall, Spring)
Units arranged
Can be repeated for credit.

7.394 Independent Study in Biochemistry
Prereq: None
U (Fall, Spring)
Units arranged
Can be repeated for credit.

7.395 Independent Study in Cell and Molecular Biology
Prereq: None
U (Fall, Spring)
Units arranged
Can be repeated for credit.

7.396 Independent Study in Experimental Biology
Prereq: None
U (Fall, IAP, Spring)
Units arranged [P/D/F]
Can be repeated for credit.

Program of study or research to be arranged with a department faculty member.

7.399 Special Subject in Biology
Prereq: Permission of instructor
U (Fall, IAP, Spring)
Units arranged [P/D/F]
Can be repeated for credit.

Covers material in various fields of biology not offered by the regular subjects of instruction.

Staff

7.392 Special Subject in Biology
Prereq: Permission of instructor
U (Fall, IAP, Spring)
Not offered regularly; consult department
Units arranged [P/D/F]
Can be repeated for credit.

Covers material in various fields of biology not offered by the regular subjects of instruction.

Staff

7.399 Special Subject in Biology
Prereq: Permission of instructor
U (Fall, IAP, Spring)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.

Covers material in various fields of biology not offered by the regular subjects of instruction.

Staff

7.UR Undergraduate Research
Prereq: Permission of department.
U (Fall, IAP, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

Undergraduate research opportunities in the Department of Biology.
For further information, consult departmental coordinator, Gene Brown.

Staff
Graduate Subjects

MIT-WHOI Joint Program in Oceanography

7.410 Applied Statistics
Prereq: Permission of instructor
G (Spring)
3-0-9 units
Can be repeated for credit.

Provides an introduction to modern applied statistics. Topics include likelihood-based methods for estimation, confidence intervals, and hypothesis-testing; bootstrapping; time series modeling; linear models; nonparametric regression; and model selection. Organized around examples drawn from the recent literature.
A. Solow

7.411 Seminars in Biological Oceanography
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged [P/D/F]
Can be repeated for credit.

Selected topics in biological oceanography.
WHOI Staff

7.421 Problems in Biological Oceanography
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged [P/D/F]
Can be repeated for credit.

Advanced problems in biological oceanography with assigned reading and consultation.
Information: M. Neubert (WHOI)

7.430 Topics in Quantitative Marine Science
Prereq: Permission of instructor
G (Fall, Spring)
2-0-4 units
Can be repeated for credit.

Lectures and discussions on quantitative marine ecology. Topics vary from year to year.
WHOI Staff

7.431 Topics in Marine Ecology
Prereq: Permission of instructor
G (Fall, Spring)
2-0-4 units
Can be repeated for credit.

Lectures and discussions on ecological principles and processes in marine populations, communities, and ecosystems. Topics vary from year to year.
WHOI Staff

7.432 Topics in Marine Physiology and Biochemistry
Prereq: Permission of instructor
G (Fall, Spring)
2-0-4 units
Can be repeated for credit.

Lectures and discussions on physiological and biochemical processes in marine organisms. Topics vary from year to year.
WHOI Staff

7.433 Topics in Biological Oceanography
Prereq: Permission of instructor
G (Fall, Spring)
2-0-4 units
Can be repeated for credit.

Lectures and discussions on biological oceanography. Topics vary from year to year.
WHOI Staff

7.434 Topics in Zooplankton Biology
Prereq: Permission of instructor
G (Fall, Spring)
2-0-4 units
Can be repeated for credit.

Lectures and discussions on the biology of marine zooplankton.
Topics vary from year to year.
WHOI Staff

7.435 Topics in Benthic Biology
Prereq: Permission of instructor
G (Fall, Spring)
2-0-4 units
Can be repeated for credit.

Lectures and discussions on the biology of marine benthos. Topics vary from year to year.
WHOI Staff
7.436 Topics in Phytoplankton Biology
Prereq: Permission of instructor
G (Fall, Spring)
2-0-4 units
Can be repeated for credit.
Lectures and discussion on the biology of marine phytoplankton. Topics vary from year to year.

WHOI Staff

7.437 Topics in Molecular Biological Oceanography
Prereq: Permission of instructor
G (Fall, Spring)
2-0-4 units
Can be repeated for credit.
Lectures and discussion on molecular biological oceanography. Topics vary from year to year.

WHOI Staff

7.438 Topics in the Behavior of Marine Animals
Prereq: Permission of instructor
G (Fall, Spring)
2-0-4 units
Can be repeated for credit.
Lectures and discussion on the behavioral biology of marine animals. Topics vary from year to year.

WHOI Staff

7.439 Topics in Marine Microbiology
Prereq: Permission of instructor
G (Fall, Spring)
2-0-4 units
Can be repeated for credit.
Lectures and discussion on the biology of marine prokaryotes. Topics vary from year to year.

WHOI Staff

7.440 An Introduction to Mathematical Ecology
Prereq: Calculus I (GIR), 7.30B[J], or permission of instructor
Acad Year 2016-2017: G (Spring)
Acad Year 2017-2018: Not offered
3-0-9 units
Covers the basic models of population growth, demography, population interaction (competition, predation, mutualism), food webs, harvesting, and infectious disease, and the mathematical tools required for their analysis. Because these tools are also basic to the analysis of models in biochemistry, physiology, and behavior, subject also broadly relevant to students whose interests are not limited to ecological problems.

M. Neubert, H. Caswell (WHOI)

7.470 Biological Oceanography
Prereq: Permission of instructor
G (Spring)
3-0-9 units
Intended for students with advanced training in biology. Intensive overview of biological oceanography. Major paradigms discussed, and dependence of biological processes in the ocean on physical and chemical aspects of the environment examined. Surveys the diversity of marine habitats, major groups of taxa inhabiting those habitats, and the general biology of the various taxa: the production and consumption of organic material in the ocean, as well as factors controlling those processes. Species diversity, structure of marine food webs, and the flow of energy within different marine habitats are detailed and contrasted.

WHOI Staff

7.491 Research in Biological Oceanography
Prereq: Permission of instructor
G (Fall, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.
Directed research in biological oceanography not leading to graduate thesis and initiated prior to the qualifying exam.

WHOI Staff

Microbiology (MICRO)

7.492[J] Methods and Problems in Microbiology
Same subject as 1.86[J], 20.445[J]
Prereq: None
G (Fall)
3-0-9 units
Students will read and discuss primary literature covering key areas of microbial research with emphasis on methods and approaches used to understand and manipulate microbes. Preference to first-year Microbiology and Biology students.

M. Laub

7.493[J] Microbial Genetics and Evolution
Same subject as 1.87[J], 12.493[J], 20.446[J]
Prereq: 7.03, 7.05, or permission of instructor
G (Fall)
4-0-8 units
Covers aspects of microbial genetic and genomic analyses, central dogma, horizontal gene transfer, and evolution.

A. D. Grossman, G. Fournier
7.494 Research Problems in Microbiology
Prereq: Permission of instructor
G (Fall, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.
Directed research in the fields of microbial science and engineering.
Staff

7.498 Teaching Experience in Microbiology
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged [P/D/F]
Can be repeated for credit.
For qualified graduate students in the Microbiology graduate program interested in teaching. Classroom or laboratory teaching under the supervision of a faculty member.
Staff

7.499 Research Rotations in Microbiology
Prereq: Permission of instructor; Coreq: 7.492[J], or 7.493[J]
G (Fall, Spring)
Units arranged [P/D/F]
Can be repeated for credit.
Introduces students to faculty participating in the interdepartmental Microbiology graduate program through a series of three lab rotations, which provide broad exposure to microbiology research at MIT. Students select a lab for thesis research by the end of their first year. Given the interdisciplinary nature of the program and the many research programs available, students may be able to work jointly with more than one research supervisor. Limited to students in the Microbiology graduate program.
Staff

7.MTHG Microbiology Graduate Thesis
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.
Program of research leading to the writing of a PhD thesis. To be arranged by the student and the appropriate MIT faculty member.
Staff

7.50 Method and Logic in Molecular Biology
Prereq: Permission of instructor or Coreq: 7.51, 7.52
G (Fall)
4-0-8 units
Logic, experimental design and methods in biology, using discussions of the primary literature to discern the principles of biological investigation in making discoveries and testing hypotheses. In collaboration with faculty, students also apply those principles to generate a potential research project, presented in both written and oral form. Limited to Course 7 graduate students.
Staff

7.51 Principles of Biochemical Analysis
Prereq: Permission of instructor
G (Fall)
6-0-6 units
Principles of biochemistry, emphasizing structure, equilibrium studies, kinetics, informatics, single-molecule studies, and experimental design. Topics include macromolecular binding and specificity, protein folding and unfolding, allosteric systems, transcription factors, kinases, membrane channels and transporters, and molecular machines.
A. Keating, R. T. Sauer

7.52 Genetics for Graduate Students
Prereq: Permission of instructor
G (Fall)
4-0-8 units
Principles and approaches of genetic analysis, including Mendelian inheritance and prokaryotic genetics, yeast genetics, developmental genetics, neurogenetics, and human genetics.
A. Amon, D. Housman, H. R. Horvitz

7.540[J] Frontiers in Chemical Biology
Same subject as 5.54[J], 20.554[J]
Prereq: 5.13, 5.07[J], 7.06, permission of instructor
G (Fall)
2-0-4 units
See description under subject 5.54[J].
M. Shoulders
7.547[J] Principles and Practice of Drug Development
Same subject as 10.547[J], 15.136[J], HST.920[J], IDS.620[J]
Prereq: Permission of instructor
G (Fall)
3-0-6 units

See description under subject 15.136[J].
T. J. Allen, C. L. Cooney, S. N. Finkelstein, A. J. Sinskey, G. K. Raju

7.548[J] Advances in Biomanufacturing (New)
Same subject as 10.53[J]
Subject meets with 7.458[J], 10.03[J]
Prereq: None
G (Fall, Spring; second half of term)
1-0-2 units

See description under subject 10.53[J].
J. C. Love, A. Sinskey, S. Springs

7.549[J] Case Studies and Strategies in Drug Discovery and Development
Same subject as 15.137[J], 20.486[J], HST.916[J]
Prereq: None
G (Spring)
2-0-4 units

See description under subject 20.486[J].
S. R. Tannenbaum, A. J. Sinskey, A. W. Wood

7.55 Case Studies in Modern Experimental Design
Prereq: Permission of instructor
G (Spring)
2-0-7 units

Focuses on enhancing students' ability to analyze, design and present experiments, emphasizing modern techniques. Class discussions begin with papers that developed or utilized contemporary approaches (e.g., quantitative microscopy, biophysical and molecular genetic methods) to address important problems in biology. Each student prepares one specific aim of a standard research proposal for a project that emphasizes research strategy, experimental design, and writing.
L. Guarente, F. Solomon

7.57 Quantitative Biology for Graduate Students
Prereq: Permission of instructor
G (Spring)
4-0-8 units

Introduces the fundamental concepts and tools of quantitative approaches to molecular and cellular biology. Covers a wide range of mathematical, computational, and statistical methods, although no previous expertise in these areas is required. Focuses on understanding quantitative approaches through the analysis of particular problems and examples drawn from classical genetics, molecular biology, cell biology, genomics, and systems biology.
P. Gupta, A. Regev

7.58 Molecular Biology
Subject meets with 7.28
Prereq: 7.03, 7.05, permission of instructor
G (Spring)
5-0-7 units

Detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. Topics covered in lecture and readings of relevant literature include: gene regulation, DNA replication, genetic recombination, and mRNA translation. Logic of experimental design and data analysis emphasized. Presentations include both lectures and group discussions of representative papers from the literature. Students taking the graduate version are expected to explore the subject in greater depth.
S. Bell

7.59[J] Teaching College-Level Science and Engineering
Same subject as 1.95[J], 5.95[J], 8.395[J], 18.094[J]
Subject meets with 2.978
Prereq: None
G (Fall)
2-0-2 units

See description under subject 5.95[J].
J. Rankin

7.60 Cell Biology: Structure and Functions of the Nucleus
Prereq: 7.06
G (Spring)
4-0-8 units

Eukaryotic genome structure, function, and expression, processing of RNA, and regulation of the cell cycle. Emphasis on the techniques and logic used to address important problems in nuclear cell biology. Lectures on broad topic areas in nuclear cell biology and discussions on representative recent papers.
R. Young, L. Bayer
7.61 Eukaryotic Cell Biology: Principles and Practice
Prereq: Permission of instructor
G (Fall)
4-0-8 units
Emphasizes methods and logic used to analyze structure and function of eukaryotic cells in diverse systems (e.g., yeast, fly, worm, mouse, human; development, stem cells, neurons). Combines lectures and in-depth roundtable discussions of literature readings with the active participation of faculty experts. Focuses on membranes (structure, function, traffic), organelles, the cell surface, signal transduction, cytoskeleton, cell motility and extracellular matrix. Ranges from basic studies to applications to human disease, while stressing critical analysis of experimental approaches. Enrollment limited.
R. O. Hynes, M. Krieger

7.62 Microbial Physiology
Subject meets with 7.21
Prereq: 7.03, 7.05, permission of instructor
G (Fall)
4-0-8 units
Biochemical properties of bacteria and other microorganisms that enable them to grow under a variety of conditions. Interaction between bacteria and bacteriophages. Genetic and metabolic regulation of enzyme action and enzyme formation. Structure and function of components of the bacterial cell envelope. Protein secretion with a special emphasis on its various roles in pathogenesis. Additional topics include bioenergetics, symbiosis, quorum sensing, global responses to DNA damage, and biofilms. Students taking the graduate version are expected to explore the subject in greater depth.
G. C. Walker, A. J. Sinskey

7.63 Immunology
Subject meets with 7.23
Prereq: 7.06, permission of instructor
G (Fall)
5-0-7 units
Comprehensive survey of molecular, genetic, and cellular aspects of the immune system. Topics include innate and adaptive immunity; cells and organs of the immune system; immunoglobulin, T cell receptor, and major histocompatibility complex (MHC) proteins and genes; development and functions of B and T lymphocytes; immune responses to infections and tumors; hypersensitivity, autoimmunity, and immunodeficiencies. Particular attention to the development and function of the immune system as a whole, as studied by modern methods and techniques. Students taking the graduate version are expected to explore the subject in greater depth.
H. Ploegh, L. Steiner

7.64 Molecular Mechanisms, Pathology and Therapy of Human Neuromuscular Disorders
Prereq: Permission of instructor
G (Spring)
3-0-9 units
Investigates the molecular and clinical basis of central nervous system and neuromuscular disorders with particular emphasis on strategies for therapeutic intervention. Considers the in-depth analysis of clinical features, pathological mechanisms, and responses to current therapeutic interventions. Covers neurodegenerative diseases, such as Huntington’s disease, Parkinson’s disease, Alzheimer’s disease, Amyotrophic Lateral Sclerosis, Frontal Temporal Dementia, and neuromuscular disorders, such as Myotonic Dystrophy, Facio Scapular Humoral Dystrophy, and Duchenne Muscular Dystrophy.
D. Housman

7.65[J] Molecular and Cellular Neuroscience Core I
Same subject as 9.015[J]
Prereq: None
G (Fall)
3-0-9 units
See description under subject 9.015[J].
J. T. Littleton, H. Sive, F. Gertler

7.66 Molecular Basis of Infectious Disease
Subject meets with 7.26
Prereq: 7.06, permission of instructor
G (Spring)
4-0-8 units
Focuses on the principles of host-pathogen interactions with an emphasis on infectious diseases of humans. Presents key concepts of pathogenesis through the study of various human pathogens. Includes critical analysis and discussion of assigned readings. Students taking the graduate version are expected to explore the subject in greater depth.
D. Kim

7.67[J] Genetic Methods in Neurobiology
Same subject as 9.322[J]
Prereq: Permission of instructor
Acad Year 2016-2017: Not offered
Acad Year 2017-2018: G (Spring)
3-0-6 units
See description under subject 9.322[J].
W. G. Quinn
7.68[J] Molecular and Cellular Neuroscience Core II
Same subject as 9.013[J]
Prereq: Permission of instructor
G (Spring)
3-0-9 units
See description under subject 9.013[J].
G. Feng, L.-H. Tsai

7.69[J] Developmental Neurobiology
Same subject as 9.181[J]
Subject meets with 7.49[J], 9.18[J]
Prereq: 9.011 or permission of instructor
G (Spring)
3-0-9 units
See description under subject 9.181[J].
E. Nedivi, M. Heiman

7.70 Regulation of Gene Expression
Prereq: Permission of instructor
Acad Year 2016-2017: Not offered
Acad Year 2017-2018: G (Spring)
4-0-8 units
Seminar examines basic principles of biological regulation of gene expression. Focuses on examples that underpin these principles, as well as those that challenge certain long-held views. Topics covered may include the role of transcription factors, enhancers, DNA modifications, non-coding RNAs, and chromatin structure in the regulation of gene expression and mechanisms for epigenetic inheritance of transcriptional states. Limited to 40.
L. Boyer, M. Gehring

7.71 Biophysical Chemistry Techniques
Subject meets with 5.78
Prereq: 5.13, 5.60; 5.07[J] or 7.05
G (Spring)
5-0-7 units
For students who want to understand the benefits and caveats of biophysical techniques used to ascertain the structure of macromolecules, especially on the 3-D level. The first half of the course focuses on x-ray crystallography, the single most important technique used in determining the 3-D structure of macromolecules. Discussion of crystallographic theory is complemented with exercises such as crystallization, data processing, and model building. In the second half of the course, biophysical techniques are covered that supplement the 3-D characterization of biological macromolecules. Topics include CD spectroscopy, isothermal calorimetry, analytical ultracentrifugation, dynamic light scattering, and surface plasmon resonance (BIAcore). Theoretical principles behind the techniques are covered, applications are discussed, and students are performing practical exercises using instrumentation available at MIT. Meets with 5.78 when offered concurrently.
C. Drennan, T. Schwartz

7.72 Principles and Frontiers of Developmental Biology
Prereq: Permission of instructor
G (Fall)
4-0-8 units
Covers fundamental principles and frontiers of animal development. Focuses on molecular mechanisms, experimental approaches, evolutionary context, human disorders, and topics of societal importance. Compares vertebrate (mouse, chick, frog, fish) and invertebrate (fly, worm) models. Modules include patterning and asymmetry of the body plan, cell type determination and diversity, organogenesis, morphogenesis, maternal control, organismal growth, stem cells, tissue engineering, and issues in human development.
H. Sive, T. Orr-Weaver
7.73 Principles of Chemical Biology (New)
Subject meets with 7.41
Prereq: 7.05; Permission of instructor
G (Spring)
3-0-9 units

Spanning the fields of biology, chemistry and engineering, class addresses the principles of chemical biology and its application of chemical and physical methods and reagents to the study and manipulation of biological systems. Topics include bioorthogonal reactions and activity-based protein profiling, small molecule inhibitors and chemical genetics, fluorescent probes for biological studies, and unnatural amino acid mutagenesis. Also covers chemical biology approaches for studying dynamic post-translational modification reactions, natural product biosynthesis and mutasynthesis, and high-throughput drug screening. Students taking the graduate version are expected to explore the subject in greater depth.
B. Imperiali, J. K. Weng

7.74[J] Topics in Biophysics and Physical Biology
Same subject as 8.590[J], 20.416[J]
Prereq: None
G (Fall)
2-0-4 units

See description under subject 20.416[J].
I. Cisse, N. Fakhri, M. Guo

7.76 Topics in Macromolecular Structure and Function
Prereq: Permission of instructor
G (Spring)
3-0-6 units

In-depth analysis and discussion of classic and current literature, with an emphasis on the structure, function, and mechanisms of proteins and other biological macromolecules.
C. Drennan, R. T. Sauer

7.77 Nucleic Acids, Structure, Function, Evolution and Their Interactions with Proteins
Prereq: 7.05 or 7.51
G (Spring)
3-0-9 units

Surveys primary literature, focusing on biochemical, biophysical, genetic, and combinatorial approaches for understanding nucleic acids. Topics include the general properties, functions, and structural motifs of DNA and RNA; RNAs as catalysts and as regulators of gene expression; RNA editing and surveillance, and the interaction of nucleic acids with proteins, such as zinc-finger proteins, modification enzymes, aminoacyl-tRNA synthetases and other proteins of the translational machinery. Includes some lectures but is mostly analysis and discussion of current literature in the context of student presentations.
D. Bartel, U. RajBhandary

7.80 Biological Chemistry II
Subject meets with 5.08[J], 7.08[J]
Prereq: 5.12; 5.07[J] or 7.05
G (Spring)
4-0-8 units

More advanced treatment of biochemical mechanisms that underlie biological processes. Topics include macromolecular machines such as the ribosome, the proteosome, fatty acid synthases as a paradigm for polyketide synthases and non-ribosomal polypeptide synthases, and polymerases. Emphasis is on experimental methods used to unravel these processes and how these processes fit into the cellular context and coordinate regulation. Students taking the graduate version are expected to explore the subject in greater depth.
J. Stubbe, E. Nolan

7.81[J] Systems Biology
Same subject as 8.591[J]
Subject meets with 7.32
Prereq: 18.03, 18.05; or permission of instructor
G (Fall)
3-0-9 units

See description under subject 8.591[J].
J. Gore
7.82 Topics of Mammalian Development and Genetics
Prereq: Permission of instructor
G (Spring)
3-0-9 units

Seminar covering embryologic, molecular, and genetic approaches to development in mice and humans. Topics include preimplantation development; gastrulation; embryonic stem cells; gene targeting and nuclear reprogramming of somatic cells; genomic imprinting; X-inactivation; sex determination; and germ cells.
R. Jaenisch, R. Young

7.83 Mechanical Cell Biology
Subject meets with 7.38
Prereq: 7.06, permission of instructor
Acad Year 2016-2017: Not offered
Acad Year 2017-2018: G (Spring)
3-0-9 units

Covers current topics in eukaryotic cell biology, with a focus on understanding how physical forces are generated in cells and how these forces organize and shape cells and tissues. Combines lectures and the analysis of the primary literature to explore concepts and experimental approaches related to forces in cell biology at the molecular, cellular, and organismal level. Also considers the journal publication process, providing insights and experience into writing a cover letter, paper submission, reviewer critique, and communicating the significance of one’s research. Students taking the graduate version explore the subject in greater depth.
I. Cheeseman, A. Martin

7.85 The Hallmarks of Cancer
Subject meets with 7.45
Prereq: Permission of instructor; Coreq: 7.06
G (Fall)
4-0-8 units

Provides a comprehensive introduction to the fundamentals of cancer biology and cancer treatment. Topics include cancer genetics, genomics, and epigenetics; familial cancer syndromes; signal transduction, cell cycle control, and apoptosis; cancer metabolism; stem cells and cancer; metastasis; cancer immunology and immunotherapy; conventional and molecularly-targeted therapies; and early detection and prevention. Students taking graduate version complete additional assignments.
T. Jacks, M. Vander Heiden

7.87 Protein Folding and Misfolding in Biology
Prereq: 7.51, 7.52; or permission of instructor
Acad Year 2016-2017: Not offered
Acad Year 2017-2018: G (Spring)
3-0-6 units

Covers protein folding, misfolding, aggregation, and amyloid formation in the context of biological systems. Addresses topics such as chaperone structure and function, biofilm formation by bacteria, protein-folding diseases (including but not limited to Alzheimer’s, Parkinson’s, and Huntington’s diseases), the process of therapeutics discovery for drugs and biologics. Features guest lectures and Skype discussions with international leaders in the field. Students present papers covering mutually agreed-upon topics of interest.
S. Lindquist

7.89[J] Topics in Computational and Systems Biology
Same subject as CSB.100[J]
Prereq: Permission of instructor
G (Fall)
2-0-10 units

See description under subject CSB.100[J]. Preference to first-year CSB PhD students.
C. Burge

7.930[J] Research Experience in Biopharma (New)
Same subject as 20.930[J]
Prereq: None
G (Spring)
2-10-0 units

See description under subject 20.930[J].
D. Lauffenburger, R. Reddy, N. Stebbins

7.931 Independent Study in Biology
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged [P/D/F]
Can be repeated for credit.

7.932 Independent Study in Biology
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged
Can be repeated for credit.

Program of study or research to be arranged with a department faculty member.
Staff
7.933 Research Rotations in Biology
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged [P/D/F]
Can be repeated for credit.
Introduces students to faculty participating in the Biology graduate program through a series of lab rotations, which provide broad exposure to biology research at MIT. Students select a lab for thesis research by the end of their first year. Limited to students in the Biology graduate program.
Staff

7.934 Teaching Experience in Biology
Prereq: Permission of instructor
G (Fall, Spring)
Units arranged [P/D/F]
For qualified graduate students in the Biology graduate program interested in teaching. Classroom or laboratory teaching under the supervision of a faculty member.
Staff

7.935 Responsible Conduct in Biology
Prereq: Permission of instructor
G (Fall)
Units arranged [P/D/F]
Sessions focus on the responsible conduct of science. Considers recordkeeping and reporting; roles of mentor and mentee; authorship, review, and confidentiality; resolving conflicts; misfeasance and malfeasance; collaborations, competing interests, and intellectual property; and proper practices in the use of animal and human subjects. Limited to second-year graduate students in Biology.
Staff

7.941 Research Problems
Prereq: Permission of instructor
G (Fall, Summer)
Units arranged [P/D/F]
Can be repeated for credit.
Directed research in a field of biological science, but not contributory to graduate thesis.
Consult Biology Education Office

7.942 Research Problems
Prereq: Permission of instructor
G (Spring)
Units arranged [P/D/F]
Can be repeated for credit.

7.95 Cancer Biology
Prereq: 7.85, permission of instructor
G (Spring)
3-0-9 units
Advanced seminar involving intensive analysis of historical and current developments in cancer biology. Topics address principles of apoptosis, principles of cancer biology, cancer genetics, cancer cell metabolism, tumor immunology, and therapy. Detailed analysis of research literature, including important reports published in recent years. Enrollment limited.
R. Weinberg, O. Yilmaz

7.98[J] Neural Plasticity in Learning and Memory
Same subject as 9.301[J]
Prereq: Permission of instructor
G (Spring)
3-0-6 units
See description under subject 9.301[J]. Juniors and seniors require instructor's permission.
S. Tonegawa, W. Quinn

7.S930 Special Subject in Biology
Prereq: Permission of instructor
G (Fall, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.
Covers material in various fields of biology not offered by the regular subjects of instruction.
Staff

7.S931 Special Subject in Biology
Prereq: Permission of instructor
G (Fall, IAP, Spring)
Units arranged [P/D/F]
Can be repeated for credit.
Covers material in various fields of biology not offered by the regular subjects of instruction.
Staff

7.S932 Special Subject in Biology
Prereq: Permission of instructor
G (Fall, IAP, Spring)
Not offered regularly; consult department
Units arranged [P/D/F]
Can be repeated for credit.
Covers material in various fields of biology not offered by the regular subjects of instruction.
Staff
7.939 Special Subject in Biology
Prereq: Permission of instructor
G (Fall, IAP, Spring)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.
Covers material in various fields of biology not offered by the regular subjects of instruction.
Staff

7.THG Graduate Biology Thesis
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.
Program of research leading to the writing of a Ph.D. thesis; to be arranged by the student and an appropriate MIT faculty member.
Staff