DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING

The Department of Nuclear Science and Engineering (NSE) provides undergraduate and graduate education for students interested in developing new nuclear technologies for the benefit of society and the environment.

This is an exciting time to study nuclear science and engineering. There is an upsurge of innovative activity in the field, including a drastic increase in nuclear start-up companies, as energy resource constraints, security concerns, and the risks of climate change are creating new demands for safe, secure, cost-competitive nuclear energy systems. At the same time, powerful new tools for exploring, measuring, modeling, and controlling complex nuclear and radiation processes are laying the foundations for major advances in the application of nuclear technologies in medicine and industry as well as in fundamental science.

In response to these developments, the department has created programs of study that prepare students for scientific and engineering leadership roles in energy and non-energy applications of nuclear science and technology. Applications include nuclear fission energy systems, fusion energy systems, and systems for securing nuclear materials against the threats of nuclear proliferation and terrorism. Underlying these applications are core fields of education and research, including low-energy nuclear physics; plasma physics; thermal sciences; radiation sources, detection, and control; the study of materials in harsh chemical, mechanical, radiation, and thermal environments; and advanced computation and simulation.

Students in nuclear science and engineering study the scientific fundamentals of the field, engineering methods for integrating these fundamentals into practical systems, and the interactions of nuclear systems with society and the environment. Undergraduate and graduate students take core subjects in the field and can then select from a wide variety of application areas through more specialized subjects.

Principal areas of research and education in the department are described below.

Nuclear Fission Energy. Nuclear reactors, utilizing the fission of heavy elements such as uranium, supply approximately 13% of the world’s electricity, powering grids, ships and submarines. They produce radioisotopes for medical, biological, and industrial uses, and for long-lived on-board power sources for spacecraft. They can also provide energy for chemical and industrial processing and portable fuel production (e.g., synthetic fuels or hydrogen).

Electricity generation is the most familiar application. In some countries, the fraction of electricity obtained from nuclear power exceeds 50%. In the United States, 100 nuclear power plants supply almost 20% of the nation’s electricity. Thirty countries generate nuclear power today, and more than 40 others have recently expressed an interest in developing new nuclear energy programs. Nuclear power is the only low-carbon energy source that is both inherently scalable and already generating a significant share of the world’s electricity supplies. Fission technology is entering a new era in which upgraded existing plants, next-generation reactors, and new fuel cycle technologies and strategies will contribute to meeting the rapidly growing global demand for safe and cost-competitive low-carbon electricity supplies.

Fission energy research in the Nuclear Science and Engineering department is focused on developing advanced nuclear reactor designs for electricity, process heat, and fluid fuels production that include passive safety features; developing innovative proliferation-resistant fuel cycles; extending the life of nuclear fuels and structures; and reducing the capital and operating costs of nuclear energy systems. These research goals are pursued via targeted technology options, based on advanced modeling and simulation techniques and state-of-the-art experimental facilities. Progress toward these goals also entails advances in the thermal, materials, nuclear, and computational sciences. The overall objective is to advance the role of nuclear energy as an economical, safe, environmentally benign, and flexible energy source, thereby contributing to energy security, economic growth, and a sustainable global climate.

Plasma Physics and Fusion Technology. A different source of nuclear energy results from the controlled fusion of light elements, notably hydrogen isotopes. Since the basic source of fuel for fusion can be easily and inexpensively extracted from the ocean or from very abundant lithium, the supply is virtually inexhaustible. Fusion reactions can only readily occur in a fully ionized plasma heated to ultra high temperatures (150 million K). Such hot plasmas cannot be contained by material walls and are usually confined instead by strong magnetic fields. An alternative approach entails inertial confinement, usually achieved with very high-power lasers. Recent progress within the international fusion community increases the likelihood that controlled fusion will become a practical source of energy within the next half-century. Attainment of a fusion power plant involves the solution of many intellectually challenging physics and engineering problems. Included among these challenges are the mastery of the sophisticated field of plasma physics; the discovery of improved magnetic geometries to enhance plasma confinement; the development of materials capable of withstanding high stresses and exposure to intense radiation; and the need for great engineering ingenuity in integrating fusion power components into a practical, safe, and economical system. The department has strong programs in plasma fundamentals, materials for intense radiation fields, and engineering of fusion systems.

Plasma processes are key to many naturally occurring phenomena, and to many practical applications. Solar physics, space weather, and dusty plasma physics, are basic plasma research areas of departmental expertise. Treatment of toxic gases, magnetohydrodynamic energy conversion, ion propulsion, radiation...
generation, materials processing, and various other industrial applications use the knowledge students gain in applied plasma physics. The Department of Nuclear Science and Engineering leads MIT’s interdepartmental graduate instruction in plasma physics and many of its research applications.

Nuclear Security. The field of nuclear security concerns itself with the challenges and dangers of nuclear weapons and nuclear materials. Various areas of nuclear security include nuclear nonproliferation, arms control treaty verification, cargo security, as well as nuclear safeguards. In order for nuclear fission power to retain its societal relevance, it is important for the nuclear community to develop a culture of security just as it has developed a culture of safety. Thus, nuclear security in its broadest sense becomes of paramount importance to the nuclear engineering community. MIT in particular is perfectly positioned to perform long-term research in the field of nuclear security, to make the use of nuclear energy less risky for global security. Part of this effort of necessity contains a component of policy, as well as a component of technological research necessary to stop proliferation, improve nuclear safeguards, and intercept any attempts at nuclear terrorism: a successful program cannot be either purely technology driven or purely policy driven but rather a careful integration of these two areas. MIT is actively pursuing an integration of both technology and policy development.

Quantum Physics. An exciting new frontier in nuclear science and engineering is to precisely control the quantum mechanical wave function of atomic and subatomic systems. Thus far, this has been achieved only in low-energy processes, particularly nuclear magnetic resonance, a form of nuclear spectroscopy which has allowed the basic techniques needed for quantum control to be explored in unprecedented detail. The department has initiated an ambitious program in this area, which promises to be widely applicable in nanotechnology. The ultimate achievement would be the construction of a “quantum computer,” which would be capable of solving problems that are far beyond the capacities of classical computers. Other significant applications are quantum-enabled sensors and actuators, secure communication, and the direct simulation of quantum physics.

Materials for Extreme Environments. An important area of research in the department which unites many of the primary applications of nuclear science and technology involves the study of materials in extreme environments. To achieve the full potential of nuclear energy from both fission and fusion reactors, it is necessary to develop special materials capable of withstanding intense radiation for long periods of time as well as high temperatures and mechanical stresses. It is also crucial to understand the phenomenon of corrosion in radiation environments. To develop a fundamental understanding of these phenomena, chemical and physical processes must be followed at multiple scales, from the atomic to the macroscopic, over timescales from less than a nanosecond to many decades, and even, in the case of nuclear waste, thousands of years. Materials research in the department draws on a wide array of new scientific tools, including advanced compact radiation sources, material probes and characterization at the nanoscale, and advanced computational simulations.

Interdisciplinary Research. Students and faculty in the department work closely with colleagues in several other departments, including Physics, Materials Science and Engineering, Mechanical Engineering, Electrical Engineering and Computer Science, and Political Science, and with the Sloan School of Management. The department is an active participant in the MIT Energy Initiative and in MIT’s interdisciplinary programs of instruction and research in the management of complex technological systems and technology and public policy.

Undergraduate Study. The department’s undergraduate programs offer a strong foundation in science-based engineering, providing the skills and knowledge for a broad range of careers, with an emphasis on hands-on exploration of the subject matter. The programs develop scientific and engineering fundamentals in the production, interactions, measurement, and control of radiation arising from nuclear processes. In addition, the program introduces students to thermal-fluid engineering and computational methods. Building upon these fundamentals, students understand the principles, design, and appropriate application of nuclear-based or nuclear-related systems that have broad societal impacts in energy, human health, and security—for example, reactors, imaging systems, detectors, and plasma confinement. In addition, they develop professional skills in quantitative research, written and oral technical communication, team building, and leadership. The program provides excellent preparation for subsequent graduate education and research in a broad range of fields. In the nuclear field, there is high demand for nuclear engineers around the world as the nuclear energy industry continues to expand. Other nuclear and radiation applications are increasingly important in medicine, industry, and government.

A characteristic of the curriculum is the development of practical skills through hands-on education. This is accomplished through various required and elective subjects, such as a laboratory subject on radiation physics, measurement, and protection (22.09), and through the laboratory components and exercises of the electronics (22.071), ionizing radiation, and computational subjects. Even foundational courses in nuclear unit processes (22.01) and neutronics (22.05) include hands-on activities and analyses of real objects/systems. Examples include burning 1,000 bananas to measure their radioactivity, predicting and measuring the criticality of a six-foot graphite/uranium pile, and analyzing trace impurities in various foods, minerals, or even toenails in our nuclear reactor. The concept of hands-on learning is continued with a 15-unit design subject focusing on nuclear-centric design and prototyping and/or a 12-unit undergraduate thesis that is normally organized between the student and a faculty member of the department. Thesis subjects can touch on any area of nuclear science and engineering, including...
nuclear energy applications (fission and fusion) and nuclear science and technology (medical, physical, chemical, security, and materials applications).

Bachelor of Science in Nuclear Science and Engineering (Course 22)

The Bachelor of Science in Nuclear Science and Engineering (Course 22) prepares students for a broad range of careers, from practical engineering work in the nuclear and other energy industries to graduate study in a wide range of technical fields, as well as entrepreneurship, law, medicine, and business. The degree program includes foundational subjects in physics, mathematics, and programming, leading to core subjects in the areas of nuclear energy (fission and fusion), as well as nuclear energy policy, quantum engineering, radiation physics, and product design.

The Course 22 degree program is accredited by the Engineering Accreditation Commission of Accreditation Board for Engineering and Technology (ABET) (http://www.abet.org).

Bachelor of Science in Engineering (Course 22-ENG)

The 22-ENG degree program is designed to offer flexibility within the context of nuclear science and engineering applications. This program is designed to enable students to pursue a deeper level of understanding in a specific nuclear application or interdisciplinary field related to the nuclear science and engineering core discipline. The degree requirements include core subjects relevant to a broad array of nuclear and related interdisciplinary areas, a specialization subject in energy systems, and a senior project, as well as a focus area consisting of 72 units of additional coursework.

A significant part of the 22-ENG degree program consists of focus area electives chosen by the student to provide in-depth study in a field of the student’s choosing. Focus areas should complement a foundation in nuclear science and engineering and General Institute Requirements. Some examples of potential focus areas include nuclear medicine, energy or nuclear policy, fusion energy or plasma science, clean energy technologies, nuclear materials, modeling and simulation of complex systems, and quantum engineering, or an area of study within one of the departmental focus areas. Focus areas are not limited to these examples. Advising on students’ development of focus areas is available from the undergraduate officer or the Academic Office. Students enrolled in the flexible major must submit a proposal to the Academic Office no later than Add Date of the second term in the program, to be reviewed by the Undergraduate Committee.

Combined Bachelor’s and Master’s Programs

The five-year programs leading to a joint Bachelor of Science in Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Nuclear Science and Engineering, or Physics and a Master of Science in Nuclear Science and Engineering are designed for students who decide relatively early in their undergraduate career that they wish to pursue a graduate degree in nuclear science and engineering. Students must submit their application for this program during the second term of their junior year and be judged to satisfy the graduate admission requirements of the department. The normal expectations of MIT undergraduates for admission to the five-year program are an overall MIT grade point average of at least 4.3, and a strong mathematics, science, and engineering background with GPA of at least 4.0.

The nuclear science and engineering thesis requirements of the two degrees may be satisfied either by completing both an SB thesis and an SM thesis, or by completing an SM thesis and any 12 units of undergraduate credit.

For further information, interested students should contact either their undergraduate department or the Department of Nuclear Science and Engineering.

Minor in Nuclear Science and Engineering

This minor allows students from any major outside of Course 22 to delve deeper into advanced topics within the department or to support interdisciplinary areas of interest in nuclear science and engineering.

Required subjects

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03</td>
<td>Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>22.01</td>
<td>Introduction to Nuclear Engineering and Ionizing Radiation</td>
<td>12</td>
</tr>
</tbody>
</table>

NSE Electives

Select two of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.02</td>
<td>Introduction to Applied Nuclear Physics</td>
<td>24</td>
</tr>
<tr>
<td>22.033</td>
<td>Nuclear Systems Design Project</td>
<td></td>
</tr>
<tr>
<td>22.05</td>
<td>Neutron Science and Reactor Physics</td>
<td></td>
</tr>
<tr>
<td>22.06</td>
<td>Engineering of Nuclear Systems</td>
<td></td>
</tr>
<tr>
<td>22.09</td>
<td>Principles of Nuclear Radiation Measurement and Protection</td>
<td></td>
</tr>
</tbody>
</table>

Foundation and Specialized Subjects

Select one of the following options:

Option 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.005</td>
<td>Thermal-Fluids Engineering 1</td>
<td>12</td>
</tr>
<tr>
<td>8.03</td>
<td>Physics III</td>
<td></td>
</tr>
</tbody>
</table>

Option 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 units of Course 22 coursework</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Total Units

72
Inquiries
Further information on undergraduate programs, admissions, and financial aid may be obtained from the department’s Academic Office (cegan@mit.edu), Room 24-102, 617-258-5682.

Graduate Study
The nuclear science and engineering field is broad and many undergraduate disciplines provide suitable preparation for graduate study.

An undergraduate degree in physics, engineering physics, chemistry, mathematics, materials science, or chemical, civil, electrical, mechanical, or nuclear science and engineering can provide a good foundation for graduate study in the department. Optimal undergraduate preparation would include the following:

- **Physics:** At least three introductory subjects covering classical mechanics, electricity and magnetism, and wave phenomena. An introduction to quantum mechanics is quite helpful, and an advanced subject in electricity and magnetism (including a description of time-dependent fields via Maxwell’s equations) is recommended for those wishing to specialize in fusion.
- **Mathematics:** It is essential that incoming students have a solid understanding of mathematics, including the study and application of ordinary differential equations. It is also highly recommended that students will have studied partial differential equations and linear algebra.
- **Chemistry:** At least one term of general, inorganic, and physical chemistry.
- **Engineering fundamentals:** The graduate curriculum builds on a variety of engineering fundamentals, and incoming students are expected to have had an introduction to thermodynamics, fluid mechanics, heat transfer, electronics and measurement, and computation. A subject covering the mechanics of materials is recommended, particularly for students wishing to specialize in fission.
- **Laboratory experience:** This component is essential. It may have been achieved through an organized subject, and ideally was supplemented with an independent undergraduate research activity or a design project.

Applicants for admissions are required to take the Graduate Record Examination (GRE).

Master of Science in Nuclear Science and Engineering

The object of the master of science program is to give the student a good general knowledge of nuclear science and engineering and to provide a foundation either for productive work in the nuclear field or for more advanced graduate study. The general requirements for the SM degree are listed under Graduate Education. In addition to the general requirements, 22.11 Applied Nuclear Physics and 22.12 Radiation Interactions, Control, and Measurement are required for all master of science degree candidates.

Other subjects may be selected in accordance with the student’s particular field of interest. Master of science candidates may specialize in one of several fields: including nuclear fission technology, applied plasma physics, nuclear materials, nuclear security, and nuclear science and technology. Some students pursue a master of science degree in technology and policy in parallel with the Course 22 master of science program.

Students with adequate undergraduate preparation take approximately 18 months to complete the requirements for the master of science. Actual completion time ranges from one to two years. Additional information concerning the requirements for the Master of Science in Nuclear Science and Engineering, including lists of recommended subjects, may be obtained from the department’s Academic Office, Room 24-102.

Nuclear Engineer

The program of study leading to the nuclear engineer’s degree provides deeper knowledge of nuclear science and engineering than is possible in the master’s program and is intended to train students for creative professional careers in engineering application or design.

The general requirements for this degree, as described under Graduate Education, include 162 units of subject credit plus a thesis. Each student must plan an individually selected program of study, approved in advance by the faculty advisor, and must complete, and orally defend, a substantial project of significant value.

The objectives of the program are to provide the candidate with broad knowledge of the profession and to develop competence in engineering applications or design. The emphasis in the program is more applied and less research-oriented than the doctoral program.

The engineering project required of all candidates for the nuclear engineer’s degree is generally the subject of an engineer’s thesis. A student with full undergraduate preparation normally needs two years to complete the program. Additional information may be obtained from the department.

Doctor of Philosophy and Doctor of Science

The program of study leading to either the doctor of philosophy or the doctor of science degree aims to give comprehensive knowledge of nuclear science and engineering, to develop competence in advanced engineering research, and to develop a sense of perspective in assessing the role of nuclear science and technology in our society.

General requirements for the doctorate are described under Graduate Education and in the Graduate School Policy and
Procedures Manual. The specific requirements of the Department of Nuclear Science and Engineering are the math and physics competency requirement, the engineering requirement, the core requirement, the field of specialization requirement, the oral examination, the advanced subject and minor requirements, and the doctoral thesis.

Upon satisfactory completion of the requirements, the student ordinarily receives a PhD unless he or she requests an ScD. The requirements for both degrees are the same.

Candidates for a doctoral degree must demonstrate competence at the graduate level in the core areas of nuclear science and engineering. The NSE core consists of the following six modules:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.11</td>
<td>Applied Nuclear Physics</td>
<td>6</td>
</tr>
<tr>
<td>22.12</td>
<td>Radiation Interactions, Control, and Measurement</td>
<td>6</td>
</tr>
<tr>
<td>22.13</td>
<td>Nuclear Energy Systems</td>
<td>6</td>
</tr>
<tr>
<td>22.14</td>
<td>Materials in Nuclear Engineering</td>
<td>6</td>
</tr>
<tr>
<td>22.15</td>
<td>Essential Numerical Methods</td>
<td>6</td>
</tr>
<tr>
<td>22.16</td>
<td>Nuclear Technology and Society</td>
<td>6</td>
</tr>
</tbody>
</table>

The core requirement must be completed by the end of the fourth graduate term.

Candidates for the doctoral degree are also required to complete three 12-unit (or greater than 12-unit) graduate subjects in their field of specialization with a grade of B or better. All three subjects must be completed by the end of the fourth regular graduate term. The field-of-specialization subjects should together provide a combination of depth and breadth of knowledge. The field-of-specialization plan must be submitted by the beginning of the second graduate term.

Candidates for a doctoral degree are required to demonstrate their readiness to undertake doctoral research by passing an oral examination by the end of their fourth graduate term. Oral exams are held twice a year, at the beginning of February and at the end of May. Students will generally take the oral exam for the first time in February of their second year. Two attempts are allowed at the oral exam. An overall GPA in graduate subjects of 4.0 is required to take the oral.

Students will be permitted to embark on doctoral research only if, by the end of their fourth graduate term, they have demonstrated satisfactory performance in the core requirement, the field of specialization, and the oral examination.

Candidates for the doctoral degree must satisfactorily complete (with an average grade of B or better) an approved program of two advanced subjects (24 units) that are closely related to the student’s doctoral thesis topic. Neither of these subjects may be from the list of three subjects selected to satisfy the field-of-specialization requirement. The advanced subjects should be arranged in consultation with the student’s thesis advisor and the student’s registration officer, and should have the approval of the registration officer. In addition, students must satisfactorily complete at least 24 units of coordinated subjects outside the field of specialization and the area of thesis research (the minor). The minor should be chosen in consultation with and have the approval of the registration officer.

Doctoral research may be undertaken either in the Department of Nuclear Science and Engineering or in a nuclear-related field in another department. Appropriate areas of research are described generally in the introduction to the department, and a detailed list may be obtained from the Department of Nuclear Science and Engineering.

Interdisciplinary Programs

Computational Science and Engineering

The Computational Science and Engineering (CSE) doctoral program (https://cse.mit.edu/programs/phd) allows students to specialize in a computation-related field of their choice through focused coursework and a doctoral thesis through a number of participating host departments. The CSE PhD program is administered jointly by the Center for Computational Science and Engineering (CCSE) and the host departments, with the emphasis of thesis research activities being the development of new computational methods and/or the innovative application of computational techniques to important problems in engineering and science. For more information, see the full program description (http://catalog.mit.edu/interdisciplinary/graduate-programs/computational-science-engineering) under Interdisciplinary Graduate Programs.

Technology and Policy

The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) (http://tpp.mit.edu) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, quantitative methods, and social science. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description (http://catalog.mit.edu/schools/mit-schwarzman-)
colleg-computing/data-systems-society) under the Institute for Data, Systems, and Society.

Financial Support
Financial aid for graduate students is available in the form of research and teaching assistantships, department-administered fellowships, and supplemental subsidies from the College Work-Study Program. Assistantships are awarded to students with high quality academic records. The duty of a teaching assistant is to assist a faculty member in the preparation of subject materials and the conduct of classes, while that of a research assistant is to work on a research project under the supervision of one or more faculty members.

Most fellowships are awarded in April for the following academic year. Assistantships are awarded on a semester basis. The assignment of teaching assistants is made before the start of each semester, while research assistants can be assigned at any time. Essentially all students admitted to the doctoral program receive financial aid for the duration of their education.

Application for financial aid should be made to Professor Jacopo Buongiorno, Room 24-206, 617-253-7316.

Inquiries
Additional information on graduate admissions and academic and research programs may be obtained from the department’s Academic Office (cegan@mit.edu), Room 24-102, 617-253-3814.

Research Facilities
The department’s programs are supported by a number of outstanding experimental facilities for advanced research in nuclear science and engineering.

The MIT Research Reactor in the Nuclear Reactor Laboratory operates at a power of 6 MW and is fueled with U-235 in a compact light-water cooled core surrounded by a heavy-water reflector. This reactor provides a wide range of radiation-related research and teaching opportunities for the students and faculty of the department. Major programs to study corrosion in a nuclear environment are currently in place. Details of the laboratory's research programs and facilities are given in the section on Research and Study (http://catalog.mit.edu/mit/research).

The department utilizes extensive experimental plasma facilities for the production and confinement of large volumes of highly ionized plasmas and for studies of plasma turbulence, particle motions, and other phenomena.

Most of the departmental research on plasmas and controlled fusion is carried out in the Plasma Science and Fusion Center. The department has played a major role in the design and development of high magnetic-field fusion devices. Through its activities in the center, the department is also the national leader in the design of both copper and superconducting magnets.

The thermal hydraulics laboratory is equipped with state-of-the-art instrumentation for measurement of fluid thermo-physical properties, fabrication facilities to engineer surfaces at the micro and nano scale, and flow loops for characterizing convective heat transfer and fluid dynamics behavior. A particularly novel facility uses high-speed infrared thermography to study fundamental phenomena of boiling, such as bubble nucleation, growth, and departure from a heated surface over a broad range of operating pressures, flow rates, and heat fluxes.

The study of nuclear materials plays a central role in the department. Research in the Laboratory for Electrochemical Interfaces centers on understanding the response of surface structure and physical chemistry when driven by dynamic environments of chemical reactivity and mechanical stress. This laboratory is equipped with surface science tools including scanning tunneling microscopy and X-ray photoelectron spectroscopy as well as electrochemical and electronic characterization tools. The H. H. Uhlig Corrosion Laboratory investigates the causes of failure in materials, with an emphasis on nuclear materials. The Mesoscale Nuclear Materials group studies reasons for material property changes due to radiation and rapid ways of measuring them.

The Cappellaro lab is located in the Research Laboratory of Electronics and consists of a 1,200 sq-ft-space dedicated to magnetic resonance and spin physics. One laboratory houses a 7 Tesla superconducting magnet with a wide bore and in-house-made probes, equipped with a spectrometer providing RF modulation and detection for the manipulation and detection of nuclear spins. Two other laboratories are dedicated to NV-based research. The laboratories house three state-of-the-art confocal photoluminescence setups with all of the necessary microwave electronics, RF electronics, and control hardware for manipulating NV quantum spins and one confocal microscope for imaging only.

In addition to the above facilities, the department has a nuclear instrumentation laboratory and a 14 MeV neutron source. Laboratory space and shop facilities are available for research in all areas of nuclear science and engineering. A state-of-the-art scanning electron microscope with an integrated focused ion beam that can be used to study irradiated specimens is available. A number of computer workstations and Beowulf clusters dedicated to simulation, modeling, and visualization, as well as MIT’s extensive computer facilities, are used in research and graduate instruction.

Faculty and Teaching Staff
Anne E. White, PhD
Professor of Nuclear Science and Engineering
Head, Department of Nuclear Science and Engineering
Benoit Forget, PhD
Professor of Nuclear Science and Engineering
Associate Head, Department of Nuclear Science and Engineering

Professors
Jacopo Buongiorno, PhD
TEPCO Professor of Nuclear Science and Engineering
Paola Cappellaro, PhD
Korea Electric Power Company (KEPCO) Professor of Nuclear Science and Engineering
Professor of Physics
Jeffrey P. Freidberg, PhD
Professor Post-Tenure of Nuclear Science and Engineering
Michael W. Golay, PhD
Professor Post-Tenure of Nuclear Science and Engineering
Ian H. Hutchinson, PhD
Professor of Nuclear Science and Engineering
Alan P. Jasanoﬀ, PhD
Professor of Biological Engineering
Professor of Nuclear Science and Engineering
Professor of Brain and Cognitive Sciences
Richard K. Lester, PhD
Japan Steel Industry Professor
Ju Li, PhD
Battelle Energy Alliance Professor of Nuclear Science and Engineering
Professor of Materials Science and Engineering
Dennis G. Whyte, PhD
Hitachi America Professor of Engineering
Professor of Nuclear Science and Engineering
Bilge Yildiz, PhD
Professor of Nuclear Science and Engineering
Professor of Materials Science and Engineering

Associate Professors
Emilio Baglietto, PhD
Associate Professor of Nuclear Science and Engineering
R. Scott Kemp, PhD
Class of ‘43 Associate Professor of Nuclear Science and Engineering
Nuno F. Loureiro, PhD
Associate Professor of Nuclear Science and Engineering
Associate Professor of Physics
Michael P. Short, PhD
Class of ‘42 Associate Professor of Nuclear Science and Engineering

Assistant Professors
Matteo Bucci, PhD
Assistant Professor of Nuclear Science and Engineering
Areg Danagoulian, PhD
Assistant Professor of Nuclear Science and Engineering
Zachary Hartwig, PhD
Assistant Professor of Nuclear Science and Engineering
(On leave, fall)
Mingda Li, PhD
Norman C. Rasmussen Assistant Professor of Nuclear Science and Engineering
Koroush Shirvan, PhD
John C. Hardwick Assistant Professor of Nuclear Science and Engineering

Research Staff

Senior Research Scientists
Peter J. Catto, PhD
Senior Research Scientist of Nuclear Science and Engineering

Principal Research Scientists
Charles W. Forsberg, ScD
Principal Research Scientist of Nuclear Science and Engineering

Research Engineers
Peter W. Stahle, BS
Research Engineer of Nuclear Science and Engineering

Research Scientists
Georgios Dimitrakopoulos, PhD
Research Scientist of Nuclear Science and Engineering
Jinyong Feng, PhD
Research Scientist of Nuclear Science and Engineering
Fei Han, PhD
Research Scientist of Nuclear Science and Engineering
Richard C. Lanza, PhD
Research Scientist of Nuclear Science and Engineering
Farheen Naqvi, PhD
Research Scientist of Nuclear Science and Engineering
Bren Phillips, PhD
Research Scientist of Nuclear Science and Engineering
Kangpyo So, PhD
Research Scientist of Nuclear Science and Engineering
Professors Emeriti

George Apostolakis, PhD
Professor Emeritus of Nuclear Science and Engineering

Ronald G. Ballinger, ScD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Materials Science and Engineering

Sow-Hsin Chen, PhD
Professor Emeritus of Nuclear Science and Engineering

Michael J. Driscoll, ScD
Professor Emeritus of Nuclear Science and Engineering

Kent F. Hansen, PhD
Professor Emeritus of Nuclear Science and Engineering

Linn W. Hobbs, DPhil
Professor Emeritus of Materials Science and Engineering
Professor Emeritus of Nuclear Science and Engineering

David D. Lanning, PhD
Professor Emeritus of Nuclear Science and Engineering

Ronald M. Latanision, PhD
Professor Emeritus of Materials Science and Engineering
Professor Emeritus of Nuclear Science and Engineering

Kim Molvig, PhD
Associate Professor Emeritus of Nuclear Science and Engineering

Ronald R. Parker, PhD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Electrical Engineering

Neil E. Todreas, PhD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Mechanical Engineering

Sidney Yip, PhD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Materials Science and Engineering