The Department of Nuclear Science and Engineering (NSE) provides undergraduate and graduate education for students interested in developing new nuclear technologies for the benefit of society and the environment.

This is an exciting time to study nuclear science and engineering. There is an upsurge of innovative activity in the field, including a drastic increase in nuclear start-up companies, as energy resource constraints, security concerns, and the risks of climate change are creating new demands for safe, secure, cost-competitive nuclear energy systems. At the same time, powerful new tools for exploring, measuring, modeling, and controlling complex nuclear and radiation processes are laying the foundations for major advances in the application of nuclear technologies in medicine and industry as well as in fundamental science.

In response to these developments, the department has created programs of study that prepare students for scientific and engineering leadership roles in energy and non-energy applications of nuclear science and technology. Applications include nuclear fission energy systems, fusion energy systems, and systems for securing nuclear materials against the threats of nuclear proliferation and terrorism. Underlying these applications are core fields of education and research, including low-energy nuclear physics; plasma physics; thermal sciences; radiation sources, detection, and control; the study of materials in harsh chemomechanical, radiation, and thermal environments; and advanced computation and simulation.

Students in nuclear science and engineering study the scientific fundamentals of the field, engineering methods for integrating these fundamentals into practical systems, and the interactions of nuclear systems with society and the environment. Undergraduate and graduate students take core subjects in the field and can then select from a wide variety of application areas through more specialized subjects.

Principal areas of research and education in the department are described below.

Nuclear Fission Energy. Nuclear reactors, utilizing the fission of heavy elements such as uranium, supply approximately 13% of the world’s electricity, powering grids, ships and submarines. They produce radioisotopes for medical, biological, and industrial uses, and for long-lived on-board power sources for spacecraft. They can also provide energy for chemical and industrial processing and portable fuel production (e.g., synthetic fuels or hydrogen).

Electricity generation is the most familiar application. In some countries, the fraction of electricity obtained from nuclear power exceeds 50%. In the United States, 100 nuclear power plants supply almost 20% of the nation’s electricity. Thirty countries generate nuclear power today, and more than 40 others have recently expressed an interest in developing new nuclear energy programs. Nuclear power is the only low-carbon energy source that is both inherently scalable and already generating a significant share of the world’s electricity supplies. Fission technology is entering a new era in which upgraded existing plants, next-generation reactors, and new fuel cycle technologies and strategies will contribute to meeting the rapidly growing global demand for safe and cost-competitive low-carbon electricity supplies.

Fission energy research in the Nuclear Science and Engineering department is focused on developing advanced nuclear reactor designs for electricity, process heat, and fluid fuels production that include passive safety features; developing innovative proliferation-resistant fuel cycles; extending the life of nuclear fuels and structures; and reducing the capital and operating costs of nuclear energy systems. These research goals are pursued via targeted technology options, based on advanced modeling and simulation techniques and state-of-the-art experimental facilities. Progress toward these goals also entails advances in the thermal, materials, nuclear, and computational sciences. The overall objective is to advance the role of nuclear energy as an economical, safe, environmentally benign, and flexible energy source, thereby contributing to energy security, economic growth, and a sustainable global climate.

Plasma Physics and Fusion Technology. A different source of nuclear energy results from the controlled fusion of light elements, notably hydrogen isotopes. Since the basic source of fuel for fusion can be easily and inexpensively extracted from the ocean or from very abundant lithium, the supply is virtually inexhaustible. Fusion reactions can only readily occur in a fully ionized plasma heated to ultra high temperatures (150 million K). Such hot plasmas cannot be contained by material walls and are usually confined instead by strong magnetic fields. An alternative approach entails inertial confinement, usually achieved with very high-power lasers. Recent progress within the international fusion community increases the likelihood that controlled fusion will become a practical source of energy within the next half-century. Attainment of a fusion power plant involves the solution of many intellectually challenging physics and engineering problems. Included among these challenges are a mastery of the sophisticated field of plasma physics; the discovery of improved magnetic geometries to enhance plasma confinement; the development of materials capable of withstanding high stresses and exposure to intense radiation; and the need for great engineering ingenuity in integrating fusion power components into a practical, safe, and economical system. The department has strong programs in plasma fundamentals, materials for intense radiation fields, and engineering of fusion systems.

Plasma processes are key to many naturally occurring phenomena, and to many practical applications. Solar physics, space weather, and dusty plasma physics, are basic plasma research areas of departmental expertise. Treatment of toxic gases, magnetohydrodynamic energy conversion, ion propulsion, radiation
generation, materials processing, and various other industrial applications use the knowledge students gain in applied plasma physics. The Department of Nuclear Science and Engineering leads MIT’s interdepartmental graduate instruction in plasma physics and many of its research applications.

Nuclear Security. The field of nuclear security concerns itself with the challenges and dangers of nuclear weapons and nuclear materials. Various areas of nuclear security include nuclear nonproliferation, arms control, treaty verification, cargo security, as well as nuclear safeguards. In order for nuclear fission power to retain its societal relevance, it is important for the nuclear community to develop a culture of security just as it has developed a culture of safety. Thus, nuclear security in its broadest sense becomes of paramount importance to the nuclear engineering community. MIT in particular is perfectly positioned to perform long-term research in the field of nuclear security, to make the use of nuclear energy less risky for global security. Part of this effort of necessity contains a component of policy, as well as a component of technological research necessary to stop proliferation, improve nuclear safeguards, and intercept any attempts at nuclear terrorism: a successful program cannot be either purely technology driven or purely policy driven but rather a careful integration of these two areas. MIT is actively pursuing an integration of both technology and policy development.

Quantum Physics. An exciting new frontier in nuclear science and engineering is to precisely control the quantum mechanical wave function of atomic and subatomic systems. Thus far, this has been achieved only in low-energy processes, particularly nuclear magnetic resonance, a form of nuclear spectroscopy which has allowed the basic techniques needed for quantum control to be explored in unprecedented detail. The department has initiated an ambitious program in this area, which promises to be widely applicable in nanotechnology. The ultimate achievement would be the construction of a “quantum computer,” which would be capable of solving problems that are far beyond the capacities of classical computers. Other significant applications are quantum-enabled sensors and actuators, secure communication, and the direct simulation of quantum physics.

Materials for Extreme Environments. An important area of research in the department which unites many of the primary applications of nuclear science and technology involves the study of materials in extreme environments. To achieve the full potential of nuclear energy from both fission and fusion reactors, it is necessary to develop special materials capable of withstanding intense radiation for long periods of time as well as high temperatures and mechanical stresses. It is also crucial to understand the phenomenon of corrosion in radiation environments. To develop a fundamental understanding of these phenomena, chemical and physical processes must be followed at multiple scales, from the atomic to the macroscopic, over timescales from less than a nanosecond to many decades, and even, in the case of nuclear waste, thousands of years. Materials research in the department draws on a wide array of new scientific tools, including advanced compact radiation sources, material probes and characterization at the nanoscale, and advanced computational simulations.

Interdisciplinary Research. Students and faculty in the department work closely with colleagues in several other departments, including Physics, Materials Science and Engineering, Mechanical Engineering, Electrical Engineering and Computer Science, and Political Science, and with the Sloan School of Management. The department is an active participant in the MIT Energy Initiative and in MIT’s interdisciplinary programs of instruction and research in the management of complex technological systems and technology and public policy.

Undergraduate Study

The department’s undergraduate programs offer a strong foundation in science-based engineering, providing the skills and knowledge for a broad range of careers, with an emphasis on hands-on exploration of the subject matter. The programs develop scientific and engineering fundamentals in the production, interactions, measurement, and control of radiation arising from nuclear processes. In addition, the program introduces students to thermal-fluid engineering and computational methods. Building upon these fundamentals, students understand the principles, design, and appropriate application of nuclear-based or nuclear-related systems that have broad societal impacts in energy, human health, and security—for example, reactors, imaging systems, detectors, and plasma confinement. In addition, they develop professional skills in quantitative research, written and oral technical communication, team building, and leadership. The program provides excellent preparation for subsequent graduate education and research in a broad range of fields. In the nuclear field, there is high demand for nuclear engineers around the world as the nuclear energy industry continues to expand. Other nuclear and radiation applications are increasingly important in medicine, industry, and government.

A characteristic of the curriculum is the development of practical skills through hands-on education. This is accomplished through various required and elective subjects, such as a laboratory subject on radiation physics, measurement, and protection (22.09 Principles of Nuclear Radiation Measurement and Protection), and through the laboratory components and exercises of the electronics (22.071 Electronics, Signals, and Measurement), ionizing radiation, and computational subjects. Even foundational courses in nuclear unit processes (22.01 Introduction to Nuclear Engineering and Ionizing Radiation) and neutronics (22.05 Neutron Science and Reactor Physics) include hands-on activities and analyses of real objects/systems. Examples include burning 1,000 bananas to measure their radioactivity, predicting and measuring the criticality of a six-foot graphite/uranium pile, and analyzing trace impurities in various foods, minerals, or even toenails in our nuclear reactor. The concept of hands-on learning is continued with a 15-unit design subject focusing on nuclear-centric design and prototyping and/or a 12-
unit undergraduate thesis that is normally organized between the student and a faculty member of the department. Thesis subjects can touch on any area of nuclear science and engineering, including nuclear energy applications (fission and fusion) and nuclear science and technology (medical, physical, chemical, security, and materials applications).

Bachelor of Science in Nuclear Science and Engineering (Course 22)
The Bachelor of Science in Nuclear Science and Engineering (Course 22) (http://catalog.mit.edu/degree-charts/nuclear-science-engineering-course-22) prepares students for a broad range of careers, from practical engineering work in the nuclear and other energy industries to graduate study in a wide range of technical fields, as well as entrepreneurship, law, medicine, and business. The degree program includes foundational subjects in physics, mathematics, and programming, leading to core subjects in the areas of nuclear energy (fission and fusion), as well as nuclear energy policy, quantum engineering, radiation physics, and product design.

The Course 22 degree program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org).

Bachelor of Science in Engineering (Course 22-ENG)
The 22-ENG degree program (http://catalog.mit.edu/degree-charts/engineering-nuclear-science-engineering-course-22-eng) is designed to offer flexibility within the context of nuclear science and engineering applications. This program is designed to enable students to pursue a deeper level of understanding in a specific nuclear application or interdisciplinary field related to the nuclear science and engineering core discipline. The degree requirements include core subjects relevant to a broad array of nuclear and related interdisciplinary areas, a specialization subject in energy systems, and a senior project, as well as a focus area consisting of 72 units of additional coursework.

A significant part of the 22-ENG degree program consists of focus area electives chosen by the student to provide in-depth study in a field of the student's choosing. Focus areas should complement a foundation in nuclear science and engineering and General Institute Requirements. Some examples of potential focus areas include nuclear medicine, energy or nuclear policy, fusion energy or plasma science, clean energy technologies, nuclear materials, modeling and simulation of complex systems, and quantum engineering, or an area of study within one of the departmental focus areas. Focus areas are not limited to these examples. Advising on students' development of focus areas is available from the undergraduate officer or the Academic Office. Students enrolled in the flexible major must submit a proposal to the Academic Office no later than Add Date of the second term in the program, to be reviewed by the Undergraduate Committee.

Combined Bachelor's and Master's Programs
The five-year programs leading to a joint Bachelor of Science in Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Nuclear Science and Engineering, or Physics and a Master of Science in Nuclear Science and Engineering are designed for students who decide relatively early in their undergraduate career that they wish to pursue a graduate degree in nuclear science and engineering. Students must submit their application for this program during the second term of their junior year and be judged to satisfy the graduate admission requirements of the department. The normal expectations of MIT undergraduates for admission to the five-year program are an overall MIT grade point average of at least 4.3, and a strong mathematics, science, and engineering background with GPA of at least 4.0.

The nuclear science and engineering thesis requirements of the two degrees may be satisfied either by completing both an SB thesis and an SM thesis, or by completing an SM thesis and any 12 units of undergraduate credit.

For further information, interested students should contact either their undergraduate department or the Department of Nuclear Science and Engineering.

Minor in Nuclear Science and Engineering
This minor allows students from any major outside of Course 22 to delve deeper into advanced topics within the department or to support interdisciplinary areas of interest in nuclear science and engineering.

<table>
<thead>
<tr>
<th>Required subjects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>22.01 Introduction to Nuclear Engineering and Ionizing Radiation</td>
<td>12</td>
</tr>
</tbody>
</table>

NSE Electives

<table>
<thead>
<tr>
<th>Select two of the following:</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.02 Introduction to Applied Nuclear Physics</td>
<td></td>
</tr>
<tr>
<td>22.033 Nuclear Systems Design Project</td>
<td></td>
</tr>
<tr>
<td>22.05 Neutron Science and Reactor Physics</td>
<td></td>
</tr>
<tr>
<td>22.06 Engineering of Nuclear Systems</td>
<td></td>
</tr>
<tr>
<td>22.09 Principles of Nuclear Radiation Measurement and Protection</td>
<td></td>
</tr>
</tbody>
</table>

Foundation and Specialized Subjects

<table>
<thead>
<tr>
<th>Select one of the following options:</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1</td>
<td></td>
</tr>
<tr>
<td>2.005 Thermal-Fluids Engineering I ¹</td>
<td></td>
</tr>
<tr>
<td>or 8.03 Physics III</td>
<td></td>
</tr>
<tr>
<td>12 units of Course 22 coursework ²</td>
<td></td>
</tr>
<tr>
<td>Option 2</td>
<td></td>
</tr>
</tbody>
</table>
Applicants for admissions are required to take the Graduate Record Examination (GRE).

Further information on undergraduate programs, admissions, and financial aid may be obtained from the department’s Academic Office (cegan@mit.edu), Room 24-102, 617-258-5682.

Graduate Study

The nuclear science and engineering field is broad and many undergraduate disciplines provide suitable preparation for graduate study.

An undergraduate degree in physics, engineering physics, chemistry, mathematics, materials science, or chemical, civil, electrical, mechanical, or nuclear science and engineering can provide a good foundation for graduate study in the department. Optimal undergraduate preparation would include the following:

- **Physics:** At least three introductory subjects covering classical mechanics, electricity and magnetism, and wave phenomena. An introduction to quantum mechanics is quite helpful, and an advanced subject in electricity and magnetism (including a description of time-dependent fields via Maxwell’s equations) is recommended for those wishing to specialize in fusion.
- **Mathematics:** It is essential that incoming students have a solid understanding of mathematics, including the study and application of ordinary differential equations. It is also highly recommended that students will have studied partial differential equations and linear algebra.
- **Chemistry:** At least one term of general, inorganic, and physical chemistry.
- **Engineering fundamentals:** The graduate curriculum builds on a variety of engineering fundamentals, and incoming students are expected to have had an introduction to thermodynamics, fluid mechanics, heat transfer, electronics and measurement, and computation. A subject covering the mechanics of materials is recommended, particularly for students wishing to specialize in fission.
- **Laboratory experience:** This component is essential. It may have been achieved through an organized subject, and ideally was supplemented with an independent undergraduate research activity or a design project.

Applicants for admissions are required to take the Graduate Record Examination (GRE).

Master of Science in Nuclear Science and Engineering

The object of the master of science program is to give the student a good general knowledge of nuclear science and engineering and to provide a foundation either for productive work in the nuclear field or for more advanced graduate study. The general requirements for the SM degree are listed under Graduate Education. In addition to the general requirements, 22.11 Applied Nuclear Physics and 22.12 Radiation Interactions, Control, and Measurement are required for all master of science degree candidates.

Other subjects may be selected in accordance with the student’s particular field of interest. Master of science candidates may specialize in one of several fields: including nuclear fission technology, applied plasma physics, nuclear materials, nuclear security, and nuclear science and technology. Some students pursue a master of science degree in technology and policy in parallel with the Course 22 master of science program.

Students with adequate undergraduate preparation take approximately 18 months to complete the requirements for the master of science. Actual completion time ranges from one to two years. Additional information concerning the requirements for the Master of Science in Nuclear Science and Engineering, including lists of recommended subjects, may be obtained from the department’s Academic Office, Room 24-102.

Nuclear Engineer

The program of study leading to the nuclear engineer’s degree provides deeper knowledge of nuclear science and engineering than is possible in the master’s program and is intended to train students for creative professional careers in engineering application or design.

The general requirements for this degree, as described under Graduate Education, include 162 units of subject credit plus a thesis. Each student must plan an individually selected program of study, approved in advance by the faculty advisor, and must complete, and orally defend, a substantial project of significant value.

The objectives of the program are to provide the candidate with broad knowledge of the profession and to develop competence in engineering applications or design. The emphasis in the program is more applied and less research-oriented than the doctoral program.

The engineering project required of all candidates for the nuclear engineer’s degree is generally the subject of an engineer’s thesis. A student with full undergraduate preparation normally needs two years to complete the program. Additional information may be obtained from the department.

Doctor of Philosophy and Doctor of Science

The program of study leading to either the doctor of philosophy or the doctor of science degree aims to give comprehensive knowledge of nuclear science and engineering, to develop competence...
in advanced engineering research, and to develop a sense of
perspective in assessing the role of nuclear science and technology
in our society.

General requirements for the doctorate are described under
Graduate Education and in the Graduate School Policy and
Procedures Manual. The specific requirements of the Department
of Nuclear Science and Engineering are the math and physics
competency requirement, the engineering requirement, the core
requirement, the field of specialization requirement, the oral
examination, the advanced subject and minor requirements, and the
doctoral thesis.

Upon satisfactory completion of the requirements, the student
ordinarily receives a PhD unless he or she requests an ScD. The
requirements for both degrees are the same.

Students admitted for the master of science or nuclear engineer's
degree must apply to the Department of Nuclear Science and
Engineering’s Admissions Committee for admission to the doctoral
program.

Students admitted for a doctoral degree must complete the math and
physics competency requirement and the engineering requirement
prior to entering the doctoral program.

Candidates for the doctoral degree must demonstrate competence
at the graduate level in the core areas of nuclear science and
engineering. The NSE core consists of the following six modules:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.11</td>
<td>Applied Nuclear Physics</td>
<td>6</td>
</tr>
<tr>
<td>22.12</td>
<td>Radiation Interactions, Control, and Measurement</td>
<td>6</td>
</tr>
<tr>
<td>22.13</td>
<td>Nuclear Energy Systems</td>
<td>6</td>
</tr>
<tr>
<td>22.14</td>
<td>Materials in Nuclear Engineering</td>
<td>6</td>
</tr>
<tr>
<td>22.15</td>
<td>Essential Numerical Methods</td>
<td>6</td>
</tr>
<tr>
<td>22.16</td>
<td>Nuclear Technology and Society</td>
<td>6</td>
</tr>
</tbody>
</table>

The core requirement must be completed by the end of the fourth
graduate term.

Candidates for the doctoral degree are also required to complete
three 12-unit (or greater than 12-unit) graduate subjects in their
field of specialization with a grade of B or better. All three subjects
must be completed by the end of the fourth regular graduate term.
The field-of-specialization subjects should together provide a
combination of depth and breadth of knowledge. The field-of-
specialization plan must be submitted by the beginning of the
second graduate term.

Candidates for a doctoral degree are required to demonstrate
their readiness to undertake doctoral research by passing an oral
examination by the end of their fourth graduate term. Oral exams
are held twice a year, at the beginning of February and at the end of
May. Students will generally take the oral exam for the first time in
February of their second year. Two attempts are allowed at the oral
exam. An overall GPA in graduate subjects of 4.0 is required to take
the oral.

Students will be permitted to embark on doctoral research only if,
by the end of their fourth graduate term, they have demonstrated
satisfactory performance in the core requirement, the field of
specialization, and the oral examination.

Candidates for the doctoral degree must satisfactorily complete
(with an average grade of B or better) an approved program of
two advanced subjects (24 units) that are closely related to the
student's doctoral thesis topic. Neither of these subjects may
be from the list of three subjects selected to satisfy the field-of-
specialization requirement. The advanced subjects should be
arranged in consultation with the student's thesis advisor and
the student's registration officer, and should have the approval of
the registration officer. In addition, students must satisfactorily
complete at least 24 units of coordinated subjects outside the field
doctoral thesis research (the minor). The
of specialization and the area of thesis research (the minor). The
minor should be chosen in consultation with and have the approval
of the registration officer.

Doctoral research may be undertaken either in the Department of
Nuclear Science and Engineering or in a nuclear-related field in
another department. Appropriate areas of research are described
generally in the introduction to the department, and a detailed
list may be obtained from the Department of Nuclear Science and
Engineering.

Interdisciplinary Programs

Computational Science and Engineering

The Computational Science and Engineering (CSE) (https://
computationalengineering.mit.edu/programs/mit-doctoral-program-
in-computational-science-and-engineering-cse) program allows
students to specialize at the doctoral level in a computation-related
field of their choice through focused coursework and a doctoral
thesis through a number of participating host departments. The
CSE program is administered jointly by the Center for Computational
Engineering (CCE) and the host departments, with the emphasis of
thesis research activities being the development of new
computational methods and/or the innovative application of
computational techniques to important problems in engineering
and science. For more information, see the full program description
(http://catalog.mit.edu/interdisciplinary/graduate-programs/
computational-science-engineering) under Interdisciplinary
Graduate Programs.

Technology and Policy

The Master of Science in Technology and Policy is an engineering
research degree with a strong focus on the role of technology in
policy analysis and formulation. The Technology and Policy Program
(TPP) (http://tpp.mit.edu) curriculum provides a solid grounding
in technology and policy by combining advanced subjects in the
student's chosen technical field with courses in economics, politics,
quantitative methods, and social science. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description under the Institute for Data, Systems, and Society (http://catalog.mit.edu/schools/engineering/data-systems-society).

Financial Support
Financial aid for graduate students is available in the form of research and teaching assistantships, department-administered fellowships, and supplemental subsidies from the College Work-Study Program. Assistantships are awarded to students with high quality academic records. The duty of a teaching assistant is to assist a faculty member in the preparation of subject materials and the conduct of classes, while that of a research assistant is to work on a research project under the supervision of one or more faculty members.

Most fellowships are awarded in April for the following academic year. Assistantships are awarded on a semester basis. The assignment of teaching assistants is made before the start of each semester, while research assistants can be assigned at any time. Essentially all students admitted to the doctoral program receive financial aid for the duration of their education.

Application for financial aid should be made to Professor Jacopo Buongiorno, Room 24-206, 617-253-7316.

Inquiries
Additional information on graduate admissions and academic and research programs may be obtained from the department’s Academic Office (cegan@mit.edu), Room 24-102, 617-253-3814.

Research Facilities

The department’s programs are supported by a number of outstanding experimental facilities for advanced research in nuclear science and engineering.

The MIT Research Reactor in the Nuclear Reactor Laboratory operates at a power of 6 MW and is fueled with U-235 in a compact light-water cooled core surrounded by a heavy-water reflector. This reactor provides a wide range of radiation-related research and teaching opportunities for the students and faculty of the department. Major programs to study corrosion in a nuclear environment are currently in place. Details of the laboratory’s research programs and facilities are given in the section on Research and Study (http://catalog.mit.edu/mit/research).

The department utilizes extensive experimental plasma facilities for the production and confinement of large volumes of highly ionized plasmas and for studies of plasma turbulence, particle motions, and other phenomena.

Most of the departmental research on plasmas and controlled fusion is carried out in the Plasma Science and Fusion Center. The department has played a major role in the design and development of high magnetic-field fusion devices. Through its activities in the center, the department is also the national leader in the design of both copper and superconducting magnets.

The thermal hydraulics laboratory is equipped with state-of-the-art instrumentation for measurement of fluid thermo-physical properties, fabrication facilities to engineer surfaces at the micro and nano scale, and flow loops for characterizing convective heat transfer and fluid dynamics behavior. A particularly novel facility uses high-speed infrared thermography to study fundamental phenomena of boiling, such as bubble nucleation, growth, and departure from a heated surface over a broad range of operating pressures, flow rates, and heat fluxes.

The study of nuclear materials plays a central role in the department. Research in the Laboratory for Electrochemical Interfaces centers on understanding the response of surface structure and physical chemistry when driven by dynamic environments of chemical reactivity and mechanical stress. This laboratory is equipped with surface science tools including scanning tunneling microscopy and X-ray photoelectron spectroscopy as well as electrochemical and electronic characterization tools. The H. H. Uhlig Corrosion Laboratory investigates the causes of failure in materials, with an emphasis on nuclear materials. The Mesoscale Nuclear Materials group studies reasons for material property changes due to radiation and rapid ways of measuring them.

The Cappellaro lab is located in the Research Laboratory of Electronics and consists of a 1,200 sq-ft-space dedicated to magnetic resonance and spin physics. One laboratory houses a 7 Tesla superconducting magnet with a wide bore and in-house-made probes, equipped with a spectrometer providing RF modulation and detection for the manipulation and detection of nuclear spins. Two other laboratories are dedicated to NV-based research. The laboratories house three state-of-the-art confocal photoluminescence setups with all of the necessary microwave electronics, RF electronics, and control hardware for manipulating NV quantum spins and one confocal microscope for imaging only.

In addition to the above facilities, the department has a nuclear instrumentation laboratory and a 14 MeV neutron source. Laboratory space and shop facilities are available for research in all areas of nuclear science and engineering. A state-of-the-art scanning electron microscope with an integrated focused ion beam that can be used to study irradiated specimens is available. A number of computer workstations and Beowulf clusters dedicated to simulation, modeling, and visualization, as well as MIT’s extensive computer facilities, are used in research and graduate instruction.
Faculty and Teaching Staff

Anne E. White, PhD
Professor of Nuclear Science and Engineering
Head, Department of Nuclear Science and Engineering

Benoit Forget, PhD
Professor of Nuclear Science and Engineering
Associate Head, Department of Nuclear Science and Engineering

Professors
Jacopo Buongiorno, PhD
TEPCO Professor of Nuclear Science and Engineering
(On sabbatical, spring)

Jeffrey P. Freidberg, PhD
Professor Post-Tenure of Nuclear Science and Engineering

Michael W. Golay, PhD
Professor Post-Tenure of Nuclear Science and Engineering

Ian H. Hutchinson, PhD
Professor of Nuclear Science and Engineering

Alan P. Jasanoﬀ, PhD
Professor of Biological Engineering
Professor of Nuclear Science and Engineering
Professor of Brain and Cognitive Sciences

Richard K. Lester, PhD
Japan Steel Industry Professor
Associate Provost

Ju Li, PhD
Battelle Energy Alliance Professor of Nuclear Science and Engineering
Professor of Materials Science and Engineering

Dennis G. Whyte, PhD
Hitachi America Professor of Engineering
Professor of Nuclear Science and Engineering

Bilge Yildiz, PhD
Professor of Nuclear Science and Engineering
Professor of Materials Science and Engineering

Associate Professors
Emilio Baglietto, PhD
Associate Professor of Nuclear Science and Engineering

Paola Cappellaro, PhD
Esther and Harold E. Edgerton Career Development Professor
Associate Professor of Nuclear Science and Engineering

R. Scott Kemp, PhD
Associate Professor of Nuclear Science and Engineering
(On sabbatical, spring)

Nuno F. Loureiro, PhD
Associate Professor of Nuclear Science and Engineering
Associate Professor of Physics

Michael P. Short, PhD
Associate Professor of Nuclear Science and Engineering

Assistant Professors
Matteo Bucci, PhD
Assistant Professor of Nuclear Science and Engineering

Areg Danagoulian, PhD
Assistant Professor of Nuclear Science and Engineering

Zachary Hartwig, PhD
John C. Hardwick Assistant Professor of Nuclear Science and Engineering

Mingda Li, PhD
Assistant Professor of Nuclear Science and Engineering

Koroush Shirvan, PhD
Assistant Professor of Nuclear Science and Engineering

Professors of the Practice
Kord Smith, PhD
Korea Electric Power Company (KEPCO) Professor of the Practice of Nuclear Science and Engineering

Research Staff
Senior Research Scientists
Peter J. Catto, PhD
Senior Research Scientist of Nuclear Science and Engineering

Richard C. Lanza, PhD
Senior Research Scientist of Nuclear Science and Engineering

Principal Research Scientists
Charles W. Forsberg, ScD
Principal Research Scientist of Nuclear Science and Engineering

Research Engineers
Peter W. Stahle, BS
Research Engineer of Nuclear Science and Engineering

Research Scientists
Fei Han, PhD
Research Scientist of Nuclear Science and Engineering
Undergraduate Subjects

22.00 Introduction to Modeling and Simulation
Engineering School-Wide Elective Subject.
Offered under: 1.021, 3.021, 10.333, 22.00
Prereq: 3.016B, 18.03, or permission of instructor
U (Spring)
4-0-8 units. REST

See description under subject 3.021.
M. Buehler, R. Gomez-Bombarelli

22.01 Introduction to Nuclear Engineering and Ionizing Radiation
Prereq: None
U (Fall)
4-1-7 units. REST

Provides an introduction to nuclear science and its engineering applications. Describes basic nuclear models, radioactivity, nuclear reactions and kinematics. Covers the interaction of ionizing radiation with matter, with an emphasis on radiation detection, radiation shielding, and radiation effects on human health. Presents energy systems based on fission and fusion nuclear reactions, as well as industrial and medical applications of nuclear science.
M. Short

22.011 Nuclear Engineering: Science, Systems and Society
Prereq: None
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: U (Spring)
1-0-2 units

Introduction to the basic physics of nuclear energy and radiation, with an emphasis on the unique attributes and challenges of nuclear energy as a low-carbon solution. Discusses peaceful applications of ionizing radiation, such as reactors for materials science research, nuclear medicine, and security initiatives. Explores fission energy, establishing the scientific, engineering, and economic basis for power reactors. Describes the latest advances in nuclear reactor technology. Introduces magnetic fusion energy research, with lectures covering the scientific and engineering basis of tokamaks, the state-of-the-art in world fusion experiments, and the MIT vision for a high-magnetic field fusion reactor. Uses radiation detection equipment to explore radioactivity in everyday life. Subject can count toward the 9-unit discovery-focused credit limit for first year students.
A. White, M. Short, J. Buongiorno, J. Parsons
22.014 Ethics for Engineers
Engineering School-Wide Elective Subject.
Offered under: 1.082, 2.900, 6.904, 10.01, 16.676, 22.014
Subject meets with 6.9041, 20.005
Prereq: None
U (Fall, Spring)
2-0-4 units
See description under subject 10.01.
D. Doneson, B. L. Trout

22.02 Introduction to Applied Nuclear Physics
Prereq: 8.03 or permission of instructor
U (Spring)
5-0-7 units. REST
Covers basic concepts of nuclear physics with emphasis on nuclear structure and interactions of radiation with matter. Topics include elementary quantum theory; nuclear forces; shell structure of the nucleus; alpha, beta and gamma radioactive decays; interactions of nuclear radiations (charged particles, gammas, and neutrons) with matter; nuclear reactions; fission and fusion.
M. Li

22.022 Quantum Theory of Radiation Interactions
Subject meets with 22.51
Prereq: 22.02
U (Spring)
3-0-9 units
Introduces elements of applied quantum mechanics and statistical physics. Starting from the experimental foundation of quantum mechanics, develops the basic principles of interaction of electromagnetic radiation with matter. Introduces quantum theory of radiation, time-dependent perturbation theory, transition probabilities and cross sections. Applications are to controlling coherent and decoherent dynamics with examples from quantum information processing. Students taking graduate version complete additional assignments.
P. Cappellaro

22.03 Introduction to Nuclear Design
Prereq: None
U (Fall)
2-3-1 units
Focuses on design thinking, rapid prototyping, overcoming fixation, and optimizing solutions within design constraints as applied to ideas relevant to nuclear science and engineering. Includes hands-on introductions to modern, rapid prototyping tools (laser cutter, 3D printer) in the context of a nuclear design problem, followed by discovery-based labs illustrating nuclear concepts. Culminates in a student-directed nuclear making experience. Enrollment limited; preference to Course 22 majors and minors.
Z. Hartwig

22.033 Nuclear Systems Design Project
Subject meets with 22.33
Prereq: None
U (Fall)
3-0-12 units
Group design project involving integration of nuclear physics, particle transport, control, heat transfer, safety, instrumentation, materials, environmental impact, and economic optimization. Provides opportunity to synthesize knowledge acquired in nuclear and non-nuclear subjects and apply this knowledge to practical problems of current interest in nuclear applications design. Past projects have included using a fusion reactor for transmutation of nuclear waste, design and implementation of an experiment to predict and measure pebble flow in a pebble bed reactor, and development of a mission plan for a manned Mars mission including the conceptual design of a nuclear powered space propulsion system and power plant for the Mars surface, a lunar/Martian nuclear power station and the use of nuclear plants to extract oil from tar sands. Students taking graduate version complete additional assignments.
Z. Hartwig, M. Bucci, K. Shirvan
22.039 Integration of Reactor Design, Operations, and Safety
Subject meets with 22.39
Prereq: 22.05 and 22.06
U (Fall)
3-2-7 units
Covers the integration of reactor physics and engineering sciences into nuclear power plant design, focusing on designs projected to be used in the first half of this century. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity. Addresses safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, general design criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations. Students taking graduate version complete additional assignments.
E. Baglietto

22.04[J] Social Problems of Nuclear Energy
Same subject as STS.084[J]
Prereq: None
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: U (Spring)
3-0-9 units. HASS-S
Surveys the major social challenges for nuclear energy. Topics include the ability of nuclear power to help mitigate climate change; challenges associated with ensuring nuclear safety; the effects of nuclear accidents; the management of nuclear waste; the linkages between nuclear power and nuclear weapons, the consequences of nuclear war; and political challenges to the safe and economic regulation of the nuclear industry. Weekly readings presented from both sides of the debate, followed by in-class discussions. Instruction and practice in oral and written communication provided. Limited to 18.
R. S. Kemp

22.05 Neutron Science and Reactor Physics
Prereq: 18.03, 22.01, and (1.000, 2.086, 6.0002, or 12.010)
U (Fall)
5-0-7 units
Introduces fundamental properties of the neutron. Covers reactions induced by neutrons, nuclear fission, slowing down of neutrons in infinite media, diffusion theory, the few-group approximation, point kinetics, and fission-product poisoning. Emphasizes the nuclear physics bases of reactor design and its relationship to reactor engineering problems.
B. Forget

22.051 Systems Analysis of the Nuclear Fuel Cycle
Subject meets with 22.251
Prereq: 22.05
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: U (Spring)
3-2-7 units
Studies the relationship between technical and policy elements of the nuclear fuel cycle. Topics include uranium supply, enrichment, fuel fabrication, in-core reactivity and fuel management of uranium and other fuel types, used fuel reprocessing, and waste disposal. Presents principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors. Examines nonproliferation economics, disposal of excess weapons plutonium, and transmutation of long-lived radioisotopes in spent fuel. Several state-of-the-art computer programs relevant to reactor core physics and heat transfer are provided for student use in problem sets and term papers. Students taking graduate version complete additional assignments.
C. Forsberg

22.054[J] Materials Performance in Extreme Environments
Same subject as 3.154[J]
Prereq: 3.032 and 3.044
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: U (Spring)
3-0-9 units
See description under subject 3.154[J].
Staff

22.055 Radiation Biophysics
Subject meets with 22.55[J], HST.560[J]
Prereq: Permission of instructor
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: U (Spring)
3-0-9 units
Provides a background in sources of radiation with an emphasis on terrestrial and space environments and on industrial production. Discusses experimental approaches to evaluating biological effects resulting from irradiation regimes differing in radiation type, dose and dose-rate. Effects at the molecular, cellular, organism, and population level are examined. Literature is reviewed identifying gaps in our understanding of the health effects of radiation, and responses of regulatory bodies to these gaps are discussed. Students taking graduate version complete additional assignments.
Staff
22.06 Engineering of Nuclear Systems
Prereq: 2.005
U (Spring)
4-0-8 units
Using the basic principles of reactor physics, thermodynamics, fluid flow and heat transfer, students examine the engineering design of nuclear power plants. Emphasizes light-water reactor technology, thermal limits in nuclear fuels, thermal-hydraulic behavior of the coolant, nuclear safety and dynamic response of nuclear power plants.
K. Shirvan

22.061 Fusion Energy
Prereq: 22.01 or permission of instructor
U (Spring)
4-1-7 units
Surveys the fundamental science and engineering required to generate energy from controlled nuclear fusion. Topics include nuclear physics governing fusion fuel choice and fusion reactivity, physical conditions required to achieve net fusion energy, plasma physics of magnetic confinement, overview of fusion energy concepts, material challenges in fusion systems, superconducting magnet engineering, and fusion power conversion to electricity. Includes in-depth visits at the MIT Plasma Science and Fusion Center and active learning laboratories to reinforce lecture topics.
Z. Hartwig

22.071 Electronics, Signals, and Measurement
Prereq: 18.03
U (Spring)
3-3-6 units. REST
Provides the knowledge necessary for reading schematics and designing, building, analyzing, and testing fundamental analog and digital circuits. Students construct interactive examples and explore the practical uses of electronics in engineering and experimental science, including signals and measurement fundamentals. Uses state-of-the-art hardware and software for data acquisition, analysis, and control. Suitable for students with little or no previous background in electronics. Limited to 20.
A. White

22.072 Corrosion: The Environmental Degradation of Materials
Subject meets with 22.72
Prereq: Permission of instructor
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: U (Fall)
3-0-9 units
Applies thermodynamics and kinetics of electrode reactions to aqueous corrosion of metals and alloys. Application of advanced computational and modeling techniques to evaluation of materials selection and susceptibility of metal/alloy systems to environmental degradation in aqueous systems. Discusses materials degradation problems in marine environments, oil and gas production, and energy conversion and generation systems, including fossil and nuclear. Students taking graduate version complete additional assignments.
M. Li

22.074 Radiation Damage and Effects in Nuclear Materials
Subject meets with 3.31[J], 22.74[J]
Prereq: Permission of instructor
U (Fall)
3-0-9 units
Studies the origins and effects of radiation damage in structural materials for nuclear applications. Radiation damage topics include formation of point defects, defect diffusion, defect reaction kinetics and accumulation, and differences in defect microstructures due to the type of radiation (ion, proton, neutron). Radiation effects topics include detrimental changes to mechanical properties, phase stability, corrosion properties, and differences in fission and fusion systems. Term project required. Students taking graduate version complete additional assignments.
M. Short, B. Yildiz
22.078 Principles of Nuclear Chemical Engineering and Waste Management
Subject meets with 22.78
Prereq: Permission of instructor
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: U (Spring)
3-0-9 units
Introduces scientific and engineering aspects of chemical engineering and waste management applied to reactors and the fuel cycle. Includes chemical behavior in reactors (normal and accident), spent nuclear fuel aging, separation processes in reprocessing (aqueous, pyro, and molten salt), and waste treatment processes. Addresses management of radioactive wastes, including waste forms, classification, fundamental principles, governing equations for radionuclide transport in the environment, performance assessment of geological waste disposal systems, and implications of advanced fuel cycles. Students taking graduate version complete additional assignments.
C. Forsberg

22.081[J] Introduction to Sustainable Energy
Same subject as 2.650[J], 10.291[J]
Subject meets with 1.818[J], 2.65[J], 10.391[J], 11.371[J], 22.811[J]
Prereq: Permission of instructor
U (Fall)
3-1-8 units
Assessment of current and potential future energy systems. Covers resources, extraction, conversion, and end-use technologies, with emphasis on meeting 21st-century regional and global energy needs in a sustainable manner. Examines various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Investigates their attributes within a quantitative analytical framework for evaluation of energy technology system proposals. Emphasizes analysis of energy propositions within an engineering, economic, and social context. Students taking graduate version complete additional assignments. Limited to juniors and seniors.
M. W. Golay

22.09 Principles of Nuclear Radiation Measurement and Protection
Subject meets with 22.90
Prereq: 22.01
U (Fall)
2-6-4 units. Institute LAB
Combines lectures, demonstrations, and experiments. Review of radiation protection procedures and regulations; theory and use of alpha, beta, gamma, and neutron detectors; applications in imaging and dosimetry; gamma-ray spectroscopy; design and operation of automated data acquisition experiments using virtual instruments. Meets with graduate subject 22.90, but homework assignments and examinations differ. Instruction and practice in written communication provided.
A. Danagoulian, G. Kohse

22.091, 22.093 Independent Project in Nuclear Science and Engineering
Prereq: Permission of instructor
U (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.
For undergraduates who wish to conduct a one-term project of theoretical or experimental nature in the field of nuclear engineering, in close cooperation with individual staff members. Topics and hours arranged to fit students’ requirements. Projects require prior approval by the Course 22 Undergraduate Office. 22.093 is graded P/D/F.
M. Short

22.099 Topics in Nuclear Science and Engineering
Prereq: None
U (Fall, Spring)
Units arranged
Can be repeated for credit.
Provides credit for work on material in nuclear science and engineering outside of regularly scheduled subjects. Intended for study abroad with a student exchange program or an approved one-term or one-year study abroad program. Credit may be used to satisfy specific SB degree requirements. Requires prior approval. Consult department.
Consult Undergraduate Officer
22.S092-22.S094 Special Subject in Nuclear Science and Engineering
Prereq: None
U (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.

Seminar or lecture on a topic in nuclear science and engineering that is not covered in the regular curriculum.

M. Short

22.S095 Special Subject in Nuclear Science and Engineering
Prereq: None
U (Fall, Spring)
Units arranged [P/D/F]
Can be repeated for credit.

Seminar or lecture on a topic in nuclear science and engineering that is not covered in the regular curriculum.

Contact: Professor Michael Short

22.EPE UPOP Engineering Practice Experience
Engineering School-Wide Elective Subject.
Offered under: 1.EPE, 2.EPE, 3.EPE, 6.EPE, 8.EPE, 10.EPE, 15.EPE, 16.EPE, 20.EPE, 22.EPE
Prereq: 2.EPW or permission of instructor
U (Fall, Spring)
0-0-1 units
See description under subject 2.EPE.

Staff

22.EPW UPOP Engineering Practice Workshop
Engineering School-Wide Elective Subject.
Offered under: 1.EPW, 2.EPW, 3.EPW, 6.EPW, 10.EPW, 16.EPW, 20.EPW, 22.EPW
Prereq: None
U (Fall, IAP)
1-0-0 units
See description under subject 2.EPW. Enrollment limited.

Staff

22.THU Undergraduate Thesis
Prereq: 22.THT
U (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Program of research, leading to the writing of an SB thesis, to be arranged by the student and appropriate MIT faculty member. See department undergraduate headquarters.

M. Short

22.UR Undergraduate Research Opportunities Program
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

The Undergraduate Research Opportunities Program is an excellent way for undergraduate students to become familiar with the Department of Nuclear Engineering. Student research as a UROP project has been conducted in areas of fission reactor studies, utilization of fusion devices, applied radiation research, and biomedical applications. Projects include the study of engineering aspects for both fusion and fission energy sources.

M. Short

22.URG Undergraduate Research Opportunities Program
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

The Undergraduate Research Opportunities Program is an excellent way for undergraduate students to become familiar with the department of Nuclear Science and Engineering. Student research as a UROP project has been conducted in areas of fission reactor studies, utilization of fusion devices, applied radiation research, and biomedical applications. Projects include the study of engineering aspects for fusion and fission energy sources, and utilization of radiations.

M. Short
Graduate Subjects

22.11 Applied Nuclear Physics
Prereq: 22.02 or permission of instructor
G (Fall; first half of term)
2-0-4 units
Can be repeated for credit.

Introduction to nuclear structure, reactions, and radioactivity. Review of quantization, the wave function, angular momentum and tunneling. Simplified application to qualitative understanding of nuclear structure. Stable and unstable isotopes, radioactive decay, decay products and chains. Nuclear reactions, cross-sections, and fundamental forces, and the resulting phenomena.
B. Yildiz

22.12 Radiation Interactions, Control, and Measurement
Prereq: 8.02 or permission of instructor
G (Fall; second half of term)
2-0-4 units
Can be repeated for credit.

A. Danagoulian

22.13 Nuclear Energy Systems
Prereq: 2.005, 22.01, or permission of instructor
G (Spring; first half of term)
2-0-4 units
Can be repeated for credit.

Introduction to generation of energy from nuclear reactions. Characteristics of nuclear energy. Fission cross-sections, criticality, and reaction control. Basic considerations of fission reactor engineering, thermal hydraulics, and safety. Nuclear fuel and waste characteristics. Fusion reactions and the character and conditions of energy generation. Plasma physics and approaches to achieving terrestrial thermonuclear fusion energy.
M. Bucci

22.14 Materials in Nuclear Engineering
Prereq: Chemistry (GIR) or permission of instructor
G (Spring; second half of term)
2-0-4 units
Can be repeated for credit.

Introduces the fundamental phenomena of materials science with special attention to radiation and harsh environments. Materials lattices and defects and the consequent understanding of strength of materials, fatigue, cracking, and corrosion. Coulomb collisions of charged particles; their effects on structured materials; damage and defect production, knock-ons, transmutation, cascades and swelling. Materials in fission and fusion applications: cladding, waste, plasma-facing components, blankets.
J. Li

22.15 Essential Numerical Methods
Prereq: 12.010 or permission of instructor
G (Fall; first half of term)
2-0-4 units
Can be repeated for credit.

Introduces computational methods for solving physical problems in nuclear applications. Ordinary and partial differential equations for particle orbit, and fluid, field, and particle conservation problems; their representation and solution by finite difference numerical approximations. Iterative matrix inversion methods. Stability, convergence, accuracy and statistics. Particle representations of Boltzmann’s equation and methods of solution such as Monte-Carlo and particle-in-cell techniques.
N. Louriero

22.16 Nuclear Technology and Society
Prereq: 22.01 or permission of instructor
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Spring)
2-0-4 units
Can be repeated for credit.

Introduces the societal context and challenges for nuclear technology. Major themes include economics and valuation of nuclear power, interactions with government and regulatory frameworks; safety, quantification of radiation hazards, and public attitudes to risk. Covers policies and methods for limiting nuclear-weapons proliferation, including nuclear detection, materials security and fuel-cycle policy.
R. S. Kemp
Nuclear Reactor Physics

22.211 Nuclear Reactor Physics I
Prereq: 22.05
G (Spring)
3-0-9 units

Provides an overview of reactor physics methods for core design and analysis. Topics include nuclear data, neutron slowing down, homogeneous and heterogeneous resonance absorption, calculation of neutron spectra, determination of group constants, nodal diffusion methods, Monte Carlo simulations of reactor core reload design methods.

B. Forget

22.212 Nuclear Reactor Analysis II
Prereq: 22.211
G (Fall)
3-2-7 units

Addresses advanced topics in nuclear reactor physics with an additional focus towards computational methods and algorithms for neutron transport. Covers current methods employed in lattice physics calculations, such as resonance models, critical spectrum adjustments, advanced homogenization techniques, fine mesh transport theory models, and depletion solvers. Also presents deterministic transport approximation techniques, such as the method of characteristics, discrete ordinates methods, and response matrix methods.

K. Smith

22.213 Nuclear Reactor Physics III
Prereq: 22.211
Acad Year 2019-2020: G (Spring)
Acad Year 2020-2021: Not offered
3-0-9 units

Covers numerous high-level topics in nuclear reactor analysis methods and builds on the student’s background in reactor physics to develop a deep understanding of concepts needed for time-dependent nuclear reactor core physics, including coupled nonlinear feedback effects. Introduces numerical algorithms needed to solve real-world time-dependent reactor physics problems in both diffusion and transport. Additional topics include iterative numerical solution methods (e.g., CG, GMRES, JFNK, MG), nonlinear accelerator methods, and numerous modern time-integration techniques.

K. Smith

22.251 Systems Analysis of the Nuclear Fuel Cycle
Subject meets with 22.051
Prereq: 22.05
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Spring)
3-2-7 units

Study of the relationship between the technical and policy elements of the nuclear fuel cycle. Topics include uranium supply, enrichment, fuel fabrication, in-core reactivity and fuel management of uranium and other fuel types, used fuel reprocessing and waste disposal. Principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors are presented. Nonproliferation aspects, disposal of excess weapons plutonium, and transmutation of long lived radioisotopes in spent fuel are examined. Several state-of-the-art computer programs relevant to reactor core physics and heat transfer are provided for student use in problem sets and term papers. Students taking graduate version complete additional assignments.

C. Forsberg

Nuclear Reactor Engineering

22.312 Engineering of Nuclear Reactors
Prereq: (2.001 and 2.005) or permission of instructor
G (Fall)
3-0-9 units

Engineering principles of nuclear reactors, emphasizing power reactors. Power plant thermodynamics, reactor heat generation and removal (single-phase as well as two-phase coolant flow and heat transfer), and structural mechanics. Engineering considerations in reactor design.

J. Buongiorno

22.313[J] Thermal Hydraulics in Power Technology
Same subject as 2.59[J], 10.536[J]
Prereq: 2.006, 10.302, 22.312, or permission of instructor
Acad Year 2019-2020: G (Fall)
Acad Year 2020-2021: Not offered
3-2-7 units

E. Baglietto, M. Bucci
22.315 Applied Computational Fluid Dynamics and Heat Transfer
Prereq: Permission of instructor
G (Spring)
3-0-9 units
Focuses on the application of computational fluid dynamics to the analysis of power generation and propulsion systems, and on industrial and chemical processes in general. Discusses simulation methods for single and multiphase applications and their advantages and limitations in industrial situations. Students practice breaking down an industrial problem into its modeling challenges, designing and implementing a plan to optimize and validate the modeling approach, performing the analysis, and quantifying the uncertainty margin.
E. Baglietto

22.33 Nuclear Engineering Design
Subject meets with 22.033
Prereq: 22.312
G (Fall)
3-0-15 units
Group design project involving integration of nuclear physics, particle transport, control, heat transfer, safety, instrumentation, materials, environmental impact, and economic optimization. Provides opportunity to synthesize knowledge acquired in nuclear and non-nuclear subjects and apply this knowledge to practical problems of current interest in nuclear applications design. Past projects have included using a fusion reactor for transmutation of nuclear waste, design and implementation of an experiment to predict and measure pebble flow in a pebble bed reactor, and development of a mission plan for a manned Mars mission including the conceptual design of a nuclear powered space propulsion system and power plant for the Mars surface. Students taking graduate version complete additional assignments.
M. Short, A. White

22.38 Probability and Its Applications To Reliability, Quality Control, and Risk Assessment
Prereq: Permission of instructor
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Fall)
3-0-9 units
Staff

22.39 Integration of Reactor Design, Operations, and Safety
Subject meets with 22.039
Prereq: 22.211 and 22.312
G (Fall)
3-2-7 units
Integration of reactor physics and engineering sciences into nuclear power plant design focusing on designs that are projected to be used in the first half of this century. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity. Safety considerations in regulations and operations such as the evolution of the regulatory process, the concept of defense in depth, general design criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations. Students taking graduate version complete additional assignments.
E. Baglietto, K. Shirvan

Same subject as 2.62[J], 10.392[J]
Subject meets with 2.60[J], 10.390[J]
Prereq: 2.006, (2.051 and 2.06), or permission of instructor
G (Spring)
4-0-8 units
See description under subject 2.62[J].
A. F. Ghoniem, W. Green
Radiation Interactions and Applications

22.51 Quantum Theory of Radiation Interactions
Subject meets with 22.022
Prereq: 22.11
G (Spring)
3-0-9 units

Introduces elements of applied quantum mechanics and statistical physics. Starting from the experimental foundation of quantum mechanics, develops the basic principles of interaction of electromagnetic radiation with matter. Introduces quantum theory of radiation, time-dependent perturbation theory, transition probabilities and cross sections. Applications are to controlling coherent and decoherent dynamics with examples from quantum information processing. Students taking graduate version complete additional assignments.

P. Cappellaro

22.55[J] Radiation Biophysics
Same subject as HST.560[J]
Subject meets with 22.055
Prereq: Permission of instructor
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Spring)
3-0-9 units

Provides a background in sources of radiation with an emphasis on terrestrial and space environments and on industrial production. Discusses experimental approaches to evaluating biological effects resulting from irradiation regimes differing in radiation type, dose and dose-rate. Effects at the molecular, cellular, organism, and population level are examined. Literature is reviewed identifying gaps in our understanding of the health effects of radiation, and responses of regulatory bodies to these gaps is discussed. Students taking graduate version complete additional assignments.

Staff

Same subject as HST.584[J]
Prereq: Permission of instructor
Acad Year 2019-2020: G (Spring)
Acad Year 2020-2021: Not offered
3-0-12 units

See description under subject HST.584[J].

L. Wald, K. Setsompop

Plasmas and Controlled Fusion

22.611[J] Introduction to Plasma Physics I
Same subject as 8.613[J]
Prereq: (6.013 or 8.07) and (18.04 or 18.075)
G (Fall)
3-0-9 units

I. Hutchinson

22.612[J] Introduction to Plasma Physics II (New)
Same subject as 8.614[J]
Prereq: 22.611[J]
Acad Year 2019-2020: G (Spring)
Acad Year 2020-2021: Not offered
3-0-9 units

Follow-up to 22.611[J] provides in-depth coverage of several fundamental topics in plasma physics, selected for their wide relevance and applicability, from fusion to space- and astrophysics. Covers both kinetic and fluid instabilities: two-stream, Weibel, magnetorotational, parametric, ion-temperature-gradient, and pressure-anisotropy-driven instabilities (mirror, firehose). Also covers advanced fluid models, and drift-kinetic and gyrokinetic equations. Special attention to dynamo theory, magnetic reconnection, MHD turbulence, kinetic turbulence, and shocks.

Staff

22.615 MHD Theory of Fusion Systems
Prereq: 22.611[J]
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Spring)
3-0-9 units

Discussion of MHD equilibria in cylindrical, toroidal, and noncircular configurations. MHD stability theory including the Energy Principle, interchange instability, ballooning modes, second region of stability, and external kink modes. Description of current configurations of fusion interest.

N. Louriero
22.617 Plasma Turbulence and Transport
Prereq: Permission of instructor
G (Spring)
Not offered regularly; consult department
3-0-9 units

Introduces plasma turbulence and turbulent transport, with a focus on fusion plasmas. Covers theory of mechanisms for turbulence in confined plasmas, fluid and kinetic equations, and linear and nonlinear gyrokinetic equations; transport due to stochastic magnetic fields, magnetohydrodynamic (MHD) turbulence, and drift wave turbulence; and suppression of turbulence, structure formation, intermittency, and stability thresholds. Emphasis on comparing experiment and theory. Discusses experimental techniques, simulations of plasma turbulence, and predictive turbulence-transport models.
Staff

22.62 Fusion Energy
Prereq: 22.611[J]
G (Spring)
3-0-9 units

Basic nuclear physics and plasma physics for controlled fusion. Fusion cross sections and consequent conditions required for ignition and energy production. Principles of magnetic and inertial confinement. Description of magnetic confinement devices: tokamaks, stellarators and RFPs, their design and operation. Elementary plasma stability considerations and the limits imposed. Plasma heating by neutral beams and RF. Outline design of the ITER “burning plasma” experiment and a magnetic confinement reactor.
I. Hutchinson

22.63 Engineering Principles for Fusion Reactors
Prereq: Permission of instructor
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Fall)
3-0-9 units

D. Whyte, Z. Hartwig

22.64[J] Ionized Gases (New)
Same subject as 16.55[J]
Prereq: 8.02 or permission of instructor
G (Fall)
3-0-9 units

See description under subject 16.55[J].
C. Guerra Garcia

22.67[J] Principles of Plasma Diagnostics
Same subject as 8.670[J]
Prereq: 22.611[J]
G (Fall)
Not offered regularly; consult department
4-4-4 units

Introduction to the physical processes used to measure the properties of plasmas, especially fusion plasmas. Measurements of magnetic and electric fields, particle flux, refractive index, emission and scattering of electromagnetic waves and heavy particles; their use to deduce plasma parameters such as particle density, pressure, temperature, and velocity, and hence the plasma confinement properties. Discussion of practical examples and assessments of the accuracy and reliability of different techniques.
A. White

Nuclear Materials

22.71[J] Modern Physical Metallurgy
Same subject as 3.40[J]
Subject meets with 3.14
Prereq: 3.022 and 3.032
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Fall)
3-0-9 units

See description under subject 3.40[J].
C. Tasan
22.72 Corrosion: The Environmental Degradation of Materials
Subject meets with 22.072
Prereq: None
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Fall)
3-0-9 units
Applies thermodynamics and kinetics of electrode reactions to aqueous corrosion of metals and alloys. Application of advanced computational and modeling techniques to evaluation of materials selection and susceptibility of metal/alloy systems to environmental degradation in aqueous systems. Discusses materials degradation problems in marine environments, oil and gas production, and energy conversion and generation systems, including fossil and nuclear.
M. Li

22.73[J] Defects in Materials
Same subject as 3.33[J]
Prereq: 3.21 and 3.22
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Fall)
3-0-9 units
See description under subject 3.33[J].
J. Li

22.74[J] Radiation Damage and Effects in Nuclear Materials
Same subject as 3.31[J]
Subject meets with 22.074
Prereq: 3.21, 22.14, or permission of instructor
G (Fall)
3-0-9 units
Studies the origins and effects of radiation damage in structural materials for nuclear applications. Radiation damage topics include formation of point defects, defect diffusion, defect reaction kinetics and accumulation, and differences in defect microstructures due to the type of radiation (ion, proton, neutron). Radiation effects topics include detrimental changes to mechanical properties, phase stability, corrosion properties, and differences in fission and fusion systems. Term project required. Students taking graduate version complete additional assignments.
M. Short, B. Yildiz

22.75[J] Properties of Solid Surfaces
Same subject as 3.30[J]
Prereq: 3.20, 3.21, or permission of instructor
G (Spring)
3-0-9 units
Covers fundamental principles needed to understand and measure the microscopic properties of the surfaces of solids, with connections to structure, electronic, chemical, magnetic and mechanical properties. Reviews the theoretical aspects of surface behavior, including stability of surfaces, restructuring, and reconstruction. Examines the interaction of the surfaces with the environment, including absorption of atoms and molecules, chemical reactions and material growth, and interaction of surfaces with other point defects within the solids (space charges in semiconductors). Discusses principles of important tools for the characterization of surfaces, such as surface electron and x-ray diffraction, electron spectroscopies (Auger and x-ray photoelectron spectroscopy), scanning tunneling, and force microscopy.
B. Yildiz

22.78 Principles of Nuclear Chemical Engineering and Waste Management
Subject meets with 22.078
Prereq: Permission of instructor
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Spring)
3-0-9 units
Introduces scientific and engineering aspects of chemical engineering and waste management applied to reactors and the fuel cycle. Includes chemical behavior in reactors (normal and accident), spent nuclear fuel aging, separation processes in reprocessing (aqueous, pyro, and molten salt), and waste treatment processes. Addresses management of radioactive wastes, including waste forms, classification, fundamental principles, governing equations for radionuclide transport in the environment, performance assessment of geological waste disposal systems, and implications of advanced fuel cycles. Students taking graduate version complete additional assignments.
C. Forsberg
Systems, Policy, and Economics

22.811[J] Sustainable Energy
Same subject as 1.818[J], 2.65[J], 10.391[J], 11.371[J]
Subject meets with 2.650[J], 10.291[J], 22.081[J]
Prereq: Permission of instructor
G (Fall)
3-1-8 units
Assessment of current and potential future energy systems. Covers resources, extraction, conversion, and end-use technologies, with emphasis on meeting 21st-century regional and global energy needs in a sustainable manner. Examines various energy technologies in each fuel cycle stage for fossil (oil, gas, synthetic), nuclear (fission and fusion) and renewable (solar, biomass, wind, hydro, and geothermal) energy types, along with storage, transmission, and conservation issues. Emphasizes analysis of energy propositions within an engineering, economic and social context. Students taking graduate version complete additional assignments.
M. W. Golay

22.813[J] Energy Technology and Policy: From Principles to Practice
Same subject as 5.00[J], 6.929[J], 10.579[J]
Prereq: None
G (Spring)
Not offered regularly; consult department
3-0-6 units
See description under subject 5.00[J]. Limited to 100.
J. Deutch

Same subject as 17.474[J]
Prereq: None
Acad Year 2019-2020: Not offered
Acad Year 2020-2021: G (Fall)
4-0-8 units
Examines the historical, political, and technical contexts for nuclear policy making, including the development of nuclear weapons by states, the evolution of nuclear strategy, the role nuclear weapons play in international politics, the risks posed by nuclear arsenals, and the policies and strategies in place to mitigate those risks. Equal emphasis is given to political and technical considerations affecting national choices. Considers the issues surrounding new non-proliferation strategies, nuclear security, and next steps for arms control.
R. S. Kemp, V. Narang

General

22.90 Nuclear Science and Engineering Laboratory
Subject meets with 22.09
Prereq: Permission of instructor
G (Fall)
2-6-4 units
See description under subject 22.09.
A. Danagoulian, G. Kohse

22.901 Independent Project in Nuclear Science and Engineering
Prereq: Permission of instructor
G (Fall, Spring, Summer)
Units arranged
Can be repeated for credit.
For graduate students who wish to conduct a one-term project of theoretical or experimental nature in the field of nuclear engineering, in close cooperation with individual staff members. Topics and hours arranged to fit students’ requirements. Projects require prior approval.
J. Li

22.911 Seminar in Nuclear Science and Engineering
Prereq: None
G (Fall, Spring)
2-0-1 units
Can be repeated for credit.
Restricted to graduate students engaged in doctoral thesis research.
C. Forsberg, P. Cappellaro, M. Li, N. Gomes Loureiro

22.912 Seminar in Nuclear Science and Engineering
Prereq: None
G (Spring)
Not offered regularly; consult department
2-0-1 units
Can be repeated for credit.
Restricted to graduate students engaged in doctoral thesis research.
C. Forsberg, I. Hutchinson, P. Cappellaro

22 | Department of Nuclear Science and Engineering
22.921 Nuclear Power Plant Dynamics and Control
Prereq: None
Acad Year 2019-2020: G (IAP)
Acad Year 2020-2021: Not offered
1-0-2 units

Introduction to reactor dynamics, including subcritical multiplication, critical operation in absence of thermal feedback effects and effects of xenon, fuel and moderator temperature, etc. Derivation of point kinetics and dynamic period equations. Techniques for reactor control including signal validation, supervisory algorithms, model-based trajectory tracking, and rule-based control. Overview of light-water reactor start-up. Lectures and demonstrations with use of the MIT Research Reactor. Open to undergraduates with permission of instructor.

J. A. Bernard

22.93 Teaching Experience in Nuclear Science & Engineering
Prereq: Permission of department
G (Fall, Spring, Summer)
Units arranged

For qualified graduate students interested in teaching as a career. Classroom, laboratory, or tutorial teaching under the supervision of a faculty member. Students selected by interview. Credits for this subject may not be used toward master’s or engineer’s degrees. Enrollment limited by availability of suitable teaching assignments.

D. Whyte

22.94 Research in Nuclear Science and Engineering
Prereq: Permission of research supervisor
G (Fall, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

For research assistants in Nuclear Science and Engineering who have not completed the NSE doctoral qualifying exam. Hours arranged with and approved by the research supervisor. Units may not be used towards advanced degree requirements.

J. Li

22.95 Internship in Nuclear Science and Engineering
Prereq: None
G (IAP, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

For Nuclear Science and Engineering students participating in research or curriculum-related off-campus experiences. Before enrolling, students must have an offer from a company or organization. Upon completion, the student must submit a final report or presentation to the approved MIT supervisor, usually the student’s thesis supervisor or a member of the thesis committee. Subject to departmental approval. Consult the NSE Academic Office for details on procedures and restrictions. Limited to students participating in internships consistent with NSE policies relating to research-related employment.

Consult J. Li

22.S902-22.S905 Special Subject in Nuclear Science and Engineering
Prereq: Permission of instructor
Acad Year 2019-2020: G (Spring)
Acad Year 2020-2021: Not offered
Units arranged
Can be repeated for credit.

Seminar or lecture on a topic in nuclear science and engineering that is not covered in the regular curriculum. 22.S905 is graded P/D/F.

J. Li

22.THG Graduate Thesis
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Program of research, leading to the writing of an SM, NE, PhD, or ScD thesis; to be arranged by the student and an appropriate MIT faculty member. Consult department graduate office.

J. Li