The mission of the Institute for Data, Systems, and Society (IDSS) (http://idss.mit.edu) is to advance education and research in state-of-the-art, analytical methods in information and decision systems; statistics and data science; and the social sciences, and to apply these methods to address complex societal challenges in a diverse set of areas such as energy systems, finance, healthcare, social networks, and urban science. Its mission also includes the creation of an MIT-wide focal point for advancing research and educational programs related to statistics and data science.

Technology advances in areas such as smart sensors, big data, communications, computing, and social networking are rapidly scaling the size and complexity of interconnected systems and networks and, at the same time, are generating massive data that can lead to new insights and understanding. Research at IDSS will aim to understand and analyze data from across these systems, which present unique and substantial challenges due to scale, complexity, and the difficulties of extracting clear, actionable insights.

Our ability to understand data and develop models across complex, interconnected systems is at the core of our ability to uncover new insights and solutions.

Spanning all five schools at MIT, IDSS embraces the collision and synthesis of ideas and methods from analytical disciplines including statistics, data science, information theory and inference, systems and control theory, optimization, economics, human and social behavior, and network science. These disciplines are relevant both for understanding complex systems and for presenting design principles and architectures that allow for the systems' quantification and management. IDSS seeks to integrate these areas, fostering new collaborations, introducing new paradigms and abstractions, and utilizing the power of data to address societal challenges.

Minor in Statistics and Data Science
The Minor in Statistics and Data Science (http://catalog.mit.edu/interdisciplinary/undergraduate-programs/minors/statistics-data-science) provides students with a working knowledge base in statistics, probability, and computation, along with an ability to perform data analysis. For a description of the minor, see Interdisciplinary Programs (http://catalog.mit.edu/interdisciplinary/undergraduate-programs).

Graduate Study
IDSS provides educational programs anchored in the following intellectual pillars: statistics, information and decision sciences, and human and institutional behavior.

IDSS’s academic programs embrace the collision and synthesis of ideas and methods from analytical disciplines, including statistics, stochastic modeling, information theory and inference, systems and control theory, optimization, economics, human and social behavior, and network science. Each of these fields in isolation is an insufficient basis for a deep understanding of complex interactions and systems. However, the intersections of these disciplines provide new tools and perspectives for understanding complex systems, addressing overarching challenges (including sustainability and systemic risk), and presenting design principles and architectures that enable those systems’ quantification, management, and regulation.

Inquiries about IDSS academic programs may directed to the Academic Office (idss_academic_office@mit.edu).

Admission Requirements for Graduate Study
Application forms for all programs are available online (http://web.mit.edu/admissions/graduate). Applicants whose first language is not English must offer evidence of written and oral proficiency in English by registering (http://www.ielts.org) for the International English Language Testing System (IELTS) exam, academic format, and achieving a score of 7.5 or better. Information about the Graduate Record Examinations (GRE) can be obtained through the website (http://www.ets.org/gre). Applicants should refer to the details of each program concerning specific requirements for admission.

Master of Science in Technology and Policy
The Technology and Policy Program (TPP) (http://web.mit.edu/tpp) educates students seeking leadership roles in the constructive development and use of technology—an area that is not well served by the traditional education of technical or social science specialists. TPP focuses on meeting the need for leaders who are engineers and scientists—people with not only strong technical foundations but also the skills and abilities to deal cogently and effectively with the economic, political, and administrative dimensions of the technological challenges of the 21st century.

The Master of Science in Technology and Policy is an engineering research degree with a focus on the increasingly central role of technology in the framing, formulation, and resolution of policy problems. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science, such as political science or urban studies and planning.
TPP's coursework provides a solid grounding in technology and policy by combining advanced subjects in the student's chosen technical field with courses in economics, politics, and law. All students must complete a satisfactory research thesis that has a substantial technology and policy component. In order to prepare students for effective professional practice, TPP stresses leadership and communication. It also encourages students to participate in TPP's summer internship program, which places students in government and industry in the US and around the world.

The TPP curriculum consists of three blocks of subjects and a research thesis. The first block is a required integrative subject in technology and policy and a set of program seminars focusing on leadership and presentation skills. The second block focuses on training in formal frameworks for policy development and consists of restricted electives in microeconomics, political economy, and legal processes. The third block comprises a minimum of three coherent electives that fulfill professional and research objectives. The research thesis is the culmination of scholarship integrating technology and policy.

Completion of the academic and research requirements of the TPP SM typically takes four terms.

The TPP curriculum normally begins in September; applications are due by December 15. All applicants should have a strong basis in engineering or science, and must take the GRE. Strong candidates for the program typically score in the top 10 percent of all three GRE areas: verbal, quantitative, and analytic writing. Participants in TPP should generally have two years of work experience and be able to demonstrate evidence of leadership and initiative in their professional or other activities.

Contact the TPP program office (tpp@mit.edu), Room E17-373, 617-258-7295, for additional information.

Doctor of Philosophy in Social and Engineering Systems

The Doctor of Philosophy in Social and Engineering Systems (SES) (http://idss.mit.edu/academics/SES_doc) is focused on addressing concrete and societally significant problems by combining methods from engineering and the social sciences. A student's doctoral program includes coursework that prepares them for advanced, rigorous, and original research leading to a doctoral thesis. Both coursework and research must include breadth and depth in engineering and quantitative methods, as well as in the social sciences, and in a particular application domain

Student research in SES is characterized by the following traits:

- It is driven by problems of societal interest, in areas such as energy, finance, health care, social networks, urban science, as well as in policy-related topics.
- It is application domain driven.
- It involves quantitative methods. The program is focused on problems that can be addressed through mathematical modeling and data analysis.
- It relies on real-world data. Research is expected to analyze data from the application domain of interest, and draw upon the training provided in statistics, etc., through the program’s coursework.
- It engages societal aspects of the problem. The research incorporates theories and tools from the social sciences.

The program’s subject requirements follow. Waivers for some of the requirements are possible in special circumstances.

Core
Select three of the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.251J</td>
<td>Introduction to Mathematical Programming</td>
</tr>
<tr>
<td>6.436J</td>
<td>Fundamentals of Probability</td>
</tr>
<tr>
<td>14.121 & 14.122</td>
<td>Microeconomic Theory I and Microeconomic Theory II</td>
</tr>
<tr>
<td>21A.809</td>
<td>Designing Empirical Research in the Social Sciences</td>
</tr>
</tbody>
</table>

Information Systems and Decision Science
Five subjects in the areas of probabilistic modeling, statistics, optimization, or systems/control theory, including:

- One subject that involves the statistical processing of data
- One subject of substantial mathematical content
- Two subjects belonging to a sequence that provides increasing depth on a particular topic

Social Science
Four subjects that create a coherent and rigorous program of study in the social sciences, providing necessary background for research, including:

- Three subjects comprising a coherent collection that builds depth in a particular social science focus area

Problem Domain
Two subjects in the application domain of the student’s research

1. Criteria defined by the graduate program committee.
2. Subjects used to satisfy the core can be counted toward this requirement. However, the remaining subjects should be at a more-advanced level.
3. One subject may be satisfied by an internship or independent study in which the student is evaluated on their performance of hands-on work in a particular domain.
4. One subject may also be counted toward the social science requirement.
The program begins in September and applications are due by December 15 of the preceding year.

Further information about SES is available on the program website (http://idss.mit.edu/academics/ses_doc) or by contacting the IDSS Academic Office (idss_academic_office@mit.edu), Room E17-375, or 617-253-1182.

Research Centers

Research in IDSS addresses overarching challenges, including the modeling and prediction of system behavior and performance; systems design and architecture; and issues including social welfare, monetization, and regulation, as well as sustainability and resilience, cascades and contagion phenomena, and systemic risk.

IDSS will sustain this research agenda by fostering and prioritizing several types of strong connections, including:

- A community of experts, at MIT and elsewhere, with demonstrated success performing impactful, multidisciplinary research in these domains.
- A close connection between research and domain expertise, to enable a contextually-informed understanding of the challenges and opportunities in complex systems.
- Educational and research methodologies, not considered in isolation, but instead anchored in one or several of the cross-disciplinary fields of statistics, information and decision sciences, the science of interconnections, as well as the study of social and institutional behavior.

Laboratory for Information and Decision Systems

The Laboratory for Information and Decision Systems (LIDS) (http://lids.mit.edu) is an interdepartmental laboratory for research and education in systems, networks, and control. LIDS is staffed by faculty, research scientists, and graduate students from the departments of Electrical Engineering and Computer Science, Aeronautics and Astronautics, and Mechanical Engineering, as well as the Sloan School of Management. LIDS research falls into the areas of networks, statistical Inference and machine learning, optimization, and control and system theory.

For further information, see the Research and Study (http://catalog.mit.edu/mit/research/laboratory-information-decision-systems) section.

Sociotechnical Systems Research Center

The Sociotechnical Systems Research Center (SSRC) (http://ssrc.mit.edu) is an interdisciplinary research center that focuses on the study of high-impact, complex, sociotechnical systems that shape our world.

SSRC brings together faculty, researchers, students, and staff from across MIT to study and seek solutions to complex societal challenges that span healthcare, energy, infrastructure networks, the environment, and international development.

For further information on SSRC and its programs, see the Research and Study (http://catalog.mit.edu/mit/research/sociotechnical-systems-research-center) section.

Faculty and Teaching Staff

Munther A. Dahleh, PhD
William A. Coolidge Professor
Professor of Electrical Engineering and Computer Science
Director, Institute for Data, Systems, and Society

Alberto Abadie, PhD
Professor of Economics
Associate Director, Institute for Data, Systems, and Society

Ali Jadbabaie, PhD
Professor of Civil and Environmental Engineering
Associate Director, Institute for Data, Systems, and Society

John N. Tsitsiklis, PhD
Clarence J. Lebel Professor in Electrical Engineering
Associate Director, Institute for Data, Systems, and Society

Professors

Daron Acemoglu, PhD
Elizabeth and James Killian (1926) Professor
Professor of Economics
Member, Institute for Data, Systems, and Society

Sinan Aral, PhD
David Austin Professor in Management
Professor of Information Technology and Marketing
Member, Institute for Data, Systems, and Society

Nicholas A. Ashford, JD, PhD
Professor of Technology and Policy
Member, Institute for Data, Systems, and Society

Dimitri P. Bertsekas, PhD
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Robert C. Berwick, PhD
Professor of Computer Science and Engineering
Member, Institute for Data, Systems, and Society

Emery N. Brown, MD, PhD
Edward Hood Taplin Professor of Medical Engineering
Professor of Computational Neuroscience
Member, Institute for Data, Systems, and Society

Core Faculty, Institute for Medical Engineering and Science

Warren M. Zapol Professor of Anaesthesia, MGH
Co-Director, Health Sciences and Technology Program
Victor V. Chernozhukov, PhD
Ford International Professor
Professor of Economics
Member, Institute for Data, Systems, and Society

Nazli Choucri, PhD
Professor of Political Science
Member, Institute for Data, Systems, and Society

Fotini Christia, PhD
Professor of Political Science
Member, Institute for Data, Systems, and Society
(On leave)

Richard de Neufville, PhD
Professor of Data, Systems, and Society

Olivier L. de Weck, PhD
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society
(On leave)

Esther Duflo, PhD
Abdul Latif Jameel Professor in Poverty Alleviation and Development Economics
Member, Institute for Data, Systems, and Society
(On leave)

David Gamarnik, PhD
Nanyang Technological University Professor
Professor of Operations Research
Member, Institute for Data, Systems, and Society

Polina Golland, PhD
Professor of Computer Science and Engineering
Member, Institute for Data, Systems, and Society

Stephen C. Graves, PhD
Abraham J. Siegel Professor of Management
Professor of Operations Management and Leaders for Global Operations
Professor of Mechanical Engineering
Member, Institute for Data, Systems, and Society

Daniel E. Hastings, PhD
Cecil and Ida Green Professor in Education
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Jonathan P. How, PhD
Richard Cockburn Maclaurin Professor in Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Tommi S. Jaakkola, PhD
Thomas Siebel Professor in Electrical Engineering and Computer Science
Professor of Computer Science and Engineering
Member, Institute for Data, Systems, and Society

Patrick Jaillet, PhD
Dugald C. Jackson Professor in Electrical Engineering
Member, Institute for Data, Systems, and Society

Richard Charles Larson, PhD
Mitsui Professor
Professor of Data, Systems, and Society

Andrew W. Lo, PhD
Charles E. and Susan T. Harris Professor
Professor of Finance
Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society
(On leave)

Stuart E. Madnick, PhD
John Norris Maguire (1960) Professor
Professor of Information Technology
Member, Institute for Data, Systems, and Society

Thomas L. Magnanti, PhD
Institute Professor
Professor of Operations Research
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Thomas W. Malone, PhD
Patrick J. McGovern (1959) Professor of Management
Professor of Information Technology
Member, Institute for Data, Systems, and Society

Alexandre Megretski, PhD
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Sanjoy K. Mitter, PhD
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Eytan H. Modiano, PhD
Associate Head, Department of Aeronautics and Astronautics
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Joel Moses, PhD
Institute Professor Post-Tenure
Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society
Richard Nielsen, PhD
Associate Professor of Political Science
Member, Institute for Data, Systems, and Society
(On leave)

Yury Polyanskiy, PhD
Associate Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Hazhir Rahmandad, PhD
Albert and Jeanne Clear Career Development Professor
Associate Professor of System Dynamics
Member, Institute for Data, Systems, and Society
(On leave)

Iyad Rahwan, PhD
AT&T Career Development Professor of Media Arts and Sciences
Associate Professor of Media Arts and Sciences
Member, Institute for Data, Systems, and Society

Philippe Rigollet, PhD
Associate Professor of Mathematics
Member, Institute for Data, Systems, and Society

Noelle Eckley Selin, PhD
Associate Professor of Data, Systems, and Society
Associate Professor of Earth, Atmospheric and Planetary Sciences

Marc Dresner, PhD
Assistant Professor of Political Science
Member, Institute for Data, Systems, and Society

Tamara Broderick, PhD
ITT Career Development Professor in Computer Technology
Member, Institute for Data, Systems, and Society

Dean Eckles, PhD
KDD Career Development Professor in Communications and Technology
Assistant Professor of Marketing
Member, Institute for Data, Systems, and Society
(On leave)

Stefanie Jegelka, ScD
X-Window Consortium Career Development Professor
Assistant Professor of Computer Science and Engineering
Member, Institute for Data, Systems, and Society

In Song Kim, PhD
Assistant Professor of Political Science
Member, Institute for Data, Systems, and Society

Caroline Uhler, PhD
Henry L. and Grace Doherty Professor in Ocean Utilization
Assistant Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Professors of the Practice
Christopher L. Magee, PhD
Professor of the Practice of Mechanical Engineering
Professor of the Practice, Institute for Data, Systems, and Society

Visiting Professors
Marija Ilic, PhD
Visiting Professor of Data, Systems, and Society

José Ignacio Pérez-Arriaga, PhD
Visiting Professor of Management
Visiting Professor of Data, Systems, and Society

Alexander Rakhlin, PhD
Visiting Professor of Statistics
Visiting Professor of Data, Systems, and Society

Adjunct Professors
G. David Forney, ScD
Adjunct Professor of Electrical Engineering
Adjunct Professor of Data, Systems, and Society

Research Staff
Senior Research Scientists
Stan N. Finkelstein, MD
Senior Research Scientist of Data, Systems, and Society

Principal Research Scientists
Audun Botterud, PhD
Principal Research Scientist of Data, Systems, and Society
Mardavij Roozbehani, PhD
Principal Research Scientist of Data, Systems, and Society
Suwit Sra, PhD
Principal Research Scientist of Data, Systems, and Society
Kalyan Veeramachaneni, PhD
Principal Research Scientist of Data, Systems, and Society

Professors Emeriti
Daniel Roos, PhD
Professor Emeritus of Data, Systems, and Society
Professor Emeritus of Civil and Environmental Engineering
Joseph M. Sussman, PhD
JR East Professor Emeritus
Professor Emeritus of Civil and Environmental Engineering

Member, Institute for Data, Systems, and Society

IDS.012[J] Statistics, Computation and Applications
Same subject as 6.419[J]
Subject meets with 6.439[J], IDS.131[J]
Prereq: 6.01, 6.0002, 18.03, 18.06, or 2.087; 6.008, 6.041B, 14.30, 16.09, or 18.05; or permission of instructor
U (Fall)
3-1-8 units
Hands-on analysis of data demonstrates the interplay between statistics and computation. Includes four modules, each centered on a specific data set, and introduced by a domain expert. Provides instruction in specific, relevant analysis methods and corresponding algorithmic aspects. Potential modules may include medical data, gene regulation, social networks, finance data (time series), traffic, transportation, weather forecasting, policy, or industrial web applications. Projects address a large-scale data analysis question. Students taking graduate version complete additional assignments. Enrollment limited; priority to Statistics and Data Science minors, and to juniors and seniors.
S. Jegelka, C. Uhler

IDS.013[J] Statistical Thinking and Data Analysis
Same subject as 15.075[J]
Prereq: 6.041B or 15.0791
U (Spring)
3-1-8 units. Institute LAB
Credit cannot also be received for 18.650[J], 18.6501, IDS.014[J]
See description under subject 15.075[J].
R. Mazumder

IDS.014[J] Fundamentals of Statistics (New)
Same subject as 18.650[J]
Subject meets with 18.6501
Prereq: 18.600 or 6.041B
U (Fall, Spring)
4-0-8 units
Credit cannot also be received for 15.075[J], IDS.013[J]
See description under subject 18.650[J].
Fall: P. Rigollet
Spring: V.-E. Brunel

IDS.045[J] System Safety
Same subject as 16.63[J]
Prereq: None
Acad Year 2017-2018: Not offered
Acad Year 2018-2019: U (Fall)
3-0-9 units. REST
Introduces the concepts of system safety and how to analyze and design safer systems. Topics include the causes of accidents in general, and recent major accidents in particular; hazard analysis, safety-driven design techniques; design of human-automation interaction; integrating safety into the system engineering process; and managing and operating safety-critical systems.
N. Leveson

IDS.055[J] Science, Technology, and Public Policy
Same subject as 17.309[J], STS.082[J]
Prereq: None
U (Fall)
4-0-8 units. HASS-S; CI-H
Credit cannot also be received for 17.310[J], IDS.412[J], STS.482[J]
See description under subject 17.309[J].
K. Oye, N. Selin
IDS.060[J] Environmental Law, Policy, and Economics: Pollution Prevention and Control
Same subject as 1.801[J], 11.021[J], 17.393[J]
Subject meets with 1.811[J], 11.630[J], 15.663[J], IDS.540[J]
Prereq: None
U (Fall)
3-0-9 units. HASS-S

Reviews and analyzes federal and state regulation of air and water pollution, hazardous waste, greenhouse gas emissions, and the production and use of toxic chemicals. Analyzes pollution as an economic problem and the failure of markets. Explores the role of science and economics in legal decisions. Emphasizes use of legal mechanisms and alternative approaches (such as economic incentives and voluntary approaches) to control pollution and encourage chemical accident and pollution prevention. Focuses on the major federal legislation, the underlying administrative system, and the common law in analyzing environmental policy, economic consequences, and the role of the courts. Discusses classical pollutants and toxic industrial chemicals, greenhouse gas emissions, community right-to-know, and environmental justice. Develops basic legal skills: how to read/understand cases, regulations, and statutes. Students taking graduate version are expected to explore the subject in greater depth.

N. Ashford, C. Caldart

IDS.061[J] Regulation of Chemicals, Radiation, and Biotechnology
Same subject as 1.802[J], 11.022[J]
Subject meets with 1.812[J], 10.805[J], 11.631[J], IDS.436[J], IDS.541[J]
Prereq: 1.801[J] or permission of instructor
U (Spring)
Not offered regularly; consult department
3-0-9 units

Focuses on policy design and evaluation in the regulation of hazardous substances and processes. Includes risk assessment, industrial chemicals, pesticides, food contaminants, pharmaceuticals, radiation and radioactive wastes, product safety, workplace hazards, indoor air pollution, biotechnology, victims’ compensation, and administrative law. Health and economic consequences of regulation, as well as its potential to spur technological change, are discussed for each regulatory regime. Students taking the graduate version are expected to explore the subject in greater depth.

N. Ashford, C. Caldart

IDS.062[J] Global Environmental Negotiations
Same subject as 12.346[J]
Subject meets with 12.846[J], IDS.525[J]
Prereq: Permission of instructor
Acad Year 2017-2018: Not offered
Acad Year 2018-2019: U (Fall)
2-0-4 units

Practical introduction to global environmental negotiations designed for science and engineering students. Covers basic issues in international negotiations, such as North-South conflict, implementation and compliance, trade, and historical perspective on global environmental treaties. Offers hands-on practice in developing and interpreting international agreements through role-play simulations and observation of ongoing climate change negotiating processes. Students taking graduate version complete additional assignments.

N. E. Selin

IDS.063[J] People and the Planet: Environmental Governance and Science (New)
Same subject as 12.387[J], 15.874[J]
Prereq: None
U (Fall)
3-0-6 units

See description under subject 12.387[J].

N. Selin, S. Solomon, J. Sterman

IDS.064 Engineering, Economics and Regulation of the Electric Power Sector (New)
Subject meets with 6.695[J], 15.032[J], IDS.505[J]
Prereq: 14.01, 22.081[J], IDS.060[J], or permission of instructor
U (Spring)
3-0-9 units

Provides an in-depth and interdisciplinary look at electric power systems, focusing on regulation as the link among engineering, economic, legal, and environmental viewpoints. Topics include electricity markets, incentive regulation of network utilities, retail competition, tariff design, distributed generation, rural electrification, multinational electricity markets, environmental impacts, and the future of utilities and strategic sustainability issues under both traditional and competitive regulatory frameworks. Background in policy, microeconomics, or engineering desirable. Students taking graduate version complete additional assignments.

I. Perez-Arriaga
IDS.131[J] Statistics, Computation and Applications
Same subject as 6.439[J]
Subject meets with 6.419[J], IDS.012[J]
Prereq: 6.01, 6.0002, 18.03, 18.06, or 2.087; 6.008, 6.041B, 14.30,
16.09, or 18.05; or permission of instructor
G (Fall)
3-1-8 units
Hands-on analysis of data demonstrates the interplay between
statistics and computation. Includes four modules, each centered
on a specific data set, and introduced by a domain expert. Provides
instruction in specific, relevant analysis methods and corresponding
algorithmic aspects. Potential modules may include medical
data, gene regulation, social networks, finance data (time series),
traffic, transportation, weather forecasting, policy, or industrial
web applications. Projects address a large-scale data analysis
question. Students taking graduate version complete additional
assignments. Limited enrollment; priority to Statistics and Data
Science minors and to juniors and seniors.
S. Jegelka, C. Uhler

IDS.145[J] Data Mining: Finding the Data and Models that Create
Value
Same subject as 15.062[J]
Subject meets with 15.0621
Prereq: 15.060 or 15.075[J]
G (Spring; first half of term)
2-0-4 units
See description under subject 15.062[J].
R. E. Welsch

IDS.147[J] Statistical Learning and Data Mining
Same subject as 15.077[J]
Prereq: 6.431B, 15.085[J], or 18.600; 18.06 or 18.700
Acad Year 2017-2018: Not offered
Acad Year 2018-2019: G (Spring)
4-0-8 units
See description under subject 15.077[J].
R. E. Welsch

IDS.200[J] Optimization Methods
Same subject as 6.255[J], 15.093[J]
Subject meets with 6.215
Prereq: 18.06
G (Fall)
4-0-8 units
See description under subject 15.093[J].
D. Bertsimas, P. Parrilo

Same subject as 1.271[J], 15.764[J]
Prereq: 15.081[J] or 6.251[J], 6.436[J]; or permission of instructor
G (Spring)
3-0-9 units
Can be repeated for credit.
See description under subject 15.764[J].
D. Simchi-Levi, N. Trichakis, K. Zheng

IDS.305[J] Business and Operations Analytics
Same subject as 1.275[J]
Prereq: Permission of instructor
G (Spring; first half of term)
2-0-4 units
Provides instruction on identifying, evaluating, and capturing
business analytics opportunities that create value. Also provides
basic instruction in analytics methods and case study analysis of
organizations that successfully deployed these techniques.
D. Simchi-Levi

IDS.330 Real Options for Product and Systems Design
Prereq: IDS.333 or permission of instructor
G (Spring; second half of term)
3-0-3 units
Focuses on implementation of flexibility (real options) in the design
of products and systems. Applies the methods presented in IDS.333:
recognition of uncertainty, identification of best opportunities
for flexibility, and valuation of these options and their effective
implementation. Students' work culminates in a dynamic business
plan for design and deployment of products, start-ups, ongoing
management of operations, or policy plans. Students bring their
own project concept, which they will analyze during the class. Useful
complement to thesis or research projects.
R. de Neufville
IDS.332 Engineering Systems Analysis for Design
Engineering School-Wide Elective Subject.
Offered under: 1.146, 16.861, IDS.332
Prereq: Permission of instructor
G (Fall)
3-0-9 units
Credit cannot also be received for IDS.333

Covers theory and methods to identify, value, and implement flexibility in design, also known as "real options." Topics include definition of uncertainties, simulation of performance for scenarios, screening models to identify desirable flexibility, decision and lattice analysis, and multidimensional economic evaluation.
Students demonstrate proficiency through an extended application to a systems design of their choice. Provides a complement to research or thesis projects. Meets with IDS.333 first half of term. Enrollment limited.
R. de Neufville

IDS.333 Risk and Decision Analysis
Prereq: None
G (Fall; first half of term)
3-0-3 units
Credit cannot also be received for 1.146, 16.861, IDS.332

Focuses on design choices and decisions under uncertainty. Topics include identification and description of uncertainties using probability distributions; the calculation of commensurate measures of value, such as expected net present values; Monte Carlo simulation and risk analysis; and the use of decision analysis to explore alternative strategies and identify optimal initial choices. Presents applied analysis of practical examples from a variety of engineering systems using spreadsheet and decision analysis software. Meets with IDS.332 first half of term.
R. de Neufville

IDS.336[J] Systems Architecting Applied to Enterprises
Same subject as 16.855[J]
Prereq: Permission of instructor
G (Spring)
3-0-9 units

Focuses on principles and practices for architecting new and evolving sociotechnical enterprises. Includes reading and discussions of enterprise theory, contemporary challenges, and case studies of evolving enterprises. Covers frameworks and methods for ecosystem analysis, stakeholder analysis, architecture design and evaluation, and implementation strategies. Students work in small teams on projects to design a future architecture for a selected real-world enterprise.
D. Rhodes

IDS.337[J] Aerospace Biomedical and Life Support Engineering
Same subject as 16.423[J], HST.515[J]
Prereq: 16.400, 16.06, or permission of instructor
G (Spring)
3-1-8 units

See description under subject 16.423[J].
D. J. Newman

Same subject as 16.888[J]
Prereq: 18.085 or permission of instructor
Acad Year 2017-2018: G (Spring)
Acad Year 2018-2019: Not offered
3-1-8 units

O. de Weck, K. E. Willcox

IDS.339[J] Space Systems Engineering
Same subject as 16.89[J]
Prereq: 16.851 or permission of instructor
Acad Year 2017-2018: Not offered
Acad Year 2018-2019: G (Spring)
4-2-6 units

See description under subject 16.89[J].
Staff

IDS.340[J] System Safety Concepts
Same subject as 16.863[J]
Prereq: Permission of instructor
G (Fall)
3-0-9 units

See description under subject 16.863[J].
N. G. Leveson
IDS.341[J] Concepts in the Engineering of Software
Same subject as 16.355[J]
Prereq: Permission of instructor
G (Spring)
3-0-9 units
See description under subject 16.355[J].
N. G. Leveson

IDS.345[J] Digital Evolution: Managing Web 3.0
Same subject as 15.565[J]
Prereq: Permission of instructor
G (Fall)
3-0-6 units
See description under subject 15.565[J].
S. Madnick

IDS.410[J] Modeling and Assessment for Policy
Same subject as 12.844[J]
Prereq: None
G (Spring)
3-0-6 units
Explores how scientific information and quantitative models can be used to inform policy decision-making. Develops an understanding of quantitative modeling techniques and their role in the policy process through case studies and interactive activities. Addresses issues such as analysis of scientific assessment processes, uses of integrated assessment models, public perception of quantitative information, methods for dealing with uncertainties, and design choices in building policy-relevant models. Examples focus on models and information used in Earth system governance.
N. E. Selin

IDS.411 Concepts and Research in Technology and Policy
Prereq: IDS.412[J], permission of instructor
G (Spring)
2-0-4 units
Focusing on technology and policy, explores the nature of engineering knowledge (as distinct from scientific knowledge), as well as the role of engineering systems in framing of problems. Considers implications of these concepts in the framing of research questions. Exercises aim to prepare students to apply these concepts in the framing of their thesis research. Preference to first-year students in the Technology and Policy Program.
F. Field

IDS.412[J] Science, Technology, and Public Policy
Same subject as 17.310[J], STS.482[J]
Prereq: Permission of instructor
G (Fall)
4-0-8 units
Credit cannot also be received for 17.309[J], IDS.055[J], STS.082[J]
See description under subject 17.310[J].
K. Oye, N. Selin

IDS.435 Law, Technology, and Public Policy
Prereq: Permission of instructor
G (Spring)
3-0-9 units
Examines the relationship between law and technological change, and the ways in which law, economics, and technological change shape public policy. Addresses how law can be used to influence and guide technological change; responses of the legal system to environmental, safety, social and ethical problems created by new or existing technology; how law and markets interact to limit or encourage technological development; and how law can affect distribution of wealth and social justice. Covers climate change; genetic engineering; telecommunications; industrial automation; the effect of health, safety, and environmental regulation on technological innovation; the impacts of intellectual property law on innovation and equity; pharmaceuticals; nanotechnology; cost/benefit analysis as a decision tool; public participation in governmental decisions affecting science and technology; corporate influence on technology; and law and economics as competing paradigms to encourage sustainability. Permission of instructor required for freshmen and sophomores.
N. Ashford, C. Caldart

Same subject as 10.805[J]
Subject meets with 1.802[J], 1.812[J], 11.022[J], 11.631[J], IDS.061[J], IDS.541[J]
Prereq: Permission of instructor
G (Spring)
Not offered regularly; consult department
3-0-6 units
Addresses relationship between technology-related problems and the law applicable to work environment. National Labor Relations Act, Occupational Safety and Health Act. Toxic Substances Control Act, state worker’s compensation, and suits by workers in the courts discussed. Problems related to occupational health and safety, collective bargaining as a mechanism for altering technology in the workplace, job alienation, productivity, and the organization of work addressed. Prior courses or experience in the environmental, public health, or law-related areas.
N. A. Ashford, C. C. Caldart
IDS.437[J] Technology, Globalization, and Sustainable Development

Same subject as 1.813[J], 11.466[J], 15.657[J]

Prereq: Permission of instructor

G (Fall)

3-0-9 units

Investigates sustainable development, taking a broad view to include not only a healthy economic base, but also a sound environment, stable employment, adequate purchasing power, distributional equity, national self-reliance, and maintenance of cultural integrity. Explores national, multinational, and international political and legal mechanisms to further sustainable development through transformation of the industrial state. Addresses the importance of technological innovation and the financial crisis of 2008.

N. Ashford

IDS.440 Seminar in Technology Policy Research

Prereq: IDS.411

G (Spring)

2-0-1 units

Presentations by students, faculty and guest speakers of ongoing research related to current issues in technology and policy. Specific topics determined by research of participants and by new and important directions in technology and policy.

F. Field

IDS.449 Technology Policy Internship Seminar

Prereq: IDS.411 or permission of instructor

G (Fall)

1-1-1 units

Can be repeated for credit.

Seminar examines what technology policy is in practice. Considers the question of "Who achieves what, when, how, and why?" regarding technology policy. Students who completed summer internships present and dissect their experiences with special reference to specific cases in which they participated.

F. Field

IDS.505[J] Engineering, Economics and Regulation of the Electric Power Sector

Same subject as 6.695[J], 15.032[J]

Subject meets with IDS.064

Prereq: 14.01, 22.081[J], IDS.060[J], or permission of instructor

G (Spring)

3-0-9 units

Provides an in-depth and interdisciplinary look at electric power systems, focusing on regulation as the link among engineering, economic, legal, and environmental viewpoints. Topics include electricity markets, incentive regulation of network utilities, retail competition, tariff design, distributed generation, rural electrification, multinational electricity markets, environmental impacts, and the future of utilities and strategic sustainability issues under both traditional and competitive regulatory frameworks. Background in policy, microeconomics, or engineering desirable. Students taking graduate version complete additional assignments.

I. Perez-Arriaga

IDS.521 Energy Systems and Climate Change Mitigation

Prereq: Permission of instructor

G (Spring)

3-0-9 units

Explores the contributions of energy systems to global greenhouse gas emissions and the potential levers for reducing emissions. Lectures and projects focus on decomposing contributions to greenhouse gas emissions, with emphasis on technology related variables such as per unit cost and carbon intensity of energy. Reviews other performance attributes of energy technologies. Student projects explore pathways for realizing emissions reduction scenarios.

J. Trancik

IDS.522 Mapping and Evaluating New Energy Technologies

Prereq: Permission of instructor

G (Fall)

3-0-9 units

Project-based seminar covers recent developments in energy conversion and storage technologies. Merits of alternative technologies are debated based on their environmental performance and cost, and their potential improvement and scalability. Project teams develop quantitative models and interactive visualization tools to inform the future development of these technologies. Models may probe how the impact of a technology depends on assumptions about future advancements in materials or device design. Other projects may develop models for rational design choices (the selection of a particular material or processing technique) based on economic and environmental performance and physical constraints.

J. Trancik
IDS.525[J] Global Environmental Negotiations
Same subject as 12.846[J]
Subject meets with 12.346[J], IDS.062[J]
Prereq: None
Acad Year 2017-2018: Not offered
Acad Year 2018-2019: G (Fall)
2-0-4 units

Practical introduction to global environmental negotiations designed for science and engineering students. Covers basic issues in international negotiations, such as North-South conflict, implementation and compliance, trade, and historical perspective on global environmental treaties. Offers hands-on practice in developing and interpreting international agreements through role-play simulations and observation of ongoing climate change negotiating processes. Students taking graduate version complete additional assignments.

N. Selin

IDS.526[J] Sustainability Science and Engineering
Same subject as 12.845[J]
Prereq: None
Acad Year 2017-2018: Not offered
Acad Year 2018-2019: G (Fall)
3-0-6 units

Introduces and develops core ideas and concepts in the field of sustainability science and engineering from an engineering systems perspective. Takes an interdisciplinary approach to discuss case studies of sustainability systems research. Exposes students to techniques for sustainability research across engineering, natural and social science disciplines. Term projects focus on applying techniques.

N. E. Selin

IDS.540[J] Environmental Law, Policy, and Economics: Pollution Prevention and Control (IDS.430)
Same subject as 1.811[J], 11.630[J], 15.663[J]
Subject meets with 1.801[J], 11.021[J], 17.393[J], IDS.060[J]
Prereq: None
G (Fall)
3-0-9 units

Reviews and analyzes federal and state regulation of air and water pollution, hazardous waste, green-house gas emissions, and the production and use of toxic chemicals. Analyzes pollution as an economic problem and the failure of markets. Explores the role of science and economics in legal decisions. Emphasizes use of legal mechanisms and alternative approaches (such as economic incentives and voluntary approaches) to control pollution and encourage chemical accident and pollution prevention. Focuses on the major federal legislation, the underlying administrative system, and the common law in analyzing environmental policy, economic consequences, and the role of the courts. Discusses classical pollutants and toxic industrial chemicals, green-house gas emissions, community right-to-know, and environmental justice. Develops basic legal skills: how to read/understand cases, regulations, and statutes. Students taking graduate version are expected to explore the subject in greater depth.

N. Ashford, C. Caldart

IDS.541[J] Regulation of Chemicals, Radiation, and Biotechnology (IDS.431)
Same subject as 1.812[J], 11.631[J]
Subject meets with 1.802[J], 10.805[J], 11.022[J], IDS.061[J], IDS.436[J]
Prereq: 1.811[J] or permission of instructor
G (Spring)
Not offered regularly; consult department
3-0-9 units

Focuses on policy design and evaluation in the regulation of hazardous substances and processes. Includes risk assessment, industrial chemicals, pesticides, food contaminants, pharmaceuticals, radiation and radioactive wastes, product safety, workplace hazards, indoor air pollution, biotechnology, victims' compensation, and administrative law. Health and economic consequences of regulation, as well as its potential to spur technological change, are discussed for each regulator regime. Students taking the graduate version are expected to explore the subject in greater depth.

N. Ashford, C. Caldart
IDS.620[J] Principles and Practice of Drug Development
Same subject as 7.547[J], 10.547[J], 15.136[J], HST.920[J]
Prereq: Permission of instructor
G (Fall)
3-0-6 units
See description under subject 15.136[J].
T. J. Allen, C. L. Cooney, S. N. Finkelstein, A. J. Sinskey, G. K. Raju

IDS.670[J] Planning and Design of Airport Systems
Same subject as 1.231[J], 16.781[J]
Prereq: Permission of instructor
Acad Year 2017-2018: Not offered
Acad Year 2018-2019: G (Fall)
3-0-9 units
See description under subject 1.231[J].
R. de Neufville, A. R. Odoni

Same subject as 1.203[J], 15.073[J]
Prereq: 6.041B
G (Fall)
3-0-9 units
See description under subject 15.073[J].
A. Barnett, R. Larson

IDS.720[J] Tools for Analysis: Design for Real Estate and Infrastructure Development
Same subject as 11.434[J], 15.428[J]
Prereq: None
G (Spring; second half of term)
2-0-4 units
See description under subject 11.434[J].
D. Geltner, R. de Neufville

IDS.730[J] Logistics Systems
Same subject as 1.260[J], 15.770[J], SCM.260[J]
Prereq: Permission of instructor
G (Fall)
3-0-9 units
See description under subject SCM.260[J].
Y. Sheffi, C. Caplice

IDS.735[J] Supply Chain Planning
Same subject as 1.273[J], 15.762[J]
Prereq: 1.260[J] or 15.761
G (Spring)
2-0-4 units
See description under subject 15.762[J].
D. Simchi-Levi

IDS.736[J] Manufacturing System and Supply Chain Design
Same subject as 1.274[J], 15.763[J]
Prereq: 1.260[J], 15.761, or 15.778
G (Spring)
2-0-4 units
See description under subject 15.763[J].
D. Simchi-Levi

IDS.900 Doctoral Seminar in Social and Engineering Systems
Prereq: Permission of instructor
G (Fall)
2-0-1 units
Introduces doctoral students to IDSS research areas. Preference to first-year students in SES.
A. Abadie, A. Jadbabaie

IDS.910 Leadership Development
Prereq: Permission of instructor
Acad Year 2017-2018: Not offered
Acad Year 2018-2019: G (Fall; partial term)
1-1-1 units
Seminar environment created to develop leadership capabilities, and to take advantage of leadership opportunities. An initial Outward Bound experience builds trust, teamwork and communications. Readings and assignments emphasize the characteristics of desired leadership skills. Global leaders participate in the Leadership Lunch series to share their experiences and recommendations. Discussions explore leadership development. Culminates in a personal leadership plan. Restricted to entering students in the Technology and Policy program or instructor permission.
B. Moser
IDS.950 Independent Study in Data, Systems, and Society
Prereq: Permission of IDSS Academic Office.
G (Fall, IAP, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

For graduate students in IDSS. Individual research in data, systems, and society: generally either study, fieldwork, or practicum. Intended to expose student to expert-level domain material. Supervised by a member of MIT’s teaching staff.
Consult IDSS Academic Office

IDS.951 Independent Study in Technology and Policy
Prereq: Permission of TPP Academic Office.
G (Fall, IAP, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

For graduate students in TPP. Individual research in technology and policy: generally either study, fieldwork, or practicum. Intended to expose student to expert-level domain material. Supervised by a member of MIT’s teaching staff.
Consult TPP Academic Office

IDS.960 Teaching in Data, Systems, and Society
Prereq: None
G (Fall, IAP, Spring)
Units arranged [P/D/F]
Can be repeated for credit.

For Teaching Assistants in IDSS, in cases where teaching assignment is approved for academic credit. Laboratory, tutorial, or classroom teaching under supervision of a faculty member. Credit for this subject may not be used for any degree granted by IDSS.
Consult IDSS Academic Office

IDS.961 Teaching in Technology and Policy
Prereq: None
G (Fall, IAP, Spring)
Units arranged [P/D/F]
Can be repeated for credit.

For Teaching Assistants in TPP, in cases where teaching assignment is approved for academic credit. Laboratory, tutorial, or classroom teaching under supervision of a faculty member. Credit for this subject may not be used for any degree granted by IDSS.
Consult TPP Academic Office

IDS.970 Research in Data, Systems, and Society
Prereq: None
G (Fall, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

For Research Assistants in IDSS when assigned research is not used for thesis, but is approved for academic credit. Credit for this subject may not be used for any degree granted by IDSS.
Consult IDSS Academic Office

IDS.971 Research in Technology and Policy
Prereq: None
G (Fall, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

For research assistants in TPP when assigned research is not used for thesis, but is approved for academic credit. Credit for this subject may not be used for any degree granted by IDSS.
Consult TPP Academic Office

IDS.S00 Special Undergraduate Subject in Data, Systems, and Society
Prereq: Permission of instructor
U (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.

Opportunity for study of topics in Data, Systems, and Society not otherwise included in the curriculum. Offerings initiated by faculty on an ad hoc basis subject to IDSS approval.
Consult IDSS Academic Office

IDS.S01 Special Undergraduate Subject in Data, Systems, and Society
Prereq: Permission of instructor
U (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.

Opportunity for study of topics in Data, Systems, and Society not otherwise included in the curriculum at MIT. Offerings are initiated by faculty on an ad-hoc basis subject to IDSS approval.
Consult IDSS Academic Office
IDS.S10 Special Undergraduate Subject in Data, Systems, and Society
Prereq: Permission of instructor
U (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged [P/D/F]
Can be repeated for credit.
Opportunity for study of topics in Data, Systems, and Society not otherwise included in the curriculum at MIT. Offerings are initiated by faculty on an ad-hoc basis subject to IDSS approval.
Consult IDSS Academic Office

IDS.S11 Special Undergraduate Subject in Data, Systems, and Society
Prereq: None
U (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged [P/D/F]
Can be repeated for credit.
Opportunity for study of topics in Data, Systems, and Society not otherwise included in the curriculum. Offerings initiated by faculty on an ad hoc basis subject to IDSS approval.
Consult IDSS Academic Office

IDS.S20 Special Graduate Subject in Data, Systems, and Society
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.
Opportunity for study of advanced topics in Data, Systems, and Society not otherwise included in the curriculum at MIT. Offerings are initiated by faculty on an ad-hoc basis subject to IDSS approval.
Consult IDSS Academic Office

IDS.S21 Special Graduate Subject in Data, Systems, and Society
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.
Opportunity for study of advanced topics in Data, Systems, and Society not otherwise included in the curriculum at MIT. Offerings are initiated by faculty on an ad-hoc basis subject to IDSS approval.
Information: Consult IDSS Academic Office

IDS.S22 Special Graduate Subject in Data, Systems, and Society
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.
Opportunity for study of advanced topics in Data, Systems, and Society not otherwise included in the curriculum at MIT. Offerings are initiated by faculty on an ad-hoc basis subject to IDSS approval.
Consult IDSS Academic Office

IDS.S23 Special Graduate Subject in Data, Systems, and Society
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.
Opportunity for study of advanced topics in Data, Systems, and Society not otherwise included in the curriculum at MIT. Offerings are initiated by faculty on an ad-hoc basis subject to IDSS approval.
Consult IDSS Academic Office

IDS.S24 Special Graduate Subject in Data, Systems, and Society
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.
Opportunity for study of advanced topics in Data, Systems, and Society not otherwise included in the curriculum at MIT. Offerings are initiated by faculty on an ad-hoc basis subject to IDSS approval.
Consult IDSS Academic Office

IDS.S30 Special Graduate Subject in Data, Systems, and Society
Prereq: None
G (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged [P/D/F]
Can be repeated for credit.
Opportunity for study of advanced topics in Data, Systems, and Society not otherwise included in the curriculum. Offerings are initiated by faculty on an ad-hoc basis subject to IDSS approval.
Staff
IDS.S31 Special Graduate Subject in Data, Systems, and Society
Prereq: None
G (Fall, IAP, Spring)
Not offered regularly; consult department
Units arranged [P/D/F]
Can be repeated for credit.

Opportunity for individual or group study of advanced topics in Data, Systems, and Society not otherwise included in the curriculum at MIT. Offerings are initiated by faculty on an ad-hoc basis subject to IDSS approval.
Consult IDSS Academic Office

IDS.S32 Special Graduate Subject in Data, Systems, and Society
Prereq: None
G (Fall, IAP, Spring, Summer)
Not offered regularly; consult department
Units arranged [P/D/F]
Can be repeated for credit.

Opportunity for individual or group study of advanced topics in Data, Systems, and Society not otherwise included in the curriculum at MIT. Offerings are initiated by faculty on an ad-hoc basis subject to IDSS approval.
Consult IDSS Academic Office

IDS.THG Graduate Thesis
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Program of research, leading to the writing of an SM or PhD thesis to be arranged by the student with a member of the IDSS faculty. A minimum of 24 thesis units are required for the SM degree.
Consult IDSS Academic Office

IDS.URG Undergraduate Research
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Undergraduate research opportunities in Data, Systems, and Society.
Consult IDSS Academic Office