The Department of Civil and Environmental Engineering (CEE) seeks to understand the world, invent, and innovate with creative design. To address some of the greatest challenges of our time, the department uses approaches that range from basic scientific principles to complex engineering design, at scales from the nano to the global. Emphasizing the use of quantitative approaches, CEE features two vibrant centers of gravity: environment (what exists as natural systems) and infrastructure (what is created by human activity). The department is organized into two laboratories around these focus areas: the Parsons Laboratory for Environmental Science and Engineering (https://cee.mit.edu/research/#Parsons) and the Pierce Laboratory for Infrastructure Science and Engineering (https://cee.mit.edu/research/#Pierce), which emphasizes materials and systems. CEE consists of people from a broad range of academic disciplines who work together to contribute to exciting intellectual networks across the department and MIT, solving tomorrow’s problems to build a better future through discovery and innovation.

An education in civil and environmental engineering provides an excellent foundation to solve the world’s greatest challenges in areas such as sustainability, environment, or energy. It prepares students for careers in fields as diverse as engineering design, education, law, medicine, and public health, as well as for graduate study in engineering and science. Graduates teach and carry out research in universities, work for large firms, start their own businesses, and hold leadership positions in government and nonprofit organizations. The department’s undergraduate program provides a solid background in science and engineering fundamentals while emphasizing hands-on design and research projects that provide real-world context. Students focus on the use of large data, computation, probability, and data analysis, and learn how to combine theory, experiments, and modeling to understand and solve complex science and engineering problems.

Course 1-ENG is the undergraduate degree program offered by the Department of Civil and Environmental Engineering. 1-ENG leads to a Bachelor of Science in General Engineering, and has a flexible curriculum that supplements a civil and environmental engineering foundation with an area of core coursework in a field of specialization, introducing exciting opportunities for disciplinary or multidisciplinary focus. This program is accredited by the Engineering Accreditation Commission of Accreditation Board for Engineering and Technology (ABET) (http://www.abet.org) as a general engineering degree.

The department also offers graduate degrees within the broadly defined areas of environmental science and engineering (which includes environmental chemistry, environmental fluid mechanics, ecology, and hydrology and hydroclimatology), mechanics of materials and structures, transportation and systems engineering, and the depth and breadth of coursework and research required differ for each degree program.

The department’s graduate degrees are as follows: Master of Engineering (MEng), Master of Science in Transportation (MST), Master of Science (SM), Civil Engineer, Environmental Engineer, Doctor of Philosophy (PhD), and Doctor of Science (ScD).

Undergraduate Study

The Department of Civil and Environmental Engineering offers an undergraduate program, Course 1-ENG, leading to the Bachelor of Science in General Engineering.

Undergraduates are encouraged to participate in the research activities of the department and in many cases obtain degree credit for such work. In general, students are encouraged to plan their programs for the third and fourth years so they dovetail with possible graduate study, including the department’s Master of Engineering degree. This is readily accomplished by those students who embark on the departmental program in their second year. Under certain circumstances, students are permitted to work toward receiving simultaneous undergraduate and graduate degrees.

Bachelor of Science in Engineering (Course 1-ENG)

The degree is designed to prepare students to make an impact in solving the world’s greatest challenges. The Bachelor of Science in Engineering program (http://catalog.mit.edu/degree-charts/engineering-civil-environmental-engineering-course-1-eng) offers the option to select a core and pursue tracks of study for in-depth exploration of particular areas, or to focus on cross-cutting, multidisciplinary studies within and outside the department in emerging areas of civil and environmental engineering, broadly defined. Refer to the website for further details on sample educational tracks and educational opportunities (http://cee.mit.edu/undergraduate).

The undergraduate program provides significant flexibility through a track structure that is consistent with the diverse nature of our disciplinary groups and responsive to students’ interests in new educational offerings. The program is built around a solid foundation in mathematics, big data, sensing, and computing, and is complemented by laboratory subjects on data analysis. It includes a capstone subject that provides ample opportunities for students to solve complex problems. The program enables students to design individualized programs to meet particular educational objectives. For example, students interested in careers in fields such as sustainability, environmental science and engineering, microbiology, sustainable materials, geochemistry, energy resources, structural/architectural engineering, oceanography, or environmental law can design programs that provide both depth and breadth.

The main component of the program is a small set of General Department Requirements (GDRs) consisting of subjects that focus on mathematics, computation, probability and statistics, and...
data analysis, plus a capstone. Students select one of three core options, each consisting of subjects that build a solid background in one of three areas: environment, mechanics and materials, or systems. Their selections of a core and a consistent set of four or five restricted elective subjects, in consultation with a CEE faculty advisor, define their track of undergraduate study. Restricted electives may be selected from subjects within or outside the Department of Civil and Environmental Engineering.

To satisfy the CI-M component of the Communication Requirement, students must take two of the department’s CI-M subjects (1.013 and either 1.101/1.102 or 1.106/1.107) or take one Course 1 CI-M subject and petition the Subcommittee on the Communication Requirement to substitute one CI-M from another science or engineering field. Any outside CI-M must fit into the coherent program of electives approved by the student’s academic advisor and must be approved by the undergraduate officer. The remaining part of the program consists of unrestricted electives, bringing the total number of required units beyond the General Institute Requirements to 180.

Minor in Civil and Environmental Systems

The Minor in Civil and Environmental Systems consists of the following subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.020</td>
<td>Engineering Sustainability: Analysis and Design</td>
<td>12</td>
</tr>
<tr>
<td>1.022</td>
<td>Introduction to Network Models</td>
<td>12</td>
</tr>
<tr>
<td>1.041</td>
<td>Transportation: Foundations and Methods</td>
<td>12</td>
</tr>
<tr>
<td>1.075</td>
<td>Water Resource Systems</td>
<td>12</td>
</tr>
<tr>
<td>1.101</td>
<td>Introduction to Civil and Environmental Engineering Design I</td>
<td>6</td>
</tr>
<tr>
<td>1.102</td>
<td>Introduction to Civil and Environmental Engineering Design II</td>
<td>6</td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

Minor in Civil Engineering

The Minor in Civil Engineering consists of the following subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.035</td>
<td>Mechanics of Materials</td>
<td>12</td>
</tr>
<tr>
<td>1.036</td>
<td>Structural Mechanics and Design</td>
<td>12</td>
</tr>
<tr>
<td>1.050</td>
<td>Solid Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>1.101</td>
<td>Introduction to Civil and Environmental Engineering Design I</td>
<td>6</td>
</tr>
<tr>
<td>1.060</td>
<td>Fluid Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>1.102</td>
<td>Introduction to Civil and Environmental Engineering Design II</td>
<td>6</td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
<td>60</td>
</tr>
</tbody>
</table>

Minor in Environmental Engineering Science

The Minor in Environmental Engineering Science consists of the following subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.018[I]</td>
<td>Fundamentals of Ecology</td>
<td>12</td>
</tr>
<tr>
<td>1.060</td>
<td>Fluid Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>1.061A</td>
<td>Transport Processes in the Environment I</td>
<td>6</td>
</tr>
<tr>
<td>1.070A[I]</td>
<td>Introduction to Hydrology and Water Resources</td>
<td>6</td>
</tr>
<tr>
<td>1.080</td>
<td>Environmental Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>1.091</td>
<td>Traveling Research Environmental eXperience (TREX): Fieldwork</td>
<td>3</td>
</tr>
<tr>
<td>1.106</td>
<td>Environmental Fluid Transport Processes and Hydrology Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>1.107</td>
<td>Environmental Chemistry Laboratory</td>
<td>6</td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
<td>63</td>
</tr>
</tbody>
</table>

Substitution of equivalent subjects offered by other departments is allowed, with permission of the minor advisor. However, at least three full 12-unit subjects must be Course 1 subjects.

For a general description of the minor program (http://catalog.mit.edu/mit/undergraduate-education/academic-programs/minors), see Undergraduate Education.

Other Undergraduate Opportunities Research Opportunities

Students wishing to work closely with a member of the faculty on research may obtain permission to enroll in 1.UR Research in Civil and Environmental Engineering or 1.URG Research in Civil and Environmental Engineering. The Undergraduate Research Opportunities Program (UROP) (http://catalog.mit.edu/mit/undergraduate-education/academic-research-options/undergraduate-research-opportunities-program) offers numerous possibilities, and the department awards several UROP traineeships to undergraduates each term.

Graduate Study

Graduate students in the Department of Civil and Environmental Engineering (CEE) participate in research with renowned faculty and get hands-on experience solving some of the world’s largest problems in the domains of infrastructure and environment, and related areas of interest. Education takes place inside and outside the classroom, and there are numerous opportunities to learn not only about civil and environmental engineering in an interdisciplinary research environment but also to network with peers. CEE grants the following advanced degrees: Master of Engineering in Civil and Environmental Engineering, Master of Science in Transportation, Master of Science, Civil Engineer, Environmental Engineer, Doctor of Science, and Doctor of Philosophy. The Institute’s general requirements for these degrees
Admission Requirements
CEE seeks a diverse group of applicants from a range of academic disciplines who will work together to contribute to exciting intellectual networks across the department and Institute. All applicants are required to submit scores from the GRE General Test. Applicants whose first language is not English are required to submit scores from either the International English Language Testing System (IELTS), the preferred exam, or the Test of English as a Foreign Language (TOEFL). Email the department (cee-admissions@mit.edu) or visit the CEE website (http://cee.mit.edu) to learn more about individual graduate programs.

Master of Engineering
The Master of Engineering (MEng) (http://cee.mit.edu/master-of-engineering) degree program is a professional-oriented graduate program that consists of high-level, fast-paced coursework and significant engagement with applied engineering projects that prepare graduates for a professional career path or further graduate studies at MIT or elsewhere. This nine-month program, with opportunities for individualized tracks of study in CEE, prepares students to address significant challenges in the domains of civil and environmental engineering. The degree requirements include 66 units of graduate-level subjects, 48 units of which must be departmental subjects.

Within the Structural Mechanics and Design track, students must complete 1.562 Structural Design Project I in the fall and 1.563 Structural Design Project II in the spring, plus 24 additional units of CEE subjects. Students are also required to complete an original thesis.

Students in the Environmental Engineering Science track pursue classes and research in their areas of interest, including hydrology, environmental chemistry, ecology, and environmental fluid mechanics.

Students in the Structural Mechanics and Design track pursue classes and research in areas including structural engineering mechanics, computational design and optimization, and collaborative workflows at the interface of engineering and architecture.

For current MIT students, the program is a natural extension of the Institute’s four-year Bachelor of Science degree, providing them an opportunity to gain practical experience and preparing them for emerging fields in today’s job market.

Master of Science in Civil and Environmental Engineering
The Master of Science is a two-year research-focused degree that culminates with a thesis. This degree prepares graduates for an advanced position in the field, and provides a foundation for doctoral studies. The degree requirements include 66 units of subject units, 34 of which must be departmental subjects. The student is also required to complete a research thesis comprised of original work.

Doctoral Degrees
The Doctor of Philosophy (PhD) or Doctor of Science (ScD) in Civil and Environmental Engineering offers in-depth study in all areas represented by the department’s faculty. The Civil and Environmental Engineering doctoral program educates students to find solutions based on scientific research and implement them to make real-world contributions. The curriculum and doctoral degree program applies basic scientific principles to complex engineering design at scales from the nano to the global.

Student research is characterized by the following traits:

- Applies theoretical, numerical, experimental, and field work to cutting-edge research projects
- Considers a range of scientific and engineering issues and investigates solutions
- Emphasizes fundamental understanding of, and innovative approaches to, engineering problems by considering a vast range of scales from the nano to the macro

The doctoral program includes a three-subject core area of study that reflects key knowledge in the student’s chosen field. The three subjects are selected from an approved list of four to five subjects within a specific subdiscipline of CEE. The remainder of the doctoral program consists of five graduate subjects that complement the core, including one “breadth” class. (Subjects taken in pursuit of the CEE SM can be counted towards these requirements.) The doctoral degree is granted upon completion of the required subjects, submission and defense of a thesis proposal, and submission and defense of a thesis embodying an original research contribution. A detailed description of the doctoral program requirements can be found on the department website (https://cee.mit.edu/resources).

Financial Assistance
The research of the department is an integral part of the graduate program. All doctoral students receive appointments as research or teaching assistants, as do the majority of our SM and MST students. Most of these appointments fully cover tuition, individual health insurance, and reasonable living expenses in the Cambridge area.

Applicants are encouraged to apply for traineeships and fellowships (http://odge.mit.edu/finances/fellowships) offered nationally by the National Science Foundation, NASA, DOE, and other governmental agencies that traditionally support students in the department. For an extensive list of such opportunities, visit the Office of Graduate Education website.

Interdisciplinary Programs
Through its interdisciplinary programs, the Department of Civil and Environmental Engineering brings together the science,
technology, systems, and management skills necessary to deal with the important engineering problems of the future.

Computational Science and Engineering
The Master of Science in Computational Science and Engineering (CSE SM) (https://cse.mit.edu/programs/sm) is an interdisciplinary program for students interested in the development, analysis, and application of computational approaches to science and engineering. The curriculum is designed with a common core serving all science and engineering disciplines and an elective component focusing on specific disciplinary topics. Current MIT graduate students may pursue the CSE SM as a standalone degree or as leading to the CSE PhD program described below.

The Doctoral program in Computational Science and Engineering (CSE PhD) (https://cse.mit.edu/programs/phd) allows students to specialize at the doctoral level in a computation-related field of their choice through focused coursework and a thesis through a number of participating host departments. The CSE PhD program is administered jointly by the Center for Computational Science and Engineering (CCSE) and the host departments; the emphasis of thesis research activities is the development of new computational methods and/or the innovative application of computational techniques to important problems in engineering and science.

For more information, see the program descriptions under Interdisciplinary Graduate Programs.

Graduate Programs in Transportation
MIT provides a broad range of opportunities for transportation-related education. Courses and classes span the School of Engineering, the Sloan School of Management, and the School of Architecture and Planning, with many activities covering interdisciplinary topics that prepare students for future industry, government, or academic careers.

A variety of graduate degrees are available to students interested in transportation studies and research (http://catalog.mit.edu/interdisciplinary/graduate-programs/transportation), including a Master of Science in Transportation and PhD in Transportation, described under Interdisciplinary Graduate Programs.

Leaders for Global Operations
The 24-month Leaders for Global Operations (LGO) (http://catalog.mit.edu/interdisciplinary/graduate-programs/leaders-global-operations) program combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field. During the two-year program, students complete a six-month internship at one of LGO’s partner companies, where they conduct research that forms the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of eight engineering programs, some of which have optional or required LGO tracks. After graduation, alumni lead strategic initiatives in high-tech, operations, and manufacturing companies.

Joint Program with the Woods Hole Oceanographic Institution
The Joint Program with the Woods Hole Oceanographic Institution (WHOI) (http://mit.whoi.edu) is intended for students whose primary career objective is oceanography or oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in their home department. The program is described in more detail (http://catalog.mit.edu/interdisciplinary/graduate-programs/joint-program-woods-hole-oceanographic-institution) under Interdisciplinary Graduate Programs.

Inquiries
Email for detailed information (cee-apo@mit.edu) about academic policies and programs, visit the website (http://cee.mit.edu), or visit the Academic Programs Office, Room 1-290, 617-253-9723.

Faculty and Teaching Staff
Ali Jadbabaie, PhD
JR East Professor of Engineering
Professor of Civil and Environmental Engineering
Head, Department of Civil and Environmental Engineering
Member, Institute for Data, Systems, and Society

Professors
Eric J. Alm, PhD
Professor of Biological Engineering
Professor of Civil and Environmental Engineering

Cynthia Barnhart, PhD
Ford Professor of Engineering
Professor of Civil and Environmental Engineering
Professor of Operations Research and Statistics
(On leave)

Moshe E. Ben-Akiva, PhD
Edmund K. Turner Professor of Civil and Environmental Engineering

Markus J. Buehler, PhD
Professor of Civil and Environmental Engineering

Jerry McAfee (1940) Professor in Engineering
Professor of Civil and Environmental Engineering

Oral Buyukozturk, PhD
Professor in Construction Management
Professor of Civil and Environmental Engineering
Jinhua Zhao, PhD
Associate Professor of Urban Planning and Transportation
Associate Professor of Civil and Environmental Engineering
Member, Institute for Data, Systems, and Society

Assistant Professors
Josephine V. Carstensen, PhD
Assistant Professor of Civil and Environmental Engineering
David Des Marais, PhD
Gale Assistant Professor of Civil and Environmental Engineering
Michael F. Howland, PhD
Assistant Professor of Civil and Environmental Engineering
Tami Lieberman, PhD
Assistant Professor of Civil and Environmental Engineering
César Terrer, PhD
Assistant Professor of Civil and Environmental Engineering
Cathy Wu, PhD
Gilbert W. Winslow Career Development Professor
Assistant Professor of Civil and Environmental Engineering
Member, Institute for Data, Systems, and Society

Research Staff

Research Engineers
John K. MacFarlane, MS
Research Engineer of Civil and Environmental Engineering

Research Scientists
Ruzbeh Akbar, PhD
Research Scientist of Civil and Environmental Engineering
Paul Berube, PhD
Research Scientist of Civil and Environmental Engineering
Abel Sánchez, PhD
Research Scientist of Civil and Environmental Engineering
Ali Shamshiripour, PhD
Research Scientist of Civil and Environmental Engineering
Kurt Sternlof, PhD
Research Scientist of Civil and Environmental Engineering
Earle Williams, PhD
Research Scientist of Civil and Environmental Engineering

Professors Emeriti
Rafael Luis Bras, ScD
Professor Emeritus of Civil and Environmental Engineering
Jerome J. Connor Jr, ScD
Professor Emeritus of Civil and Environmental Engineering
Lynn Walter Gelhar, PhD
Professor Emeritus of Civil and Environmental Engineering
Harold F. Hemond, PhD
Professor Emeritus of Civil and Environmental Engineering
William E. Leonhard (1940) Professor Emeritus
Professor Emeritus of Civil and Environmental Engineering
Eduardo A. Kausel, PhD
Professor Emeritus of Civil and Environmental Engineering
Ole S. Madsen, ScD
Donald and Martha Harleman Professor Emeritus
Professor Emeritus of Civil and Environmental Engineering
David H. Marks, PhD
Morton and Claire Goulder Family Professor Emeritus
Professor Emeritus of Civil and Environmental Engineering
Chiang C. Mei, PhD
Ford Professor Emeritus of Engineering
Professor Emeritus of Civil and Environmental Engineering
Professor Emeritus of Mechanical Engineering
Fred Moavenzadeh, PhD
James Mason Crafts Professor Emeritus
Professor Emeritus of Civil and Environmental Engineering
Amedeo R. Odoni, PhD
T. Wilson (1953) Professor Emeritus
Professor Emeritus of Aeronautics and Astronautics
Professor Emeritus of Civil and Environmental Engineering
Daniel Roos, PhD
Professor Emeritus of Data, Systems, and Society
Professor Emeritus of Civil and Environmental Engineering
Daniele Veneziano, PhD
Professor Emeritus of Civil and Environmental Engineering
Nigel H. M. Wilson, PhD
Professor Emeritus of Civil and Environmental Engineering
Fundamentals

1.00 Engineering Computation and Data Science
Subject meets with 1.001
Prereq: Calculus I (GIR)
U (Spring)
3-2-7 units. REST

Presents engineering problems in a computational setting with emphasis on data science and problem abstraction. Covers exploratory data analysis and visualization, filtering, regression. Building basic machine learning models (classifiers, decision trees, clustering) for smart city applications. Labs and programming projects focused on analytics problems faced by cities, infrastructure, and environment. Students taking graduate version complete additional assignments and project work.

J. Williams

1.000 Introduction to Computer Programming and Numerical Methods for Engineering Applications
Prereq: None. Coreq: 18.03
U (Fall)
3-2-7 units. REST

Presents the fundamentals of computing and computer programming (procedural and object-oriented programming) in an engineering context. Introduces logical operations, floating-point arithmetic, data structures, induction, iteration, and recursion. Computational methods for interpolation, regression, root finding, sorting, searching, and the solution of linear systems of equations and ordinary differential equations. Control of sensors and visualization of scientific data. Draws examples from engineering and scientific applications. Students use the MATLAB programming environment to complete weekly assignments.

R. Juanes

1.001 Engineering Computation and Data Science
Subject meets with 1.00
Prereq: Calculus I (GIR)
G (Spring)
3-2-7 units

Presents engineering problems in a computational setting with emphasis on data science and problem abstraction. Covers exploratory data analysis and visualization, filtering, regression. Building basic machine learning models (classifiers, decision trees, clustering) for smart city applications. Labs and programming projects focused on analytics problems faced by cities, infrastructure and environment. Students taking graduate version will complete additional assignments and project work.

J. Williams

1.004 Startup Sustainable Tech
Subject meets with 1.147
Prereq: None
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: U (Spring)
3-0-9 units

Provides a practical introduction to key innovations in the fields of civil and environmental engineering that are currently having an impact. Structured around the different aspects of starting and maintaining a company in the first years after incorporation. Key topics include idea protection, team formation, and seed funds. Guest speakers who are involved in the startup process or are successful entrepreneurs present. Under faculty supervision, students work on case studies in areas such as renewable energy, sustainable design, food security, climate change, new infrastructures, and transportation. Concludes with the writing of an SBIR/STTR-type grant or business model. Students taking graduate version complete additional assignments.

B. Marelli

1.005 Experiential Sustainability (New)
Prereq: None
U (Fall)
1-0-2 units

Examines the frameworks, governance, science, and social science of sustainability around students' summer internships, research, and other experiential learning activities. During the summer (virtually) and through the first four weeks of the fall term, students engage in small group discussions on diverse topics in sustainability, from environmental justice to corporate social responsibility. Includes global climate action negotiation simulation activities, roundtables with experts in sustainability, and/or similar opportunities for interaction with broad topics in sustainability. In the fall, students reflect on their engagement with sustainability during their summer experience, culminating in a showcase of final presentations. Students planning to take this subject must apply in the spring; consult the program website for details.

D. Plata
1.006 Tools for Sustainable Design
Prereq: None
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: U (Spring)
3-0-9 units

Conveys the principles, tools, and practice of environmentally sustainable design. Augments understanding of societal limitations to implementation of sustainable solutions, such that they may be strategically navigated. Presents the arguments and historical motivation for early evaluation of environmental impact metrics; illustrates and utilizes modern, rigorous tools for environmental optimization; and highlights national and global experts drawn from non-governmental organizations (NGOs), government, industry, and academia. Provides an overview of the principles of Green Chemistry and Engineering, Life Cycle Analysis, toxicity prediction, and basic chemical and materials flows knowledge.

D. Plata

1.008 Engineering Solutions to Societal Challenges
Prereq: None
U (Fall)
2-1-0 units

Introduces societal-scale problems that span our built infrastructure and natural environment. Faculty members discuss case studies that highlight challenges and opportunities in the areas of smart cities, cyber-physical systems (transportation, electricity, and societal networks), sustainable resource management (land, water, and energy), and resilient design under the changing environment. Students study the use of computation and data analytics in generating insights, and engage in laboratory exercises designed to promote systems thinking and problem-solving skills. Subject can count toward the 6-unit discovery-focused credit limit for first-year students.

S. Amin

1.009 Climate Change
Prereq: None
U (Fall)
1-0-2 units

Provides an introduction to global climate change processes, drivers, and impacts. Offers exposure to exciting MIT research on climate change. Students explore why and how the world should solve this global problem and how they can contribute to the solutions. Students produce a mini-project on the topic. Subject can count toward the 6-unit discovery-focused credit limit for first year students.

E. Eltahir

1.010 Probability and Causal Inference
Prereq: Calculus II (GIR)
U (Fall)
5-0-7 units

Introduces probability and causal inference with an emphasis on understanding, quantifying, and modeling uncertainty and cause-effect relationships in an engineering context. Topics in the first half include events and their probability, the total probability and Bayes’ theorems, discrete and continuous random variables and vectors, and conditional analysis. Topics in the second half include covariance, correlation, regression analysis, causality analysis, structural causal models, interventions, and hypothesis testing. Concepts illustrated through data and applications.

S. Saavedra

1.013 Senior Civil and Environmental Engineering Design
Prereq: Permission of instructor
U (Fall, Spring)
1-3-2 units
Can be repeated for credit.

Students engage with faculty around a topic of mutual interest, building on the knowledge/skills gained throughout their program. Synthesizes prior coursework and experiences through a semester-long design project and related assignments. Students form teams and work on projects advised by faculty representatives from each core in the 1-ENG curriculum. Teams demonstrate creativity in applying theories and methodologies while considering their project’s technical, environmental and social feasibility. Includes lectures on a variety of related engineering concepts, as well as scholarship and engineering practice and ethics. Provides instruction and practice in oral and written communication.

J. Carstensen

1.015[J] Design of Electromechanical Robotic Systems
Same subject as 2.017[J]
Prereq: 2.003[J], 2.016, and 2.678; Coreq: 2.671
U (Spring)
3-3-6 units. Partial Lab

See description under subject 2.017[J]. Enrollment may be limited due to laboratory capacity.

M. Triantafyllou, M. Sacarny
1.016[J] Design for Complex Environmental Issues: Building Solutions and Communicating Ideas
Same subject as 2.00C[J], EC.746[J]
Prereq: None
U (Spring)
3-1-5 units
See description under subject 2.00C[J]. Limited to first-year students.
A. W. Epstein, J. Grimm, S. L. Hsu

1.018[J] Fundamentals of Ecology
Same subject as 7.30[J], 12.031[J]
Prereq: None
U (Fall)
4-0-8 units. REST
M. Follows, D. Des Marais

1.020 Introduction to Network Models
Prereq: (1.010, 18.03, and (1.00 or 1.000)) or permission of instructor
U (Fall)
4-0-8 units
Provides an introduction to complex networks, their structure, and function, with examples from engineering, applied mathematics and social sciences. Topics include spectral graph theory, notions of centrality, random graph models, contagion phenomena, cascades and diffusion, and opinion dynamics.
A. Jadbabaie

1.021 Introduction to Modeling and Simulation
Engineering School-Wide Elective Subject.
Offered under: 1.021, 3.021, 10.333, 22.00
Prereq: 18.03, 3.016B, or permission of instructor
U (Spring)
4-0-8 units. REST
See description under subject 3.021.
M. Buehler, R. Freitas

1.022 Machine Learning for Sustainable Systems
Prereq: (1.000 and 1.010) or permission of instructor; _Coreq: 6.402_
U (Spring)
1-1-4 units
Credit cannot also be received for 1.224, 2.161, 2.169, 3.100[J], 3.322[J], 10.402[J], 20.301[J], 20.401[J], 22.042, 22.42
Building on core material in 6.402, emphasizes the design and operation of sustainable systems. Illustrates how to leverage heterogeneous data from urban services, cities, and the environment, and apply machine learning methods to evaluate and/or improve sustainability solutions. Provides case studies from various domains, such as transportation and urban mobility, energy and water resources, environmental monitoring, infrastructure sensing and control, climate adaptation, and disaster resilience. Projects focus on using machine learning to identify new insights or decisions that can help engineer sustainability in societal-scale systems. Students taking graduate version complete additional assignments. Students cannot receive credit without simultaneous completion of the core subject 6.402.
S. Amin

1.032 Advanced Soil Mechanics
Subject meets with 1.361
Prereq: 1.037
U (Spring)
3-0-6 units
Covers topics in the characterization and nature of soils as multiphase materials; the principle of effective stress; hydraulic conductivity and groundwater seepage; shear strength and stability analyses; stress-deformation properties, consolidation theory and calculation of settlements for clays and sands. Students taking graduate version complete additional assignments.
A. Whittle
1.035 Mechanics of Materials
Subject meets with 1.535
Prereq: 1.050 or permission of instructor
U (Spring)
3-2-7 units
Introduces the structure and properties of natural and manufactured building materials, including rheology, elasticity, fracture mechanics, viscoelasticity and plasticity. Emphasizes effects of molecular and nanoscopic structure and interactions on macroscopic material behavior. Focuses on design of natural and structural materials. Discusses material aspects of sustainable development. Presents principles of experimental characterization techniques. Explores microscopic and macroscopic mechanical approaches to characterize structure and properties of materials. In laboratory and in-field sessions, students design and implement experimental approaches to characterize natural and building materials and study their interaction with the environment. Students taking graduate version complete additional assignments.

F. J. Ulm

1.036 Structural Mechanics and Design
Prereq: 1.035 and 1.050
U (Spring)
3-1-8 units
Familiarizes students with structural systems, loads, and basis for structural design, including analysis of determinate and indeterminate structures (trusses, beams, frames, cables, and arches). Covers mechanical properties of construction materials, including concrete, steel, and composites. Studies concrete and steel structures through application of principles of structural mechanics. Evaluates behavior and design of reinforced concrete structural elements using limit strength design and serviceability principles. Introduces plastic analysis and design, and load factor design of structural steel members and connections. Team project emphasizes material covered through behavior and problem-based learning.

O. Buyukozturk

1.037 Soil Mechanics and Geotechnical Design
Prereq: None
U (Spring)
3-2-7 units
Provides an introduction to soils as engineering materials, including classification and characterization, pore pressures and seepage, principles of effective stress and consolidation, deformation, and shear strength properties. Surveys analysis methods, with a focus on slope stability, limiting earth pressures and bearing capacity, and settlements of foundations. Examines applications in the design of earth dams, earth retaining systems, foundations, and staged construction processes.

A. Whittle

1.041 Transportation: Foundations and Methods
Subject meets with 1.200[J], 11.544[J]
Prereq: (1.010 and (1.00 or 1.000)) or permission of instructor
U (Fall)
3-1-8 units
Covers core analytical and numerical methods for modeling, planning, operations, and control of transportation systems. Traffic flow theory, vehicle dynamics and behavior, numerical integration and simulation, graphical analysis. Properties of delays, queuing theory. Resource allocation, optimization models, linear and integer programming. Autonomy in transport, Markov Decision Processes, reinforcement learning, deep learning. Applications drawn broadly from land, air, and sea transport; private and public sector; transport of passengers and goods; futuristic, modern, and historical. Hands-on computational labs. Linear algebra background is encouraged but not required. Students taking graduate version complete additional assignments.

C. Wu

1.050 Solid Mechanics
Prereq: Physics I (GIR); Coreq: Calculus II (GIR)
U (Fall)
3-2-7 units. REST
Basic principles of mechanics to describe the behavior of materials, structures and fluids. Dimensional analysis, conservation of momentum, static equilibrium, stress and stress states, hydrostatics, moments and forces. Material and structural strength criteria. Deformation and strain. Conservation of energy in solid mechanics, elasticity and elasticity bounds. Energy dissipation, plasticity and fracture. Open-ended geotechnical and structural engineering studio exercises and experiments with natural and man-made physical systems.

F. J. Ulm
1.053[J] Dynamics and Control I
Same subject as 2.003[J]
Prereq: Physics II (GIR); Coreq: 2.087 or 18.03
U (Fall, Spring)
4-1-7 units. REST

See description under subject 2.003[J].
J. K. Vandiver, N. C. Makris, N. M. Patrikalakis, T. Peacock, D. Gossard, K. Turitsyn

1.054 Mechanics and Design of Concrete Structures
Subject meets with 1.541
Prereq: 1.035
U (Fall)
3-0-9 units

Studies strength and deformation of concrete under various states of stress; failure criteria; concrete plasticity; and fracture mechanics concepts. Topics include fundamental behavior of reinforced concrete structural systems and their members; basis for design and code constraints; high-performance concrete materials and their use in innovative design solutions; and yield line theory for slabs. Uses behavior models and nonlinear analysis. Covers complex systems, including bridge structures, concrete shells, and containments. Students taking graduate version complete additional assignments.
O. Buyukozturk

1.056[J] Introduction to Structural Design
Same subject as 4.440[J]
Subject meets with 4.462
Prereq: Calculus II (GIR)
U (Spring)
3-3-6 units. REST

See description under subject 4.440[J].
Consult J. Carstensen

1.057 Heritage Science and Technology
Prereq: Permission of instructor
U (Fall)
2-3-4 units

Interdisciplinary, applied introduction to ancient materials and technology. Students explore materials sustainability and durability from multiple perspectives, using ancient societies, architecture and building materials as time-proven examples of innovation in construction. Involves discussions of peer-reviewed literature and cultural heritage, project formulation, data collection, and data analysis. Culminates in presentation of research project(s), and write-ups of the research in manuscript form.
A. Masic

1.058 Structural Dynamics
Subject meets with 1.581[J], 2.060[J], 16.221[J]
Prereq: 18.03 or permission of instructor
Acad Year 2021-2022: U (Fall)
Acad Year 2022-2023: Not offered
3-0-9 units

Examines response of structures to dynamic excitation: free vibration, harmonic loads, pulses and earthquakes. Covers systems of single- and multiple-degree-of-freedom, up to the continuum limit, by exact and approximate methods. Includes applications to buildings, ships, aircraft and offshore structures. Students taking graduate version complete additional assignments.
T. Cohen

1.060 Fluid Mechanics
Prereq: None
U (Spring)
4-2-6 units
Credit cannot also be received for 1.060A

B. Marelli

1.060A Fluid Mechanics I
Prereq: None. Coreq: 18.03; or permission of instructor
U (Spring; first half of term)
2-1-3 units
Credit cannot also be received for 1.060

B. Marelli
1.061 Transport Processes in the Environment
Subject meets with 1.61
Prereq: 1.060
U (Fall)
3-1-8 units
Credit cannot also be received for 1.061A
Introduction to mass transport in environmental flows, with emphasis on river and lake systems. Covers derivation and solutions to the differential form of mass conservation equations, hydraulic models for environmental systems, residence time distribution, molecular and turbulent diffusion for continuous and point sources, boundary layers, dissolution, bed-water exchange, air-water exchange, and particle transport. Meets with 1.061A first half of term. Students taking graduate version complete additional assignments.
H. M. Nepf

1.061A Transport Processes in the Environment I
Prereq: 1.060A
U (Fall; first half of term)
2-1-3 units
Credit cannot also be received for 1.061, 1.61
Introduction to mass transport in environmental flows. Covers derivation and solution to the differential form of mass conservation, hydraulic models for environmental systems, residence time distribution, and molecular and turbulent diffusion for continuous and point sources. Meets with 1.061 first half of term.
H. Nepf

1.062[J] Nonlinear Dynamics: Continuum Systems
Same subject as 12.207[J], 18.354[J]
Subject meets with 18.354I
Prereq: Physics II (GIR) and (18.03 or 18.032)
U (Spring)
3-0-9 units
See description under subject 18.354[J].
O. Kodio

1.063 Fluids and Diseases
Subject meets with 1.631[J], 2.250[J], HST.537[J]
Prereq: 18.03 or permission of instructor
U (Spring)
3-3-6 units
Designed for students in engineering and the quantitative sciences who want to explore applications of mathematics, physics and fluid dynamics to infectious diseases and health; and for students in epidemiology, environmental health, ecology, medicine, and systems modeling seeking to understand physical and spatial modeling, and the role of fluid dynamics and physical constraints on infectious diseases and pathologies. The first part of the class reviews modeling in epidemiology and data collection, and highlights concepts of spatial modeling and heterogeneity. The remainder highlights multi-scale dynamics, the role of fluids and fluid dynamics in physiology, and pathology in a range of infectious diseases. The laboratory portion entails activities aimed at integrating applied learning with theoretical concepts discussed in lectures and covered in problem sets. Students taking graduate version complete additional assignments.
L. Bourouiba

1.068 Nonlinear Dynamics and Turbulence
Subject meets with 1.686[J], 2.033[J], 18.358[J]
Prereq: 1.060A
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: U (Spring)
3-2-7 units
Reviews theoretical notions of nonlinear dynamics, instabilities, and waves with applications in fluid dynamics. Discusses hydrodynamic instabilities leading to flow destabilization and transition to turbulence. Focuses on physical turbulence and mixing from homogeneous isotropic turbulence. Also covers topics such as rotating and stratified flows as they arise in the environment, wave-turbulence, and point source turbulent flows. Laboratory activities integrate theoretical concepts covered in lectures and problem sets. Students taking graduate version complete additional assignments.
L. Bourouiba
1.070A[J] Introduction to Hydrology and Water Resources
Same subject as 12.320A[J]
Prereq: 1.060A; Coreq: 1.061A and 1.106
U (Fall; first half of term)
2-0-4 units
Water in the environment; Water resource systems; The hydrologic cycle at its role in the climate system; Surface water and energy balance; evaporation and transpiration through vegetation; Precipitation formation, infiltration, storm runoff, and flood processes; Groundwater aquifers, subsurface flow and the hydraulics of wells.
D. Entekhabi

1.070B[J] Introduction to Hydrology Modeling
Same subject as 12.320B[J]
Prereq: 1.070A[J]
U (Fall; second half of term)
2-0-4 units
Develops understanding of numerical modeling of aquifers, groundwater flow and contaminant transport, as well as uncertainty and risk analysis for water resources.
D. Entekhabi

1.071[J] Global Change Science
Same subject as 12.300[J]
Prereq: 18.03
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: U (Fall)
3-0-9 units
Introduces the basic relevant principles and concepts in atmospheric physics, climate dynamics, biogeochemistry, and water and energy balance at the land-atmosphere boundary, through an examination of two current problems in the global environment: carbon dioxide and global warming; and tropical deforestation and regional climate. An introduction to global environmental problems for students in basic sciences and engineering.
E. A. B. Eltahir

1.072 Groundwater Hydrology
Subject meets with 1.72
Prereq: 1.061
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: U (Fall)
3-1-8 units
Presents the fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. Topics include Darcy equation, flow nets, mass conservation, the aquifer flow equation, heterogeneity and anisotropy, storage properties, regional circulation, unsaturated flow, recharge, stream-aquifer interaction, well hydraulics, flow through fractured rock, numerical models, groundwater quality, contaminant transport processes, dispersion, decay, and adsorption. Includes laboratory and computer demonstrations. Students taking graduate version complete additional assignments.
C. Harvey

1.073 Introduction to Environmental Data Analysis
Prereq: 1.010
U (Fall)
2-0-4 units
Covers theory and practical methods for the analysis of univariate data sets. Topics include basics of statistical inference, analysis of trends and stationarity; Gaussian stochastic processes, covariance and correlation analysis, and introduction to spectral analysis. Students analyze data collected from the civil, environment, and systems domains.
E. Eltahir

1.074 Multivariate Data Analysis
Prereq: 1.010
U (Fall)
2-0-4 units
Introduction to statistical multivariate analysis methods and their applications to analyze data and mathematical models. Topics include sampling, experimental design, regression analysis, specification testing, dimension reduction, categorical data analysis, classification and clustering.
Staff
1.075 Water Resource Systems
Subject meets with 1.731
Prereq: 1.070B[J] or permission of instructor
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: U (Spring)
3-0-9 units
Surveys optimization and simulation methods for management of water resources. Case studies illustrate linear, quadratic, nonlinear programming and real-time control. Applications include river basin planning, irrigation and agriculture, reservoir operations, capacity expansion, assimilation of remote sensing data, and sustainable resource development. Students taking graduate version complete additional assignments.
D. McLaughlin

1.077 Land, Water, Food, and Climate (New)
Subject meets with 1.74
Prereq: None
U (Fall)
Not offered regularly; consult department
3-0-6 units
Examines land, water, food, and climate in a changing world, with an emphasis on key scientific questions about the connections between natural resources and food production. Students read and discuss papers on a range of topics, including water and land resources, climate change, demography, agroecology, biotechnology, trade, and food security. Supporting information used for background and context includes data and analysis based on government reports, textbooks, and longer peer-reviewed documents not included in the readings. Provides a broad perspective on one of the defining global issues of this century. Students carry out exercises with relevant data sets, write critiques of key issues, and complete a focused term project. Completion of MIT Science Core or equivalent recommended but not required. Students taking graduate version complete additional assignments.
D. McLaughlin

1.079 Rock-on-a-Chip: Microfluidic Technology for Visualization of Flow in Porous Media
Subject meets with 1.79
Prereq: (Physics II (GIR), 1.050, 1.060, and (1.00, 1.000, or 6.0002)) or permission of instructor
U (Fall)
Not offered regularly; consult department
2-2-8 units
Introduces an innovative approach that uses 3D printing and microfluidic technology to characterize and visualize flow in porous media like soils and rocks. Covers single-phase flow and transport (laser fluorescence, particle image velocimetry), capillarity and wettability, multiphase flow, fracturing of granular media. In lab, students work in groups to unravel the physics and chemistry of flow in porous media, with applications to energy and environmental processes, such as groundwater resources, energy recovery, and carbon sequestration. Students taking graduate version complete additional assignments. Enrollment limited; preference to Course 1 majors and Energy Studies minors.
R. Juanes

1.080 Environmental Chemistry
Prereq: Chemistry (GIR)
U (Spring)
4-0-8 units
Introduces environmental chemistry with a focus on using thermodynamics to understand processes governing chemical behaviors in natural and engineered systems. Topics include vaporization, gas-solution partitioning, salt and mineral dissolution/precipitation, acid-base chemistry, metal complexation, adsorption via ion exchange, and absorption within natural organic matter and organism tissues. Process formulations are combined in box models to compare with observations. Covers intermediate topics in environmental chemistry requiring kinetics to understand processes governing biogeochemical behaviors in natural and engineered systems. Topics include atmospheric oxidations, radiochemistry, mass transfers, and catalysis. Combines an introduction to geochemical modeling, using transport and transformation process formulations in chemical fate models, to compare with observations of concentrations as a function of space and time.
P. Gschwend

1.081[J] Environmental Cancer Risks, Prevention, and Therapy
Same subject as 20.104[J]
Prereq: Biology (GIR), Calculus II (GIR), and Chemistry (GIR)
U (Spring)
3-0-9 units
See description under subject 20.104[J].
W. Thilly, R. McCunney
1.082 Ethics for Engineers
Engineering School-Wide Elective Subject.
Offered under: 1.082, 2.900, 6.904, 10.01, 16.676, 22.014
Subject meets with 6.9041, 20.005
Prereq: None
U (Fall, Spring)
2-0-4 units
See description under subject 10.01.
D. A. Lauenenberger, B. L. Trout

1.084 Applied Microbiology
Same subject as 20.106
Prereq: Biology (GIR) and Chemistry (GIR)
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: U (Fall)
3-0-9 units
See description under subject 20.106.
J. C. Niles, K. Ribbeck

1.085 Air Pollution and Atmospheric Chemistry
Same subject as 12.336
Prereq: 18.03
U (Fall)
3-0-9 units
Provides a working knowledge of basic air quality issues, with
emphasis on a multidisciplinary approach to investigating the
sources and effects of pollution. Topics include emission sources;
atmospheric chemistry and removal processes; meteorological
phenomena and their impact on pollution transport at local to
global scales; air pollution control technologies; health effects; and
regulatory standards. Discusses regional and global issues, such
as acid rain, ozone depletion and air quality connections to climate
change.
C. Heald

1.088 Genomics and Evolution of Infectious Disease
Subject meets with 1.881, HST.538
Prereq: Biology (GIR) and (1.000 or 6.0002)
U (Spring)
3-0-9 units
Provides a thorough introduction to the forces driving infectious
disease evolution, practical experience with bioinformatics and
computational tools, and discussions of current topics relevant to
public health. Topics include mechanisms of genome variation in
bacteria and viruses, population genetics, outbreak detection and
tracking, strategies to impede the evolution of drug resistance,
emergence of new disease, and microbiomes and metagenomics.
Discusses primary literature and computational assignments.
Students taking graduate version complete additional assignments.
T. Lieberman

1.089 Earth's Microbiomes
Subject meets with 1.89
Prereq: Biology (GIR)
U (Spring)
3-0-9 units
Provides a general introduction to the diverse roles of
microorganisms in natural and artificial environments. Topics include
energetics and growth, evolution and gene flow, population and
community dynamics, water and soil microbiology, biogeochemical
cycling, and microorganisms in biodeterioration and bioremediation.
7.014 recommended as prerequisite; students taking graduate
version complete additional assignments.
M. Polz, O. Cordero

1.091 Traveling Research Environmental eXperience (TREX): Fieldwork
Prereq: Permission of instructor
U (IAP)
1-2-0 units
Introduction to environmental fieldwork and research, with a
focus on data collection and analysis. Subject spans three weeks,
including two weeks of fieldwork, and involves one or more projects
central to environmental science and engineering. Location varies
year-to-year, though recent projects have focused on the island of
Hawaii. Limited to Course 1 students.
D. Des Marais
1.092 Traveling Research Environmental eXperience (TREX): Fieldwork Analysis and Communication
Prereq: 1.091
U (Spring)
Not offered regularly; consult department
3-5 units
Building on fieldwork and research conducted in 1.091 over IAP, students focus on interpretation of results and research in support of the fieldwork, with instruction and practice in oral and written communication. Includes a survey of the relevant peer-reviewed literature; laboratory measurements of field samples and/or instrumental response; data analysis and interpretation; and dissemination of results. Culminates in presentation of research project(s), and write-ups of the research in manuscript form. Sequence of 1.091 and 1.092 must be completed in consecutive terms. Limited to Course 1 majors and minors.
B. Kocar

1.096[J] Design of Sustainable Polymer Systems (New)
Same subject as 10.496[J]
Prereq: (10.213 and 10.301) or permission of instructor
U (Fall)
3-0-9 units
See description under subject 10.496[J]. Preference to juniors and seniors in Courses 10, 1, and 2.
B. D. Olsen, D. Plata

1.097 Introduction to Civil and Environmental Engineering Research
Prereq: None
U (IAP)
1-5-0 units
Students work one-on-one with a CEE graduate student or postdoc mentor on a project that aligns with their research interests. Previous project topics include transportation networks, structural mechanics, sediment transport, climate science, and microbial ecology. Includes weekly seminar-style talks. Intended for first-year students.
Staff

Undergraduate Laboratory Subjects

1.101 Introduction to Civil and Environmental Engineering Design I
Prereq: None
U (Fall)
0-4-2 units. Partial Lab
Introduces the creative design process in the context of civil and environmental engineering. Emphasizes the idea-to-product trajectory: identification of a design question/problem, evaluation of requirements/constraints set by the application and/or client, and implementation into a concrete product deliverable. Fosters active learning through open-ended, student-driven projects in which teams apply the design process to a design/planning problem. In labs, students design and build a working model or an experiment that addresses a specific engineering aspect of their project. In addition to written and oral presentations, students start a web-based portfolio. Satisfies 6 units of Institute Laboratory credit. Enrollment limited; preference to Course 1 majors and minors.
T. Cohen

1.102 Introduction to Civil and Environmental Engineering Design II
Prereq: 1.101 and (Physics II (GIR) or Coreq: 1.060)
U (Spring)
1-3-2 units. Partial Lab
Project-oriented subject focused on the principles and practice of engineering design. Emphasis on construction and deployment of designs, plus performance testing used to determine if designs behave as expected. Includes a major team project involving use and application of sensors, as well as environmentally-friendly, and energy-effective or energy-producing designs. Develops practical, teamwork and communication skills. Satisfies 6 units of Institute Laboratory credit. Enrollment limited; preference to Course 1 majors and minors.
A. Masic
1.103[J] Infrastructure Design for Climate Change (New)
Same subject as 11.173[J]
Subject meets with 1.303[J], 11.273[J]
Prereq: Permission of instructor
U (Fall)
0·2·4 units

In this team-oriented, project-based subject, students work to find technical solutions that could be implemented to mitigate the effects of natural hazards related to climate change, bearing in mind that any proposed measures must be appropriate in a given region’s socio-political-economic context. Students are introduced to a variety of natural hazards and possible mitigation approaches as well as principles of design, including adaptable design and design for failure. Students select the problems they want to solve and develop their projects. During the term, officials and practicing engineers of Cambridge, Boston, Puerto Rico, and MIT Facilities describe their approaches. Student projects are documented in a written report and oral presentation. Students taking graduate version complete additional assignments. Enrollment limited; preference to juniors and seniors.

H. Einstein

1.106 Environmental Fluid Transport Processes and Hydrology Laboratory
Prereq: None. Coreq: 1.061A
U (Fall)
0·4·2 units. Partial Lab

Fundamentals of mass transport and flow measurement in environmental systems. Topics include analysis of measurement uncertainty, diffusion, dispersion, air-water exchange, dissolution, and porous media flow. Develops communication skills through the writing and revision of formal lab reports and short oral presentations. Satisfies 6 units of Institute Laboratory credit. Enrollment limited; preference to 1-ENG majors.

H. Nepf

1.107 Environmental Chemistry Laboratory
Prereq: None. Coreq: 1.080
U (Spring)
0·4·2 units. Partial Lab

Laboratory and field techniques in environmental engineering and its application to the understanding of natural and engineered ecosystems. Exercises involve data collection and analysis covering a range of topics, spanning all major domains of the environment (air, water, soils, and sediments), and using a number of modern environmental analytical techniques. Instruction and practice in written and oral communication provided. Concludes with a student-designed final project, which is written up in the form of a scientific manuscript. Satisfies 6 units of Institute Laboratory credit. Enrollment limited; preference to 1-ENG.

Staff

1.125 Architecting and Engineering Software Systems
Prereq: None
G (Fall)
3·0·9 units

Software architecting and design of cloud-based software-intensive systems. Targeted at future engineering managers who must understand both the business and technical issues involved in architecting enterprise-scale systems. Student teams confront technically challenging problems. Introduces modern dev-ops concepts and cloud-computing, including cloud orchestration for machine learning. Also discusses cyber-security issues of key management and use of encrypted messaging for distributed ledgers, e.g., blockchain. Students face problem solving in an active learning lab setting, completing in-class exercises and weekly assignments leading to a group project. Some programming experience preferred. Enrollment limited.

J. Williams

1.128[J] Computational Geometry
Same subject as 2.089[J]
Prereq: Permission of instructor
G (Spring)
Not offered regularly; consult department
3·0·9 units

See description under subject 2.089[J].

N. M. Patrikalakis, D. C. Gossard
Engineering Analysis Methods

1.138[J] Wave Propagation
Same subject as 2.062[J], 18.376[J]
Prereq: 2.003[J] and 18.075
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Spring)
3.0-9 units
See description under subject 2.062[J].
T. R. Akylas, R. R. Rosales

Engineering Systems, Economics, and Optimization

1.142[J] Robust Modeling, Optimization, and Computation
Same subject as 15.094[J]
Prereq: 18.06 or permission of instructor
G (Spring)
4.0-8 units
See description under subject 15.094[J].
D. Bertsimas

1.146 Engineering Systems Analysis for Design
Engineering School-Wide Elective Subject.
Offered under: 1.146, 16.861, IDS.332
Prereq: Permission of instructor
G (Fall)
3.0-9 units
Credit cannot also be received for IDS.333
See description under subject IDS.332. Enrollment limited.
R. de Neufville

1.147 Startup Sustainable Tech
Subject meets with 1.004
Prereq: None
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Spring)
3.0-9 units
Provides a practical introduction to key innovations in the fields of civil and environmental engineering that are currently having an impact. Structured around the different aspects of starting and maintaining a company in the first years after incorporation. Key topics include idea protection, team formation, and seed funds. Guest speakers who are involved in the startup process or are successful entrepreneurs present. Under faculty supervision, students work on case studies in areas such as renewable energy, sustainable design, food security, climate change, new infrastructures, and transportation. Concludes with the writing of a SBIR/STTR-type grant or business model. Students taking graduate version complete additional assignments.
B. Marelli

Transportation

1.200[J] Transportation: Foundations and Methods
Same subject as 11.544[J]
Subject meets with 1.041
Prereq: 1.000, (1.00 and 1.010), or permission of instructor
G (Fall)
3.1-8 units
Covers core analytical and numerical methods for modeling, planning, operations, and control of transportation systems. Traffic flow theory, vehicle dynamics and behavior, numerical integration and simulation, graphical analysis. Properties of delays, queueing theory. Resource allocation, optimization models, linear and integer programming. Autonomy in transport, Markov Decision Processes, reinforcement learning, deep learning. Applications drawn broadly from land, air, and sea transport; private and public sector; transport of passengers and goods; futuristic, modern, and historical. Hands-on computational labs. Linear algebra background is encouraged but not required. Students taking graduate version complete additional assignments.
C. Wu
1.201[J] Transportation Systems Analysis: Demand and Economics
Same subject as 11.545[J]
Prereq: Permission of instructor
G (Spring)
Not offered regularly; consult department
3-1-8 units
Covers the key principles governing transportation systems planning and management. Introduces the microeconomic concepts central to transportation systems. Topics include economic theories of the firm, consumer, and market, demand models, discrete choice analysis, cost models and production functions, and pricing theory. Applications to transportation systems - including congestion pricing, technological change, resource allocation, market structure and regulation, revenue forecasting, public and private transportation finance, and project evaluation - cover urban passenger transportation, freight, maritime, aviation, and intelligent transportation systems.

Staff

1.202 Demand Modeling
Prereq: None
G (Spring)
3-3-6 units
Theory and application of modeling and statistical methods for analysis and forecasting of demand for facilities, services, and products. Topics include: review of probability and statistics, estimation and testing of linear regression models, theory of individual choice behavior, derivation, estimation, and testing of discrete choice models, estimation under various sample designs and data collection methods (including revealed and stated preferences), sampling, aggregate and disaggregate forecasting methods, iterative proportional fitting, and related methods. Introductions to advanced topics are covered including Bayesian estimation and combining discrete choice analysis and machine learning. Lectures reinforced with case studies, which require specification, estimation, testing, and analysis of models using data sets from actual applications. Lab hours are for workbook case studies.

M. Ben-Akiva

Same subject as 15.073[J], IDS.700[J]
Prereq: 6.041B or 18.600
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Fall)
3-0-9 units
A vigorous use of probabilistic models to approximate real-life situations in Finance, Operations Management, Economics, and Operations Research. Emphasis on how to develop a suitable probabilistic model in a given setting and, merging probability with statistics, and on how to validate a proposed model against empirical evidence. Extensive treatment of Monte Carlo simulation for modeling random processes when analytic solutions are unattainable.

A. Barnett

1.205 Advanced Demand Modeling
Prereq: 1.202 or permission of instructor
G (Fall)
3-0-9 units
Advanced theories and applications of models for analysis and forecasting of users’ behavior and demand for facilities, services, and products. Topics vary each year and typically include linear and nonlinear latent variable models, including structural equations and latent class models; estimation techniques with multiple data sources; joint discrete and continuous choice models; dynamic models; analysis of panel data; analysis of complex choices; estimation and forecasting with large choice sets; multidimensional probabilistic choice models; advanced choice models, including probit, logit mixtures, treatment of endogeneity, hybrid choice models, hidden Markov models, Monte Carlo simulation, Bayesian methods, survey design, sampling, model transferability, and use of stated preferences data. Term paper required.

M. Ben-Akiva

1.208 Resilient Networks
Prereq: 6.431 or 15.093[J]
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Fall)
3-0-9 units
Network and combinatorial optimization methods and game-theoretic modeling for resilience of large-scale networks against disruptions, both random and adversarial. Topics include network resilience metrics, interdiction and security games, strategic resource allocation and network design, cascades in networks, routing games and network equilibrium models, reliability and security assessment of networked systems, and incentive problems in network security. Applications to transportation, logistics, supply chain, communication, and electric power systems.

S. Amin
1.224 Machine Learning for Sustainable Systems
Subject meets with 1.024
Prereq: (6.041B and 18.06) or permission of instructor; Coreq: 6.482
G (Spring)
1-1-4 units
Credit cannot also be received for 1.024, 2.161, 2.169, 3.100[J], 3.322[J], 10.402[J], 10.602[J], 20.301[J], 20.401[J], 22.042, 22.42
Building on core material in 6.482, emphasizes the design and operation of sustainable systems. Students learn to leverage heterogeneous data from urban services, cities, and the environment, and apply machine learning methods to evaluate and/or improve sustainability solutions. Provides case studies from various domains such as transportation and mobility, energy and water resources, environmental monitoring, infrastructure sensing and control, climate adaptation, and disaster resilience. Projects focus on using machine learning to identify new insights or decisions to help engineer sustainability in societal-scale systems. Students taking graduate version complete additional assignments. Students cannot receive credit without simultaneous completion of the core subject 6.482.
S. Amin

1.231[J] Planning and Design of Airport Systems (New)
Same subject as 16.781[J], IDS.670[J]
Prereq: None
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Fall)
3-0-9 units
See description under subject 16.781[J].
R. de Neufville, A. R. Odoni

1.232[J] The Airline Industry
Same subject as 15.054[J], 16.71[J]
Prereq: None
G (Fall)
3-0-9 units
See description under subject 16.71[J].
P. P. Belobaba, H. Balakrishnan, A. I. Barnett, R. J. Hansman, T. A. Kochan

1.233[J] Air Transportation Operations Research
Same subject as 16.763[J]
Prereq: 6.431, 15.093[J], 16.71[J], or permission of instructor
Acad Year 2021-2022: G (Spring)
Acad Year 2022-2023: Not offered
3-0-9 units
See description under subject 16.763[J].
H. Balakrishnan, C. Barnhart, P. P. Belobaba

1.234[J] Airline Management
Same subject as 16.75[J]
Prereq: 16.71[J]
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Spring)
3-0-9 units
See description under subject 16.75[J].
P. P. Belobaba

1.251[J] Comparative Land Use and Transportation Planning
Same subject as 11.526[J]
Prereq: Permission of instructor
G (Spring)
3-0-9 units
See description under subject 11.526[J].
C. Zegers

1.253[J] Transportation Policy, the Environment, and Livable Communities
Same subject as 11.543[J]
Prereq: Permission of instructor
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Spring)
3-0-9 units
See description under subject 11.543[J].
J. Coughlin

1.260[J] Logistics Systems
Same subject as 15.770[J], IDS.730[J], SCM.260[J]
Subject meets with SCM.271
Prereq: Permission of instructor
G (Fall)
3-0-9 units
See description under subject SCM.260[J].
Y. Sheffi, C. Caplice

1.261[J] Case Studies in Logistics and Supply Chain Management
Same subject as 15.771[J], SCM.261[J]
Prereq: Permission of instructor
G (Spring)
2-0-4 units
See description under subject SCM.261[J].
J. Byrnes
1.263[J] Urban Last-Mile Logistics
Same subject as 11.263[J], SCM.293[J]
Prereq: SCM.254 or permission of instructor
G (Spring; second half of term)
2-0-4 units
See description under subject SCM.293[J].
M. Winkenbach

1.266 Supply Chain and Demand Analytics
Prereq: 15.761 or SCM.260[J]
G (Spring; first half of term)
2-0-4 units
Focuses on effective supply chain and demand analytics for companies that operate globally, with emphasis on how to plan and integrate supply chain components into a coordinated system. Exposes students to concepts, models and machine learning, and optimization-based algorithms important in supply chain planning, with emphasis on supply chain segmentation, inventory optimization, supply and demand coordination, supply chain resiliency, and flexibility.
D. Simchi-Levi

1.267 Statistical Learning in Operations
Prereq: None
Acad Year 2021-2022: G (Spring)
Acad Year 2022-2023: Not offered
3-0-9 units
Focuses on applications of machine learning methods, combined with OR techniques, to study a variety of operational problems — from supply chain through revenue management all the way to healthcare management. The class will bring together two different disciplines, Operations Research and Computer Science, to develop both theory and effective techniques for dealing with operational problems.
D. Simchi-Levi

1.27 Studies in Transportation
Prereq: Permission of instructor
G (Fall, Spring, Summer)
Units arranged
Can be repeated for credit.
Individual advanced study of a topic in transportation systems, selected with the approval of the instructor.
Staff

Same subject as 15.764[J], IDS.250[J]
Prereq: (6.436[J] and (6.251[J] or 6.251[J])) or permission of instructor
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Spring)
3-0-9 units
Can be repeated for credit.
See description under subject 15.764[J].
D. Simchi-Levi, N. Trichakis, K. Zheng

1.273[J] Supply Chain: Inventory Analytics
Same subject as 15.762[J], IDS.735[J]
Prereq: 15.761 or SCM.260[J]
G (Spring; first half of term)
2-0-4 units
See description under subject 15.762[J].
S. Graves, N. Trichakis, S. Willems

1.274[J] Supply Chain: Capacity Analytics
Same subject as 15.763[J], IDS.736[J]
Prereq: 15.761, 15.778, or SCM.260[J]
G (Spring; second half of term)
2-0-4 units
See description under subject 15.763[J].
S. Graves, N. Trichakis, S. Willems

1.275[J] Business and Operations Analytics
Same subject as IDS.305[J]
Prereq: Permission of instructor
G (Spring; first half of term)
2-0-4 units
See description under subject IDS.305[J].
D. Simchi-Levi

1.284[J] Analyzing and Accounting for Regional Economic Change
Same subject as 11.481[J]
Prereq: 14.03 and 14.04
G (Spring)
Not offered regularly; consult department
3-0-9 units
See description under subject 11.481[J].
Staff
1.285[J] Regional Socioeconomic Impact Analyses and Modeling
Same subject as 11.482[J]
Prereq: 11.481[J] or permission of instructor
G (Fall)
Not offered regularly; consult department
2-1-9 units
See description under subject 11.482[J].
K. R. Polenske

Same subject as 11.477[J]
Subject meets with 11.203
Prereq: 11.203, 14.01, or permission of instructor
Acad Year 2021-2022: G (Fall)
Acad Year 2022-2023: Not offered
3-0-9 units
See description under subject 11.477[J].
D. Hsu

Geoenvironmental and Geotechnical Engineering

1.303[J] Infrastructure Design for Climate Change (New)
Same subject as 11.273[J]
Subject meets with 1.103[J], 11.173[J]
Prereq: Permission of instructor
G (Fall)
0-2-4 units
In this team-oriented, project-based subject, students work to find technical solutions that could be implemented to mitigate the effects of natural hazards related to climate change, bearing in mind that any proposed measures must be appropriate in a given region's socio-political-economic context. Students are introduced to a variety of natural hazards and possible mitigation approaches as well as principles of design, including adaptable design and design for failure. Students select the problems they want to solve and develop their projects. During the term, officials and practicing engineers of Cambridge, Boston, Puerto Rico, and MIT Facilities describe their approaches. Student projects are documented in a written report and oral presentation. Students taking graduate version complete additional assignments.
H. Einstein

1.322 Soil Behavior
Prereq: 1.361
Acad Year 2021-2022: G (Spring)
Acad Year 2022-2023: Not offered
4-0-8 units
Detailed study of soil properties with emphasis on interpretation of field and laboratory test data and their use in soft-ground construction engineering. Includes: consolidation and secondary compression; basic strength principles; stress-strain strength behavior of clays, emphasizing effects of sample disturbance, anisotropy, and strain rate; strength and compression of granular soils; and engineering properties of compacted soils. Some knowledge of field and laboratory testing assumed; 1.37 desirable.
A. J. Whittle

1.351 Theoretical Soil Mechanics
Prereq: 1.361
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Spring)
3-0-9 units
Presentation of fundamental theories in soil mechanics; field equations of linear elasticity and solutions of boundary value problems. Introduction to finite element method. Steady and transient flow in porous media; applications in confined and unconfined seepage, and one-dimensional consolidation. Introduction to poro-elasticity. Yielding and failure of soils; plasticity theory and limit analyses, with examples for bearing capacity and slope stability. Cam Clay models and critical state theory of soil behavior.
A. J. Whittle

1.361 Advanced Soil Mechanics
Subject meets with 1.032
Prereq: 1.036
G (Fall; first half of term)
3-0-6 units
Covers topics in the characterization and nature of soils as multi-phase materials; the principle of effective stress; hydraulic conductivity and groundwater seepage; shear strength and stability analyses; stress-deformation properties, consolidation theory and calculation of settlements for clays and sands.
A. Whittle
1.364 Advanced Geotechnical Engineering
Prereq: 1.361
G (Fall; second half of term)
3-0-6 units
Methodology for site characterization and geotechnical aspects of the design and construction of foundation systems. Topics include site investigation (with emphasis on in situ testing), shallow (footings and raftings) and deep (piles and caissons) foundations, excavation support systems, groundwater control, slope stability, soil improvement (compaction, soil reinforcement, etc.), and construction monitoring.
A. Whittle

1.383 Underground Construction
Prereq: 1.361, 1.38, or permission of instructor
Acad Year 2021-2022: G (Spring)
Acad Year 2022-2023: Not offered
3-0-6 units
Provides familiarization with the most important aspects of planning, analysis, design, and construction of underground structures in soil and rock. Covers detailed engineering analysis and design, and major aspects of construction techniques and construction planning. Discusses general planning and economic problems. Includes a major design project involving all aspects of underground construction.
H. H. Einstein

1.381 Rock Mechanics
Prereq: 1.361 and 1.38
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Spring)
3-0-9 units
Introduces theoretical and experimental aspects of rock mechanics and prepares students for rock engineering. Includes review of laboratory and field testing; empirical and analytical methods for describing strength, deformability and conductivity of intact rock and rock masses; fracture mechanics and mechanics of discontinua, including flow through discontinua and hydraulic fracturing; and design and analysis of rock slopes and foundations on rock. Also discusses blasting design. Includes term paper/term project.
H. H. Einstein

1.38 Independent Study in Geotechnical Engineering
Prereq: Permission of instructor
G (Fall, Spring, Summer)
Units arranged
Can be repeated for credit.
For graduate students desiring further individual study of topics in geotechnical engineering.
Information: A. J. Whittle

Construction Engineering and Management

1.462[J] Entrepreneurship in the Built Environment
Same subject as 11.345[J]
Prereq: Permission of instructor
G (Fall; first half of term)
2-0-4 units
See description under subject 11.345[J].
S. Gronfeldt, G. Rosenzweig

1.472[J] Innovative Project Delivery in the Public and Private Sectors
Same subject as 11.344[J]
Prereq: None
G (Spring; first half of term)
2-0-4 units
See description under subject 11.344[J].
C. M. Gordon
Materials and Structures

1.535 Mechanics of Materials
Subject meets with 1.035
Prereq: 1.050 or permission of instructor
G (Spring)
3-2-7 units
Introduces the structure and properties of natural and manufactured building materials, including rheology, elasticity, fracture mechanics, viscoelasticity, and plasticity. Emphasizes effects of molecular and nanoscopic structure, and interactions on macroscopic material behavior. Focuses on design of natural and structural materials. Discusses material aspects of sustainable development. Presents principles of experimental characterization techniques. Explores microscopic and macroscopic mechanical approaches to characterize structure and properties of materials. In laboratory and in-field sessions, students design and implement experimental approaches to characterize natural and building materials and study their interaction with the environment. Students taking graduate version complete additional assignments.

F. J. Ulm

1.541 Mechanics and Design of Concrete Structures
Subject meets with 1.054
Prereq: 1.035
G (Fall)
3-0-9 units
Studies strength and deformation of concrete under various states of stress; failure criteria; concrete plasticity; and fracture mechanics concepts. Topics include fundamental behavior of reinforced concrete structural systems and their members; basis for design and code constraints; high-performance concrete materials and their use in innovative design solutions; and yield line theory for slabs. Uses behavior models and nonlinear analysis. Covers complex systems, including bridge structures, concrete shells, and containments. Students taking graduate version complete additional assignments.

O. Buyukozturk

1.545 Atomistic Modeling and Simulation of Materials and Structures
Prereq: Permission of instructor
G (Fall)
Not offered regularly; consult department
3-0-9 units
Covers multiscale atomistic modeling and simulation methods, with focus on mechanical properties (elasticity, plasticity, creep, fracture, fatigue) of a range of materials (metals, ceramics, proteins, biological materials, biomaterials). Topics include mechanics of materials (energy principles, nano- and micromechanics, deformation mechanisms, size effects, hierarchical biological structures) and atomistic modeling (chemistry, interatomic potentials, visualization, data analysis, numerical methods, supercomputing, algorithms). Includes an interactive computational project.

M. J. Buehler

1.562 Structural Design Project I
Prereq: None
G (Fall)
3-0-9 units
Students work in teams to design a long-span structure, emphasizing conceptual design and advanced structural analysis. Subject covers structural systems and construction methods, interdisciplinary collaboration, design strategies for resistance to static and dynamic loading, and simplified calculation methods to validate numerical simulations. Emphasis on oral and visual communication of engineering concepts and students present their projects to leading engineers for feedback.

G. Herning

1.563 Structural Design Project II
Prereq: None
G (Spring)
3-0-9 units
Students work in teams to design a tall building, emphasizing the design of vertical load systems, lateral load systems, and floor systems. Uses studies of precedent buildings and metrics of structural performance including material efficiency and embodied carbon to evaluate multiple design concepts. Simplified calculation methods are validated with advanced numerical simulations. Formal presentations will be used to improve oral and visual communication.

J. Ochsendorf
1.564[J] Environmental Technologies in Buildings
Same subject as 4.464[J]
Subject meets with 4.401
Prereq: None
G (Fall)
3-2-4 units
See description under subject 4.464[J].
C. Reinhart

1.573[J] Structural Mechanics
Same subject as 2.080[J]
Prereq: 2.002
G (Fall)
4-0-8 units
See description under subject 2.080[J].
T. Wierzbicki, D. Parks

1.575[J] Computational Structural Design and Optimization
Same subject as 4.450[J]
Subject meets with 4.451
Prereq: ((1.000 or (6.0001 and 6.0002)) and (1.050, 2.001, or 4.462)) or permission of instructor
G (Fall)
Units arranged
See description under subject 4.450[J]. Enrollment limited to 30.
Consult C. Mueller

1.579 Materials in Agriculture, Food Security, and Food Safety
Prereq: None
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Fall)
3-0-9 units
Offers a unique perspective on the interplay between advanced materials, agriculture and food. Illustrates the impact that advanced materials-based innovation is imparting to four key areas of agriculture: management of plant diseases, mitigation of saline soil, enhancement of crop yield and productivity, and food safety and food security. Exposes students to engineering design concepts that are germane to biopolymer processing, functionalization and characterization, which will be coupled with hands-on activity in a lab setting. Students regenerate, process and functionalize biopolymers from raw to advanced materials, paving the way for the second part of the class, which centers around a proposed research project that aims at bringing materials-based innovation into agriculture.
B. Marelli

1.581[J] Structural Dynamics
Same subject as 2.060[J], 16.221[J]
Subject meets with 1.058
Prereq: 18.03 or permission of instructor
G (Fall)
3-1-8 units
Examines response of structures to dynamic excitation: free vibration, harmonic loads, pulses and earthquakes. Covers systems of single- and multiple-degree-of-freedom, up to the continuum limit, by exact and approximate methods. Includes applications to buildings, ships, aircraft and offshore structures. Students taking graduate version complete additional assignments.
T. Cohen

1.582 Design of Steel Structures
Prereq: Permission of instructor
G (Spring)
Not offered regularly; consult department
3-0-9 units
Provides ability to design and assess steel structures. Steel structures are taught at three levels: the overall structural system (multi-story buildings, wide-span buildings, bridges, masts, and towers); the components of a structural system (floor systems, plate girders, frames, and beams); and the details of structural components (connection types, welding, and bolting). Each level includes a balance among theoretical analysis, design requirements, and construction/cost considerations. Existing structures are used as worked examples.
J. Ochsendorf, G. Herning

1.583 Topology Optimization of Structures
Prereq: None
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Fall)
3-0-9 units
Covers free-form topology design of structures using formal optimization methods and mathematical programs, including design of structural systems, mechanisms, and material architectures. Strong emphasis on designing with gradient-based optimizers, finite element methods, and design problems governed by structural mechanics. Incorporates optimization theory and computational mechanics fundamentals, problem formulation, sensitivity analysis; and introduces cutting-edge extensions, including to other and multiple physics.
J. Carstensen
1.589 Studies in Structural Design and Analysis
Prereq: Permission of instructor
G (Fall, Spring, Summer)
Units arranged
Can be repeated for credit.
Individual study of advanced subjects under staff supervision. Content arranged to suit the particular requirements of the student and interested members of the staff.
Information: O. Buyukozturk

Hydrodynamics and Coastal Engineering

1.61 Transport Processes in the Environment
Subject meets with 1.061
Prereq: 1.060
G (Fall)
3-1-8 units
Credit cannot also be received for 1.061A
Introduces mass transport in environmental flows, with emphasis on river and lake systems. Covers derivation and solutions to the differential form of mass conservation equations. Topics include molecular and turbulent diffusion, boundary layers, dissolution, bed-water exchange, air-water exchange, and particle transport. Meets with 1.061A first half of term. Students taking graduate version complete additional assignments.
H. M. Nepf

1.63[J] Advanced Fluid Dynamics
Same subject as 2.26[J]
Prereq: 18.085 and (2.25 or permission of instructor)
Acad Year 2021-2022: G (Spring)
Acad Year 2022-2023: Not offered
4-0-8 units
See description under subject 2.26[J].
T. R. Akylas, G. H. McKinley, R. Stocker

1.631[J] Fluids and Diseases
Same subject as 2.250[J], HST.537[J]
Subject meets with 1.063
Prereq: None
G (Spring)
3-3-6 units
Designed for students in engineering and the quantitative sciences who want to explore applications of mathematics, physics and fluid dynamics to infectious diseases and health; and for students in epidemiology, environmental health, ecology, medicine, and systems modeling seeking to understand physical and spatial modeling, and the role of fluid dynamics and physical constraints on infectious diseases and pathologies. The first part of the class reviews modeling in epidemiology and data collection, and highlights concepts of spatial modeling and heterogeneity. The remainder highlights multi-scale dynamics, the role of fluids and fluid dynamics in physiology, and pathology in a range of infectious diseases. The laboratory portion entails activities aimed at integrating applied learning with theoretical concepts discussed in lectures and covered in problem sets. Students taking graduate version complete additional assignments.
L. Bourouiba

1.65 Atmospheric Boundary Layer Flows and Wind Energy (New)
Prereq: 1.060, 2.005, 2.006, 2.25, 12.800, or permission of instructor
G (Fall)
3-0-9 units
Introduction into the atmospheric boundary layer (ABL) and turbulence, which is critical to applications including renewable energy generation, pollution, weather and climate modeling, and more. Topics include the origins of wind in the atmosphere, an introduction to turbulent flows, the atmosphere and the diurnal cycle; momentum balance, scaling, and TKE; buoyancy, stability, and Coriolis forces; Ekman layer and RANS modeling; experimental methods; data analysis of ABL field measurements; and large eddy simulation.
M. Howland

1.66 Problems in Water Resources and Environmental Engineering
Prereq: Permission of instructor
G (Fall, Spring, Summer)
Units arranged
Can be repeated for credit.
Individual study in advanced topics as arranged between individual students and staff. Choice of subjects from theoretical, experimental, and practical phases of hydromechanics, hydraulic engineering, water resources, hydrology, and environmental engineering.
Staff
1.685[J] Nonlinear Dynamics and Waves
Same subject as 2.034[J], 18.377[J]
Prereq: Permission of instructor
Acad Year 2021-2022: G (Spring)
Acad Year 2022-2023: Not offered
3-0-9 units
See description under subject 2.034[J].
R. R. Rosales

1.686[J] Nonlinear Dynamics and Turbulence
Same subject as 2.033[J], 18.358[J]
Subject meets with 1.068
Prereq: 1.060A
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Spring)
3-2-7 units
Reviews theoretical notions of nonlinear dynamics, instabilities, and waves with applications in fluid dynamics. Discusses hydrodynamic instabilities leading to flow destabilization and transition to turbulence. Focuses on physical turbulence and mixing from homogeneous isotropic turbulence. Also covers topics such as rotating and stratified flows as they arise in the environment, wave-turbulence, and point source turbulent flows. Laboratory activities integrate theoretical concepts covered in lectures and problem sets. Students taking graduate version complete additional assignments.
L. Bourouiba

1.69 Introduction to Coastal Engineering
Prereq: 1.061
Acad Year 2021-2022: G (Fall)
Acad Year 2022-2023: Not offered
4-0-8 units
Basic dynamics of ocean surface waves; wave-driven, wind-driven, and tidal currents; boundary layers and sediment transport; and selected engineering applications. Formulation of the boundary-value problem for surface waves, linear plane-wave solution, shoaling, refraction, diffraction, statistical representation, and elements of nonlinearity. Depth-averaged formulation and selected solutions for sea level and currents driven by waves, winds, and tides. Elements of boundary layers, initial sediment motion, and bedload and suspended sediment transport. Alongshore sediment transport and shoreline change. Emphasizes basic principles, mathematical formulation and solution, and physical interpretation, with selected applications and exposure to current research.
J. Trowbridge

1.692[J] Seakeeping of Ships and Offshore Energy Systems
Same subject as 2.24[J]
Prereq: 2.20 and 18.085
G (Spring)
4-0-8 units
See description under subject 2.24[J].
P. D. Sclavounos

1.699[J] Projects in Oceanographic Engineering
Same subject as 2.689[J]
Prereq: Permission of instructor
G (Fall, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.
See description under subject 2.689[J].
J. Preisig, Woods Hole Staff

Hydrology and Water Resource Systems

1.713[J] Land-Atmosphere Interactions
Same subject as 12.834[J]
Prereq: Permission of instructor
Acad Year 2021-2022: G (Spring)
Acad Year 2022-2023: Not offered
2-0-4 units
Topics include the exchange of mass, heat and momentum between the soil, vegetation or water surface and the overlying atmosphere; flux and transport in the turbulent boundary layer; and coupled balance of moisture and energy.
D. Entekhabi

1.714 Surface Hydrology
Prereq: 1.070B[J] or permission of instructor
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Fall)
3-0-9 units
Covers observations and theory of the physical processes involved in the hydrologic cycle. Processes considered are rainfall, infiltration, runoff generation, stream flow, evaporation, transpiration, and rainfall interception.
E. A. B. Eltahir
1.72 Groundwater Hydrology
Subject meets with 1.072
Prereq: 1.061
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Fall)
3-1-8 units

Presents the fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. Topics include Darcy equation, flow nets, mass conservation, the aquifer flow equation, heterogeneity and anisotropy, storage properties, regional circulation, unsaturated flow, recharge, stream-aquifer interaction, well hydraulics, flow through fractured rock, numerical models, groundwater quality, contaminant transport processes, dispersion, decay, and adsorption. Includes laboratory and computer demonstrations. Students taking graduate version complete additional assignments.
C. Harvey

1.721 Advanced Subsurface Hydrology
Prereq: 1.72, 18.075, and permission of instructor
G (Spring)
Not offered regularly; consult department
3-0-9 units

C. Harvey

1.723 Computational Methods for Flow in Porous Media
Prereq: Permission of instructor
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Fall)
3-0-9 units

R. Juanes

1.727 Surface Water Ecosystems: Biogeochemistry and Chemical Transport
Prereq: (Chemistry (GIR), 1.018[J], and 1.060) or permission of instructor
G (Spring)
Not offered regularly; consult department
3-1-8 units

Addresses the nature of lakes, wetlands, and related natural waters, with a focus on their ecology and cycling of nutrients and pollutants. Topics include the hydrology of surface water systems, the nature of aquatic plant and animal communities, the carbon and nitrogen cycles, the behavior and fate of toxic metals and anthropogenic organic compounds in natural waters, and linkages between lakes and the atmosphere, groundwater, and soil. Discusses practical topics in lake and river management. Students participate in field trips to broaden their understanding of these topics.
H. Hemond

1.731 Water Resource Systems
Subject meets with 1.075
Prereq: 1.070B[J] or permission of instructor
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Spring)
3-0-9 units

Surveys optimization and simulation methods for management of water resources. Case studies illustrate linear, quadratic, nonlinear programming and real-time control. Applications include river basin planning, irrigation and agriculture, reservoir operations, capacity expansion, assimilation of remote sensing data, and sustainable resource development. Students taking graduate version complete additional assignments.
D. McLaughlin
1.74 Land, Water, Food, and Climate
Subject meets with 1.077
Prereq: None
G (Fall)
Not offered regularly; consult department
3-0-6 units
Examines land, water, food, and climate in a changing world, with an emphasis on key scientific questions about the connections between natural resources and food production. Students read and discuss papers on a range of topics, including water and land resources, climate change, demography, agroecology, biotechnology, trade, and food security. Supporting information used for background and context includes data and analysis based on government reports, textbooks, and longer peer-reviewed documents not included in the readings. Provides a broad perspective on one of the defining global issues of this century. Students carry out exercises with relevant data sets, write critiques of key issues, and complete a focused term project. Students taking graduate version complete additional assignments.
D. McLaughlin

Aquatic Sciences, Water Quality Control, and Environmental Management

1.76 Aquatic Chemistry
Prereq: Chemistry (GIR) or 5.60
Acad Year 2021-2022: G (Fall)
Acad Year 2022-2023: Not offered
3-0-9 units
Quantitative treatment of chemical processes in aquatic systems such as lakes, oceans, rivers, estuaries, groundwaters, and wastewaters. A brief review of chemical thermodynamics is followed by discussion of acid-base, precipitation-dissolution, coordination, and reduction-oxidation reactions. Emphasis is on equilibrium calculations as a tool for understanding the variables that govern the chemical composition of aquatic systems and the fate of inorganic pollutants.
J. Seewald

1.79 Rock-on-a-Chip: Microfluidic Technology for Visualization of Flow in Porous Media
Subject meets with 1.079
Prereq: None
G (Fall)
Not offered regularly; consult department
2-2-8 units
Introduces an innovative approach that uses 3D printing and microfluidic technology to characterize and visualize flow in porous media like soils and rocks. Covers single-phase flow and transport (laser fluorescence, particle image velocimetry), capillarity and wettability, multiphase flow, fracturing of granular media. In lab, students work in groups to unravel the physics and chemistry of flow in porous media, with applications to energy and environmental processes, such as groundwater resources, energy recovery, and carbon sequestration. Students taking graduate version complete additional assignments.
R. Juanes

1.801[J] Environmental Law, Policy, and Economics: Pollution Prevention and Control
Same subject as 11.021[J], 17.393[J], IDS.060[J]
Subject meets with 1.801[J], 11.630[J], 15.663[J], IDS.540[J]
Prereq: None
U (Spring)
See description under subject IDS.060[J].
N. Ashford, C. Caldart

1.802[J] Regulation of Chemicals, Radiation, and Biotechnology
Same subject as 11.022[J], IDS.061[J]
Subject meets with 1.812[J], 10.805[J], 11.631[J], IDS.436[J], IDS.541[J]
Prereq: IDS.060[J] or permission of instructor
U (Spring)
Not offered regularly; consult department
3-0-9 units
See description under subject IDS.061[J].
N. Ashford, C. Caldart

1.811[J] Environmental Law, Policy, and Economics: Pollution Prevention and Control
Same subject as 11.630[J], 15.663[J], IDS.540[J]
Subject meets with 1.801[J], 11.021[J], 17.393[J], IDS.060[J]
Prereq: None
G (Spring)
See description under subject IDS.540[J].
N. Ashford, C. Caldart
1.812[J] Regulation of Chemicals, Radiation, and Biotechnology
Same subject as 11.631[J], IDS.541[J]
Subject meets with 1.802[J], 10.805[J], 11.022[J], IDS.061[J],
IDS.436[J]
Prereq: IDS.540[J] or permission of instructor
G (Spring)
Not offered regularly; consult department
3-0-9 units
See description under subject IDS.541[J].
N. Ashford, C. Caldart

1.813[J] Technology, Globalization, and Sustainable Development
Same subject as 11.466[J], 15.657[J], IDS.437[J]
Prereq: Permission of instructor
G (Fall)
3-0-9 units
See description under subject IDS.437[J].
N. Ashford

1.818[J] Sustainable Energy
Same subject as 2.65[J], 10.391[J], 11.371[J], 22.811[J]
Subject meets with 2.650[J], 10.291[J], 22.081[J]
Prereq: Permission of instructor
G (Fall)
3-1-8 units
See description under subject 22.811[J].
M. W. Golay

1.83 Environmental Organic Chemistry
Subject meets with 1.831
Prereq: 5.60 and 18.03
G (Fall)
4-0-8 units
Focuses on the processes affecting organic compounds in the environment. Uses physical chemical properties to predict chemical transfers between environmental compartments (air, water, sediments, and biota). Uses molecular properties to estimate chemical, photochemical, and biochemical transformation rates. Resulting process models are combined to predict environmental concentrations (and related biological exposures) of anthropogenic and natural organic compounds.
P. M. Gschwend

1.831 Environmental Organic Chemistry
Subject meets with 1.83
Prereq: 5.60 and 18.03
G (Fall)
4-0-8 units
Focuses on the processes affecting organic compounds in the environment. Uses physical chemical properties to predict chemical transfers between environmental compartments (air, water, sediments, and biota). Uses molecular properties to estimate chemical, photochemical, and biochemical transformation rates. Resulting process models are combined to predict environmental concentrations (and related biological exposures) of anthropogenic and natural organic compounds.
P. M. Gschwend

1.837 Resilience of Living Systems to Environmental Change
Prereq: None
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Spring)
3-0-9 units
Takes a multi-scale approach to understanding responses of living systems to perturbation. Mechanisms of stress sensing and response in plants, microbes, and animals from the level of individual cells to whole organisms. Emergent properties of organismal stress and population and community scale. Resilience of ecosystems and biogeochemical cycles to altered environmental conditions. Considers both natural and managed systems, focusing primarily on the terrestrial environment.
D. Des Marais

1.84[J] Atmospheric Chemistry
Same subject as 10.817[J], 12.807[J]
Prereq: 5.60
G (Fall)
3-0-9 units
Provides a detailed overview of the chemical transformations that control the abundances of key trace species in the Earth’s atmosphere. Emphasizes the effects of human activity on air quality and climate. Topics include photochemistry, kinetics, and thermodynamics important to the chemistry of the atmosphere; stratospheric ozone depletion; oxidation chemistry of the troposphere; photochemical smog; aerosol chemistry; and sources and sinks of greenhouse gases and other climate forcers.
J. H. Kroll
1.841[J] Atmospheric Composition and Global Change
Same subject as 12.817[J]
Prereq: 1.84[J]
Acad Year 2021-2022: G (Spring)
Acad Year 2022-2023: Not offered
3-0-9 units
Explores how atmospheric chemical composition both drives and responds to climate, with a particular focus on feedbacks via the biosphere. Topics include atmospheric nitrogen; DMS, sulfate, and CLAW; biogenic volatile organic compounds and secondary organic aerosol; wildfires and land use change; atmospheric methane and the oxidative capacity of the troposphere; and air quality and climate and geoengineering.
C. Heald

1.842[J] Aerosol and Cloud Microphysics and Chemistry
Same subject as 12.814[J]
Subject meets with 12.338
Prereq: Permission of instructor
G (Spring)
Not offered regularly; consult department
3-0-9 units
See description under subject 12.814[J].
D. Cziczo

1.845 Introduction to the Terrestrial Carbon Cycle and Ecosystem Ecology (New)
Prereq: 1.010 or permission of instructor
G (Spring)
3-2-7 units
Introduces the terrestrial carbon cycle in a climate change context, with a focus on ecosystem ecology and biogeochemistry. Discussion-based seminars followed by practical classes to solve climate-related questions.
C. Terrer

1.850[J] Dimensions of Geoengineering
Same subject as 5.000[J], 10.600[J], 11.388[J], 12.884[J], 15.036[J], 16.645[J]
Prereq: None
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Fall; first half of term)
2-0-4 units
See description under subject 5.000[J]. Limited to 100.
J. Deutch, M. Zuber

1.861[J] Methods and Problems in Microbiology
Same subject as 7.492[J], 20.445[J]
Prereq: None
G (Fall)
3-0-9 units
See description under subject 7.492[J]. Preference to first-year Microbiology and Biology students.
M. Laub

1.871[J] Microbial Genetics and Evolution
Same subject as 7.493[J], 12.493[J], 20.446[J]
Prereq: 7.03, 7.05, or permission of instructor
G (Fall)
4-0-8 units
See description under subject 7.493[J].
A. D. Grossman, O. Cordero

1.871 Computational Ecology
Prereq: None
G (IAP)
Not offered regularly; consult department
2-0-7 units
Project-based class that provides practical experience in the analysis of community and population dynamics data. Emphasizes computational tools central to modern microbial ecology, such as agent-based simulations, and methods to infer ecological interactions and analyze ecological successions.
O. Cordero

1.873 Ecological Dynamics and Modeling
Prereq: Calculus II (GIR)
Acad Year 2021-2022: Not offered
Acad Year 2022-2023: G (Spring)
3-0-9 units
Centers on mathematical tools linking external perturbations with the structure and persistence of ecological communities - the ensemble of co-occurring and interacting species. Focuses on unstructured populations ranging from single, to pairs, to multiple species. Covers population dynamics, species interactions, stability, feasibility, species coexistence, and perturbations. Lectures address phenomenological and mechanistic understanding through graphical, analytical and numerical analysis.
S. Saavedra
1.881[J] Genomics and Evolution of Infectious Disease
Same subject as HST.538[J]
Subject meets with 1.088
Prereq: Biology (GIR) and (1.000 or 6.0002)
G (Spring)
3-0-9 units
Provides a thorough introduction to the forces driving infectious disease evolution, practical experience with bioinformatics and computational tools, and discussions of current topics relevant to public health. Topics include mechanisms of genome variation in bacteria and viruses, population genetics, outbreak detection and tracking, strategies to impede the evolution of drug resistance, emergence of new disease, and microbiomes and metagenomics. Discusses primary literature and computational assignments. Students taking graduate version complete additional assignments. T. Lieberman

1.89 Earth's Microbiomes
Subject meets with 1.089
Prereq: Biology (GIR)
G (Spring)
3-0-9 units
Provides a general introduction to the diverse roles of microorganisms in natural and artificial environments. Topics include energetics, and growth; evolution and gene flow; population and community dynamics; water and soil microbiology; biogeochemical cycling; and microorganisms in biodeterioration and bioremediation. 7.014 recommended as prerequisite; students taking graduate version complete additional assignments. Meets with 1.089A first half of term. M. Polz, O. Cordero

1.899 Career Reengineering Program and Professional Development Workshops
Prereq: Permission of instructor
G (Spring)
1-0-0 units
For students in the 10-month Career Reengineering Program sponsored by the School of Engineering. Limited to CRP fellows. Staff

Special Studies

1.95[J] Teaching College-Level Science and Engineering
Same subject as 5.95[J], 7.59[J], 8.395[J], 18.094[J]
Subject meets with 2.978
Prereq: None
G (Fall)
2-0-2 units
See description under subject 5.95[J].
J. Rankin

1.968 Graduate Studies in Civil and Environmental Engineering
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Individual study, research, or laboratory investigations at the graduate level under faculty supervision. Consult Department Academic Programs Office

1.976 Graduate Professional Development Seminar
Prereq: None
G (Fall)
2-0-4 units
Covers professional development topics and provides hands-on practice of these skills. Students participate in a series of written and oral communication workshops. Other topics include networking skills, work-life balance, mentoring, and career planning. Features an alumni panel showcasing a range of post-PhD careers. Limited to second-year graduate students in CEE. H. Nepf

1.977 Research Mentorship in Civil and Environmental Engineering
Prereq: None
G (IAP)
0-3-0 units
Graduate students mentor an undergraduate student in research for 30 hours per week during the Independent Activities Period (IAP) to help create a self-contained project. Students introduce the project through selected readings and meetings that clearly explain how the undergraduate project fits within the scope of the larger work/research of the graduate student, meet regularly to discuss progress on the project, provide guidance in the creation of a poster presentation that the undergraduate will deliver at the end of IAP, and attend and provide written feedback on the presentations of all mini-UROP participants. Information: CEE Academic Programs Office
1.982 Research in Civil and Environmental Engineering
Prereq: None
G (Fall, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

For research assistants in the department, when assigned research is not used for thesis but is approved for academic credit. Credit for this subject may not be used for any degree granted by Course 1.
Consult Department Academic Programs Office

1.984 Teaching Experience in Civil and Environmental Engineering
Prereq: Permission of instructor
G (Fall, Spring)
0-3-0 units
Can be repeated for credit.

Provides classroom teaching experience under the supervision of faculty member(s). Students prepare instructional material, deliver lectures, grade assignments, and prepare a teaching portfolio to be submitted at the end of term. Students must send the subject title and the name of the lead instructor for the subject to the 1.984 instructor during or prior to the first week of the semester. Enrollment limited by availability of suitable teaching assignments. Information: C. Heald

1.997 Practicum Training in Civil and Environmental Engineering
Prereq: None
G (Fall, IAP, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

For graduate CEE students participating in curriculum-related, off-campus experiences in civil, environmental, and transportation engineering or related areas. Before enrolling, students must verify the internship arrangements by submitting a memo or email from the sponsoring company or organization and also from their Academic Advisor. At the conclusion of the training, the students will submit a final report for review and approval by their Academic Advisor. Can be taken for up to 3 units. Prior to enrolling, contact the CEE Academic Programs Office for procedures and restrictions.
Consult Department Academic Programs Office

1.998 Practicum Training in Civil and Environmental Engineering
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

For undergraduate CEE students participating in curriculum-related off-campus experiences in civil and environmental engineering or related areas. Before enrolling, students must have an offer from a company or organization and must have prior approval from their CEE academic advisor. At the conclusion of the training, the students will submit a final report for review and approval by their Academic Advisor. Can be taken for up to 3 units. Prior to enrolling, contact the CEE Academic Programs Office for procedures and restrictions.
Consult Department Academic Programs Office

1.999 Undergraduate Studies in Civil and Environmental Engineering
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Individual study, research, or laboratory investigations under faculty supervision.
Consult Department Academic Programs Office

1.EPE UPOP Engineering Practice Experience
Engineering School-Wide Elective Subject.
Offered under: 1.EPE, 2.EPE, 3.EPE, 6.EPE, 8.EPE, 10.EPE, 15.EPE, 16.EPE, 20.EPE, 22.EPE
Prereq: 2.EPW or permission of instructor
U (Fall, Spring)
0-0-1 units

See description under subject 2.EPE.
Staff

1.EPW UPOP Engineering Practice Workshop
Engineering School-Wide Elective Subject.
Offered under: 1.EPW, 2.EPW, 3.EPW, 6.EPW, 10.EPW, 16.EPW, 20.EPW, 22.EPW
Prereq: None
U (Fall, IAP)
1-0-0 units

See description under subject 2.EPW. Enrollment limited.
Staff
1.THG Graduate Thesis
Prereq: Permission of instructor
G (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Program of research leading to the writing of an SM, MEng, CE, PhD, or ScD thesis; to be arranged by the student and an appropriate MIT faculty member. Consult Department Academic Programs Office

1.THU Undergraduate Thesis
Prereq: Permission of instructor
U (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Program of research leading to the writing of an S.B. thesis; to be arranged by the student and an appropriate MIT faculty member. Intended for seniors. Student must submit an approved thesis proposal to the Academic Programs Office by the fifth week of the first term the student is registered for thesis. Consult Department Academic Programs Office

1.UR Research in Civil and Environmental Engineering
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged [P/D/F]
Can be repeated for credit.

Individual research or laboratory study under faculty supervision. Also, opportunities in ongoing research program. Limited number of funded traineeships available. Information: Consult Department Academic Programs Office

1.URG Research in Civil and Environmental Engineering
Prereq: None
U (Fall, IAP, Spring, Summer)
Units arranged
Can be repeated for credit.

Individual research or laboratory study under faculty supervision. Also opportunities in ongoing research program. Consult Department Academic Programs Office

1.So2 Special Subject: Materials Sustainability for the Built Environment
Prereq: None
U (Spring)
2-4-6 units. Institute LAB

Focuses on general concepts and tools in materials sustainability for the built environment, with a project component. Covers a wide range of topics that include modern and ancient materials used in construction, materials selection and efficiency, materials characterization, durability and deterioration, carbon footprint and life cycle assessment. Students work in groups to select a material to examine in depth and propose an application for the material within the scope of modern civil and environmental engineering design, assessing its performance relative to alternative or existing materials or techniques. Students present a report of the initial investigation, design and analysis process, and results. Each group submits a technical paper, which fits the requirements and format of a major journal publication. Provides instruction and practice in oral and written communication. Licensed for Spring 2021 by the Committee on Curricula. A. Masic

1.S82 Special Problems in Environmental Microbiology and Chemistry
Prereq: Permission of instructor
G (Fall, Spring)
Not offered regularly; consult department
Units arranged [P/D/F]
Can be repeated for credit.

Advanced study of topics not covered in the regular subject listings, particularly seminar, laboratory, and experimental subjects offered by permanent or visiting faculty. Addresses topics in environmental microbiology, ecological genomics, microbial evolution and population genetics, oceanography, biogeochemical processes, environmental organic chemistry and aquatic chemistry. S. W. Chisholm, M. F. Polz, E. J. Alm, P. M. Gschwend, H. F. Hemond

1.S977 Special Graduate Subject in Civil and Environmental Engineering
Prereq: Permission of instructor
G (Fall)
Not offered regularly; consult department
Units arranged [P/D/F]
Can be repeated for credit.

Graduate subjects taught experimentally; subjects offered by visiting faculty; and seminars on topics of current interest not included in the regular curriculum. Consult Department Academic Programs Office
1.978 Special Graduate Subject in Civil and Environmental Engineering
Prereq: Permission of instructor
G (Fall)
Not offered regularly; consult department
Units arranged [P/D/F]
Can be repeated for credit.

Graduate subjects taught experimentally; subjects offered by visiting faculty; and seminars on topics of current interest not included in the regular curriculum. 1.978 is taught P/D/F.
Department Academic Programs Office

1.979 Special Graduate Subject in Civil and Environmental Engineering
Prereq: Permission of instructor
G (Fall)
Units arranged
Can be repeated for credit.

Graduate subjects taught experimentally; subjects offered by visiting faculty; and seminars on topics of current interest not included in the regular curriculum.
Consult Department Academic Programs Office

1.980 Special Graduate Subject in Civil and Environmental Engineering
Prereq: Permission of instructor
G (Fall)
Units arranged
Can be repeated for credit.

Graduate subjects taught experimentally; subjects offered by visiting faculty; and seminars on topics of current interest not included in the regular curriculum.
Department Academic Programs Office

1.982 Special Graduate Subject in Civil and Environmental Engineering
Prereq: Permission of instructor
G (Fall, IAP, Spring; second half of term)
Not offered regularly; consult department
Units arranged

Graduate subjects taught experimentally; subjects offered by visiting faculty; and seminars on topics of current interest not included in the regular curriculum.
Consult G. Herning

1.991 Special Undergraduate Subject in Civil and Environmental Engineering
Prereq: Permission of instructor
U (Fall)
Units arranged [P/D/F]
Can be repeated for credit.

Subjects taught experimentally; subjects offered by visiting faculty; and seminars on topics of current interest not included in the regular curriculum.
Consult Department Academic Programs Office

1.992 Special Undergraduate Subject in Civil and Environmental Engineering
Prereq: Permission of instructor
U (Fall, Spring)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.

Subjects taught experimentally; subjects offered by visiting faculty; and seminars on topics of current interest not included in the regular curriculum.
Consult Department Academic Programs Office

1.993 Special Undergraduate Subject in Civil and Environmental Engineering
Prereq: Permission of instructor
U (Fall, Spring; second half of term)
Not offered regularly; consult department
Units arranged
Can be repeated for credit.

Subjects taught experimentally; subjects offered by visiting faculty; and seminars on topics of current interest not included in the regular curriculum.
Consult Department Academic Programs Office