MINOR IN ENVIRONMENT AND SUSTAINABILITY

The Environment and Sustainability Minor (E&S Minor) provides an integrative foundation in the scientific, engineering, social, and humanistic dimensions of humanity's interaction with the environment. The minor will equip students with knowledge and experience that will make it possible to understand, diagnose, and develop solutions to complex problems faced by society as it strives for social and environmental sustainability. Students who complete the minor will be prepared to apply the principles of sustainability in diverse workplace contexts, including business/industry, government, civil society, and academia.

The E&S Minor combines a wide range of fields of inquiry to directly engage environmental and climate challenges facing ecosystems and populations around the globe. Fundamentally, these challenges affect both human systems and the earth systems on which we depend: people and the planet. Planetary challenges include global changes in the climate and oceans, degradation to both biodiversity and material resources, and fundamental transformations of biogeochemical cycles. Challenges facing society include (but are not limited to) widespread and intransigent environmental injustice, expanding urban and agricultural pollution, technological and economic lock-in of infrastructure and all manner of production and consumption systems, and a global dependence on carbon intensive energy.

The minor prioritizes integrative, interdisciplinary learning that is critical for effectively understanding and addressing the complexities of environmental issues today and in the future, and is structured on four pillars: Earth Systems and Climate Science, Environmental Governance, Environmental Histories and Cultures, and Engineering for Sustainability.

The E&S Minor is comprised of five subjects (a minimum of 57 units). Students take two core subjects that address the fundamentals of each pillar, and select a minimum of 36 units of elective subjects to craft a program that reflects their own particular interests. In consultation with the minor advisor, students may either concentrate in one of the four pillars or explore various areas by selecting classes from multiple pillars.

Minor Requirements

Core Curriculum

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.387[J]</td>
<td>People and the Planet: Environmental Governance and Science</td>
<td>9</td>
</tr>
<tr>
<td>11.004[J]</td>
<td>People and the Planet: Environmental Histories and Engineering</td>
<td>12</td>
</tr>
</tbody>
</table>

Electives

In consultation with the minor advisor, select a minimum of 36 units from the list of electives. Total Units: 57-60

Earth Systems and Climate Science

- 1.018[J]: Fundamentals of Ecology: 12 units
- 1.078: Soil and Environmental Biogeochemistry: 12 units
- 1.080: Environmental Chemistry: 12 units
- 1.089: Earth’s Microbiomes: 12 units
- 2.981: New England Coastal Ecology: 3 units
- 3.982: The Ancient Andean World: 9 units
- 8.21: Physics of Energy: 12 units
- 12.000: Solving Complex Problems: 9 units
- 12.001: Introduction to Geology: 12 units
- 12.002: Introduction to Geophysics and Planetary Science: 12 units
- 12.003: Introduction to Atmosphere, Ocean, and Climate Dynamics: 12 units
- 12.007: Geobiology: History of Life on Earth: 12 units
- 12.021: Earth Science, Energy, and the Environment: 12 units
- 12.104: Geochemistry of Natural Waters: 12 units
- 12.170: Essentials of Geology: 12 units
- 12.174: Biogeochemistry of Natural and Perturbed Systems: 12 units
- 12.307: Weather and Climate Laboratory: 12 units
- 12.335: Experimental Atmospheric Chemistry: 12 units
- 12.349: Mechanisms and Models of the Global Carbon Cycle: 12 units
- 12.385: Science, Politics, and Environmental Policy: 9 units
- 20.106[J]: Applied Microbiology: 12 units

Environmental Governance

- 1.801[J]: Environmental Law, Policy, and Economics: Pollution Prevention and Control: 12 units
- 1.802[J]: Regulation of Chemicals, Radiation, and Biotechnology: 12 units
- 11.123: Big Plans and Mega-Urban Landscapes: 9 units
- 11.142: Geography of the Global Economy: 12 units
- 11.148: Environmental Justice: Law and Policy: 12 units
MINOR IN ENVIRONMENT AND SUSTAINABILITY

11.169 Global Climate Policy and Sustainability
12.385 Science, Politics, and Environmental Policy
17.181 Sustainability: Political Economy, Science, and Policy
17.309[1][J] Science, Technology, and Public Policy
17.411 Globalization, Migration, and International Relations
21A.410 Environmental Struggles
EC.701[J] D-Lab: Development
EC.711[J] Introduction to Energy in Global Development
EC.715 D-Lab: Water, Sanitation and Hygiene
EC.716 D-Lab: Waste
IDS.062[J] Global Environmental Negotiations
Environmental Histories and Cultures
1.016[J] Design for Complex Environmental Issues: Building Solutions and Communicating Ideas
3.094 Materials in Human Experience
3.982 The Ancient Andean World
3.983 Ancient Mesoamerican Civilization
4.622 Islamic Gardens and Geographies
10.04 A Philosophical History of Energy
10.05 Foundational Analyses of Problems in Energy and the Environment
11.016[J] The Once and Future City
17.051 Ethics of Energy Policy
24.03 Good Food: The Ethics and Politics of Food
21A.155 Food, Culture, and Politics
21A.303[J] The Anthropology of Biology
21G.417 Cultural Geographies of Germany: Nature, Culture, and Politics
21H.185[J] Environment and History
21H.380[J] People and Other Animals
21H.383 Technology and the Global Economy, 1000-2000
21L.449 The Wilds of Literature
21W.012 Writing and Rhetoric: Food for Thought
21W.036 Science Writing and New Media: Writing and the Environment
21W.775 Writing about Nature and Environmental Issues
EC.701[J] D-Lab: Development
EC.715 D-Lab: Water, Sanitation and Hygiene
SP.360 Terrascope Radio
STS.009 Evolution and Society
STS.032 Energy, Environment, and Society
Engineering for Sustainability
1.007 Big Engineering: Small Solutions with a Large Impact
1.016[J] Design for Complex Environmental Issues: Building Solutions and Communicating Ideas
2.00A Fundamentals of Engineering Design: Explore Space, Sea and Earth
2.627 Fundamentals of Photovoltaics
3.094 Materials in Human Experience
3.983 Ancient Mesoamerican Civilization
4.401 Environmental Technologies in Buildings
4.411[J] D-Lab Schools: Building Technology Laboratory
4.432 Modeling Urban Energy Flows for Sustainable Cities and Neighborhoods
12.000 Solving Complex Problems
12.213 Alternate Energy Sources
22.033 Nuclear Systems Design Project
22.04[J] Social Problems of Nuclear Energy
22.081[J] Introduction to Sustainable Energy
EC.701[J] D-Lab: Development
EC.711[J] Introduction to Energy in Global Development
EC.715 D-Lab: Water, Sanitation and Hygiene
EC.716 D-Lab: Waste
EC.719 D-Lab: Water, Climate Change, and Health
EC.724 D-Lab: Smallholder Agriculture
EC.733[J] D-Lab: Supply Chains

2 Subject also counts toward Environmental Histories and Cultures.
3 Subject also counts toward Engineering for Sustainability.
4 Subject also counts toward Earth Systems and Climate Science.
A minimum of four subjects (or 48 units) taken for the Environment and Sustainability minor cannot also count toward a student's major or other minor.

For more information about the minor and about potential subject substitutions, contact Sarah Meyers (smeyers@mit.edu), Education Program Manager, MIT Environmental Solutions Initiative (ESI), Room E70-1201, 617-715-2606, or visit the ESI’s education website (https://environmentalsolutions.mit.edu/environment-sustainability-minor).