MINOR IN ENERGY STUDIES

The Energy Studies Minor complements the deep expertise obtained in any MIT major with broad, interdisciplinary training in science, technology, and the social sciences, including policy issues surrounding energy and climate change.

Students take classes in four core areas, plus 24 units of electives. The core consists of:

- Science Foundations: fundamental laws and principles that govern energy sources, conversion, and uses;
- Economics Foundations: how economic principles underlie every aspect of energy;
- Social Science Foundations: social scientific perspectives that help explain human behavior in an energy context, and;
- Energy Technology/Engineering in Context: the application of laws and principles to a specific energy context.

The elective component (generally two classes) allows students to focus on their individual areas of interest.

Developed and administered by the MIT Energy Initiative, the Energy Studies Minor sets students on the path to tackle the world's complex climate and energy challenges. Through the minor, students build strong foundational knowledge of diverse energy topics while benefiting from hands-on learning opportunities to work with world-renowned researchers, policy analysts, and thought leaders. Students also make groundbreaking discoveries and prepare for exciting careers in industry, government, and academia.

Core Curriculum

Science Foundations
8.21 Physics of Energy 12
or 12.021 Earth Science, Energy, and the Environment

Economics Foundations
14.01 Principles of Microeconomics 9-12
or 15.011 Economic Analysis for Business Decisions

Social Science Foundations
Select one of the following: 12
11.142 Geography of the Global Economy
15.0201[J] Economics of Energy, Innovation, and Sustainability

Energy Technology/Engineering in Context
Select one of the following: 12
2.60[J] Fundamentals of Advanced Energy Conversion 1
11.165 Urban Energy Systems and Policy

Electives
Select 24 units from the following: 2 24
1.018[J] Fundamentals of Ecology
1.020 Engineering Sustainability: Analysis and Design 1
1.071[J] Global Change Science 1
1.079 Rock-on-a-Chip: Microfluidic Technology for Visualization of Flow in Porous Media 1
1.801[J] Environmental Law, Policy, and Economics: Pollution Prevention and Control
2.005 Thermal-Fluids Engineering I 1
2.006 Thermal-Fluids Engineering II 1
2.570 Nano-to-Macro Transport Processes 1
2.603 Fundamentals of Smart and Resilient Grids 1
2.612 Marine Power and Propulsion 1
2.627 Fundamentals of Photovoltaics
2.813 Energy, Materials, and Manufacturing 1
3.003 Principles of Engineering Practice
or 3.004 Principles of Engineering Practice
3.010 Structure of Materials
3.020 Thermodynamics of Materials
3.030 Microstructural Evolution in Materials
3.154[J] Materials Performance in Extreme Environments 1
3.18 Materials Science and Engineering of Clean Energy 1
4.401 Environmental Technologies in Buildings
4.432 Modeling Urban Energy Flows for Sustainable Cities and Neighborhoods
5.352 Synthesis of Coordination Compounds and Kinetics 1
5.372 Chemistry of Renewable Energy 1
5.60 Thermodynamics and Kinetics
6.061 Introduction to Electric Power Systems 1
6.131 Power Electronics Laboratory 1
MINOR IN ENERGY STUDIES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.701</td>
<td>Introduction to Nanoelectronics</td>
</tr>
<tr>
<td>10.04</td>
<td>A Philosophical History of Energy</td>
</tr>
<tr>
<td>10.05</td>
<td>Foundational Analyses of Problems in Energy and the Environment</td>
</tr>
<tr>
<td>10.213</td>
<td>Chemical and Biological Engineering Thermodynamics</td>
</tr>
<tr>
<td>10.27</td>
<td>Energy Engineering Projects Laboratory</td>
</tr>
<tr>
<td>10.28</td>
<td>Chemical-Biological Engineering Laboratory</td>
</tr>
<tr>
<td>10.302</td>
<td>Transport Processes</td>
</tr>
<tr>
<td>10.426</td>
<td>Electrochemical Energy Systems</td>
</tr>
<tr>
<td>11.162</td>
<td>Politics of Energy and the Environment</td>
</tr>
<tr>
<td>12.213</td>
<td>Alternate Energy Sources</td>
</tr>
<tr>
<td>12.346[J]</td>
<td>Global Environmental Negotiations</td>
</tr>
<tr>
<td>14.42</td>
<td>Environmental Policy and Economics</td>
</tr>
<tr>
<td>16.001</td>
<td>Unified Engineering: Materials and Structures</td>
</tr>
<tr>
<td>16.002</td>
<td>Unified Engineering: Signals and Systems</td>
</tr>
<tr>
<td>16.003</td>
<td>Unified Engineering: Fluid Dynamics</td>
</tr>
<tr>
<td>16.004</td>
<td>Unified Engineering: Thermodynamics and Propulsion</td>
</tr>
<tr>
<td>22.033</td>
<td>Nuclear Systems Design Project</td>
</tr>
<tr>
<td>22.04[J]</td>
<td>Social Problems of Nuclear Energy</td>
</tr>
<tr>
<td>22.054[J]</td>
<td>Materials Performance in Extreme Environments</td>
</tr>
<tr>
<td>22.06</td>
<td>Engineering of Nuclear Systems</td>
</tr>
<tr>
<td>STS.032</td>
<td>Energy, Environment, and Society</td>
</tr>
</tbody>
</table>

Total Units: 69-72

2. **Subject has prerequisites that are outside of the program.**

3. **See the Energy Studies Minor website (http://energy.mit.edu/minor) for potential elective and core subject substitutions or additions.**

Students who take more than the required subjects from any of the core curriculum subject lists may count the additional coursework toward the elective requirement. A minimum of three subjects (or 36 units) taken for the Energy Studies Minor cannot also count toward a student’s major or other minor.

Contact Rachel Shulman (rshulman@mit.edu), academic coordinator, MIT Energy Initiative Education Office, Room E19-306C, 617-324-7236, or visit the Energy Studies Minor website (http://energy.mit.edu/minor) for more information.