Bachelor of Science as Recommended by the Department of Materials Science and Engineering

Students planning to follow this curriculum must submit a program of study no later than the beginning of the their junior year.

General Institute Requirements (GIRs)
The General Institute Requirements include a Communication Requirement that is integrated into both the HASS Requirement and the requirements of each major; see details below.

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS)</td>
<td>8</td>
</tr>
<tr>
<td>Requirement; at least two of these subjects must be designated as communication-intensive (CI-H) to fulfill the Communication Requirement.</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST)</td>
<td>2</td>
</tr>
<tr>
<td>Requirement [can be satisfied by 18.03 and 3.012, 3.021, or 3.046 in the Departmental Program]</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement (12 units) [can be satisfied by 3.014 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Physical Education Requirement
Swimming requirement, plus four physical education courses for eight points.

Departmental Program
Choose at least two subjects in the major that are designated as communication-intensive (CI-M) to fulfill the Communication Requirement.

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.014 Materials Laboratory (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>Select five of the following core subjects:</td>
<td>60-63</td>
</tr>
<tr>
<td>3.012 Fundamentals of Materials Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>3.016 Computational Methods for Materials Scientists and Engineers</td>
<td></td>
</tr>
<tr>
<td>or 18.03 Differential Equations</td>
<td></td>
</tr>
</tbody>
</table>

3.022 Microstructural Evolution in Materials	
3.024 Electronic, Optical and Magnetic Properties of Materials	
3.032 Mechanical Behavior of Materials	
3.034 Organic and Biomaterials Chemistry	
3.042 Materials Project Laboratory (CI-M)	
3.044 Materials Processing	

Restricted Electives
Select three of the following: 36

3.004 Principles of Engineering Practice	
3.016 Computational Methods for Materials Scientists and Engineers	2
3.017 Modelling, Problem Solving, Computing, and Visualization	
3.021 Introduction to Modeling and Simulation	2
3.034A Organic and Biomaterials Chemistry	3
3.046 Thermodynamics of Materials	
3.048 Advanced Materials Processing	
3.052 Nanomechanics of Materials and Biomaterials	
3.053 Molecular, Cellular, and Tissue Biomechanics	
3.054 Cellular Solids: Structure, Properties, Applications	
3.055 Molecular, Cellular, and Tissue Biomechanics	
3.063 Polymer Physics	
3.064 Polymer Engineering	
3.07 Introduction to Ceramics	
3.071 Amorphous Materials	
3.072 Symmetry, Structure and Tensor Properties of Materials	
3.074 Imaging of Materials	
3.080 Strategic Materials Selection	
3.081 Industrial Ecology of Materials	
3.086 Innovation and Commercialization of Materials Technology	
3.14 Physical Metallurgy	
3.15 Electrical, Optical, and Magnetic Materials and Devices	
3.152 Magnetic Materials	
3.153 Nanoscale Materials	
3.154 Materials Performance in Extreme Environments	
Bachelor of Science as Recommended by the Department of Materials Science and Engineering (Course 3-A)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.155[J]</td>
<td>Micro/Nano Processing Technology (CI-M)</td>
<td></td>
</tr>
<tr>
<td>3.156</td>
<td>Photonic Materials and Devices</td>
<td></td>
</tr>
<tr>
<td>3.171</td>
<td>Structural Materials and Manufacturing</td>
<td></td>
</tr>
<tr>
<td>3.18</td>
<td>Materials Science and Engineering of Clean Energy</td>
<td></td>
</tr>
<tr>
<td>3.19</td>
<td>Sustainable Chemical Metallurgy</td>
<td></td>
</tr>
</tbody>
</table>

Select six electives from a proposal of study approved by the department

<table>
<thead>
<tr>
<th>Units in Major</th>
<th>180-183</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted Electives</td>
<td>48</td>
</tr>
<tr>
<td>Units in Major That Also Satisfy the GIRs</td>
<td>(36-39)</td>
</tr>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>192</td>
</tr>
</tbody>
</table>

The units for any subject that counts as one of the 17 GIR subjects cannot also be counted as units required beyond the GIRs.

1. **18.032 Differential Equations** is also an acceptable option.
2. These subjects may count as part of the required subjects or as restricted electives, but not both.
3. Students can take **3.034** as a required subject or **3.034A** as a restricted elective, but cannot count both subjects toward their major.
4. Students must develop a program of six elective subjects appropriate to their stated goals.

Communication-Intensive Subjects in the Major

<table>
<thead>
<tr>
<th>Required subject (see degree chart above):</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.014 Materials Laboratory</td>
</tr>
<tr>
<td>Choose one of the following as the second CI-M subject:</td>
</tr>
<tr>
<td>2.009 The Product Engineering Process</td>
</tr>
<tr>
<td>2.671 Measurement and Instrumentation</td>
</tr>
<tr>
<td>3.042 Materials Project Laboratory</td>
</tr>
<tr>
<td>7.02[J] Introduction to Experimental Biology and Communication</td>
</tr>
<tr>
<td>10.26 Chemical Engineering Projects Laboratory</td>
</tr>
<tr>
<td>10.28 Chemical-Biological Engineering Laboratory</td>
</tr>
<tr>
<td>10.29 Biological Engineering Projects Laboratory</td>
</tr>
<tr>
<td>10.467 Polymer Science Laboratory</td>
</tr>
</tbody>
</table>

Example of a 3-A Program

A student planning a career in medicine might select the following subjects, in addition to the above requirements, in order to satisfy the premedical requirements recommended by Career Advising and Professional Development: