Bachelor of Science in Engineering

General Institute Requirements (GIRs)
The General Institute Requirements include a Communication Requirement that is integrated into both the HASS Requirement and the requirements of each major; see details below.

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement; at least two of these subjects must be designated as communication-intensive (CI-H) to fulfill the Communication Requirement.</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 10.301 and 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement (12 units) [can be satisfied by 1.106/1.107, 2.671, 3.014, 5.310, or 12.335 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Physical Education Requirement
Swimming requirement, plus four physical education courses for eight points.

Departmental Program
Choose at least two subjects in the major that are designated as communication-intensive (CI-M) to fulfill the Communication Requirement.

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.601 Thermodynamics I</td>
<td>6</td>
</tr>
<tr>
<td>10.10 Introduction to Chemical Engineering</td>
<td>12</td>
</tr>
<tr>
<td>10.213 Chemical and Biological Engineering Thermodynamics</td>
<td>12</td>
</tr>
<tr>
<td>10.301 Fluid Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>10.302 Transport Processes</td>
<td>12</td>
</tr>
<tr>
<td>10.37 Chemical Kinetics and Reactor Design</td>
<td>12</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
</tbody>
</table>

Foundational Concepts
All subjects are suitable for any concentration within the program. In consultation with the advisor, students select one subject from each of the three groups. Students may not exceed the 45-unit cap except by petition.

Group I
Select one of the following Course 10 CI-M subjects:
- 10.26 Chemical Engineering Projects Laboratory (CI-M)
- 10.27 Energy Engineering Projects Laboratory (CI-M)
- 10.28 Chemical-Biological Engineering Laboratory (CI-M)
- 10.29 Biological Engineering Projects Laboratory (CI-M)
- 10.467 Polymer Science Laboratory (CI-M)

Group II
Select one of the following Institute Laboratory subjects:
- 1.106 & 1.107 Environmental Fluid Transport Processes and Hydrology Laboratory and Environmental Chemistry Laboratory (CI-M)
- 2.671 Measurement and Instrumentation (CI-M)
- 5.310 Laboratory Chemistry (CI-M)
- 12.335 Experimental Atmospheric Chemistry (CI-M)
- 20.109 Laboratory Fundamentals in Biological Engineering (CI-M)

Group III
Select one of the following:
- 1.00 Engineering Computation and Data Science
- 1.018[J] Fundamentals of Ecology
- 1.080 Environmental Chemistry
- 5.12 Organic Chemistry I
- 5.611 Introduction to Spectroscopy & 5.612 and Electronic Structure of Molecules
- 6.0001 Introduction to Computer Science & 6.0002 Programming in Python and Introduction to Computational Thinking and Data Science
- 7.03 Genetics
- 8.21 Physics of Energy

Engineering Concentration

Engineering (Course 10-ENG)
These four electives define a concentrated area of study in one of the following designated concentrations: Biomedical Engineering; Energy; Engineering Computation; Environmental Studies; Manufacturing Design; Materials Process and Design; Process Data Analytics; or Society, Engineering and Ethics.

Capstone

Select one of the following options to obtain 12 units of capstone experience: Senior Thesis, Integrated Chemical Engineering or Integrated Chemical Engineering Topics modules, or Senior Project.

Option 1

10.THU Undergraduate Thesis

Option 2

Select any combination of the following:

- 10.490 Integrated Chemical Engineering
- 10.492A Integrated Chemical Engineering Topics I
- or 10.492B Integrated Chemical Engineering Topics I
- 10.493 Integrated Chemical Engineering Topics II
- 10.494A Integrated Chemical Engineering Topics III
- or 10.494B Integrated Chemical Engineering Topics III

Option 3

10.910 Independent Research Problem

and select any combination of the following:

- 10.492A Integrated Chemical Engineering Topics I
- or 10.492B Integrated Chemical Engineering Topics I
- 10.493 Integrated Chemical Engineering Topics II
- 10.494A Integrated Chemical Engineering Topics III
- or 10.494B Integrated Chemical Engineering Topics III

Units in Major

| 168-183 |

Unrestricted Electives

48

| Units in Major That Also Satisfy the GIRs | (36) |

| Total Units Beyond the GIRs Required for SB Degree | 180-195 |

The units for any subject that counts as one of the 17 GIR subjects cannot also be counted as units required beyond the GIRs.

Subject may be of particular interest for energy concentration.

Subject may be of particular interest for biomedical engineering concentration.

Subject may be of particular interest for materials process and design concentration.

Subject may be of particular interest for environmental studies concentration.

In all cases, the electives must be chosen with the approval of the student's advisor and the department. The combined list of required and elective subjects must sum to a minimum of 135 units in engineering topics (equivalent to 45 credit hours as defined by ABET). Lists of recommended subjects for each concentration are available from the department, and additional information on current subject offerings is available on the Chemical Engineering Department website (https://cheme.mit.edu/academics/course-listing). Note that subjects that have been used to satisfy the foundational concepts may not also be counted toward the engineering concentration.

10.490 may be repeated once for credit with permission of instructor.