AEROSPACE ENGINEERING (COURSE 16)

Department of Aeronautics and Astronautics (http://catalog.mit.edu/schools/engineering/aeronautics-astronautics/#undergraduatetext)

Bachelor of Science in Aerospace Engineering

General Institute Requirements (GIRs)
The General Institute Requirements include a Communication Requirement that is integrated into both the HASS Requirement and the requirements of each major; see details below.

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement; at least two of these subjects must be designated as communication-intensive (CI-H) to fulfill the Communication Requirement.</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied from among 6.001/6.002, 6.041, 16.001, and 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement (12 units) [can be satisfied by 6.111, 16.405], 16.622, 16.821, or 16.831 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points.

Departmental Program

Choose at least two subjects in the major that are designated as communication-intensive (CI-M) to fulfill the Communication Requirement.

Departmental Core

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.001 Introduction to Computer Science Programming in Python</td>
</tr>
<tr>
<td>6.002 Introduction to Computational Thinking and Data Science</td>
</tr>
<tr>
<td>16.001 Unified Engineering: Materials and Structures</td>
</tr>
<tr>
<td>16.002 Unified Engineering: Signals and Systems</td>
</tr>
<tr>
<td>16.003 Unified Engineering: Fluid Dynamics</td>
</tr>
<tr>
<td>16.004 Unified Engineering: Thermodynamics and Propulsion</td>
</tr>
<tr>
<td>16.06 Principles of Automatic Control</td>
</tr>
<tr>
<td>16.07 Dynamics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.09 Statistics and Probability or 6.041 Introduction to Probability</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
</tr>
</tbody>
</table>

Professional Area Subjects

Select four subjects from at least three professional areas. 48

- Fluid Mechanics
- 16.100 Aerodynamics
- Materials and Structures
- 16.20 Structural Mechanics
- Propulsion
- 16.50 Aerospace Propulsion
- Computational Tools
- 16.90 Computational Modeling and Data Analysis in Aerospace Engineering
- Estimation and Control
- 16.30 Feedback Control Systems
- Computer Systems
- 6.111 Introductory Digital Systems Laboratory
- 16.35 Real-Time Systems and Software Communications Systems
- 16.36 Communication Systems and Networks
- Humans and Automation
- 16.400 Human Systems Engineering
- 16.410 Principles of Autonomy and Decision Making

Laboratory and Capstone Subjects

Select one of the following: 12

- 16.82 Flight Vehicle Engineering (CI-M)
- 16.83 Space Systems Engineering (CI-M)

Select one of the following sequences: 12-18

- 16.405 Robotics: Science and Systems (CI-M)

Experimental Projects:

- 16.621 Experimental Projects I
- 16.622 Experimental Projects II (CI-M)

Flight Vehicle Development:

- 16.821 Flight Vehicle Development (CI-M)

Space Systems Development:

- 16.831 Space Systems Development (CI-M)

Units in Major 180-186

Unrestricted Electives 48

Units in Major That Also Satisfy the GIRs 36

Total Units Beyond the GIRs Required for SB Degree 192-198
The units for any subject that counts as one of the 17 GIR subjects cannot also be counted as units required beyond the GIRs.

1 18.032 Differential Equations is also an acceptable option.

2 For students who wish to complete an option in aerospace information technology, 36 of the 48 units must come from subjects other than 16.100, 16.20, 16.50, or 16.90.