Nondiscrimination Policy
The Massachusetts Institute of Technology is committed to the principle of equal opportunity in education and employment. The Institute does not discriminate against individuals on the basis of race, color, sex, sexual orientation, gender identity, religion, disability, age, genetic information, veteran status, ancestry, or national or ethnic origin in the administration of its educational policies, admissions policies, employment policies, scholarship and loan programs, and other Institute administered programs and activities, but may favor US citizens or residents in admissions and financial aid.*

The Vice President for Human Resources is designated as the Institute’s Equal Opportunity Officer. Inquiries concerning the Institute’s policies, compliance with applicable laws, statutes, and regulations (such as Title VI and Section 504), and complaints may be directed to Lorraine Goffe-Rush, Vice President for Human Resources, Room E19-215, 617-253-6512. Such inquiries may also be directed to the Manager of Staff Diversity and Inclusion, Room E19-215, 617-452-4516. In addition, inquiries about Title IX (which prohibits discrimination on the basis of sex) may be directed to the Institute’s Title IX coordinator, Sarah Rankin, Room W31-223, 617-324-7526, titleIX@mit.edu. Inquiries about the laws and about compliance may also be directed to the Office for Civil Rights, US Department of Education.

*The ROTC programs at MIT are operated under Department of Defense (DoD) policies and regulations, and do not comply fully with MIT’s policy of nondiscrimination with regard to gender identity. MIT continues to advocate for a change in DoD policies and regulations concerning gender identity, and will replace scholarships of students who lose ROTC financial aid because of these DoD policies and regulations.

Accreditation
MIT is accredited by the New England Association of Schools and Colleges, Inc., through its Commission on Institutions of Higher Education.

Inquiries regarding MIT’s accreditation status should be directed to the Office of the Vice President and Secretary of the Corporation, Massachusetts Institute of Technology. Individuals may also contact:

Commission on Institutions of Higher Education
New England Association of Schools and Colleges
209 Burlington Road
Bedford, MA 01730-1433
telephone 781-271-0022
e-mail cihe@neasc.org.

Many degree programs at MIT are accredited by specialized professional accrediting bodies, including ABET, the Association to Advance Collegiate Schools of Business, the American Chemical Society, the American Institute of Chemical Engineers, the Computer Science Accreditation Board, the National Architectural Accrediting Board, and the Planning Accreditation Board. Academic departments can provide information on the accreditation of the specific degree programs they offer.

Issues of the MIT Bulletin
The MIT Course Catalog is available in September and can be viewed online at http://catalog.mit.edu/. To obtain a print copy, visit http://web.mit.edu/referencepubs/catalog/getacopy.html.

The Institute reserves the right to make changes in the courses and regulations announced in the MIT Bulletin. Please send questions or comments to MIT Bulletin, Room E38-254, 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

Summer Session
During the regular Summer Session, MIT offers a limited selection of the subjects available in the academic year, as well as a few subjects designed for the special interests and needs of MIT students. Current MIT undergraduate and graduate students are automatically eligible for participation in the Summer Session.

Undergraduate and graduate students from other colleges and universities may be admitted for the Summer Session as special (non-degree) students. International students living outside the United States are not permitted to apply for the summer session. The admission standards for the Summer Session are the same as those for the regular academic year.

Further information about the Summer Session can be found at http://web.mit.edu/catalog/summer/.

Many degree programs at MIT are accredited by specialized professional accrediting bodies, including ABET, the Association to Advance Collegiate Schools of Business, the American Chemical Society, the American Institute of Chemical Engineers, the Computer Science Accreditation Board, the National Architectural Accrediting Board, and the Planning Accreditation Board. Academic departments can provide information on the accreditation of the specific degree programs they offer.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Calendar</td>
<td>7</td>
</tr>
<tr>
<td>This Is MIT</td>
<td>10</td>
</tr>
<tr>
<td>Overview</td>
<td>11</td>
</tr>
<tr>
<td>Around Campus</td>
<td>11</td>
</tr>
<tr>
<td>Academic Program</td>
<td>14</td>
</tr>
<tr>
<td>Administration</td>
<td>15</td>
</tr>
<tr>
<td>Alumni</td>
<td>16</td>
</tr>
<tr>
<td>Campus Life</td>
<td>17</td>
</tr>
<tr>
<td>Activities</td>
<td>17</td>
</tr>
<tr>
<td>Arts at MIT</td>
<td>17</td>
</tr>
<tr>
<td>Athletics</td>
<td>19</td>
</tr>
<tr>
<td>Campus Media</td>
<td>20</td>
</tr>
<tr>
<td>Dining</td>
<td>20</td>
</tr>
<tr>
<td>Fraternities, Sororities, and Independent Living Groups</td>
<td>21</td>
</tr>
<tr>
<td>Housing</td>
<td>21</td>
</tr>
<tr>
<td>Medical Services</td>
<td>23</td>
</tr>
<tr>
<td>Public Service Center</td>
<td>24</td>
</tr>
<tr>
<td>Religious Organizations</td>
<td>24</td>
</tr>
<tr>
<td>Student Government</td>
<td>24</td>
</tr>
<tr>
<td>Transportation</td>
<td>25</td>
</tr>
<tr>
<td>Work/Life and Family Resources</td>
<td>25</td>
</tr>
<tr>
<td>Academic Resources</td>
<td>27</td>
</tr>
<tr>
<td>Advising and Support</td>
<td>27</td>
</tr>
<tr>
<td>Digital Learning</td>
<td>27</td>
</tr>
<tr>
<td>Information Systems and Technology</td>
<td>28</td>
</tr>
<tr>
<td>Libraries</td>
<td>28</td>
</tr>
<tr>
<td>Student Disabilities Services</td>
<td>29</td>
</tr>
<tr>
<td>Student Services Center</td>
<td>29</td>
</tr>
<tr>
<td>WebSIS</td>
<td>29</td>
</tr>
<tr>
<td>Writing and Communication Center</td>
<td>29</td>
</tr>
<tr>
<td>Undergraduate Education</td>
<td>30</td>
</tr>
<tr>
<td>Academic Programs</td>
<td>30</td>
</tr>
<tr>
<td>Freshman Year</td>
<td>30</td>
</tr>
<tr>
<td>Major Course of Study</td>
<td>33</td>
</tr>
<tr>
<td>Minors</td>
<td>34</td>
</tr>
<tr>
<td>General Institute Requirements</td>
<td>35</td>
</tr>
<tr>
<td>Academic and Research Options</td>
<td>42</td>
</tr>
<tr>
<td>Independent Activities Period</td>
<td>42</td>
</tr>
<tr>
<td>Undergraduate Research Opportunities Program</td>
<td>43</td>
</tr>
<tr>
<td>Freshman Advising Seminars Program</td>
<td>43</td>
</tr>
<tr>
<td>Interphase EDGE</td>
<td>44</td>
</tr>
<tr>
<td>Edgerton Center</td>
<td>44</td>
</tr>
<tr>
<td>Grading Options</td>
<td>44</td>
</tr>
<tr>
<td>Study at Other Universities</td>
<td>45</td>
</tr>
<tr>
<td>Internships Abroad</td>
<td>47</td>
</tr>
<tr>
<td>Career and Professional Options</td>
<td>48</td>
</tr>
<tr>
<td>Global Education and Career Development</td>
<td>48</td>
</tr>
<tr>
<td>Teacher Licensure and Education</td>
<td>48</td>
</tr>
<tr>
<td>ROTC Programs</td>
<td>49</td>
</tr>
<tr>
<td>Admissions</td>
<td>52</td>
</tr>
<tr>
<td>Costs</td>
<td>53</td>
</tr>
<tr>
<td>Financial Aid</td>
<td>55</td>
</tr>
<tr>
<td>Medical Requirements</td>
<td>56</td>
</tr>
<tr>
<td>Graduate Education</td>
<td>58</td>
</tr>
<tr>
<td>Graduate Study at MIT</td>
<td>58</td>
</tr>
<tr>
<td>General Degree Requirements</td>
<td>59</td>
</tr>
<tr>
<td>Other Institutions</td>
<td>62</td>
</tr>
<tr>
<td>Admissions</td>
<td>63</td>
</tr>
<tr>
<td>Costs</td>
<td>65</td>
</tr>
<tr>
<td>Financial Aid</td>
<td>67</td>
</tr>
<tr>
<td>Medical Requirements</td>
<td>69</td>
</tr>
<tr>
<td>Academic Procedures</td>
<td>71</td>
</tr>
<tr>
<td>Registration</td>
<td>71</td>
</tr>
<tr>
<td>Term Regulations and Examination Policies</td>
<td>72</td>
</tr>
<tr>
<td>Academic Performance and Grades</td>
<td>74</td>
</tr>
<tr>
<td>Graduation</td>
<td>78</td>
</tr>
<tr>
<td>Institute Regulations</td>
<td>79</td>
</tr>
<tr>
<td>Policies and Procedures</td>
<td>79</td>
</tr>
<tr>
<td>Privacy of Student Records</td>
<td>82</td>
</tr>
<tr>
<td>Research and Study</td>
<td>84</td>
</tr>
<tr>
<td>Broad Institute of MIT and Harvard</td>
<td>85</td>
</tr>
<tr>
<td>Center for Archaeological Materials</td>
<td>85</td>
</tr>
</tbody>
</table>
ACADEMIC CALENDAR

2015–2016

September

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tue</td>
<td>English Evaluation Test for international students, 9 am–12 pm</td>
</tr>
<tr>
<td>4</td>
<td>Fri</td>
<td>Advanced Standing Exams and Postponed Finals</td>
</tr>
<tr>
<td>7</td>
<td>Mon</td>
<td>Labor Day—Holiday</td>
</tr>
<tr>
<td>8</td>
<td>Tue</td>
<td>REGISTRATION DAY—FALL TERM
Number of class days (Wed, Sep 9, through Thu, Dec 10): 13 Mon, 12 Tue, 13 Wed, 13 Thu, 12 Fri = 63 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEADLINE to change a Spring Term Exploratory subject to Listener status</td>
</tr>
<tr>
<td>9</td>
<td>Wed</td>
<td>FIRST DAY OF CLASSES</td>
</tr>
<tr>
<td>11</td>
<td>Fri</td>
<td>DEGREE APPLICATION DEADLINE for February SB and Advanced Degrees. $50 Late Fee ($85 after December 11)</td>
</tr>
</tbody>
</table>

REGISTRATION DEADLINE. Registration for all students must be submitted by this date. $50 Late Fee

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Mon</td>
<td>Columbus Day—Holiday</td>
</tr>
<tr>
<td>13</td>
<td>Tue</td>
<td>MONDAY SCHEDULE OF CLASSES TO BE HELD</td>
</tr>
<tr>
<td>23, 24</td>
<td>Fri, Sat</td>
<td>Family Weekend</td>
</tr>
<tr>
<td>26</td>
<td>Mon</td>
<td>Second quarter Physical Education classes begin</td>
</tr>
</tbody>
</table>

October

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Fri</td>
<td>ADD DATE. Last day to add subjects to Registration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day for juniors/seniors to change an elective to or from P/D/F grading</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day for graduate students to change a subject to or from P/D/F grading</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Fri</td>
<td>SUBJECTS WITH FINAL EXAM - No test may be given and no assignment, term paper, or oral presentation shall fall due after this date.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUBJECTS WITH NO FINAL EXAM—Undergraduate Subjects: No test may be given and at most one assignment may fall due between this date and the end of the last scheduled class period in the subject.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graduate Subjects: Either one in-class test may be given or one assignment may fall due between this date and the end of the last regularly scheduled class in the subject.</td>
</tr>
</tbody>
</table>

November

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Wed</td>
<td>Veterans Day—Holiday</td>
</tr>
<tr>
<td>18</td>
<td>Wed</td>
<td>DROP DATE. Last day to cancel subjects from Registration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to change a subject from Credit to Listener</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to add a time-arranged subject that started after beginning of the term</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to add half-term subjects offered in second half of term</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to petition for December Advanced Standing Exam (given during Final Exam Period)</td>
</tr>
<tr>
<td>26, 27</td>
<td>Thu, Fri</td>
<td>Thanksgiving Vacation</td>
</tr>
</tbody>
</table>

December

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tue</td>
<td>ONLINE PREREGISTRATION for Spring Term and IAP begins</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Fri</td>
<td>SUBJECTS WITH FINAL EXAM - No test may be given and no assignment, term paper, or oral presentation shall fall due after this date.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Thu</td>
<td>LAST DAY OF CLASSES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to drop half-term subjects offered in the second half of term</td>
</tr>
<tr>
<td>Date</td>
<td>Day</td>
<td>Event</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>11</td>
<td>Fri</td>
<td>Last day to submit or change Advanced Degree Thesis Title. $85 Late Fee</td>
</tr>
<tr>
<td>14–18</td>
<td>Mon-Fri</td>
<td>FINAL EXAM PERIOD</td>
</tr>
<tr>
<td>15–29</td>
<td>Tue–Tue</td>
<td>GRADE DEADLINE. Grades must be submitted according to due date indicated</td>
</tr>
<tr>
<td>30</td>
<td>Wed</td>
<td>Term Summaries of Fall Term Grades available to Departments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPRING PREREGRISTRATION DEADLINE. Continuing students must initiate online preregistration by 5 pm on this date. $50 Late Fee ($85 after January 15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IAP PREREGRISTRATION DEADLINE. Deadline for all students to preregister for IAP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>January</td>
</tr>
<tr>
<td>4</td>
<td>Mon</td>
<td>First day of January Independent Activities Period</td>
</tr>
<tr>
<td>6, 7</td>
<td>Wed, Thu</td>
<td>CAP Grades Meetings</td>
</tr>
<tr>
<td>8</td>
<td>Fri</td>
<td>THESIS DUE for doctoral degrees</td>
</tr>
<tr>
<td>12</td>
<td>Tue</td>
<td>Graduate Academic Performance Grades Meeting</td>
</tr>
<tr>
<td>15</td>
<td>Fri</td>
<td>THESIS DUE for degrees other than doctoral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 PM FINAL DEADLINE FOR CONTINUING STUDENTS TO PREREGRISTER ONLINE FOR SPRING. $85 Late Fee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEADLINE FOR CONTINUING STUDENTS to select preferences for Spring CI-H/CI-HW subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAST DAY TO GO OFF THE FEBRUARY DEGREE LIST</td>
</tr>
<tr>
<td>18</td>
<td>Mon</td>
<td>Martin Luther King, Jr. Day—Holiday</td>
</tr>
<tr>
<td>20, 21</td>
<td>Wed, Thu</td>
<td>CAP Deferred Action Meetings</td>
</tr>
<tr>
<td>25</td>
<td>Mon</td>
<td>ONLINE REGISTRATION OPENS for all students</td>
</tr>
<tr>
<td>28</td>
<td>Thu</td>
<td>English Evaluation Test for international students, 9 am–12 pm</td>
</tr>
<tr>
<td>29</td>
<td>Fri</td>
<td>Last day of January Independent Activities Period</td>
</tr>
<tr>
<td></td>
<td></td>
<td>February</td>
</tr>
<tr>
<td>1</td>
<td>Mon</td>
<td>REGISTRATION DAY—SPRING TERM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of class days (Tue, Feb 2, through Thu, May 12): 12 Mon, 12 Tue, 14 Wed, 14 Thu, 13 Fri = 65 days</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEADLINE to change a Fall Term Exploratory subject to Listener status</td>
</tr>
<tr>
<td>2</td>
<td>Tue</td>
<td>FIRST DAY OF CLASSES</td>
</tr>
<tr>
<td>3</td>
<td>Wed</td>
<td>GRADE DEADLINE. Grades for IAP must be submitted by this date</td>
</tr>
<tr>
<td>4</td>
<td>Thu</td>
<td>Term Summaries of Grades for IAP available to Departments</td>
</tr>
<tr>
<td>5</td>
<td>Fri</td>
<td>REGISTRATION DEADLINE. Registration for all students must be submitted by this date. $50 Late Fee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEGREE APPLICATION DEADLINE for June SB and Advanced Degrees. $50 Late Fee ($85 Late Fee after April 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEADLINE FOR SECOND-TERM JUNIORS to submit the HASS Concentration Proposal form. $50 Late Fee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEADLINE FOR FINAL-TERM SENIORS to submit the HASS Concentration Completion form. $50 Late Fee</td>
</tr>
<tr>
<td>8</td>
<td>Mon</td>
<td>Third quarter Physical Education classes begin</td>
</tr>
<tr>
<td>9</td>
<td>Tue</td>
<td>Graduate Academic Performance Meeting</td>
</tr>
<tr>
<td>12</td>
<td>Fri</td>
<td>CAP February Degree Candidates Meeting</td>
</tr>
<tr>
<td>15</td>
<td>Mon</td>
<td>Presidents Day—Holiday</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to sign up for family health insurance or waive individual coverage for spring, E23-308</td>
</tr>
<tr>
<td>16</td>
<td>Tue</td>
<td>MONDAY SCHEDULE OF CLASSES TO BE HELD</td>
</tr>
<tr>
<td>17</td>
<td>Wed</td>
<td>Faculty Officers recommend degrees to Corporation (Degree Award Date)</td>
</tr>
<tr>
<td>19</td>
<td>Fri</td>
<td>MINOR COMPLETION DATE. Deadline for submission of Minor Completion form for final-term seniors. $50 Late Fee</td>
</tr>
<tr>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>4</td>
<td>Fri</td>
<td>ADD DATE. Last day to add subjects to Registration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day for juniors/seniors to change an elective to or from P/D/F grading</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day for graduate students to change a subject to or from P/D/F grading</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to change a subject from Listener to Credit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day to drop half-term subjects offered in first half of term</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last day for sophomores to change a subject to or from Exploratory</td>
</tr>
</tbody>
</table>
Late fee ($100) and petition required for students completing registration after this date.

Last day for February 2017 degree candidates to apply for a double major.

Deadline for completing cross-registration. $50 Late Fee for petitions approved after this date.

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Term Summaries of Spring Term Grades available to Departments</td>
</tr>
<tr>
<td>26</td>
<td>DEPARTMENT GRADES MEETINGS</td>
</tr>
<tr>
<td>27</td>
<td>CAP June Degree Candidates Meeting</td>
</tr>
<tr>
<td>30</td>
<td>Memorial Day—Holiday</td>
</tr>
<tr>
<td>31</td>
<td>CAP Grades Meeting</td>
</tr>
<tr>
<td></td>
<td>SUMMER SESSION PREREGISTRATION DEADLINE.</td>
</tr>
<tr>
<td></td>
<td>Deadline for all students to preregister online for Summer Session. $50</td>
</tr>
<tr>
<td></td>
<td>Late Fee</td>
</tr>
</tbody>
</table>

April

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Last day to submit Advanced Degree Thesis Title. $85 Late Fee</td>
</tr>
<tr>
<td>7–10</td>
<td>Campus Preview Weekend</td>
</tr>
<tr>
<td>18, 19</td>
<td>Patriots Day—Vacation</td>
</tr>
<tr>
<td>21</td>
<td>DROP DATE. Last day to cancel subjects from Registration</td>
</tr>
<tr>
<td></td>
<td>Last day to change a subject from Credit to Listener</td>
</tr>
<tr>
<td></td>
<td>Last day to add time-arranged subject that started after beginning of the term</td>
</tr>
<tr>
<td></td>
<td>Last day to petition for May Advanced Standing Exam (given during Final Exam Period)</td>
</tr>
<tr>
<td>29</td>
<td>THESIS DUE for doctoral degrees</td>
</tr>
</tbody>
</table>

May

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ONLINE PREREGISTRATION for Fall Term and Summer Session begins</td>
</tr>
<tr>
<td>6</td>
<td>SUBJECTS WITH FINAL EXAMS - No test may be given and no assignment, term paper, or oral presentation shall fall due after this date.</td>
</tr>
<tr>
<td></td>
<td>SUBJECTS WITH NO FINAL EXAM—</td>
</tr>
<tr>
<td></td>
<td>Undergraduate Subjects: No test may be given and at most one assignment may fall due between this date and the end of the last scheduled class period in the subject.</td>
</tr>
<tr>
<td></td>
<td>Graduate Subjects: Either one in-class test may be given or one assignment may fall due between this date and the end of the last regularly scheduled class in the subject.</td>
</tr>
<tr>
<td></td>
<td>THESIS DUE for degrees other than doctoral</td>
</tr>
<tr>
<td>12</td>
<td>LAST DAY OF CLASSES</td>
</tr>
<tr>
<td>16–20</td>
<td>FINAL EXAM PERIOD</td>
</tr>
<tr>
<td>17–24</td>
<td>GRADE DEADLINE. Grades must be submitted according to due date indicated</td>
</tr>
<tr>
<td>20</td>
<td>LAST DAY TO GO OFF THE JUNE DEGREE LIST</td>
</tr>
</tbody>
</table>

June

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Doctoral Hooding Ceremony</td>
</tr>
<tr>
<td>3</td>
<td>COMMENCEMENT</td>
</tr>
<tr>
<td>6</td>
<td>First day of classes for Regular Summer Session</td>
</tr>
<tr>
<td>8, 9</td>
<td>CAP Deferred Action Meetings</td>
</tr>
<tr>
<td>10</td>
<td>DEGREE APPLICATION DEADLINE for September SB and Advanced Degrees. $50 Late Fee ($85 after July 8)</td>
</tr>
<tr>
<td></td>
<td>REGISTRATION DEADLINE. Registration for all students must be submitted by this date. $50 Late Fee</td>
</tr>
<tr>
<td>13</td>
<td>FALL PREREGISTRATION DEADLINE. Continuing students must initiate online preregistration by this date. $50 Late Fee ($85 after August 16)</td>
</tr>
</tbody>
</table>

June 6 (Mon)–Aug 16 (Tues) Summer Session (incl. Exam Period). Theses due for all September Degree candidates, Fri, Aug 5.

The official Academic Calendar (http://web.mit.edu/registrar/calendar/) is published by the Registrar; consult the Registrar’s website for information about projected key dates for future academic years (http://web.mit.edu/registrar/calendar/projected.html).
Here's a quick look at what makes MIT tick—the ingredients of a world-class educational institution.
OVERVIEW

On February 20, 1865, four years after approval of its founding charter, the Massachusetts Institute of Technology opened its doors to admit the first class of 15 students. The event marked the culmination of an effort by William Barton Rogers, MIT’s founder and first president, to create a new kind of educational institution relevant to the times and to the nation’s need, where students would be educated in the application as well as the acquisition of knowledge. A distinguished natural scientist, Rogers stressed the importance of basic research and believed that professional competence was best fostered by the coupling of teaching and research and attention to real-world problems.

Teaching and research—with relevance to the practical world as a guiding principle—continue to be MIT’s primary purpose. The Institute is independent, coeducational, and privately endowed. Its five schools—architecture and planning; engineering; humanities, arts, and social sciences; management; and science—encompass numerous academic departments, divisions, and degree-granting programs, as well as interdisciplinary research centers, laboratories, and programs whose work extends beyond traditional departmental boundaries.

Mission Statement

The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

The Institute is committed to generating, disseminating, and preserving knowledge, and to working with others to bring this knowledge to bear on the world’s great challenges. MIT is dedicated to providing its students with an education that combines rigorous academic study and the excitement of discovery with the support and intellectual stimulation of a diverse campus community. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

AROUND CAMPUS

An MIT education should prepare students for life through an integrated educational program composed of academics, research, and community. Academics establish a place for rigorous study of the fundamentals of science, engineering, social science, and the humanities, as well as a format for developing problem-solving skills, familiarity with quantitative and qualitative analysis, historical and literary insight, and an understanding of the scientific method. Participation in research provides a foundation for professional competence and opportunities for learning-by-doing. Community interaction enables students to become familiar with their responsibilities, hone their leadership and communication skills, and gain self-mastery. Although each of the three components forms a distinct area of a student’s education, the contribution of each reinforces and adds to that of the others. To provide a uniquely excellent education, MIT brings students and faculty together to learn from one another through academics, research, and community.

To enable MIT’s mission of advancing knowledge and educating students in science, technology, and other areas of scholarship that will best serve the nation and the world, we continuously work to improve our residential campus. Strengthening campus community and supporting innovation are principles that guide our campus planning. Over the past decade, the Institute has added one million square feet of new facilities to the campus—smart residence halls and common spaces to inspire innovative collaborations, cutting-edge laboratories to support the emergence of new technologies, and visionary architecture to reinforce the intensity, curiosity, and excitement that are a defining value of the Institute, and of an MIT education.

To envision how our campus and surroundings could evolve to meet future academic and research needs, we developed MIT 2030: a flexible framework that helps the Institute make thoughtful, well-informed choices about its physical development and renewal in support of its mission. Renewal and stewardship are critical elements of MIT’s plans for the future. To ensure that its buildings are able to support the educational, research, and student life activities essential to our mission, the Institute continues to pursue programs of renovation, renewal, and comprehensive care.

These efforts reflect the Institute’s commitment to removing boundaries between life and learning, inspiring freedom of imagination, and reinventing the substance of education in the 21st century.

Students and Faculty

MIT enrolled 11,319 students in 2014–2015, including 4,512 undergraduates and 6,807 graduate students. These MIT students came from all 50 states, the District of Columbia, three territories, and 116 foreign countries. The broad international student representation of 3,220 students made up 10 percent of the undergraduate and over 40 percent of the graduate population.

In the same year, there were 1,021 faculty members in MIT’s professorial ranks, including 224 women. The total teaching staff numbered 1,830. Most faculty members at MIT teach both undergraduate and graduate students. Undergraduates frequently register for graduate classes, and many undergraduates and graduate students participate, often together, in advanced research.

The confluence of ages, disciplines, and nationalities so characteristic of MIT brings together students and teachers, biologists and architects, humanists and engineers, young and old, and deeply influences the life and experience of every member of the
AROUND CAMPUS

academic community. The result is an academic environment with a strong focus on excellence and a diverse range of interests.

The Campus

MIT’s 164-acre campus extends for more than a mile along the Cambridge side of the Charles River Basin facing historic Beacon Hill and the central sections of Boston. Many academic activities occur within a group of interconnected buildings designed to permit maximum flexibility and easy communication among the departments and schools. The extensive athletic plant and playing fields are an integral part of the campus, as are the recreational buildings, dormitories, and dining halls. This arrangement contributes greatly to the sense of unity and community involvement that characterizes the Institute.

At the eastern end of the campus is an array of buildings for studies in management, economics, international studies, and political science, including Building E62, the new home of the MIT Sloan School of Management. The 215,000-square-foot building with a 190,000-square-foot underground garage was designed by Moore Ruble Yudell Architects & Planners and Bruner/Cott Architects and opened in June 2010. The building is one of the most sustainable on campus and received LEED Gold Certification in 2011. An indoor corridor connects to the Alfred P. Sloan Building. This building, E52, is currently undergoing a full renovation and is scheduled to be ready for occupancy early in 2016. When completed, it will house the Department of Economics, administrative offices for the Sloan School of Management, and an expanded Faculty Club/Conference Center. The nearby Arthur D. Little Building, which also connects to Building E62, underwent a major renovation in 2011. Next to them is the Grover M. Hermann Building that houses the Dewey Library for Management and Social Sciences. Adjacent to these academic buildings is Eastgate, a 29-story student family apartment tower.

Also located on the east end of the campus are buildings housing the Institute for Medical Engineering and Science, and MIT Medical’s Health Services Center. The Health Services Center provides a pharmacy and facilities for medical, dental, surgical, and other specialties.

Adjacent to the Health Services Center is I. M. Pei’s Wiesner Building, housing the Media Laboratory, the Office of the Arts, and the Albert and Vera List Visual Arts Center, comprising three exhibition galleries and a film/video theater. In fall 2009, a new building opened that nearly doubled the space for the Media Lab and School of Architecture and Planning. The 163,000-square-foot extension was designed by a team headed by Pritzker Prize-winning architect Fumihiko Maki and executive architects Leers Weinzapfel Associates. The new building links to the Wiesner Building through a multi-tiered central atrium flanked by nine fully visible laboratories, allowing the researchers in both buildings to interact easily.

A commanding feature of East Campus is McDermott Court, featuring a great sculpture by Alexander Calder that rises in bold contrast to the facade of the 20-story Center for Earth Sciences (Cecil and Ida Green Building). Besides the Calder, MIT’s outstanding collection of contemporary environmental sculpture includes works by Henry Moore, Louise Nevelson, Pablo Picasso, Jaume Plensa, and Tony Smith.

The Institute’s main buildings, enclosing Killian Court, were designed by Welles Bosworth (Class of 1899) and dedicated in 1916. Banked by rhododendrons and lined with tall shade trees, Killian Court opens to a wide view of the Charles River, the low brick buildings of old Boston, and the concrete and glass towers that rise above them.

The most significant expansion of the main group of campus buildings since the 1930s was completed in fall 2007. The cornerstone of the project is the Green Center, named for Cecil and Ida Green, whose leadership gift for Physics initiated a major renovation of the historic Bosworth Buildings by providing significant infrastructure renewal and modernization.

Interconnected with these central buildings are the Center for Life Sciences (the Dorrance and the Whitaker buildings), the Karl Taylor Compton Laboratories (for electronics and nuclear science), the EG&G Education Center (with lecture and laboratory facilities for the Department of Electrical Engineering and Computer Science), the Center for Materials Science and Engineering (the Vannevar Bush Building), the Sloan Laboratory, the Guggenheim Laboratory, and the Center for Advanced Engineering Study.

An outdoor area known as North Court sits adjacent to several cafés and features benches and tables for eating outside. The area has pathways leading to several buildings, including the Koch Biology Building and the new home of the Koch Institute for Integrative Cancer Research at MIT. Building 76 was completed in December 2010 and received LEED Gold Certification in 2011. The building is located on Main Street across from the Broad and Whitehead institutes. The 360,000-square-foot building was designed by Ellenzweig of Cambridge, MA.

Next to the Koch Institute is the Ray and Maria Stata Center for Computer, Information, and Intelligence Sciences, designed by Frank O. Gehry—a cluster of irregular shapes wrapped around a central meeting area. The Stata Center was created to foster the kinds of creative collaborations that can arise when curious, talented individuals and teams are brought together in the right environment. It is the home of the Computer Science and Artificial Intelligence Laboratory, the Laboratory for Information and Decision Systems, and the Department of Linguistics and Philosophy.

Across Vassar Street from the Stata Center are facilities for brain and cognitive sciences. Dedicated in fall 2005, the 411,000-square-foot complex provides state-of-the-art laboratories, classrooms, and offices for the Department of Brain and Cognitive Sciences, the McGovern Institute for Brain Research, and the Picower Institute for
Learning and Memory. It received a LEED Silver certification from the US Green Building Council in 2008.

Down the street and across Massachusetts Avenue is the West Campus, anchored by the Stratton Student Center with social rooms, cafeterias, student activity offices, music rooms, a spacious reading room, and recreational and commercial facilities. A recent addition to the area is Alchemist, a major sculptural work by Spanish contemporary artist Jaume Plensa. The Student Center Plaza is bounded on the west by Kresge Auditorium and on the east by the MIT Chapel. Both buildings were designed by Eero Saarinen. The chapel is used regularly for religious services by all faiths and is open throughout the day for meditation. The chapel’s unusual design includes an exterior moat that reflects light in ever-changing patterns on the interior walls.

Also located on the West Campus are the du Pont Athletic Center and playing fields for soccer, lacrosse, baseball, softball, touch football, rugby, cricket, track, and tennis. The Howard W. Johnson Athletics Center includes an indoor ice rink and field house, and Rockwell Cage accommodates varsity and intramural basketball, volleyball, and badminton. MIT’s Steinbrenner Stadium includes a six-lane, 400-meter, all-weather running track, the first of its kind in North America. The stadium also includes facilities for the steeplechase and other field events, with a game field inside the track oval for intercollegiate football, soccer, lacrosse, and field hockey. In summer 2008, a new synthetic turf was installed and lighting improvements were made, enhancing activities on Roberts Field.

These athletic facilities are complemented by the impressive Albert and Barrie Zesiger Sports and Fitness Center, designed by Pritzker Prize-winning architect Kevin Roche, John Dinkeloo & Associates, and Sasaki Associates. This luminous complex contains an Olympic-class 50-meter pool, seating for 450 spectators, a training pool, an 11,000-square-foot fitness center, and six squash courts built to international competition standards.

The Charles River Basin—two miles long and a third of a mile wide—is a major feature of MIT’s physical environment. The Pierce Boathouse and the Walter C. Wood Sailing Pavilion provide centers for extensive activity in crew and in sailing.

At the intersection of Massachusetts Avenue and Memorial Drive is Fariborz Maseeh Hall. The dormitory formerly known as both W1 and Ashdown House was renamed in recognition of a $24 million gift from MIT alumnus Fariborz Maseeh and the Massiah Foundation. This transformational investment allows MIT to expand the undergraduate student body to 4,500 students, an increase of about 250 from recent enrollment figures. The building reopened in August of 2011 and received LEED Gold certification for its sustainable, extensive renovation.

Lining Memorial Drive and facing the Charles River are additional student residences, among them the serpentine Baker House, designed by the Finnish architect Alvar Aalto and internationally recognized as a masterpiece of modernism. Renovated in conjunction with its 50th anniversary, Baker House is one of the most popular dormitories at the Institute, in part because of the extraordinary residential experience it provides. Down the road from Baker House at the end of Amherst Alley is the Westgate apartment complex for students with families and the Tang Residence Hall for graduate students.

Simmons Hall, an undergraduate dormitory on Vassar Street, was created by architect Steven Holl in collaboration with Perry Dean Rogers and Partners and acclaimed for the inventive ways it opens to the community. The Warehouse, a residential complex developed from a renovated industrial warehouse built in 1890, offers graduate students an attractive alternative to off-campus housing. The Sidney-Pacific Street graduate residence offers recreational and retail services at street level, giving the building a lively neighborhood presence. Added to the graduate community in fall 2008 is a 275,000-square-foot complex that includes 550 beds, a dining hall, and the Thirsty Ear Pub. The complex is located next to the Sidney-Pacific residence hall and is named Ashdown House after Avery Ashdown, the late housemaster for Building W1, the former home of the graduate students who now live in the new building. Ashdown House was the first LEED Gold-certified building on campus. It was awarded that distinction for optimizing a sustainable design, using nontoxic materials, and incorporating innovative sustainable solutions.

In 2016, MIT will celebrate the centennial anniversary of its move to Cambridge. As the Institute honors these past hundred years, plans for the future include critical elements such as renewal and stewardship of campus buildings and infrastructure. One important change to the campus is the new MIT.nano facility, to be completed in 2018. It will house state-of-the-art cleanroom, imaging, and prototyping facilities supporting research with nanoscale materials and processes—in fields including energy, health, life sciences, quantum sciences, electronics, and manufacturing. Dedicated to experimentation and instruction, MIT.nano represents one of the largest commitments to research in MIT’s history and will support the activities of 2,000 MIT researchers. It will streamline delicate experimentation and prototyping by bringing together complex research activities that are currently distributed around campus.

The Boston and Cambridge Environment

MIT is in Cambridge, Massachusetts, on the north bank of the Charles River, facing the city of Boston. The city of Cambridge, well known as the residence of MIT and Harvard, is home to many students and professionals. About 35 percent of its residents are college and graduate students, and one out of every six jobs is in higher education.

With over 105,000 people located within a 6.5 square mile area, Cambridge is a unique community with a strong mix of cultural, demographic, and social diversity; intellectual vitality; and
technological innovation. The city’s diversity is reflected in its international community, with almost 27 percent of residents being foreign born, representing over 70 countries and speaking more than 40 different languages.

Within a two-mile radius of MIT are Boston’s Museum of Science and Museum of Fine Arts, the Isabella Stewart Gardner Museum, the New England Conservatory of Music, Symphony Hall, the New England Aquarium, and the Boston Public Library, as well as Fenway Park and TD Garden for professional baseball, basketball, and concerts. Students can also travel easily to Boston’s theater district, where Broadway plays are previewed and local productions are staged.

Among the cultural organizations enriching life in the area are the Boston Symphony Orchestra, the Boston Pops, the Boston Ballet Company, the Opera Company of Boston, the Boston Center for the Arts, Boston University’s Huntington Theatre Company, the Loeb Drama Center, and the American Repertory Theatre.

MIT is one of more than 50 schools located in the Boston area, including Boston College, Boston University, Brandeis University, Harvard University, Lesley University, Northeastern University, Simmons College, Tufts University, Wellesley College, and many specialized professional art and music schools. The concentration of academic, cultural, and intellectual activity in this area is one of the most significant in the country.

An hour or two away from MIT by car are the mountains of Vermont and New Hampshire, the ocean beaches of Cape Cod, the lakes and rivers of Maine, the small clusters of fishing towns along the New England coast, and many places of historical interest in Massachusetts alone—Salem, Sturbridge, Lexington, Concord, and Plymouth. With its varied landscapes and four distinct seasons, New England offers unlimited possibilities for recreation—skiing, mountain climbing, hiking, sailing, canoeing, kayaking, swimming, and camping.

ACADEMIC PROGRAM

The purpose of the academic program at MIT is to give students a solid command of basic principles, a versatility of insight and perspective concerning natural and social phenomena, the habit of continued learning, and the power that comes from a thorough and systematic approach to learning. From these attributes comes the best assurance for continued professional and personal growth, especially in today’s rapidly changing world.

The undergraduate academic program (p. 30) is based on a core of General Institute Requirements (p. 35) and on the specific curricula offered by departments for undergraduate majors. All undergraduate Courses at MIT lead to the Bachelor of Science (SB) degree. For most undergraduates, degree-granting programs require four years of full-time study.

Graduate degrees (p. 59) include Master of Architecture (MArch), Master of Science (SM), Master of Engineering (MEng), Master in City Planning (MCP), Master of Business Administration (MBA), Master of Finance (MFin), Master of Science in Management Studies (MSMS), Engineer, Doctor of Philosophy (PhD), and Doctor of Science (ScD). Graduate students may also take advantage of a number of standing interdisciplinary programs (p. 349) or develop individually tailored programs in consultation with the faculty.

Engineer degrees include Civil Engineer (CE), Electrical Engineer (EE), Engineer in Aeronautics and Astronautics (EAA), Engineer in Computer Science (ECS), Environmental Engineer (EnvE), Materials Engineer (MatE), Mechanical Engineer (MechE), Naval Engineer (NavE), and Nuclear Engineer (NuclE).

Each of the academic departments and units listed below offers one or more degree-granting programs, as described in the Schools (p. 110) and Interdisciplinary Programs (p. 327) sections of this Bulletin. More detailed information can be obtained from the program and department offices.

School of Architecture and Planning
Architecture
Media Arts and Sciences
Urban Studies and Planning

School of Engineering
Aeronautics and Astronautics
Biological Engineering
Chemical Engineering
Civil and Environmental Engineering
Electrical Engineering and Computer Science
Materials Science and Engineering
Mechanical Engineering
Nuclear Science and Engineering
Institute for Data, Systems, and Society
Institute for Medical Engineering and Science

School of Humanities, Arts, and Social Sciences
Anthropology
Comparative Media Studies/Writing
Economics
Global Studies and Languages
History
Humanities
Linguistics and Philosophy
Literature
Music and Theater Arts
Political Science
Science, Technology, and Society
Sloan School of Management
Management

School of Science
Biology
Brain and Cognitive Sciences
Chemistry
Earth, Atmospheric, and Planetary Sciences
Mathematics
Physics

Joint Program with Woods Hole Oceanographic Institution

Accreditation
MIT is accredited by the New England Association of Schools and Colleges, Inc., through its Commission on Institutions of Higher Education.

Inquiries regarding MIT’s accreditation status should be directed to the Office of the President, Massachusetts Institute of Technology. Individuals may also contact:

Commission on Institutions of Higher Education
New England Association of Schools and Colleges
209 Burlington Road, Suite 201
Bedford, MA 01730-1433
telephone 781-271-0022
email cihe@neasc.org

Many degree programs at MIT are accredited by specialized professional accrediting bodies, including ABET, the Association to Advance Collegiate Schools of Business, the American Chemical Society, the American Institute of Chemical Engineers, the Computer Science Accreditation Board, the National Architectural Accrediting Board, and the Planning Accreditation Board. Academic departments can provide information on the accreditation of the specific degree programs they offer.

ADMINISTRATION

MIT Corporation

The Institute’s board of trustees is known as the Corporation (http://web.mit.edu/corporation), led by its chairman. Its membership includes approximately 75 distinguished leaders in science, engineering, industry, education, and public service, and (as ex officio members) the chairman, president, executive vice president and treasurer, and secretary of the Corporation. Between quarterly meetings, the Corporation functions through its officers and executive committee.

The Corporation appoints visiting committees for each academic department and for certain of the other major activities at the Institute that relate to the undergraduate student experience. These committees, whose members are leaders in their respective professions, make recommendations to the Institute administration and the Corporation concerning departmental activities and, in turn, provide counsel to the departments.

Academic and Administrative Organization

The Institute’s chief executive officer is the president. Senior academic and administrative officers of the Institute include the chancellor, provost, executive vice president and treasurer, associate provosts, deans of the schools, senior vice president and secretary of the corporation, vice presidents, dean for graduate education, dean for undergraduate education, dean for student life, dean of digital learning, director of libraries, and Institute community and equity officer.

The Institute’s academic departments and institutes—each under the leadership of a head or director—are organized within five schools. In addition, numerous interdisciplinary laboratories and centers have been organized to facilitate research in fields that extend across traditional boundaries; administration of each laboratory or center is the responsibility of the faculty member who serves as its director. Research projects sponsored by government, industry, or foundations are administered through the Office of Sponsored Programs.

Educational policy for the Institute is determined by the MIT Faculty (as defined by the Rules and Regulations of the Faculty). The Faculty meets monthly during the academic year and conducts much of its business through a number of elected standing committees. The Faculty Policy Committee (FPC), which includes student members, maintains a broad overview of the Institute’s academic programs, deals with a wide range of policy issues of concern to the Faculty, and coordinates the work of the Faculty committees. The chair of the Faculty chairs the FPC.

Communication and exchange within and between the faculty and the administration are facilitated through four Institute-wide councils. Senior officers responsible for the overall administration of the Institute, plus the chair of the Faculty, meet regularly as the Academic Council to confer on matters of Institute policy. Department heads and directors of major laboratories and centers join them to form the Faculty Council. The Administrative Council, comprised of the heads of the major administrative sections of the Institute, meets twice during the academic year. The Creative Arts Council, chaired by an associate provost, consists of deans, department heads, directors in the arts, and campus-wide faculty representatives who meet to confer on issues concerning arts programs and policy.
For a detailed view of the Institute’s organizational structure, see the MIT Organization Chart (http://orgchart.mit.edu).

ALUMNI

MIT Alumni Association

The MIT Alumni Association (https://alum.mit.edu/home), founded by alumni in 1875, provides multiple ways for the Institute’s 130,431 former students to stay in touch with one another and maintain their connections to the Institute. In partnership with the volunteer alumni board, the Association staff helps alumni organize events, communicate with one another, and raise funds for MIT.

In addition to programs such as regional clubs and reunions, the Association offers an opportunity for alumni to make a virtual “infinite connection” to the MIT community through its website (http://alum.mit.edu). More than 90,000 alumni members have made that connection and are using Email Forwarding for Life, the online alumni directory, alumni email lists, online mentoring services, events registration, and online Alumni Fund giving. Social networking sites such as LinkedIn, Facebook, Twitter, and the Slice of MIT blog are also very popular. More than 14,500 alumni volunteer their services for MIT each year, with many serving as class and club officers, educational counselors, and members of the MIT Corporation and its visiting committees. Other popular alumni programs include View from the Top, Tech Reunions, and Toast to IAP.

In fiscal year 2014, the Alumni Fund reported $63.2 million in gifts, contributed by 44,939 alumni donors, students, parents, and friends.
CAMPUS LIFE

Life at MIT is anything but dull, and opportunities to engage in activities beyond academics abound. Housing and dining, fraternities and sororities, student clubs and sports are but a few of the topics addressed in this section that provide a glimpse into the non-academic aspects of life at the Institute.

ACTIVITIES

There is much more to an MIT education than study and research in classrooms and laboratories. Numerous activities and groups are available that complement academic pursuits and provide opportunities for students to grow and develop new interests or lifelong pursuits. This section describes just a few of the activities that add to campus life.

There are more than 500 co-curricular student organizations at MIT (many open to both faculty and students), including the Outing Club, the Solar Electric Vehicle Team, the Debate Team, the FM local broadcasting station (WMBR), the MIT Society for Women Engineers, the Student Art Association, Model UN, and interest groups focusing on dance, chess, ham radio, and strategic games (to name just a few).

Many students are actively engaged in service work either through the Public Service Center or on their own. Groups such as Alpha Phi Omega, the national service fraternity, Amphibious Achievement, and the Educational Studies Program sponsor active social service programs. For example, the Educational Studies Program provides opportunities for MIT students to work with area high school students.

MIT also has a number of cultural and identity groups including the Black Students’ Union, the Latino Cultural Center, the Asian American Association, and the South Asian American Students Association. Over 30 international student organizations sponsor a rich array of programs, including discussion groups and social events. The International Students’ Association, for example, sponsors a newsletter, assemblies, and other events. MIT’s Gays, Lesbians, Bisexuals and Friends at MIT (G@MIT) organizes weekly awareness programs and discussion groups, and sponsors social events throughout the year. The Graduate Women at MIT (GWAMIT) sponsors a newsletter, assemblies, and other events. MIT’s Gays, Lesbians, Bisexuals and Friends at MIT (G@MIT) organizes awareness programs and discussion groups, and sponsors social events. The Graduate Women at MIT (GWAMIT) works to promote the personal and professional development of women in graduate school at MIT.

For more information, contact the Association of Student Activities (http://web.mit.edu/asa/www), Room W20-401, or the Student Activities Office (http://studentlife.mit.edu/sao), Room W20-549, 617-253-6777.

ARTS AT MIT

The arts (http://arts.mit.edu) are a fundamental component of MIT’s core curriculum and research community, reflecting and enhancing the Institute’s creativity, innovation, and excellence while advancing the self-discovery, problem solving, and collaborative skills needed by leaders meeting the challenges of the 21st century.

Over 50 percent of all MIT undergraduates enroll in arts courses each year—with nearly half of students participating in music and theater classes or performance groups—and many major or minor in arts-related subjects. MIT’s arts faculty includes eminent artists such as Pulitzer Prize recipients composer John Harbison and writer Junot Díaz, as well as composer and musician Evan Ziporyn, composer Tod Machover, director Jay Scheib, architect Antón García-Abril, designer Neri Oxman, and visual artist Renée Green.

Each year MIT’s performing groups and outside artists present over 300 music, theater, and dance events. Productions range from chamber music to electronic "hyperinstruments,” and from Shakespearean plays to science theater. MIT’s world music program features Boston’s only Balinese gamelan, a Senegalese drumming ensemble, and an acclaimed South Asian performance series.

Art, Culture and Technology. The Department of Architecture’s Program in Art, Culture and Technology (ACT) (http://act.mit.edu) operates as a critical production- and education-based laboratory focusing on artistic research, advanced visual studies, and transdisciplinary collaboration within the context of MIT’s technological community. Its weekly lecture series is open to the public.

Dance. Extracurricular dance activities at MIT are sponsored by the Folk Dance Club, Tech Squares, Ballroom Dancing Club, Dance Troupe, and various international student groups, providing regular opportunities for dancers at all levels of ability. Access their websites (http://theaterarts.mit.edu) for additional information.

Literary Arts. The Comparative Media Studies/Writing (CMS/W) Program (p. 235) offers courses in fiction, nonfiction prose, poetry, science writing, and digital media, taught by award-winning faculty. Its own publications and the Ivona Karmel Writing Prizes help highlight and distribute the very best in MIT graduate and undergraduate writing. The Literature Section (p. 257) sponsors readings by visiting authors that are open to the MIT community as well as the public. Its Pleasures of Poetry series meets every weekday during IAP, bringing together faculty, staff, students, and others from the community who share a love of poetry. Together with the MIT Libraries, Literature also sponsors the MIT Literary Society, an undergraduate reading group focused on literary discussion outside the classroom.

Media Arts. An international leader in the development of innovative digital media and information technologies, MIT’s Media Lab (http://
media.mit.edu) is a uniquely flexible organization where faculty members, research staff, and students from numerous, seemingly unrelated disciplines—with backgrounds ranging from computer science to psychology, music to graphic design, and architecture to mechanical engineering—work together "atelier style," doing the things that conventional wisdom says can't or shouldn't be done. The goal is to develop technologies and concepts that foster creativity—empowering people of all ages, from all walks of life, in all societies, to design and invent new possibilities for themselves and the communities around them. Research opportunities for students are available through the Program in Media Arts and Sciences (p. 123), based in the School of Architecture and Planning, and through the Undergraduate Research Opportunities Program.

CMS/W (p. 235) offers an innovative program that applies critical analysis, collaborative research, and design across a variety of media arts, forms, and practices. Through its undergraduate and graduate programs and hands-on research groups, it develops thinkers who understand the dynamics of media change and can apply their insights to contemporary problems. It cultivates practitioners and artists who can work in multiple forms of contemporary media.

Music. MIT’s music (p. 260) faculty includes internationally acclaimed composers, performers, and musicologists. Students can choose to pursue a full or joint major, a minor, or a HASS concentration in music. They can also take private lessons with financial support from the Emerson scholarship program; music subjects in theory, composition, history, jazz, and world music; or participate (for credit or not) in faculty-led performance ensembles. These include the MIT Symphony Orchestra, Wind Ensemble, Festival Jazz Ensemble, Chamber Music Society, Concert Choir, Chamber Chorus, Balinese Gamelan Galak-Tika, and Rambax MIT (a Senegalese drumming ensemble). In addition to ensemble performances and student recitals, concerts are also presented as part of the MIT Faculty, Affiliated Artists, Guest Artists, and MIT Heritage of the Arts of South Asia (MITHAS). Artists of national and international stature frequently come to perform at MIT and to interact with students in and out of the classroom.

In addition to the performance opportunities offered by the music program within the School of Humanities, Arts, and Social Sciences, there are many student-directed ensembles and a capella groups that perform on campus as well. Visit the website (http://arts.mit.edu/groups/performance-groups) for more information.

Theater. MIT’s programs in theater arts (p. 260) afford opportunities for serious study and training in acting, directing, playwriting, dramaturgy, stagecraft, and design. Classes are small, and students work directly with renowned faculty and guest artists, or initiate independent student workshop productions. Students may choose a minor or HASS concentration in theater; it is also possible to create an individually tailored theater major. A wide variety of theatrical performances are presented by MIT Dramashop and Dance Theater Ensemble, the co-curricular student production group of MIT Theater Arts. These productions, directed by professionals in their fields, often offer interested students opportunities to further develop their work in professional settings. Extracurricular student organizations such as Shakespeare Ensemble, Musical Theatre Guild, Gilbert & Sullivan Players, and the improv group Roadkill Buffet offer additional performance and production experience.

An annual Theater Arts Open House on Registration Day in early September allows students to meet the people who produce theater events and to learn more about opportunities to get involved in various productions.

Visual Arts. From large-scale public art to film and photography, the visual arts are celebrated in innovative ways at MIT. Excellent opportunities exist for members of the MIT community to view and create art in a variety of media (see Student Art Association, List Visual Arts Center, and MIT Museum below). The Program in Art, Culture and Technology offers undergraduate classes in public, installation, and media arts, and has a prominent master’s program. MIT students can take classes in traditional fine arts at Harvard, the Massachusetts College of Art and Design, the School of the Museum of Fine Arts, and Wellesley College through cross-registration programs (http://web.mit.edu/registrar/reg/xreg).

The Office of the Arts at MIT oversees, coordinates, supports, and facilitates arts activities. The office’s branches include the Council for the Arts, Student Programs, Visiting Artists Program, and Arts Communications. For general information on arts programs and activities at MIT, visit the website (http://arts.mit.edu) and see the arts calendar (http://arts.mit.edu/events-visit/calendar).

The MIT Center for Art, Science and Technology (CAST) (http://arts.mit.edu/cast), established in 2012, facilitates and creates opportunities for exchange and collaboration for artists with engineers and scientists. A joint initiative of the Office of the Provost, the School of Architecture and Planning, and the School of Humanities, Arts, and Social Sciences, the center is committed to fostering a culture where the arts, science, and technology thrive as interrelated, mutually informing modes of exploration, knowledge, and discovery. As an umbrella organization, CAST’s activities include soliciting and supporting cross-disciplinary curricular initiatives; managing visiting artist residencies; overseeing undergraduate, graduate, and postdoctoral research; and organizing programs such as performances, exhibitions, installations, and a biennial symposium.

A flourishing Visiting Artists Program complements the curriculum, allowing students to engage with distinguished visiting artists, including visual artists Tomás Saraceno, Vik Muniz, and Trevor Paglen; architect/engineer/artist Santiago Calatrava; filmmaker Katerina Cizek; sound artist Trimpin; and jazz pianist Jason Moran. For more information, visit the website (http://arts.mit.edu/visiting-artists).
The **Eugene McDermott Award in the Arts at MIT** (http://arts.mit.edu/mcdermott) recognizes rising, innovative talents and offers its recipients a $100,000 cash prize and campus residency. Past recipients include composer Tan Dun, video artist Bill Viola, conductor Gustavo Dudamel, multidisciplinary performance and media artist Robert Lepage, and visual artist Olafur Eliasson.

The **Council for the Arts at MIT** is a volunteer group of alumni and friends established in 1972 by MIT president Jerome B. Wiesner to support the visual, literary, and performing arts. The Council for the Arts recognizes distinguished artists from all disciplines with one of the country's most esteemed arts prizes, the Eugene McDermott Award in the Arts at MIT. Since its inception, the council has awarded over 3,500 individual grants; it also administers annual student prizes in the arts, including the Sudler Prize, the Laya and Jerome B. Wiesner Student Art Awards, and the Harold and Arlene Schnitzer Prize in the Visual Arts.

Council programs directly benefit MIT students by providing free tickets to the Boston Symphony Orchestra, Boston Chamber Music Society, Boston Modern Orchestra Project, and Radius Ensemble, as well as free admission to the Boston Museum of Fine Arts, the Photographic Resource Center, the Harvard Art Museum, the Institute of Contemporary Art/Boston, the Isabella Stewart Gardner Museum, and a number of performances and concerts throughout the year.

The Council for the Arts’ Grants Program encourages the dreams and talents of the MIT community, providing the opportunity for students, faculty, and staff to apply for funding for arts projects in all disciplines. Grants range from a few hundred to several thousand dollars.

Student Programs. Several programs encourage students to engage in the arts. Freshman seminars led by MIT faculty and staff introduce participants to the many academic and performance programs in the arts at MIT and the Boston area. Arts Scholars (http://arts.mit.edu/participate/arts-scholars) is an honors program that enables students who are active in the arts to attend exhibitions, plays, and concerts with experts in the respective arts disciplines. The Grad Arts Forum (http://arts.mit.edu/groups/grad-arts-forum) encourages interdisciplinary communication among graduate students through a series of presentations and informal discussions of artistic work by grad students. Student Programs also administers the annual mural competition for currently enrolled MIT students, as well as the $50K Creative Arts Competition, part of the $100K Entrepreneurship Competition, which awards $10,000 to the team whose business plan has arts at its core.

The **Student Art Association** (http://arts.mit.edu/saa) offers noncredit classes and facilities for many visual arts activities including animation, ceramics, photography, painting, and drawing.

List Visual Arts Center (http://listart.mit.edu), just as MIT pushes the frontiers of scientific and intellectual inquiry, the mission of the List Visual Arts Center is to explore contemporary art in all media. Each year, the center presents a challenging exhibition program that looks beyond art’s traditional aesthetic functions to examine the cultural, social, political, scientific, or economic contexts that inform the work. Exhibitions are presented in three galleries on the first floor of the I. M. Pei-designed Wiesner Building (Building E15) and the Dean's Gallery in the Sloan School (Building E60). All are free and open to the public. Nationally distributed catalogs, artist talks, gallery tours, and symposia accompany the exhibitions.

The List Center also manages MIT’s permanent collection of artworks, including a student loan art program of approximately 500 works that enables students to borrow original pieces of art, such as prints and photographs, for up to a year, and a sizable collection of paintings, sculpture, drawings, prints, and photos sited throughout the campus.

The **MIT Museum**’s (http://web.mit.edu/museum) mission is to make research and innovation accessible to all. The museum collects and preserves artifacts that are significant in the life of MIT, creates exhibitions, face-to-face programs, and online services that are firmly rooted in MIT’s areas of endeavor, and engages MIT faculty, staff, and students with the wider community. Nearly 150,000 people visit the museum and its galleries each year.

The Mark Epstein Innovation Gallery features interactive displays from a variety of departments and research labs at MIT, and a popular public programs space. Regularly changing exhibitions are mounted in the Thomas Peterson Gallery and the Kurtz Gallery for Photography, which presents the rich legacy of work in photography at MIT by luminaries such as Minor White, Harold Edgerton, and Berenice Abbott, as well as contemporary photographers from outside MIT. Other galleries show ongoing exhibitions on robotics and artificial intelligence, holography and spatial imaging, and the kinetic sculptures of Arthur Ganson.

In addition to the main collection of over 1 million items at 265 Massachusetts Avenue, which is used by MIT students and faculty for research and teaching, the MIT Museum directs the Hart Nautical Gallery in Building 5 and the Museum Studio at the Compton Gallery in Building 10. The Museum Studio connects MIT undergraduate and graduate students with the unique learning opportunities of the museum. Here, students can pursue original technology projects for display in the galleries. The studio supports project-based coursework including an undergraduate course, “Exhibiting Science,” offered through the STS Program.

ATHLETICS

Athletics (http://www.mitathletics.com/landing/index) and recreation (http://mitrecsports.com) are an important part of campus life for many students at MIT, and the Institute encourages everyone to participate in some type of athletic activity.
The Institute supports a broad intercollegiate athletic program offering 33 varsity sports, the largest NCAA Division III program in the nation. While the Engineers’ rowing programs compete at the Division I level, MIT’s primary league affiliation lies with the New England Women’s and Men’s Athletic Conference (NEWMAC) as a Division III member of the NCAA. Although crew is the only classified Division I program, water polo, sailing, rifle, track and field, squash, cross country, fencing, and men’s volleyball all compete against Division I opponents.

MIT features one of the nation’s most expansive club programs, with approximately 900 participants and 33 teams, a quarter of which are martial arts clubs. All club teams are led and organized by MIT students and are governed by the student-led Club Sports Council. The Institute places all of its club programs into two categories: instructional and competitive. Instructional clubs offer formal training under the supervision of professional instructors, while competitive clubs compete in regional and national-level tournaments, with many ranking in the nation’s top 10. The most successful clubs at MIT include sport taekwondo, triathlon, wrestling, ultimate frisbee, rugby, and cycling.

The MIT intramural sports program offers competition in 20 sports of various competition levels, with participation of approximately 3,000 students, faculty, staff, and alumni. Ultimate frisbee, soccer, ice hockey, and badminton are among the most competitive and popular activities.

MIT’s athletic complex, with its 10 buildings and 26 acres of playing fields, is one of the most expansive in New England. Steinbrenner Stadium, one of the nation’s finest track and field facilities, contains Roberts Field, which features a FieldTurf artificial playing surface and lights. Adjacent to Steinbrenner Stadium is Jack Barry Field. Another FieldTurf venue, it was renovated in 2011 into one of the top facilities of its kind in New England. The Johnson Athletic Center houses an indoor track and ice rink. The J.B. Carr Tennis Center features a bubble structure that houses four indoor courts, with the duPont Tennis Courts adding 12 outdoor playing surfaces.

The duPont Athletic Center is equipped with a pistol and rifle range, fencing room, wrestling room, squash courts, the Rudovsky Indoor Golf Range, and additional instructional rooms for dance and martial arts. The Zesiger Sports and Fitness Center features two swimming pools, a fitness center, international-scale squash courts, and a multiactivity court. The Stata Center is home to the Alumni Pool and the Wang Fitness Center. Briggs Field, one of the largest outdoor recreation facilities in the area, provides numerous outdoor recreational opportunities. MIT’s athletic facilities extend to the Charles River with the Wood Sailing Pavilion and the Pierce Boathouse.

The General Institute Requirements for all undergraduate degrees include a Physical Education Requirement (p. 35); see that section for further details.

CAMPUS MEDIA

Student publications at MIT include The Tech, a student newspaper published twice weekly; Technique, the senior yearbook; and The Graduate Student News, a publication of the Graduate Student Council. Students may also contribute their talents to house newspapers and to a variety of departmental and organizational newsletters.

On the air, WMBR is MIT’s commercial-free radio station operating under a license held by the Technology Broadcasting Corporation, and MIT Student Cable Television broadcasts original and syndicated programming 24 hours per day.

The MIT Press

The MIT Press (http://mitpress.mit.edu) is one of the largest and most respected university presses in the world. It is a major publishing presence in diverse fields, including art and architecture; cognitive science; computer science; economics; environmental studies; game studies; linguistics; neuroscience; new media; philosophy; and science, technology, and society. The Press publishes journals, scholarly monographs, trade books, textbooks, and reference works, in print and electronic formats.

MIT Press authors are drawn from the worldwide academic community. The Press is known for its work in emerging fields of scholarship, for its strong international distribution, and for pioneering projects such as CogNet (http://cognet.mit.edu), an online resource for the cognitive sciences. The Press operates the MIT Press Bookstore (http://web.mit.edu/bookstore/www) at 292 Main Street in Kendall Square.

DINING

MIT Dining (http://dining.mit.edu) venues are located throughout the campus and are open to the entire MIT community. They provide a broad range of diverse and healthy options prepared from fresh quality ingredients. MIT Dining offers comprehensive traditional meal plans through its House Dining operations, as well as a declining balance account and TechCASH, which can be used to purchase meals in any MIT Dining facility. TechCASH can be used for all campus services, including food purchases. Many retail locations (http://dining.mit.edu/retaildining) also accept credit and debit cards.

MIT Dining partners with Bon Appétit (http://mit.cafebonappetit.com) to provide the community with an all-you-care-to-eat option within our residential dining halls. The House Dining Meal Plan Program ranges from 10 to 19 meals a week. All MIT students are eligible to participate in the House Dining Meal Plan (http://dining.mit.edu/meal-plans) program at varying levels depending upon their place of residence and class year. Student
residents of Baker House, Maseeh Hall, McCormick Hall, Next House, and Simmons Hall are required to enroll in a House Dining Meal Plan; please see the website (http://dining.mit.edu/meal-plans) for additional details. All students are encouraged to consider their meal plan options when choosing their housing preferences. Students with special dietary needs are encouraged to contact Bon Appétit. Confidential consultations with MIT Medical and House Dining dietitians are also available.

FRATERNITIES, SORORITIES, AND INDEPENDENT LIVING GROUPS

MIT recognizes 36 fraternities, sororities, and independent living groups (FSILGs). Of these, 23 are nationally affiliated fraternities and two are local. There are also five living groups, four of which are coed and one is for women only. All six sororities are nationally affiliated; five are residential. Most FSILGs have residential facilities owned by the respective organization’s house corporation located off campus in Boston, Brookline, and Cambridge. The Interfraternity Council (IFC) acts as the governing body for the fraternities, the Panhellenic Association (Panhel) represents the sororities, and the Living Group Council (LGC) represents the living groups.

The oldest fraternity on campus was founded at MIT in 1873. More than 44 percent of the undergraduate population is affiliated with a fraternity, sorority, or living group. FSILGs play an active role on campus, and members hold leadership positions in various clubs and organizations. FSILG members also take part in a number of intramural sports, as well as volunteer their time with many charitable and nonprofit organizations.

The espoused values of the FSILG community are leadership, scholarship, citizenship, and service. Each organization is self-governing, manages all its operations and maintenance, and develops its own academic, social, membership, recreational, and external policies and programs. These organizations provide a unique experience in leadership, community planning, and group interactions.

Each residential fraternity, sorority, or living group has a live-in resident advisor who is a graduate student. Graduate Resident Advisors serve as mentors, guides, and resources for students and act as a liaison between the undergraduate chapter, the alumni, and MIT.

MIT students have opportunities to learn more about each of the fraternities, sororities, and living groups throughout the academic year. The formal recruitment period for fraternities and sororities is usually held in September. However, many fraternities and ILGs host recruitment events year round. In addition, incoming students receive information about the FSILGs during Orientation and Campus Preview Weekend. For more information about FSILGs, contact the Fraternity, Sorority, and Living Group Office (FSILG-Office@mit.edu) in the Department of Residential Life and Dining, located in W59-200, 617-253-7546.

HOUSING

Undergraduate Housing

At the undergraduate level, MIT is a residential university. Of the total undergraduate student body of 4,512, about 3,200 single men and women live in the 11 residence halls on campus, and about 1,100 single men and women take advantage of living in MIT-approved fraternities, sororities, and independent living group residences (FSILGs). Transfer students may be able to obtain housing on a space-available basis after the Freshman Housing Lottery.

The residential system provides an environment conducive to personal development and academic achievement. The achievement of both goals relies greatly on individual initiative and responsibility, as well as on effective student governance in the residences. Students work with the professional staff in the offices of Residential Life and Dining to support and create conditions that enhance student learning and personal development.

Faculty families chosen for their understanding of and interest in students live in each of the Institute residence halls as housemasters. They are not charged with formal academic or operational responsibilities; instead, they welcome informal associations with their residents. Area directors reside in most of our undergraduate residences as a support person for the students. They are charged with programmatic responsibilities and are on call for any concerns in the evenings and weekends. In all of the Institute residence halls, graduate resident tutors support the faculty residents in providing personal assistance to undergraduates.

With the exception of the all-female McCormick Hall, Institute residence halls have coeducational living facilities. Most of the coed residence halls also have single-gender living areas. Although first-year students are not guaranteed an assignment to a particular residence hall or single-gender area, every effort is made to assign students to one of their top choices.

Student governing groups establish and administer many residence hall regulations and maintain acceptable standards of community behavior. Residential student governments also organize social, athletic, and intellectual programs for residence hall members. In each Institute residence hall, a tax determined by the residents is collected by MIT and made available to the residence hall government to help support such activities. Individual fraternity, sorority, and independent living group chapters have similar charges to support their extracurricular programs.

The Institute believes that it is to the great advantage of all new students to reside on campus—that is, to live in a residence hall. First-year undergraduates particularly gain from associations with
upperclass students and participation in residential programs. Therefore, all unmarried first-year undergraduates who do not live with their parents or guardians in the greater Boston area are required to live on campus. Exceptions to this requirement are made through a petition process reviewed by MIT Housing, the Office of the Dean for Student Life, and the Office of the Dean for Undergraduate Education.

Institute Houses (Undergraduate)
- Baker House
- Burton-Conner House
- East Campus
- MacGregor House
- Maseeh Hall
- McCormick Hall
- New House—Ballard, including New House 2, New House 3, New House 4, New House 5, Chocolate City, French House, German House, i-House, and Spanish House
- Next House
- Random Hall
- Senior House
- Simmons Hall

Rooms in the Institute houses are engaged for the full academic year. For 2014–2015, the rents for the houses ranged from $3,288 to $4,714 per term. Rates typically increase 3.5% per year.

A student who cancels a room assignment after the deadline of June 15 will be charged a cancellation fee. A student who withdraws from MIT during a regular term will receive a refund based on proration of the term rental over 15 weeks of occupancy.

Fraternities, Sororities, and Independent Living Groups
Undergraduates affiliated with a fraternity, sorority, or independent living group have the option of residing in their FSILG facility after their freshman year. These houses are located in the cities of Cambridge, Boston, and Brookline, and are conveniently accessed by public or MIT transportation. Many FSILGs have their own meal plan, some are cook-for-yourself and others have chefs that cook for the entire group. In addition, members share responsibility for chapter house duties and work closely with alumni and the FSILG Office on the general maintenance and upkeep of the chapter facility. Room and board at FSILGs varies per term and is determined by each FSILG. Each FSILG hosts a live-in graduate residence advisor who serves as a mentor and support person for the group members in residence. With the exception of Kappa Alpha Theta and Pi Beta Phi, MIT Housing does not own or operate the FSILG chapter facilities. These houses are independently owned and operated by the individual house corporations for each FSILG.

Additional Information
Additional information on undergraduate housing and application procedures is contained in The Guide to Residences and is updated about four months before registration day of the term for which he or she has been admitted to MIT. Additional information may be found on our website (http://housing.mit.edu/undergraduate/undergraduate_housing) or by contacting the Housing Office, Room W59-200, 617-253-2811. Information about fraternities, sororities, and independent living groups also may be obtained on the FSILG website (http://studentlife.mit.edu/fsilg) and by contacting the FSILG Office, Room W20-549, 617-253-7546.

Graduate Single Student Housing
Approximately 35 percent of MIT’s single graduate students reside on campus in Avery Allen Ashdown House, Ping Yuan Tang Residence Hall, Harold Edgerton House, The Warehouse (NW30), and Sidney-Pacific Residence Hall. Students must be registered each term (not including the summer) in order to reside in on-campus student housing. MIT attempts to house all new graduate students who desire to live on campus. New single student assignments are for one year. Returning students who receive housing through the Continuing Allocation Process may remain in housing continuously until they graduate, as long as they are registered each term. Students sign a new license agreement each year they are in residence.

These residence halls provide a rich living environment in a number of different formats, including suites, kitchen suites, and apartments. All of the buildings have active student governments that plan and facilitate social and cultural events. All of the buildings have a faculty member or faculty members in residence who, along with the house manager, support the students. All units are available as single sex. Coed two-bedroom apartments in Edgerton House and Tang Hall, two-bedroom suites and apartments in Sidney-Pacific, and two- and three-bedroom suites and apartments in Ashdown are available upon request. All buildings except for Edgerton House are furnished.

The rent for all graduate residences is charged on a monthly basis and the licenses are from the date of occupancy until August 15 each year. Graduate Housing’s strict termination policies can be found on its website. All rents include heat, hot water, electricity, internet, and basic cable, as well as all building amenities, such as low-cost laundry, gym facilities, and front desk services. Some residences have a $5–$6 monthly tax to cover dorm social activities.

Rents for the 2014–2015 academic year ranged from $787 to $1,890 per month, per student. Rates typically increase 3.5% per year. Details about each of the residences can be found on the graduate and family housing website (http://housing.mit.edu/graduatefamily/graduate_family_housing).

MIT graduate housing is assigned through an allocation process administered by the Graduate Housing Office. Students can enter the allocation for fall term housing between March and early May. Assignments are available in late May. A second allocation takes place in November for spring term housing. Rooms that
become available outside the allocation process are made available through a waiting list that runs from July through May. Details of the allocation and waiting list are available on the housing website (http://housing.mit.edu).

The Graduate and Family Housing Office (graduatehousing@mit.edu), located in W59-200, can be reached at 617-253-5148.

Student Family Housing

Approximately 400 graduate and undergraduate families reside in MIT Family Housing. Family Housing is provided in the Eastgate Apartments, a high-rise apartment building, and the Westgate Apartments, which consist of a high-rise building and several garden-style buildings. Both communities have an active student government that plans and facilitates social and cultural events for the entire family. Apartments range from efficiencies to 2-bedroom apartments and are all unfurnished.

Residence in student family housing is limited to regular undergraduate and graduate students who are registered and attending MIT (on-campus) full time, and whose families reside together on a full-time basis, and to single parents with at least one child in residence. Except during the summer, students must be registered each term in order to reside in on-campus student housing. New graduate student assignments are either for one and a half or two years depending on the start date of the student's program, with a new license agreement signed each year. Married undergraduates or undergraduates with children may live in Family Housing during their eight semesters of guaranteed housing. Returning students who receive housing through the Continuing Allocation Process may remain in housing continuously until they graduate, as long as they are registered each term. They will also sign a new license agreement each year.

Eastgate and Westgate each have an MIT staff person in residence to provide active support to the community. Each building has a playground and Cambridge school buses stop at the buildings.

The rent for all family residences is charged on a monthly basis and the licenses are from the date of occupancy until August 15 each year. Family Housing’s strict termination policies can be found on its website. All rents include heat, hot water, electricity, internet, and basic cable. Building amenities include low-cost laundry, playrooms, barbecues, and other common spaces.

Rents for the 2014–2015 academic year ranged from $1,277 to $1,890 per month, per apartment. Rates typically increase 3.5% per year. Details about each of the residences can be found on the graduate and family website (http://housing.mit.edu/graduatefamily/graduate_family_housing).

Student family housing is managed by the MIT Graduate and Family Housing Office and is assigned through an allocation process. Students can enter the allocation for fall term housing between March and early May. Assignments are available in late May. A second allocation takes place in November for spring term housing. Apartments that become available outside the allocation process are made available through a waiting list that runs from July through May. Details of the allocation and waiting list are available on the website (http://housing.mit.edu/graduatefamily/graduate_family_housing).

The Graduate and Family Housing Office (graduatehousing@mit.edu), located in W59-200, can be reached at 617-253-5148.

Off-Campus Housing

Students who do not live on campus can consult the Off-Campus Housing Office, which maintains listings of available rentals in the greater Boston area. The staff provides students with resources for accommodations that suit individual preferences and finances, and advises and assists them during their tenancy if difficulties arise. Address correspondence to Off-Campus Housing Office, Room W59-200, 617-253-1493, or visit the website (http://housing.mit.edu/off_campus/off_campus_housing).

MEDICAL SERVICES

MIT Medical

To meet the health care needs of MIT community members, MIT Medical (https://medical.mit.edu) offers a single, centralized source of comprehensive health insurance, care and treatment at its own medical centers, and an extensive roster of health promotion programs. Convenient, on-campus access to a broad range of clinical services and medical and dental specialties is delivered by highly qualified health care professionals. Affiliations with many of the Boston area’s leading hospitals allow clinicians to refer patients with more serious conditions to the most appropriate specialists.

Visits to MIT Medical are by appointment, except for urgent care, which is available seven days a week from 7 am to 11 pm. The Mental Health and Counseling Service (https://medical.mit.edu/services/mental-health-counseling) also has walk-in urgent care hours from 2 pm to 4 pm daily, Monday through Friday. MIT community members should call 617-253-4481 or 617-258-0656 (TTY) day or night for medical advice; for regular appointments, call 617-253-4481. MIT Medical is located in Building E23.

For more information about MIT Medical, including appointment hours, phone numbers, and clinician profiles, visit the website (https://medical.mit.edu).
MIT Student Health Plan

The MIT Student Health Plan (https://medical.mit.edu/mit-health-plans/student-health-plans) consists of two plans, the MIT Student Medical Plan and the MIT Student Extended Insurance Plan. Further information on both can be found under Medical Requirements (p. 56).

PUBLIC SERVICE CENTER

The Public Service Center (PSC) helps MIT achieve its mission of working wisely, creatively, and effectively for the betterment of humankind. Through our programs, we provide encouragement, advice, logistical support, and funding to help students engage in meaningful and effective public service work in the local community, throughout the United States, and around the world.

PSC Fellowships and Internships. PSC Fellows and Interns tackle a great variety of human and environmental challenges and their work has impressive positive effects on communities around the world. In addition, students are building their skills and reflecting on their experiences to enhance classroom learning. Students can work individually or as part of a team on projects during IAP, summer, and the academic year.

MIT IDEAS Global Challenge. Through this annual innovation and social entrepreneurship competition, students form teams to work with a community partner to design and implement innovative projects that improve the quality of life in communities around the world.

Community Service Work-Study. Students who qualify for Federal work-study are able to add to their work experience, earn a paycheck, and give back to the community as they assist nonprofit organizations with finding creative solutions to the problems they face. Community Service Work-Study is available throughout the academic year, as well as during summer and winter breaks.

CityDays. CityDays is a series of one-day volunteer opportunities that enable members of the MIT community to engage with the Cambridge and greater Boston community by devoting a few hours to volunteer service.

Freshman Urban Program. Students can help others while exploring their new neighborhood, learning about community challenges, and making friends at this week-long freshman pre-orientation program.

ReachOut. Students can help Cambridge children foster a love of reading and mathematics through this semester-long tutoring program.

Four Weeks for America. Students can inspire a love of science and math in kids from small rural areas or big inner cities while learning about educational issues and policy. Through this program, students spend IAP working with a Teach for America teacher in a classroom.

Alternative Spring Break. During PSC’s Alternative Spring Break students travel to various communities around the country to do service work accompanied by MIT staff members. This program enhances connections between MIT students and staff interested in doing service, while also helping them to engage with various communities and causes such as sustainability, community development, homelessness, hunger, and more.

LEAP Grants: Learn. Explore. Act. Prepare. LEAP Grants support MIT students’ domestic public service activities by providing funding that can help them carry out a service project such as a volunteer day or philanthropy event. Students can learn about service and social responsibility and build their skills to tackle a community challenge.

For further information, visit the website (http://web.mit.edu/mitpsc) or contact the PSC (psc@mit.edu) at 617-253-0742.

RELIGIOUS ORGANIZATIONS

There are currently about 25 active and long-standing student religious organizations on campus that are based in Building W11, the Religious Activities Center (http://studentlife.mit.edu/rl). Chaplains representing major faith communities devote all or a large part of their time to on-campus activities, counseling individual students, and advising student religious organizations. In addition, there are para-church groups served by chaplains and interns working on campus during the school year. These groups are all supported by outside funding.

The first chaplain to the Institute was appointed in 2007. This decision reflects the recognition that religious convictions appear increasingly important as personal identity markers. MIT considers that one of its responsibilities is to maintain an atmosphere of religious freedom for all and to provide all members of the MIT community opportunity for the exercise of spiritual interests. The chaplain to the Institute monitors that responsibility and offers support and counsel in times of loss and trauma.

STUDENT GOVERNMENT

Undergraduate Student Government

The Undergraduate Association (UA) (http://ua.mit.edu), the major governmental body to which all undergraduates belong, works to improve the quality of undergraduate life. It is assisted by a variety of committees. The Finance Board coordinates budgets and allocates funds to student organizations. The Committee on Educational Policy proposes educational reforms and provides student feedback to the departments and the Institute on important educational issues. The
Nominations Committee recommends student representatives for more than 50 administrative and faculty committees.

Each class at MIT annually elects a president and executive committee for its class council, which plans and coordinates programs and social events throughout the year.

The Association of Student Activities (http://web.mit.edu/asa), a joint committee of the UA and the Graduate Student Council (see below), is responsible for recognizing student groups and activities, allocating student office space, and organizing Activities Midways, which takes place during orientation in August and also Campus Preview Weekend, which takes place in April.

All living groups determine governing structures responsible for the internal functioning of their houses, including sponsoring social events and handling judicial matters within the respective houses. To deal with issues of common concern, the fraternities have formed the Interfraternity Council (IFC), the sororities are organized under the Panhellenic Council, the independent living groups established the Living Group Council (LGC), and the Institute residence halls coordination is accomplished through the Dormitory Council. The IFC, Panhellenic Council, and LGC also work on good relations between their houses and their host communities in Boston’s Back Bay, Brookline, and Cambridge. The Dormitory Council coordinates common house activities such as freshman orientation and major social events, and handles interhouse judicial problems.

Graduate Student Government

The Graduate Student Council (GSC) exists to enhance the overall graduate experience at MIT by promoting the general welfare and concerns of the graduate student body, creating new programs and initiatives, and communicating with the MIT Faculty and administration on behalf of graduate students. The GSC seeks to emphasize, in all its activities, the core values of representation, communication, collaboration, transparency, and accountability.

The council accomplishes its goals through a structure of elected representatives, standing committees, and officers. GSC representatives facilitate communication between the council and their constituency (a department, academic program, living group, or demographic group). The standing committees span all facets of the graduate experience, including orientation for all incoming graduate students, the career fair and a variety of academic seminars throughout the year, large social and cultural activities, and even the Muddy Charles Pub.

On issues such as housing, stipends, health care, and advising, as well as nearly any other academic or student-life related issue, the GSC serves as the primary voice and advocate for the graduate student body. In addition, the GSC nominates individuals to serve on a number of Institute committees, to ensure that there is a student voice in decisions made throughout the Institute.

The GSC also interfaces with graduate student groups through the Association of Student Activities (http://web.mit.edu/asa) (a joint committee of the GSC and the Undergraduate Association) and the GSC funding board, which allocates event funding to these groups. Additionally, the GSC maintains relations with other graduate student organizations both locally and nationally so as to share ideas about how to best address graduate students’ needs.

The GSC office is located in Room 50-220, Walker Memorial, above the Muddy Charles Pub. To keep students apprised of the council’s activities, it maintains a comprehensive website (http://gsc.mit.edu) which serves as a repository for a large amount of information relevant to graduate students; it also periodically publishes The Graduate.

TRANSPORTATION

Parking facilities at MIT are extremely limited. Students are advised to avoid bringing an automobile to MIT if possible. In general, the Institute cannot provide parking for freshmen. Students may obtain information about parking on campus and request a parking permit at the MIT Parking and Transportation Office website (http://web.mit.edu/facilities/transportation/parking/student). Students with disabilities who have parking requests should see the Medical Department or Student Disabilities Services for approval.

Students who plan to bring motor vehicles to Cambridge should take careful note of the information regarding pertinent Massachusetts laws distributed with registration material. In addition, since the rate of car thefts in this state is one of the highest in the nation, serious consideration should be given to equipping automobiles with anti-theft devices.

Information about parking and other transportation resources at MIT is available on the website (http://web.mit.edu/facilities/transportation) or at the MIT Parking and Transportation Office, Room W20-022.

WORK/LIFE AND FAMILY RESOURCES

The MIT Work-Life Center

The MIT Work-Life Center (http://hrweb.mit.edu/worklife/welcome) offers a range of work-life programs and services to help manage school, work, life, and family responsibilities while at MIT.

The center provides support and helps students, faculty, and staff meet their personal and professional needs in all phases of life. For more information, email (worklife@mit.edu), call 617-253-1592, or visit the center at Room E19-611 from Monday to Friday between 9 and 5 pm.
Work-Life Consultations and Referrals
Individual consultations and referrals are available at no cost to MIT students, as well as to their partners and families. Consultations with parenting and work-life specialists are available by appointment during regular business hours. The center also offers child care briefings for new parents and those who are new to child care.

Information and referrals are available through the Work-Life Resources 24/7 website (http://hrweb.mit.edu/worklife/worklife-resources) on a broad range of issues (including child care, relocation, and legal and financial issues) online and by telephone, 24 hours a day, seven days a week. Phone consultations can be translated into over 140 languages. Consultants can also be contacted by email and live chat. Articles, tools, tip sheets, provider listings, and searchable databases are also available through the website.

Lending Library
The MIT Work-Life Center houses a lending library (http://hrweb.mit.edu/worklife/about-center/lending-library) of over 1,000 volumes for adults and children on a wide variety of work-life topics. Books may be borrowed for three weeks at a time by members of the MIT community only.

Seminar Series and Support Groups
The MIT Work-Life Center’s popular Seminar Series and Support Groups (http://hrweb.mit.edu/worklife/seminars) provide research-based strategies, tips, and information to help community members deal with a diverse array of work-life issues.

Backup Child Care for Students
MIT offers a program of subsidized backup child care (http://hrweb.mit.edu/worklife/backup-child-care-students) for MIT students as part of our support for student families. This program is sponsored by the Office of the Dean for Graduate Education and administered by the MIT Work-Life Center.

Subsidized backup child care is available through Care.com BackupCare, provided by Parents in a Pinch, Inc. at a cost of $5.00 per hour. MIT also offers backup care through Parents in a Pinch to MIT faculty, staff, and postdocs, though at a higher cost.

Backup child care providers can assist when normal child care or school arrangements are disrupted by school closings, vacations, spousal travel, or provider illness, or when a child is mildly ill. Backup care can also help cover child care needs at times when care is not normally available, for example, to allow students to attend MIT events, student government meetings or conferences, or to study for exams.

Registration is required. Learn more and register online (http://hrweb.mit.edu/worklife/backup-child-care-students).

Technology Childcare Centers
MIT’s child care system, Technology Childcare Centers (TCC), includes five locations—four centers on campus and one near MIT Lincoln Laboratory in Lexington—that together accommodate a combined total of 388 infants, toddlers, and preschoolers.

Each TCC child care center is a dynamic and nurturing multicultural environment where children participate in adventures that promote invention and discovery. TCC is managed by Bright Horizons Family Solutions in partnership with the MIT Work-Life Center.

For more information and to apply, visit the TCC website (http://childcare.mit.edu).

Lactation Support
MIT is dedicated to meeting the needs of nursing mothers. The MIT Work-Life Center spearheads efforts to create lactation rooms across campus and has put together helpful breastfeeding tips and resources online (http://hrweb.mit.edu/worklife/child-care-parenting/breastfeeding-support/mothers).
ACADEMIC RESOURCES

A variety of resources and services are available to students to help them be successful at MIT. Students are encouraged to familiarize themselves with and utilize them to support their educational and personal needs in order to achieve their academic goals at the Institute.

ADVISING AND SUPPORT

The Institute offers a variety of resources for advising and personal support. By intention, they are not centralized in one place. Students are free to choose the resource that appears to be most helpful, and support is available in many forms, including walk-in conversations as well as scheduled appointments, and with goals ranging from information dissemination to skilled psychotherapy.

All students have an academic advisor. The Office of Undergraduate Advising and Academic Programming (http://mit.edu/uaap) assigns advisors to freshmen. Academic departments assign faculty advisors to students who have declared a major. In addition, there are faculty undergraduate and graduate officers in each academic department, as well as academic administrators who consult with students about their academic programs.

Student Support Services (http://web.mit.edu/uaap/s3) (S³) in the Office of Undergraduate Advising and Academic Programming, offers support and advice to all students, whether the situation is academic, personal, or both. In addition to providing support, S³ deans assist students who cannot meet academic obligations for personal or medical reasons, facilitate the processing of OX grades, process withdrawals and readmissions to the Institute, and advocate on behalf of students. S³ also works closely with other offices in supporting the diverse student population.

At MIT Medical (https://medical.mit.edu), the Mental Health and Counseling Service (https://medical.mit.edu/services/mental-health-counseling) provides individual and group counseling for a broad array of problems and concerns. The staff are most helpful with such issues as test anxiety, lonesomeness, problems with making and keeping friends and relationships, drinking and using substances, and worry. In addition, Community Wellness (https://medical.mit.edu/services/community-wellness) at MIT Medical runs seminars ranging from stress management and smoking cessation to weight control and nutrition education. For more information, call 617-253-2916.

Several campus offices specialize in particular areas, such as Student Financial Services (http://mit.edu/sfs) (including student employment), Religious Life (http://studentlife.mit.edu/r/religious-life-chaplains), MIT Global Education and Career Development (http://gecd.mit.edu) (which also offers prehealth advising), and the Office of Undergraduate Advising and Academic Programming (http://mit.edu/uaap). The MIT Police (https://police.mit.edu) can also be helpful to students in many ways.

DIGITAL LEARNING

MITx and edX

MITx (http://www.mitx.mit.edu) is the Institute’s interactive learning initiative that offers online versions of MIT courses on edX (http://www.edxonline.org), a partnership in online education between MIT and Harvard University. MIT instructors teach these MITx courses to learners around the world.

Many people refer to MITx courses as MOOCs—massive, open, online courses. The learning experience features multimedia and video content, embedded quizzes with immediate feedback, online laboratories, and peer-to-peer communications. Course materials are organized and presented in ways that enable students to learn at their own pace and that allow for the individual assessment of each student’s work. Students who demonstrate their mastery of subjects may earn certificates of completion. MITx operates on a cost-free, open-source, scalable software infrastructure. MITx and edX are building a global community of online learners.

The vast array of data gathered through MITx global and residential uses is helping educational researchers better understand how students learn and how technology can facilitate effective teaching both on campus and online. Research findings are then introduced into new generations of learning tools, creating a continuous loop of educational innovation.

MIT OpenCourseWare

MIT OpenCourseWare (OCW) (http://ocw.mit.edu) is a free, open, publicly accessible web-based resource that offers high-quality educational materials from more than 2,200 MIT courses—virtually the entire MIT graduate and undergraduate curriculum—reflecting the teaching in all five MIT schools and 33 academic units. This near-total coverage in all disciplines makes OCW unique among open education offerings around the world. MIT continually updates OCW, adding new courses as they become available and refreshing existing courses with new materials. More than 800 MIT OCW courses have been independently translated into at least 10 other languages.

Through OCW, MIT faculty share their teaching materials with a global audience of teachers and learners. Educators use these resources for teaching and curriculum development, while students and self-learners draw upon the materials for self-study or supplementary use. OCW attracts about 3 million visits in a typical month, and to date more than 200 million people from virtually every country on Earth have accessed these resources.
Beyond its service to a worldwide audience, OCW has significant impact on campus at MIT, where both faculty and students embrace it. Students use OCW resources such as problem sets and exams for study and practice. New freshmen often report that they checked out MIT by looking at OCW before deciding to apply. Instructors often refer students to OCW for part of their coursework. OCW staff work extensively with faculty to develop and refine course materials for publication, and faculty frequently use these updated materials in their classroom teaching. Alumni access OCW materials to continue their lifelong learning.

OCW course content includes thousands and thousands of individual resources such as syllabi, lecture notes, course calendars, problem sets and solutions, exams, reading lists, selected readings, videos, simulations, animations, sample programming code, and more. Nearly 100 courses include complete, captioned video lectures for the entire course. Beyond core academic content, a relatively new feature known as OCW Educator allows MIT faculty to share their pedagogical insights, with tips on how they teach their courses to students on campus.

Course materials contained on the OCW website are offered under a Creative Commons license and may be freely used, copied, distributed, translated, and modified by anyone, anywhere in the world for noncommercial educational purposes.

INFORMATION SYSTEMS AND TECHNOLOGY

MIT’s computing environment consists of a rich array of technologies and information resources for academic, research, and administrative use. MIT Information Systems and Technology (IS&T) provides services and facilities available to every member of the MIT community, including MITnet (the campus network), the Athena Computing Environment (centrally provided hardware and software resources), the on-campus telephone system, co-location services for high-performance research computers, centrally licensed and downloadable software, cloud-based offerings, and a variety of support services.

MITnet connects tens of thousands of computers across the campus and connects MIT to networks around the world. All buildings on the MIT campus offer high-speed wireless connectivity in addition to wired network connections.

The Athena Computing Environment is MIT’s academic computing environment, which powers computer labs (“the clusters”), private workstations in labs and departments, remote-access servers, and personal machines throughout campus. Athena is based on the Linux operating system and provides a large collection of third-party software, including popular scientific and engineering software such as MATLAB, Maple, and Mathematica.

Graphics software such as SolidWorks and LabVIEW is available through IS&T’s software grid, along with operating systems and math, programming, database, and security software. Online training on software and technology is available through lynda.mit.edu.

Cloud-based services at MIT include Dropbox, the file-hosting service; CrashPlan, the recommended backup solution for desktops and laptops; and Office 365 for mobile devices, which includes integration with Dropbox.

Even though a laptop is not required, most students use a laptop on campus in addition to MIT-provided computers. IS&T provides recommendations, advice, and discounts from recommended vendors for laptop bundles that meet MIT’s course and software requirements.

IS&T provides full service and support for recommended hardware and software through its Help Desk, which offers email, web, and phone support, a walk-in center, and assistance with connecting to and using the MIT network in the residence halls. The Help Desk also provides certified warranty repair for Apple, Dell, and Lenovo Thinkpad hardware.

IS&T’s Adaptive Technology for Information and Computing (ATIC) program and lab provides technologies for students and staff with disabilities.

Visit the website (http://ist.mit.edu) for more information on IS&T and computing at MIT or for details on getting started with IT as a student (http://ist.mit.edu/students), including an overview of MIT’s student computing environment, details on available services, computer recommendations, and software downloads.

LIBRARIES

The MIT Libraries (http://libraries.mit.edu) support all of the Institute’s programs of study and research with holdings of more than five million items in print and digital formats, including electronic journals and books, technical documents, images, maps, musical scores, and sound and video recordings.

The MIT community can tap into this vast array of resources through the Libraries’ website (http://libraries.mit.edu) or through the MIT mobile app and the Libraries’ mobile website (http://m.mit.edu/libraries). MIT students, faculty, and researchers can also request materials from Ivy League partner institutions, as well as other libraries worldwide, through MIT’s WorldCat (http://mit.worldcat.org), and use over a dozen other academic libraries in the Boston area (http://libraries.mit.edu/borrow/non-mit-access/bic).

On campus, students can find numerous spaces in the Libraries for quiet study or group collaboration. Barker, Dewey and Hayden libraries offer secure 24/7 study spaces (http://libraries.mit.edu/study/24x7) accessible with a student ID. Group study rooms (http://libraries.mit.edu/study/group) in several library locations can be
The Libraries offer expertise in a wide range of subjects from Aeronautics to Urban Studies, as well as specialized services supporting bioinformatics, geographic information systems, social science data, and research data management.

Students can learn about library resources and research tools in workshops on the MIT Libraries website, online tutorials, research guides, and one-on-one consultations with librarians. Reference assistance is available through Ask Us.

The MIT Libraries also include the Institute Archives and Special Collections, containing MIT forms, founding documents and the personal papers of noted faculty, and DSpace@MIT, a digital repository containing over 80,000 items, including MIT theses and many of the scholarly works of MIT faculty and researchers.

STUDENT DISABILITIES SERVICES

Student Disabilities Services (SDS) is responsible for coordinating the Institute’s efforts to comply with the Americans with Disabilities Act of 1990 and Section 504 of the Rehabilitation Act of 1973. SDS provides qualified students with disabilities equal access to all Institute programs, activities, and services. The goals of SDS’s support services are to encourage students to be self-sufficient, to enhance the educational process, and to support overall personal and professional development of students without compromising existing academic standards.

These services include receiving and reviewing disability-related documentation and determining the appropriate accommodations required, communicating with faculty (with the student’s permission), and developing plans for accommodations. Student Disabilities Services also provides, or arranges, a variety of auxiliary services for qualified students with disabilities, such as coordination of sign language interpreters, text alternatives, and other academic accommodations. Student Disabilities Services is located in Room 5-104, 617-253-1674.

STUDENT SERVICES CENTER

The Student Services Center, conveniently located along the Infinite Corridor in Room 11-120, provides students and their parents with information about their student bills, financial aid, loans, payment plans, registration, transcripts, and a variety of other academic and financial matters. Students can also pick up or drop off many Institute forms. Copies of MIT’s course catalog can be obtained at the center as well.

The Student Services Center is open Monday, Tuesday, Thursday, and Friday from 9 am to 5 pm, and Wednesday from 10 am to 5 pm.

For further information, call 617-258-8600 or email sfs@mit.edu. Visit the website for a complete description of the financial services available to students.

WEBSIS

WebSIS is the web-based student information system for students, faculty, and staff. Through WebSIS students can preregister and register for classes, check grades, maintain personal information, apply for their degrees, track financial aid requirements, complete loan entrance counseling, and view current student account activity; advisors and administrators can view the academic records of students in their departments, approve degree applicants, and access online registration; instructors and administrators can access enrollment lists, student photographs, prerequisite reports, online subject evaluations, and online grading for their classes.

WRITING AND COMMUNICATION CENTER

The Writing and Communication Center (WCC) offers free individual consultations on all types of written and spoken communication. Staff at the center help MIT undergraduates, graduate students, and postdocs from every department. WCC’s professional communication experts strategize with individuals to: deepen their content; expand the implications of their data, research, and ideas; analyze the conventions of their academic, technical, or professional disciplines and genres; tailor their messages and organization to different audiences; and craft their style to maximize rhetorical effect. The WCC helps with theses, dissertations, articles for publication, proposals of all kinds, conference papers and talks, slide design, papers for all courses, CVs, and job materials. Experts in teaching students whose first or strongest language is not English help with pronunciation, speaking, and writing. In addition, the WCC runs support groups for thesis writers and postdocs as well as periodic workshops for various departments. Appointments are made online.
UNDERGRADUATE EDUCATION

MIT’s strength—as represented by its official seal and motto, mens et manus, mind and hand—is the fusion of academic knowledge with practical purpose. MIT believes the best education occurs when students are self-motivated and engaged participants in a dynamic community of learners. Consequently, an MIT undergraduate education combines rigorous academics with a “learning-by-doing” approach.

To earn a bachelor’s degree, undergraduates must complete the General Institute Requirements as well as the course of study prescribed for the degree to be awarded. This section outlines the general requirements together with other important aspects of undergraduate education, including admissions and financial aid.

ACADEMIC PROGRAMS

The undergraduate programs at MIT are designed to help students develop the knowledge and capabilities needed to meet the challenges of modern society. An MIT education joins the power of a specific discipline to a concern for social values and goals. In addition to developing expertise in a given field, undergraduates are encouraged to take advantage of the opportunities for broad learning at MIT and to become creative, intellectual leaders and problem solvers whose passion for learning is lifelong.

Central to the MIT undergraduate experience is the concept that a four-year residential college requires a full-time academic program. An MIT degree represents not only a specified number of credit units and a collection of subjects, but an intensity and continuity of involvement in an academic enterprise and an immersion in the culture of MIT. In general, MIT is not an appropriate place to pursue an undergraduate education on an extended, part-time basis.

MIT students base their studies on a core of subjects in science, mathematics, and the humanities, arts, and social sciences (the General Institute Requirements (p. 35)). They major in the physical or biological sciences, in management science, in architecture or urban studies and planning, in an area of the humanities, arts, and social sciences, or in one of the engineering fields. In the first year, many students take subjects from a variety of options in mathematics, physics, chemistry, biology, and humanities, arts, and social sciences. During the second year, students generally continue their studies with subjects meeting various Institute requirements and beginning subjects in departmental programs. In the third and fourth years, students focus on the departmental programs.

There is also time for students to take elective subjects each year. These elective opportunities allow students to follow social interests or to enrich their educational backgrounds. Students may also use elective time to prepare for study in a professional field such as medicine or law or to begin work toward graduate study. Students may also pursue minors in many fields.

One of the most exciting features of undergraduate education at MIT is the opportunity for students to join with faculty in ongoing research projects. For example, experiences in the Undergraduate Research Opportunities Program (UROP) (p. 43) encourage intellectual commitment and self-direction, and often provide a focus for students’ undergraduate studies. During the Independent Activities Period (p. 42) in January, students can spend time in workshops, independent research projects, intensive subjects and seminars, field trips, lecture series, and other activities that do not easily fit into the traditional academic calendar.

To complete work for a bachelor’s degree in any Course (major), each student must fulfill the General Institute Requirements and must complete the departmental program specified by that Course. Details on General Institute Requirements and on selecting a major course of study are discussed elsewhere in this section.

The program for the SB takes four years of full-time study for most students. Of the freshmen who entered between 2004 and 2008, the percentage of students who received their degrees within six years of entrance was about 93 percent.

FRESHMAN YEAR

During the first year at MIT, students lay the foundation for their college education. First-year students may accommodate their individual preparation and learning styles by choosing among a variety of ways to complete the core subjects and prepare for further undergraduate study. Incoming freshmen are referred to the First Year at MIT website (http://web.mit.edu/firstyear) for detailed information on academics, the advisory system, and support services.

To begin fulfilling the General Institute Requirements (p. 35), freshmen choose subjects in mathematics, chemistry, biology, and physics to fulfill the science core, and select from a wide range of subjects in the humanities, arts, and social sciences (HASS subjects). Students have various options for satisfying the first year of the Communication Requirement.

A normal program for the first year includes completion of four or five of the six science core subjects in mathematics, physics, biology, and chemistry, and two of the eight HASS subjects, including a Communication-Intensive subject. Students may round out their programs with electives, often including Freshman Advising Seminars (led by the students’ advisors). Some freshmen also elect to become involved in the Undergraduate Research Opportunities Program, described later in this section.

Entering students with degree credit for one or more of the science core requirements may substitute more advanced subjects or may take electives or Restricted Electives in Science and Technology.
Students may also enroll in one of the special freshman learning communities: the Concourse Program, the Experimental Study Group, the Media Arts and Sciences Freshman Program, and Terrascope. These learning communities have their own faculty, meeting places, and methods of operation. In these programs, students make progress comparable to that of other freshmen, but the manner in which individual Institute requirements are met varies from program to program and among students within each program. In all four programs there is an especially high level of student-faculty interaction.

Concourse Program
Concourse (http://concourse.mit.edu) is a small community of students and faculty dedicated to exploring the fundamental questions at the heart of all serious human inquiry. The program offers small classes with rigorous instruction in the science and math General Institute Requirements, as well as in the humanities. In the humanities curriculum and Freshman Advising Seminar, we raise questions and encourage debate about human nature, ethics, the proper role of science in society, and the possibilities for human well-being. Concourse students have close interactions with instructors and fellow students, and benefit from presentations by prominent guest speakers in diverse fields from MIT and elsewhere.

The program’s facilities lie at the heart of the MIT campus and consist of a dedicated classroom and lounge, complete with kitchen and seminar room. Students and faculty meet frequently in the 24/7 lounge, not only for study but also for discussions, class tutorials, weekly Friday lunches, and student-led events. All Concourse students are required to sign up for the Freshman Advising Seminar and in the fall to take at least two additional subjects within Concourse, including one humanities subject. Please see the Concourse website for more details and instructions for applying.

For more information, contact Paula Cogliano, Room 16-127, 617-253-3200.

Experimental Study Group
The Experimental Study Group (ESG) (http://esg.mit.edu) is a close-knit academic program geared primarily toward motivated first-year students who wish to take an active part in their MIT education. Each year 50 freshmen, nine staff members, and 25 upperclass instructors (most of whom were in ESG as freshmen) participate in the program. Staff members are selected for their teaching ability and strong interest in community-based education and are drawn from the departments of Biology, Chemistry, Mathematics, Physics, and the School of Humanities, Arts, and Social Sciences.

In place of lectures and large classes, ESG students participate in small interactive classes (typically fewer than 12 students), discussion-based seminars, study groups, and tutorials. Almost all the core subjects in biology, chemistry, mathematics, and physics are offered through ESG, as well as an experimental CI-H writing class which combines writing and product design. Although ESG can be a full-time activity for freshmen, students may take one or two subjects outside of ESG, including a Freshman Advising Seminar.

ESG’s small classes are structured to be active learning environments with plenty of opportunity for lively discussion, question-and-answer sessions, student presentations, and peer-led problem-solving sessions. ESG also promotes educational innovation by encouraging staff and students to design and teach experimental 6-unit seminars that combine theory and practice. Seminars offered this past year include diverse topics such as The Chemistry of Sports, Programming Physics: E&M with Python, Drugs and the Brain, Law and Technology Seminar, and Speak Italian with Your Mouth Full.

ESG’s centrally located facility is comprised of 14 rooms (including a central lounge and a newly renovated kitchen) where classes are held and weekly activities are offered, such as luncheons and dinners, guest faculty speakers, and evening study sessions. Students and staff also plan regular outings for the freshmen such as hiking and skiing trips and visits to local museums and attractions.

For more information about ESG, contact Graham Gordon Ramsay (ramsay@mit.edu), associate director, Room 24-610, 617-253-7786, or visit the ESG website (http://esg.mit.edu).

Media Arts and Sciences Freshman Program
The Program in Media Arts and Sciences (MAS) ([p. 123](http://www.media.mit.edu/admissions/program-overview/freshman-year-program)) offers a special freshman program (http://www.media.mit.edu/admissions/program-overview/freshman-year-program) emphasizing research at MIT’s internationally known Media Lab. In the freshman program, instructors connect research topics in the Media Lab ([p. 102](http://www.media.mit.edu/admissions/program-overview/freshman-year-program)) to core physics and chemistry subjects, and students learn firsthand how research is carried out.

The Program in Media Arts and Sciences is part of the School of Architecture and Planning. It is housed in the Media Lab, which carries on advanced research in the invention and creative use of technology to enhance communication and expression.

Up to 24 freshmen in the MAS Freshman Program are introduced to the learning-by-apprenticeship mode that characterizes MAS. During the fall term, students may choose to take part in one of several MAS Freshman Advising Seminars, and take MAS.110 Fundamentals of Computational Media Design, with hands-on design exercises looking at the intersection between expression and technology. In the spring term they take MAS.111 Introduction to Doing Research in Media Arts and Sciences, which includes documenting and presenting research results. In conjunction with MAS.111, all students participate through the Undergraduate
Research Opportunities Program (UROP) (p. 43) in one of the research projects at the Media Lab.

Researchers from the Media Lab teach recitation or tutorial sections in the fall for subjects 8.01 Physics I and 3.091 Introduction to Solid-State Chemistry and in the spring for 8.02 Physics II, in which they emphasize connections between the fundamentals of physics and chemistry and ongoing research at the Media Lab. Students take the lectures for these subjects, as well as lectures and recitations in other core and elective subjects, with other freshmen.

For information, please contact program director Dr. V. Michael Bove, Jr. (vmb@media.mit.edu), 617-253-0334, or visit the Media Lab website (http://www.media.mit.edu/mas/fyo).

Terrascope
Terrascope (http://web.mit.edu/terrascope) is a learning community with curricula designed to give students the tools to address important, complex problems that require integrative, multidisciplinary solutions. Students work as part of an interdisciplinary team to solve problems related to the Earth’s environment and sustainability and that offer a unique way to explore the feedbacks that characterize the behavior of complex dynamical systems.

During the fall term, Terrascope students enroll in 12.000 Solving Complex Problems (9 units), a popular subject that explores how teams of scientists and engineers approach difficult problems that require multidisciplinary approaches. Solutions are published on a class website and participants defend their work before a panel of outside experts. This final presentation is broadcast live over the internet.

In the spring, students may elect to take one or two additional subjects. In 1.016 Design for Complex Environmental Issues: Building Solutions and Communicating Ideas (9 units), small teams develop and expand aspects of the solutions proposed in the fall. SP.360 Terrascope Radio (12 units) fulfills a Communication Requirement (CI-H credit) as students produce a professional-quality radio program on an aspect of the year’s subject.

Students fulfill General Institute Requirements (p. 35) by attending mainstream core subjects with other first-year students.

Terrascope students are advised by faculty and staff affiliated with the program. Fieldwork and close interactions with researchers and others are an important part of the Terrascope experience. Terrascope students attend weekly lunch seminars during which researchers and others speak about their work. Students in the program can choose to participate in a weeklong field trip over spring break to a site related to the year’s work. Past locations have included Abu Dhabi, India, California, Costa Rica, and South Africa.

Terrascope offers students a variety of exclusive facilities, including classroom and study space, a kitchen, and a lounge.

Seminar XL
Seminar XL (http://ome.mit.edu/programs-services/seminar-xlle) is a collaborative undergraduate learning experience in which groups of four to six students meet for 90 minutes twice per week to share their understanding of course concepts and problem-solving methods. Each group is guided by a facilitator who is a research scientist, a graduate student, or an upperclass undergraduate student who previously earned an A in the course. Although the Office of Minority Education (OME) historically has sponsored the program for first-year students, OME encourages upperclass students to enroll as well. First-year students can receive course credit provided they attend at least 80 percent of the working group sessions, while upperclass students must register as listeners.

After the fifth week, interested students may enroll in Seminar XL Limited Edition (LE), which operates two 90-minute working group sessions per week, as does the regular Seminar XL. Past students have also stated that they benefited greatly from this program.

For more information about Seminar XL, Seminar XL LE, and other OME services, visit the Office of Minority Education, Room 4-107, 617-253-5010, or visit the OME website (http://ome.mit.edu/programs-services/seminar-xl).

Freshman Grading
In the first term and IAP, freshmen are graded on a pass or no-record basis. They receive grades of P, D, or F in all subjects they take, where P indicates C or better performance (C- with modifier used within MIT). Freshmen receive no credit for subjects with D or F grades and these subjects do not appear on their transcripts.

In the second term, freshmen are graded on an A, B, C, or no-record basis. They continue to receive no credit for subjects with D or F grades, which do not appear on their transcripts. The A, B, or C grades are used in calculating students’ term and cumulative ratings.

Freshman grading is designed to ease the transition from high school by giving students time to adjust to factors like increased workloads and variations in academic preparation. Students are encouraged to improve time-management skills and develop more mature attitudes about learning. A, B, and C grades are used during the second term so that freshmen can begin the progression to regular A–F grading in the sophomore year.

Use of Hidden Grades
MIT’s educational policy is to provide “hidden” grades to students for educational and advising purposes only. MIT will not release hidden grades to any outside organization or individual, and these grades are never included on an external transcript. For more information, see the First Year website (http://web.mit.edu/firstyear).
Credit Limit for Freshmen
A freshman may not register or receive credit for subjects totaling more than 54 units in the fall term and 57 units in the spring term. The Committee on Academic Performance (CAP) rarely grants requests to exceed the credit limit. (Only in the fall term may freshmen exceed the 54-unit credit limit by 3 units to take 12.000 Solving Complex Problems or by 6 units to take Seminar XL.) Credit earned for passing an Advanced Standing Examination will be counted toward the term credit limit unless the exam is taken either in the September or February examination period. ROTC subjects are excluded from this credit limit. Note that all MIT students are limited to 12 units during the Independent Activities Period in January.

MAJOR COURSE OF STUDY
Whether or not they enter with plans for a specific field of study, all students are encouraged to examine with an open mind the wide range of Courses (majors) available at the Institute. Students may attend departmental orientation programs to talk with faculty and others with experience in fields of potential interest. They should select electives that will help them think about possible majors. The Independent Activities Period (p. 42) in January, described later in this section, provides students with opportunities to investigate different fields. For many students, this consideration of fields will reinforce existing convictions, while for others it will open up new avenues of interest. MIT may, however, limit enrollment in particular fields of study to balance resources with student interest.

Each student entering MIT is assigned an advisor who assists the student in designing an effective program of study. The selection of elective subjects is an important consideration, one that students should discuss in depth with their advisors.

All undergraduate degree programs combine the study of basic principles with practical applications. This combination helps to motivate the lifelong learning necessary for professional competence.

Students usually choose a Course (major) at the end of the first year, though they need not do so until the end of the second year. There is sufficient overlap and flexibility so that selection or change of Course can be made with relative ease in the second year.

All undergraduate and graduate academic programs, as well as faculty listings for each of the Institute's departments, are described fully in Schools (p. 110) and Interdisciplinary Programs (p. 327).

Information on undergraduate registration may be found in Academic Procedures (p. 71) and Institute Regulations (p. 79).

Electives
Electives may be used for several different purposes. For example, students who are undecided about their eventual majors may decide to use some portion of their electives to explore the various departments or fields they are considering. Students more certain of their academic and professional goals may choose to use electives to explore areas of secondary interest. Still other students focus first on departmental or General Institute Requirements, deferring subjects of a more supplemental nature until a later year. The study of a language may also be started or continued.

Freshmen should select electives that best suit their individual needs. There are several hundred subjects without prerequisites that are especially appropriate for first-year students. However, in general, any subject offered by the Institute is open to all students, provided they satisfy the prerequisites.

Double Majors
Students may earn a bachelor's degree with two majors by successfully completing the GIRs and the departmental requirements for each major. To add a second major, a student must apply to the Committee on Curricula (COC) by Add Date of his or her penultimate term. Applications submitted after this deadline will be considered by the COC at its discretion on a case-by-case basis.

A double major program should be completed in a four- or five-year period and should be planned in advance. A student's plan for completing both majors must be outlined in the application to the COC. The application must also include the expected completion date for the degree, and it must be approved by both programs. Students should consult Student Financial Services regarding any impact that pursuing a double major might have on their eligibility for MIT or federal financial aid, particularly if they anticipate needing more than eight semesters to complete their studies.

Students must select a second major in a different area from the primary major. Students pursuing a double major may also complete up to two minors, but a minor may not be taken in the same area as either of the major programs.

Only registered undergraduates who have completed at least three terms at MIT, including at least one term with a declared major, may apply. Transfer students must complete at least two terms at MIT, including at least one term with a declared major. Students with cumulative averages below 4.0 will not be considered except in exceptional cases. A student who has previously earned a bachelor's degree with a single major may not return to complete a second major.

For details on eligibility, deadlines, and procedures, see the COC website (http://web.mit.edu/doublemajor).
MINORS

The objective of a minor is to provide a depth of understanding and expertise to an area outside of, or complementary to, a student’s major. This depth and expertise must be sufficient to enable the student to appreciate the complexities and issues that are central to the minor, and to perform at a level sufficient to solve realistic problems and/or to make a contribution to the field. A number of programs in science, engineering, architecture, management, and the humanities, arts, and social sciences offer minors. Several interdisciplinary minors, including an Institute-wide minor in energy studies, are also available; for further information on interdisciplinary minors, see Interdisciplinary Programs (p. 327).

Students who successfully complete minors will have their fields of study specified on their transcripts as part of their Bachelor of Science degrees, thus giving public recognition of this focused work. Minors may be pursued within the following framework:

- A student may not minor in the area of his or her major. For example, a student majoring in biological engineering may not pursue a minor in biomedical engineering. In addition, if a student is pursuing a composite (joint) degree (such as the SB in Mathematics with Computer Science or the SB in Computer Science and Molecular Biology), he or she may not pursue a minor in either field of that program. The Committee on Curricula (COC) has the authority to determine whether a specific combination is permissible.
- At the discretion of a student’s major department, subjects taken for a minor may count toward departmental program requirements, provided the student’s combination of programs is permitted by the COC.

The general guidelines for a minor program are as follows:

- Minors consist of five to seven subjects, with a typical program comprising six. A minor may include subjects that count toward General Institute Requirements (GiRs) (p. 35).
- Subjects taken under the junior-senior P/D/F grading option cannot be used for a minor program.
- At the discretion of the minor advisor, approved transfer credit may be used to fulfill a portion of the minor program. MIT subjects, including those taken through cross-registration, must comprise at least half of the minor program.
- A student may earn no more than two minors, which are awarded only when the student receives the SB degree, and which must be associated with a specific degree. This two-minor maximum applies even if the student receives a double major.
- The student should apply for a minor by the end of the sophomore year, but no later than Add Date one full term preceding the one in which the SB degree is awarded. The student must complete an application form for a minor in consultation with the appropriate minor advisor. Note that application and completion forms vary among programs.

Minors are currently available in the fields listed below.

More information on departmental minors appears under the departments’ undergraduate program descriptions.

African and African Diaspora Studies (p. 337)
Ancient and Medieval Studies (p. 338)
Anthropology (p. 233)
Applied International Studies (p. 339)
Archaeology and Materials (p. 201)
Architecture (p. 114)
Art, Culture, and Technology (p. 114)
Asian and Asian Diaspora Studies (p. 340)
Astronomy (p. 341)
Atmospheric Chemistry (p. 342)
Biology (p. 290)
Biomedical Engineering (p. 343)
Brain and Cognitive Sciences (p. 297)
Chemistry (p. 302)
Chinese (p. 245)
Civil Engineering (p. 170)
Comparative Media Studies (p. 235)
Earth, Atmospheric, and Planetary Sciences (p. 307)
Economics (p. 241)
Energy Studies (p. 343)
Environmental Engineering Science (p. 170)
French (p. 245)
German (p. 245)
History (p. 250)
History of Architecture and Art (p. 114)
International Development (p. 126)
Japanese (p. 245)
Latin American and Latino Studies (p. 344)
Linguistics (p. 253)
Literature (p. 257)
Management (p. 274)
Management Science (p. 274)
Materials Science and Engineering (p. 201)
Mathematics (p. 314)
Mechanical Engineering (p. 210)
Middle Eastern Studies (p. 345)
Music (p. 260)
Nuclear Science and Engineering (p. 225)
Philosophy (p. 253)
Physics (p. 320)
Political Science (p. 264)
Public Policy (p. 346)
Russian and Eurasian Studies (p. 347)
Science, Technology, and Society (p. 268)
Spanish (p. 245)
Theater Arts (p. 260)
Toxicology and Environmental Health (p. 154)
GENERAL INSTITUTE REQUIREMENTS

To be recommended for the degree of Bachelor of Science, students must have attended the Institute not less than three regular academic terms, which ordinarily must include the term of graduation. Also, students must have satisfactorily completed programs of study approved in accordance with the faculty regulations, including the General Institute Requirements (GIRs) described on the following pages, and the departmental program of the Course in which the degree is to be awarded. A student must petition the Subcommittee on the Communication Requirement (SOCR) for any substitutions in the Communication Requirement; the Subcommittee on the HASS Requirement (SHR) for any substitutions in the Humanities, Arts, and Social Sciences (HASS) Requirement; and the Committee on Curricula (COC) for any substitutions in other GIRs. Departures from the departmental programs are allowed with departmental permission. The departmental programs and degree requirements appear in the Schools section.

Bachelor of Science Degree Requirements

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry (3.091, 5.111, or 5.112)</td>
<td></td>
</tr>
<tr>
<td>Physics (8.01, 8.011, 8.012, or 8.011; and 8.02, 8.021, or 8.022)</td>
<td></td>
</tr>
<tr>
<td>Mathematics (18.01, 18.01A, or 18.014; and 18.02, 18.02A, 18.022, or 18.024)</td>
<td></td>
</tr>
<tr>
<td>Biology (7.012, 7.013, 7.014, 7.015, or 7.016)</td>
<td></td>
</tr>
</tbody>
</table>

Humanities, Arts, and Social Sciences (HASS) 8
Science Requirement [includes 2 Communication Requirement subjects (CI-H)]
Restricted Electives in Science and Technology (REST) Requirement 2
Laboratory Requirement [12 units] 1
Total GIR Subjects Required for SB Degree 17

Communication Requirement
2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)
[Communication-Intensive Major subjects (CI-M) are designated on the degree charts in the Schools section]

Physical Education Requirement
Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program
The departmental program may specify some of the GIR subjects, and includes 180–198 additional units beyond the GIRs. 2
Students track their progress by checking off the subjects that count towards the 17 GIR subjects. The remaining units then count toward the additional 180–198 units beyond the General Institute Requirements. Students are allowed a minimum of 48 units of unrestricted electives.
Students schedule their programs each year within a normal load of the equivalent 8 or 8 1/2 subjects, and complete all degree requirements within the equivalent of 32–34 subjects.

Total Units 180-198
Departmental Program Units That Also Satisfy the GIRs (0)
Total Units Beyond the GIRs Required for SB Degree 180-198

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 Transfer students generally will graduate under the requirements that apply to the class they join when they enter MIT.
2 The total of 180–198 units does not include ROTC subjects, if selected.

Science Requirement

MIT expects its graduates to have an understanding and appreciation of the basic concepts and methods of the physical and biological sciences. These concepts and methods are needed in most degree programs at the Institute. More important, they are an essential part of the background that MIT graduates bring to their roles as professionals and as broadly educated citizens in a world strongly influenced by science and technology.

Students begin with six science core subjects in mathematics, physics, biology, and chemistry, and then add the Laboratory and Restricted Electives in Science and Technology (REST) Requirements. These requirements introduce basic elements of the scientific method: experimental foundations and techniques, mathematical analysis, and conceptual models for experimental facts. Important experimental as well as conceptual aspects are introduced by the chemistry and biology requirements and by the Laboratory Requirement. Mathematical methods common to much of science and technology are explored in the mathematics requirement. Basic concepts that underlie many physical phenomena are defined and elucidated in the physics and REST requirements.

In addition to a rigorous introduction to the sciences, these requirements are intended to stimulate and challenge each student to review critically his or her knowledge, and to explore alternative conceptual and mathematical formulations that may provide better explanations of natural phenomena or may lead to better applications of technology. The development of critical and constructive approaches to both theory and practice in science, engineering, and other professions is a central objective of the Institute’s educational programs.

Biology

The Institute requirement in biology may be satisfied by one of five introductory subjects:

<table>
<thead>
<tr>
<th>Biology (GIR)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.012 Introductory Biology ¹</td>
<td>12</td>
</tr>
<tr>
<td>7.013 Introductory Biology ²</td>
<td>12</td>
</tr>
<tr>
<td>7.014 Introductory Biology ²</td>
<td>12</td>
</tr>
<tr>
<td>7.015 Introductory Biology ¹</td>
<td>12</td>
</tr>
<tr>
<td>7.016 Introductory Biology ¹</td>
<td>12</td>
</tr>
</tbody>
</table>

¹ Offered in the fall term
² Offered in the spring term

These five subjects cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. In addition, each subject has its own distinctive material.

Chemistry

The Institute requirement in chemistry may be satisfied by taking one of the following:

<table>
<thead>
<tr>
<th>Chemistry (GIR)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.091 Introduction to Solid-State Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>5.111 Principles of Chemical Science</td>
<td>12</td>
</tr>
<tr>
<td>5.112 Principles of Chemical Science</td>
<td>12</td>
</tr>
</tbody>
</table>

Subject 3.091 is designed for students who are particularly interested in the chemistry of the solid state. Subjects 5.111 and 5.112 emphasize basic chemical principles and their applications. However, 5.112 is intended for students with a strong background in high school chemistry. The content of 5.111 and 5.112 is formally coordinated with more advanced subjects taught by the Department of Chemistry (e.g., 5.60 Thermodynamics and Kinetics and 5.12 Organic Chemistry I), although any one of the three GIR subjects (5.111, 5.112, or 3.091) may be used as the prerequisite for those more advanced subjects.

Mathematics

The Institute requires all students to complete single-variable calculus, denoted as Calculus I (GIR), and multivariable calculus, denoted as Calculus II (GIR).

<table>
<thead>
<tr>
<th>Calculus I (GIR)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18.01 Calculus</td>
<td>12</td>
</tr>
<tr>
<td>18.01A Calculus</td>
<td>12</td>
</tr>
<tr>
<td>18.014 Calculus with Theory</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculus II (GIR)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18.02 Calculus</td>
<td>12</td>
</tr>
<tr>
<td>18.02A Calculus</td>
<td>12</td>
</tr>
<tr>
<td>18.022 Calculus</td>
<td>12</td>
</tr>
<tr>
<td>18.024 Calculus with Theory</td>
<td>12</td>
</tr>
</tbody>
</table>

Students with advanced standing, advanced placement, or transfer credit for 18.01 may go directly into multivariable calculus. Two versions are offered in the fall term: 18.02, the basic version, and 18.022, a more theoretical version. Both 18.02 and 18.022 present calculus as it is used in science and engineering.

The sequence of 18.014/18.024 assumes a substantial background in calculus and emphasizes proofs.

Students with a year of high school calculus may qualify for the accelerated sequence of 18.01A/18.02A, which covers the material in one and a half terms. See the subject descriptions for details about how each subject is taught within that timeframe.

Students with advanced placement, advanced standing, or transfer credit for 18.01 lose it if they take 18.01, receive 3 units of elective

36 | 2015–2016 MIT Bulletin
credit if they take 18.01A, and receive 9 units of elective credit if they take 18.014.

Physics

The Institute requirement in physics may be satisfied through several combinations of introductory physics subjects.

<table>
<thead>
<tr>
<th>Physics I (GIR)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.01 Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.01L Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.011 Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.012 Physics I</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physics II (GIR)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.02 Physics II</td>
<td>12</td>
</tr>
<tr>
<td>8.021 Physics II</td>
<td>12</td>
</tr>
<tr>
<td>8.022 Physics II</td>
<td>12</td>
</tr>
</tbody>
</table>

Most students find the sequence of 8.01 and 8.02 suited to their needs. The sequence of 8.012 and 8.022 covers essentially the same subject matter as 8.01 and 8.02, but is more advanced mathematically; calculus is used freely from the beginning of the term. Subject 8.01L is offered for students who have had little exposure to physics with calculus in high school; it covers the same material as 8.01, but is taught over a longer interval that begins in the fall and continues through the end of January (IAP (p. 42)).

A student may combine a Physics I (GIR) subject in one sequence with a Physics II (GIR) subject in another to satisfy the requirement. However, under no circumstances may a student enroll in a Physics II (GIR) subject without having first received credit for a Physics I (GIR) subject.

Students who score a 5 on Parts I and II of the Physics C Advanced Placement test receive credit for 8.01. Students with advanced-placement or advanced-standing credit for 8.01 who elect to take 8.012 receive 6 units of elective credit in place of 8.01.

Communication Requirement

The Communication Requirement makes the development of effective writing and speaking an integral part of undergraduate education at the Institute. The Communication Requirement ensures that all undergraduates receive substantial instruction and practice in general expository writing and speaking and the forms of discourse common to their professional fields.

The Communication Requirement consists of four communication-intensive (CI) subjects sequenced throughout a student’s undergraduate career. Students take two CI subjects in the humanities, arts, and social sciences (CI-H) and two CI subjects in their major program (CI-M). Students must maintain a minimum pace in completing their CI subjects in order to remain in good standing with the Communication Requirement. They must complete one of their CI subjects by the end of the first year, two by the end of the second, three by the end of the third year, and four by graduation.

Students must earn a passing grade to receive CI credit, and CI subjects must be taken for a letter grade. Therefore, students may not use their junior-senior P/D/F option for these subjects. Only one CI-H subject per term may be counted toward completion of the Communication Requirement. However, students may receive credit for more than one CI-M subject in the same term or a CI-H and a CI-M completed concurrently.

More information on CI-H subjects is included in the section of the Bulletin on the HASS Requirement. Specifics on the CI-M subjects for each major appear in the descriptions of the individual undergraduate degree programs. Additional information can be found on the Communication Requirement website.

The general structure of the Requirement is described below.

First year. Students must pass one CI-H or CI-HW subject (http://web.mit.edu/commreq/cih.html) by the end of their second term at the Institute.

Before entering MIT, all students are asked to take the Freshman Essay Evaluation (FEE). The FEE is a placement tool used to determine the best program for each undergraduate within the Communication Requirement. Students who receive a score of "CI-H/CI-HW Required" on the FEE or receive a score of 5 on either the Advanced Placement Language and Composition Test or the Advanced Placement Literature and Composition Test or receive a score of 7 on the English A or B Higher-Level International Baccalaureate (IB) exam have the option of taking any CI-H subject, including a writing-focused CI-H subject (CI-HW).

All other students must take one of the designated Communication Intensive in the Humanities, Arts, and Social Sciences—Writing Focused (CI-HW) subjects as their first CI subject.

Students who do not complete a CI-H/CI-HW subject in their first term at MIT may not advance to sophomore standing in their second term.

Second year. Students must pass at least two CI subjects by the end of their fourth term at the Institute. In most cases, these first two CI subjects will satisfy the CI-H portion of the requirement, providing a foundation in written and oral exposition.

Third year. Students must pass at least three of the four required CI subjects by the end of their sixth term. Most students will take their first CI-M subject as juniors and begin to develop the communication skills specific to the professional and academic culture of their discipline.

Before receiving an SB degree. Students must complete two CI-H subjects and the two CI-M subjects specified for their SB degree program prior to receiving their degree.
Noncompliance. Students who fall behind the minimum pace of completion for the Communication Requirement are in noncompliance. At the end of each term, the names of noncompliant students are forwarded to the Committee on Academic Performance, which may take further action to bring such students into good academic standing.

Double majors. Students who wish to complete two majors must pass two CI-H subjects and complete the CI-M subjects that fulfill the communication component of each major. Normally, these students will take four CI-M subjects, that is, two in each major program. In certain cases a CI-M subject may be common to both departments and may be used to fulfill the communication component of two majors simultaneously.

Information about the Communication Requirement. For more detailed information about CI subjects or for assistance with any aspect of the Communication Requirement, including petitions, visit the Communication Requirement website (http://web.mit.edu/commreq). Students may also contact the Office of the Communication Requirement (commreq@mit.edu) to discuss their individual circumstances.

HASS Requirement

MIT provides a substantial and varied program in the humanities, arts, and social sciences (HASS) that forms an essential part of the education of every undergraduate. This program is intended to ensure that students develop a broad understanding of human society, its traditions, and its institutions. The requirement enables students to deepen their knowledge in a variety of cultural and disciplinary areas and encourages the development of sensibilities and skills vital to an effective and satisfying life as an individual, a professional, and a member of society.

More specifically, the objectives of the program are to develop skills in communication, both oral and written; knowledge of human cultures, past and present, and of the ways in which they have influenced one another; awareness of concepts, ideas, and systems of thought that underlie human activities; understanding of the social, political, and economic framework of different societies; and, finally, sensitivity to modes of communication and self-expression in the arts. Work in these areas will, where appropriate, display a special concern with the relation of science and technology to society.

The student's program in the Humanities, Arts, and Social Sciences (HASS) is based on the following Institute requirements:

Minimum. Every candidate for a bachelor’s degree must have completed a minimum of eight term subjects in the humanities, arts, and social sciences, including distribution and concentration components. Subjects must be taken for a letter grade and students may not use their junior-senior P/D/F option. Two HASS subjects that are designated Communication Intensive may also be used toward the Communication Requirement.

Distribution. Three of the eight subjects must be selected from designated categories: humanities, arts, and social sciences.

- **Humanities:** Humanities subjects describe and interpret human achievements, problems, and historical changes at individual as well as societal levels. Although humanist inquiry employs a variety of methods, such disciplines as history, literature, and philosophy typically produce their accounts of cultural accomplishments through close analysis of texts and ideas: contemporary and historical, personal and communal, imaginative and reflective.

- **Arts:** Arts subjects emphasize the skilled craft, practices, and standards of excellence involved in creating representations through images, words, sounds, and movement (e.g., sculptures, stories, plays, music, dance, films, or video games). Although arts subjects also engage in critical interpretation and historical analysis, they focus more centrally on expressive and aesthetic techniques and tools, such as the uses of rhythm, texture, and line.

- **Social Sciences:** Social Science subjects engage in theory-driven as well as empirical exploration and analysis of human transactions. They address the mental and behavioral activities of individuals, groups, organizations, institutions, and nations. Social science disciplines such as anthropology, economics, linguistics, political science, and psychology seek generalizable interpretations and explanations of human interaction.

The three subjects may be taken at any stage of the student's undergraduate career, although students are encouraged to complete their distribution by the end of their junior year. Over 600 subjects may be used to fulfill this requirement. For a complete list of the subjects in each category, consult the Subjects (http://catalog.mit.edu/subjects) section.

Concentration. Each student should designate a field of concentration, in consultation with a designated advisor in the field, by submitting a Concentration Proposal Form no later than the end of the first week of classes in the second term of junior year. Concentration requirements are set by each field and consist of either three or four subjects. One of the subjects that counts toward the distribution may also be designated as a concentration subject with the permission of the concentration advisor. Upon completion of all of the subjects noted on the Proposal Form, each student should submit a Concentration Completion Form no later than the end of the first week of classes of the final term prior to graduation. For more information, visit the HASS Requirement website (http://web.mit.edu/hassreq).

Currently, the following fields of concentration are offered:

- African and African Diaspora Studies
- American Studies
In individual cases, a special concentration may be arranged with advance approval. For more information, visit the HASS Requirement website (http://web.mit.edu/hassreq).

Students may also contact the Office of the HASS Requirement (hassreq@mit.edu) to discuss their individual circumstances.

REST Requirement

Through Restricted Electives in Science and Technology (REST) Requirement subjects, students can broaden and deepen the educational foundation in basic science begun in the first-year program and further the understanding of scientific inquiry. These subjects are designed to give students the opportunity to proceed further in areas already studied, or to explore other areas of potential interest.

REST subjects vary in approach and emphasis. Some give a systematic introduction to the fundamental concepts and principles of a field; others illustrate through examples some of the attitudes, concerns, and methods that characterize professional work in the field. In general, REST subjects are not too specialized, too advanced, or devoted chiefly to instruction in a particular skill. Students typically take REST subjects in the second year, although with the proper prerequisites they may begin taking them in the first year.

Students meet the REST Requirement by taking two subjects from the list below. Of the subjects used to fulfill the requirement, the student can take no more than one in his or her department. However, subjects designated with a J that are offered jointly with another department do not fall under the departmental limitation.

In many cases, subjects required by a Departmental Program for the SB degree are also on the lists of REST and Laboratory Requirement subjects. Thus, students who follow a particular Departmental Program may simultaneously satisfy some part of these requirements.

REST Requirement Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Introduction to Computers and Engineering Problem Solving</td>
<td>12</td>
</tr>
<tr>
<td>1.000</td>
<td>Computer Programming for Scientific and Engineering Applications</td>
<td>12</td>
</tr>
<tr>
<td>1.050</td>
<td>Solid Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>2.001</td>
<td>Mechanics and Materials I</td>
<td>12</td>
</tr>
<tr>
<td>2.003[J]</td>
<td>Dynamics and Control I</td>
<td>12</td>
</tr>
<tr>
<td>2.086</td>
<td>Numerical Computation for Mechanical Engineers</td>
<td>12</td>
</tr>
<tr>
<td>3.012</td>
<td>Fundamentals of Materials Science and Engineering</td>
<td>15</td>
</tr>
<tr>
<td>3.021</td>
<td>Introduction to Modeling and Simulation</td>
<td>12</td>
</tr>
<tr>
<td>3.046</td>
<td>Thermodynamics of Materials</td>
<td>12</td>
</tr>
</tbody>
</table>
General Institute Requirements

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.440[J]</td>
<td>Building Structural Systems I</td>
<td>12</td>
</tr>
<tr>
<td>5.07[J]</td>
<td>Biological Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>5.12</td>
<td>Organic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>5.60</td>
<td>Thermodynamics and Kinetics</td>
<td>12</td>
</tr>
<tr>
<td>5.61</td>
<td>Physical Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>5.602</td>
<td>Circuits and Electronics</td>
<td>12</td>
</tr>
<tr>
<td>5.605</td>
<td>Elements of Software Construction</td>
<td>12</td>
</tr>
<tr>
<td>5.641</td>
<td>Probabilistic Systems Analysis</td>
<td>12</td>
</tr>
<tr>
<td>5.642[J]</td>
<td>Mathematics for Computer Science</td>
<td>12</td>
</tr>
<tr>
<td>6.071[J]</td>
<td>Electronics, Signals, and Measurement</td>
<td>12</td>
</tr>
<tr>
<td>7.03</td>
<td>Genetics</td>
<td>12</td>
</tr>
<tr>
<td>7.05</td>
<td>General Biochemistry</td>
<td>12</td>
</tr>
<tr>
<td>8.03</td>
<td>Physics III</td>
<td>12</td>
</tr>
<tr>
<td>8.033</td>
<td>Relativity</td>
<td>12</td>
</tr>
<tr>
<td>8.04</td>
<td>Quantum Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.20</td>
<td>Introduction to Special Relativity</td>
<td>9</td>
</tr>
<tr>
<td>8.21</td>
<td>Physics of Energy</td>
<td>12</td>
</tr>
<tr>
<td>8.282[J]</td>
<td>Introduction to Astronomy</td>
<td>9</td>
</tr>
<tr>
<td>8.286</td>
<td>The Early Universe</td>
<td>12</td>
</tr>
<tr>
<td>9.01</td>
<td>Introduction to Neuroscience</td>
<td>12</td>
</tr>
<tr>
<td>10.301</td>
<td>Fluid Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>12.001</td>
<td>Introduction to Geology</td>
<td>12</td>
</tr>
<tr>
<td>12.002</td>
<td>Introduction to Geophysics and Planetary Science</td>
<td>12</td>
</tr>
<tr>
<td>12.003</td>
<td>Introduction to Atmosphere, Ocean, and Climate Dynamics</td>
<td>12</td>
</tr>
<tr>
<td>12.102</td>
<td>Environmental Earth Science</td>
<td>12</td>
</tr>
<tr>
<td>12.400</td>
<td>The Solar System</td>
<td>12</td>
</tr>
<tr>
<td>14.30</td>
<td>Introduction to Statistical Methods in Economics</td>
<td>12</td>
</tr>
<tr>
<td>15.079</td>
<td>Introduction to Applied Probability</td>
<td>12</td>
</tr>
<tr>
<td>16.001</td>
<td>Unified Engineering I</td>
<td>12</td>
</tr>
<tr>
<td>18.03</td>
<td>Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>18.034</td>
<td>Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>18.05</td>
<td>Introduction to Probability and Statistics</td>
<td>12</td>
</tr>
<tr>
<td>18.06</td>
<td>Linear Algebra</td>
<td>12</td>
</tr>
<tr>
<td>18.600</td>
<td>Probability and Random Variables</td>
<td>12</td>
</tr>
<tr>
<td>18.700</td>
<td>Linear Algebra</td>
<td>12</td>
</tr>
<tr>
<td>20.110[J]</td>
<td>Thermodynamics of Biomolecular Systems</td>
<td>12</td>
</tr>
<tr>
<td>22.01</td>
<td>Introduction to Nuclear Engineering and Ionizing Radiation</td>
<td>12</td>
</tr>
<tr>
<td>22.02</td>
<td>Introduction to Applied Nuclear Physics</td>
<td>12</td>
</tr>
<tr>
<td>ESD.03[J]</td>
<td>System Safety</td>
<td>12</td>
</tr>
</tbody>
</table>

The following combinations of six-unit subjects also count toward the REST Requirement:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0001</td>
<td>Introduction to Computer Science</td>
<td>12</td>
</tr>
<tr>
<td>& 6.0002</td>
<td>Programming in Python</td>
<td>12</td>
</tr>
</tbody>
</table>

Laboratory Requirement

The Laboratory Requirement (one subject of 12 units or two subjects of 6 units) is met by enrolling in subjects designed for this purpose, and normally is fulfilled in the first two years. The available subjects are listed below.

A typical laboratory subject offers the student an opportunity to set up and carry out experiments dealing with phenomena of the natural world. Under faculty supervision, the student plays a substantial role in planning the design of the experiment, selecting the measurement technique, and determining the procedure to be used for validation of the data.

Hypotheses are formulated and then tested by comparing them with the results of the experiments. The student then compares and discusses the experimental results in terms of the current state of knowledge and prepares progress reports and final reports of the work.

The laboratory subjects call for a major commitment of the student’s attention to one or more experimental problems and emphasize as much as possible work of project type rather than routine experimental exercises. The subjects are designed to stimulate the student's resourcefulness and ideas.

The Laboratory Requirement is not intended primarily to teach specific techniques for later experimental work, provide broad coverage of a particular field, or complement a specific subject. The laboratory subjects are planned to give each student, at an early stage of his or her educational experience at MIT, an opportunity to work on one or more experimental problems, exercising the same type of initiative and resourcefulness as a professional would in similar circumstances. If the subject offers more than 12 units of credit, 12 units will be applied to the Laboratory Requirement and the additional units will be counted as elective units.
Laboratory Requirement Subjects

1.101 Introduction to Civil and Environmental Engineering Design I 6
1.102 Introduction to Civil and Environmental Engineering Design II 6
1.106 Environmental Fluid Transport Processes and Hydrology Laboratory 6
1.107 Environmental Chemistry and Biology Laboratory 6
2.008 Design and Manufacturing II (6 units of laboratory credit) 12
2.017(J) Design of Electromechanical Robotic Systems (6 units of laboratory credit) 12
2.671 Measurement and Instrumentation 12
2.672 Project Laboratory 6
3.014 Materials Laboratory 12
4.411(J) D-Lab Schools: Building Technology Laboratory 12
5.310 Laboratory Chemistry 12
5.35 Introduction to Experimental Chemistry 12
6.01 Introduction to EECS I (6 units of laboratory credit) 12
6.02 Introduction to EECS II (6 units of laboratory credit) 12
6.03 Introduction to EECS II from a Medical Technology Perspective (6 units of laboratory credit) 12
6.101 Introductory Analog Electronics Laboratory 12
6.111 Introductory Digital Systems Laboratory 12
6.115 Microcomputer Project Laboratory 12
6.129(J) Biological Circuit Engineering Laboratory 12
6.131 Power Electronics Laboratory 12
6.141(J) Robotics: Science and Systems I 12
6.161 Modern Optics Project Laboratory 12
6.163 Strobe Project Laboratory 12
6.182 Psychoacoustics Project Laboratory 12
7.02(J) Introduction to Experimental Biology and Communication (12 units of laboratory credit) 18
8.13 Experimental Physics I (12 units of laboratory credit) 18
9.12 Experimental Molecular Neurobiology 12
9.17 Systems Neuroscience Laboratory 12
9.59(J) Laboratory in Psycholinguistics 12
9.63 Laboratory in Visual Cognition 12
11.188 Urban Planning and Social Science Laboratory 12
12.115 Field Geology II 12
12.119 Analytical Techniques for Studying Environmental and Geologic Samples 12
12.307 Weather and Climate Laboratory (12 units of laboratory credit) 15
12.335 Experimental Atmospheric Chemistry 12
12.410(J) Observational Techniques of Optical Astronomy (gives 12 units of laboratory credit) 15
14.33 Research and Communication in Economics: Topics, Methods, and Implementation 12
15.301 Managerial Psychology Laboratory (12 units of laboratory credit) 15
16.622 Experimental Projects II 12
16.821 Flight Vehicle Development (12 units of laboratory credit) 18
16.831(J) Space Systems Development (12 units of laboratory credit) 18
17.871 Political Science Laboratory (12 units of laboratory credit) 15
18.821 Project Laboratory in Mathematics 12
20.109 Laboratory Fundamentals in Biological Engineering (12 units of laboratory credit) 15
22.09 Principles of Nuclear Radiation Measurement and Protection 12
24.909 Field Methods in Linguistics 12

Physical Education Requirement

The mission of the Physical Education General Institute Requirement is to provide learners with the instruction and skills necessary to lead healthy, active lifestyles and to foster both personal growth and a sense of community through physical activity. The program enables students to engage in physical activity while they are involved in rigorous academic study. Major emphasis is placed on the development of skills that can be used for lifetime fitness and wellness. Students receive a strong background in the fundamentals of the activity selected. Instruction is offered in fitness, wellness, individual and team sports, martial arts, dance, aquatics, and outdoor adventure activities. Information on classes, including descriptions of current offerings, is available at the Physical Education website (http://mitpe.com).

To satisfy the Physical Education Requirement, undergraduates entering MIT as freshmen must take four physical education courses.
Students must wear appropriate attire for activity classes. Goggles are recommended for swim courses, and non-marking court shoes are required for squash and tennis. Most courses provide all necessary equipment, but students must supply sticks for ice hockey courses. Lab fees are required for some courses. Undergraduate and graduate students must activate their MIT ID card annually to gain access to all MIT sport facilities.

For further information contact the Physical Education Office (mitpe@mit.edu), Room W35-297X, 617-253-4291, or visit the department’s website (http://mitpe.com).

ACADEMIC AND RESEARCH OPTIONS

Students at MIT may take advantage of a variety of academic and research opportunities to enrich or complement their academic pursuits. These include programs designed specifically to support freshmen adjusting to college life, opportunities to engage in collaborative research, global study projects and internships abroad, cross-registration options at other Boston-area schools, and the flexible learning structure and innovative offerings of the Independent Activities Period.

INDEPENDENT ACTIVITIES PERIOD

Independent Activities Period (IAP) (http://web.mit.edu/iap) is a four-week period in January during which faculty and students are freed from the rigors of regularly scheduled classes for flexible teaching and learning and for independent study and research. IAP is part of the academic program of the Institute—the “1” month in MIT’s “4-1-4” academic calendar. Students are encouraged to explore the educational resources of the Institute by taking specially designed subjects, arranging individual projects with faculty members, or organizing and participating in IAP activities. They may also pursue interests independently either on or off campus.

Departmental programs may require students to complete a subject (of no more than 12 units) during one IAP.

Activities

More than 600 activities are offered each year on a wide range of topics, both academic and nonacademic. In addition, “special subjects” exist in most departments, for which students can arrange credit for individual work.

Many IAP activities, both credit and noncredit, are organized each fall. They are advertised, beginning in early November, on the IAP website (http://web.mit.edu/iap).

Organizing Activities

Nonacademic activities may be organized or attended by members of the MIT Community: faculty, students, and employees. Tips on organizing an IAP activity are available on the IAP website (http://
web.mit.edu/iap). Organizers may approach MIT departments and organizations to help defray expenses.

Students find organizing IAP activities a rewarding challenge. For many, it is their first opportunity to develop and teach a program from their own ideas. In doing so, they acquire organizational and leadership skills that prove invaluable to their careers.

Tuition, Room, and Board

Regular students paying full tuition in either the fall or spring term do not have to pay additional tuition or room fees to the Institute during IAP. Students who have not been charged full tuition in either the fall or spring term are subject to additional tuition charges and should consult the Registrar’s Office, Room 5-119, 617-258-6409. MIT Dining (http://dining.mit.edu) provides food service options through retail, house dining, and catering services throughout the entire academic year, including IAP. Please visit the dining website (http://dining.mit.edu) in early December to learn more about dining options during IAP.

Academic Credit and Grades

Students should follow directions published on MIT’s IAP website (http://web.mit.edu/iap) regarding registration for subjects. In addition to regular subjects, students may make arrangements to earn credit for independent work under faculty supervision. No student may earn more than 12 units of credit during IAP. Credits received by freshmen during IAP are not counted toward their credit limits for fall or spring term.

All credit-bearing subjects are graded according to the grading rules approved for that subject number. A subject can be graded P/D/F only if it has been approved with P/D/F grading. Similarly, the number of units awarded must be as specified for that subject. However, faculty sometimes teach new classes under special subject numbers for which credit units are arranged.

For students to receive credit for work done in IAP, instructors must submit grades to the Registrar’s Office by the deadline given in the academic calendar. If a grade is received after the Add Date of the succeeding term and the student did not register in the subject during IAP, the student must petition to receive credit. IAP credit will not be given if the grade is received after the end of the succeeding spring term.

Students may view their IAP grades on WebSIS (http://student.mit.edu) shortly after the start of the spring term. Students who do not receive grades when expected should check promptly with their instructors or the Registrar’s Office to ensure the grades are submitted and recorded.

Special Students

Applications for special student status solely for IAP will not be accepted. Special students admitted to the fall or spring term must consult the Admissions Office concerning their status during IAP; they do not automatically have IAP privileges. If the special student has paid full tuition during the fall term or is admitted to do so in the spring, there will not be an additional tuition charge for IAP. If the student has not been paying full tuition, a charge for the IAP units will be added to either the fall or spring term up to a maximum of full tuition for the term.

UNDERGRADUATE RESEARCH OPPORTUNITIES PROGRAM

The Undergraduate Research Opportunities Program (UROP) (http://web.mit.edu/urop) invites undergraduates to participate in a wide range of research activities that are available in every academic department and most interdisciplinary laboratories and centers in collaboration with MIT faculty.

There are many advantages to becoming involved in such pursuits as early as possible in an undergraduate career: establishing ties to faculty, investigating a potential major, acquiring data-gathering and laboratory techniques, exploring the frontiers of a field, undertaking topics not amenable to the classroom, facing a real-world problem, and establishing a focus for educational experiences. Through UROP, students may gain a better understanding of the intellectual process of inquiry, while having the opportunity to experience personal and professional growth. Students may earn pay or academic credit, or may work on a volunteer basis. Whatever the chosen mode, all UROP work is expected to be worth academic credit.

Guidelines for participating are available online (http://web.mit.edu/urop). This website lists UROP contacts for Institute departments, laboratories, and centers. While these people are prepared to assist students, a certain amount of footwork and negotiation is required to achieve a satisfying collaboration. The UROP experience is unlike any other; its benefits and rewards are great, but expectations and standards are commensurate. For advice and assistance, contact UROP staff (urop@mit.edu) in the Office of Undergraduate Advising and Academic Programming, Room 7-104, 617-253-7306, fax 617-258-8816.

FRESHMAN ADVISING SEMINARS PROGRAM

The Freshman Advising Seminars (FAS) (http://web.mit.edu/firstyear) program, offered by the Office of Undergraduate Advising and Academic Programming (https://officesdirectory.mit.edu/uaap), is one advising option available to freshmen. It is available only to first-term freshmen, who must apply online. A Freshman Advising Seminar is typically led by a faculty member who also serves as the freshman advisor to the small group of seminar advisees. While FASes vary in style and topic, most are oriented to group discussion and offer an opportunity to interact closely with faculty. All Advising Seminars receive six units of credit and are graded P/D/F.
INTERPHASE EDGE

Interphase EDGE (Empowering Discovery | Gateway to Excellence) (http://ome.mit.edu/programs-services/interphase-edge-empowering-discovery-gateway-excellence) is a two-year scholar-enrichment program sponsored by the Office of Minority Education (https://officesdirectory.mit.edu/ome) that includes a seven-week summer session as well as programming during the academic year. The focus of the summer program is to give scholars an introduction to the MIT experience by exposing them to the rigors of a full subject load and to life on campus.

In addition, the Interphase EDGE curriculum is uniquely designed to impart pivotal concepts that will increase long-term academic success. The program is designed not only to give students an “edge” on their MIT experience, but also to catalyze their successes beyond MIT. During the summer and academic year, scholars will participate in a range of personal and educational development seminars and activities designed to ensure their smooth transition to college life. Throughout the academic year, scholars will continue to build upon the relationships created during the summer by attending biweekly meetings with EDGE advisors and monthly professional and academic enhancement events, including programs that expose them to various career pathways.

EDGERTON CENTER

The Edgerton Center (http://edgerton.mit.edu) offers a wide variety of courses for both undergraduate and graduate students, and provides resources and opportunities for students to pursue hands-on projects, UROPs, and other activities.

Named for Professor Harold Edgerton, whose high-speed photography legacy lives on with the Strobe Alley exhibition of Edgerton photographs, the center can provide students with a workplace, a place to test equipment, access to the Student Machine Shop, or simply advice and encouragement. The laboratory, classroom, and studio are located in Strobe Alley on the fourth floor of Building 4. For more information on using facilities, contact Jim Bales (bales@mit.edu) or Amy Fitzgerald (amyfitz@mit.edu).

Subjects offered (http://edgerton.mit.edu/academics) include introductory electronics, digital photography, and classes in international development (D-Lab classes). In addition, Doc Edgerton’s Strobe Project Laboratory 6.163 is taught each term by assistant director Jim Bales.

The Student Shop offers regular training sessions for use of CNC mills, lathes, a 3D printer, and more. The Area 51 Machine Shop is located on the first and third floors of N51. The first floor fabrication facility—with CNC milling and lathe machines, an injection molding machine, and a waterjet cutting machine—is available to students on clubs and teams, D-Lab, and to the students, faculty, and staff of the International Design Centre. The third floor space is used by clubs and teams for small-scale project work.

The center supports a range of student clubs and teams including the Solar Electric Vehicle Team, the Marine Robotics Team, and others. We provide teams with a space to work, some funding, administrative support, and a team coordinator. Students interested in starting up a new team should contact Sandi Lipnoski (slipnosk@mit.edu).

International development is a potent area of interest for students and faculty, and is a key part of MIT’s goal of advancing global education. D-Lab (http://d-lab.mit.edu) is a program that fosters the development of appropriate technologies and sustainable solutions within the framework of courses and field trips. There are several academic offerings that make up the suite of D-Lab classes, falling into the broad categories of development, design, and dissemination. For more information about D-Lab, contact Melissa Mangino (mmangino@mit.edu) or call 617-324-2589.

The Edgerton Center Outreach Program gives MIT students an on-campus opportunity to teach engineering and science to 4th through 8th graders from area schools. Topics include mechanical engineering, circuits, optics, biology, and more. Contact Amy Fitzgerald (amyfitz@mit.edu) or call 617-253-7931 to become involved.

The faculty director of the Edgerton Center is Professor J. Kim Vandiver (kimv@mit.edu), Room 10-110. For general information, contact Sandi Lipnoski (slipnosk@mit.edu), Room 4-408, 617-253-4629, or visit the website (http://edgerton.mit.edu).

GRADING OPTIONS

Grading options are intended to provide students with the opportunity to explore new and challenging subjects and to broaden their educational experience with reduced effect on term and cumulative ratings. These options must be approved by the student’s advisor and designated by Add Date.

Sophomore Exploratory. Sophomores may designate one subject as exploratory in each of their fall and spring terms. An exploratory subject is one in which the student may either accept the grade awarded in the subject or change the subject to listener status through Registration Day of the succeeding term. Students receive no credit for listener subjects, which do not appear on transcripts. Any subject may be designated as exploratory—including an Institute, departmental, or minor requirement or a cross-registered subject taken at another school.

Junior-Senior P/D/F. A student may take a total of two subjects to be graded P, D, or F during his or her junior and senior years, where P indicates C or better performance (C- with modifier used within MIT). Such subjects may not be used to fulfill the General Institute Requirements or departmental or minor requirements. However,
the subjects will count in the units completed beyond the General Institute Requirements.

STUDY AT OTHER UNIVERSITIES

There are a number of opportunities for MIT undergraduates to study at other universities, including study abroad, domestic study away, and cross-registration programs with local universities. Students who spend a term or a year studying abroad or at another US university find that in addition to the intellectual benefit, they are enriched by day-to-day exposure to different cultural and/or social experiences. Through the cross-registration programs students may take subjects not offered at MIT.

Study Abroad Opportunities

Cambridge-MIT Exchange Program

Through the Cambridge-MIT Exchange Program (CME) (http://gecd.mit.edu/go_abroad/study/explore/cme), undergraduate MIT students can spend their junior year studying at the University of Cambridge in England.

Founded in 1209, the University of Cambridge consists of 31 self-governing colleges where students live and study in a supportive educational environment. Lectures, laboratories, and project work are organized by the university; the colleges organize small-group sessions (“supervisions”) designed to complement the lectures. In addition to teaching, research is of major importance at Cambridge. Since the beginning of the 20th century, more than 60 members of the University of Cambridge have won Nobel Prizes.

MIT students who study for a year at Cambridge receive sufficient transfer credit to permit normal progress toward their MIT degree. Participating departments include Aeronautics and Astronautics; Biology; Brain and Cognitive Sciences; Chemical Engineering; Chemistry; Civil and Environmental Engineering; Earth, Atmospheric and Planetary Sciences; Economics; Electrical Engineering and Computer Science (including Course 6-3); History; Mathematics; Mechanical Engineering; and Physics.

While on the exchange, MIT students pay tuition to MIT; they are billed at Cambridge for the costs of room and board only. While away at Cambridge during the fall and spring semesters, a student maintains full-time student status at MIT.

Interested students should discuss their plans with CME faculty coordinators (http://gecd.mit.edu/go_abroad/study/explore/cme/start) in the departments as early as possible. For further information, students should contact Sarra Shubart (sarra@mit.edu), program coordinator, 617-253-6057, or their departments.

MIT-Madrid Program

The MIT-Madrid Program (http://gecd.mit.edu/go_abroad/study/explore/madrid) gives students the opportunity to study in Madrid for the spring term during their sophomore or junior year. Depending upon major and interests, students can choose science and engineering courses at the Universidad Politécnica de Madrid and/or humanities, arts, and social sciences courses at the Universidad Complutense de Madrid; instruction and coursework are in Spanish. These are leading universities in Spain, each with its distinguished tradition and history. In addition to academic courses, students can participate in an internship during this program. Students who plan to participate in MIT-Madrid must be in good academic standing and have taken Spanish IV at MIT or its equivalent. MIT-Madrid Program participants are placed individually with Spanish families in homestays.

IAP-Madrid Program

The IAP-Madrid Program (http://gecd.mit.edu/go_abroad/study/explore/madrid_iap) is a Spanish II language program taught by MIT faculty in Madrid, which is open to MIT undergraduate and graduate students.

Departmental Exchange Programs

Several MIT departments offer exchange programs (http://gecd.mit.edu/go_abroad/study/explore/exchange) that swap MIT students with peers from other universities.

The Department of Aeronautics and Astronautics offers study at the University of Pretoria in South Africa.

The Department of Architecture has two exchange programs, one with Delft University of Technology in the Netherlands and the other with the University of Hong Kong.

The Department of Materials Science and Engineering has exchange programs with Oxford University and Imperial College London. For more information contact Professor Linn Hobbs (hobbs@mit.edu), 617-253-6835.

The Department of Political Science has an exchange program with Sciences Po in Paris, France. This program is open to other majors as well, although the course offerings consist largely of humanities, arts, and social sciences.

The Department of Mechanical Engineering has an exchange program with ETH-Zurich in Switzerland. For more information, contact Josh Nupp (jnupp@mit.edu), 617-715-5331.

The Department of Nuclear Science and Engineering has an exchange with Imperial College London. For more information, contact Professor Mike Short (hereiam@mit.edu), 617-347-7763.

The following departments participate in the Imperial-MIT Summer Research Exchange: Civil and Environmental Engineering, Materials Science and Engineering, Chemistry, Physics, Chemical Engineering,
Aeronautics and Astronautics, Bioengineering, and Nuclear Science and Engineering. For more information, contact Josh Nupp (jnupp@mit.edu), 617-715-5331.

Other Study Abroad Options

MIT students may also apply for admission directly to foreign institutions that offer study abroad programs or to a study abroad program administered by another US institution or study abroad provider. Examples of such opportunities include l’École Polytechnique in France, the London School of Economics, Oxford University and other UK institutions, and a number of programs in China. To explore these options, and many other exciting opportunities around the world, schedule an appointment with a staff member in Global Education (http://gecd.mit.edu/go_abroad), 617-253-0676, Room E39-305.

Students interested in study abroad should meet with a staff member in Global Education and work out their plans with a faculty advisor and appropriate transfer credit examiner(s) in the department. They also must complete a Worksheet for Planning Study at Other Universities (http://gecd.mit.edu/go_abroad/prepare) in order to gain approval for study abroad. While on an approved study abroad program during the fall and/or spring term(s), a student maintains full-time student status at MIT. Although it is most common to study abroad during the junior year, it is possible to participate in a study abroad program in the sophomore year or, in some cases, in the senior year. Study during IAP and/or summer are popular options as well.

Financial aid is portable for semester or year study abroad programs. Students who receive financial aid at MIT are advised to discuss their study abroad plans with the Student Financial Aid Office (http://sfs.mit.edu) at least one term prior to the term in which they wish to commence study abroad. This will help students develop the best possible financial plans for their time abroad. Global Education has funding available for IAP and summer programs, and can also help students apply for external study abroad scholarships.

Numerous institutions offer programs abroad taught in English. It is possible to study in a foreign country without prior knowledge of the host country’s language. However, a working command of the language can add greatly to the overseas experience. Even a student without prior language skills can usually achieve a good level of proficiency in a foreign language by the beginning of the junior year if he or she begins language study by spring term of freshman year.

With proper planning and preparation, students who successfully complete an approved program of study abroad receive transfer credit toward their MIT degree. While at the host institution, students must arrange to have an official transcript sent directly to the MIT Registrar’s Office showing coursework and final grade(s) completed at the outside institution. Upon return, they must submit a completed Request for Additional Credit Form, signed by the appropriate transfer credit examiner(s).

For further information, contact Global Education (studyabroad@mit.edu), Room E39-305, 617-253-0676, or visit the website (http://gecd.mit.edu/go_abroad).

Domestic Study Away

Students may choose to spend from one term to one year studying at another academic institution within the US. Students studying at another US university usually pay tuition to the outside institution rather than to MIT. While on an approved domestic study away program during the fall and/or spring term(s), students maintain full-time student status at MIT. Students interested in domestic study away should make an appointment with a staff member in Global Education (http://gecd.mit.edu/go_abroad), Room E39-305.

To qualify for Domestic Year Away status, students must show that their proposed program of study draws upon resources available at the outside institution that are not generally available at MIT, or at the institutions with which MIT has cross-registration privileges. In addition, a planned program of study should be consistent with an overall degree program at MIT. Students must be accepted by a school of established academic merit and undertake a workload comparable to that at MIT. Students planning to spend time studying at another academic institution in the US need to work out their plans with a faculty advisor and appropriate transfer credit examiner(s) and must complete a Worksheet for Planning Study Abroad/Domestic Study Away (http://gecd.mit.edu/go_abroad/prepare).

With proper planning and preparation, students who successfully complete an approved program of study at another US university receive transfer credit. While at the host institution, students must arrange to have an official transcript sent directly to the MIT Registrar’s Office showing coursework and final grade(s) completed at the outside institution. Upon return, they must submit a completed Request for Additional Credit Form, signed by the appropriate transfer credit examiner(s).

For further information, contact Global Education (studyabroad@mit.edu), Room E39-305, or visit the website (http://gecd.mit.edu/go_abroad).

Cross-registration Programs

Subjects taken through cross-registration programs with Harvard and Wellesley may be used to fulfill departmental major and minor requirements with the permission of a faculty advisor.

When appropriate, cross-registration subjects taken for a letter grade at Harvard and Wellesley may count toward fulfillment of the HASS Requirement; in most cases, students must submit a petition to the Subcommittee on the HASS Requirement. Subjects may be designated as part of the Concentration for the Humanities, Arts,
and Social Sciences at the discretion of the designated advisor in that field of concentration.

Harvard University
MIT undergraduates are permitted to take subjects at Harvard University (except Harvard Business School, Harvard Extension School, and Harvard Summer School) for degree credit at no extra charge. This cooperative arrangement is not applicable to the summer session. In general, MIT students take subjects at Harvard which are not offered regularly at MIT. Cross-registration is limited to upperclass students who must be regularly enrolled at MIT and paying full tuition for the term in question. No more than half of a student’s registration (up to a maximum of 24 units) may be taken at Harvard in any one term.

Where appropriate, Harvard subjects can count toward fulfillment of the HASS Requirement; in most cases, students must submit a petition to the Subcommittee on the HASS Requirement. Letter grades earned in Harvard subjects appear on the transcripts of MIT undergraduates. Detailed information about the Harvard cross-registration option for undergraduates is available online (http://web.mit.edu/registrar/reg/xreg/MITtoHarvard.html).

Wellesley College
MIT students may cross-register for any courses at Wellesley College if they present the necessary prerequisites. This exchange program is not applicable to IAP or the summer session. Wellesley is a small, liberal arts college for women located on a 500-acre campus 17 miles west of Cambridge.

Through the Wellesley Education Department, MIT students may earn Massachusetts certification to teach at the elementary or high school level. This certification is recognized by many other states.

Students generally cannot substitute Wellesley subjects for MIT Science Requirement (p. 35) subjects (Chemistry, Biology, Physics, and Calculus) or Institute Laboratory Requirement (p. 35) subjects. They may take Wellesley subjects to satisfy Restricted Electives in Science and Technology (REST) (p. 35) Requirements, but need the approval of the Committee on Curricula.

When appropriate, Wellesley subjects can count toward fulfillment of the HASS Requirement; in most cases, students must submit a petition to the Subcommittee on the HASS Requirement.

Wellesley subjects may be used to fulfill departmental major and minor requirements with the permission of a faculty advisor.

For upperclass students, letter grades will be recorded for Wellesley subjects, unless the student designates a Wellesley subject as one of his or her two electives to be graded P, D, or F. Grades for freshmen will be converted to the MIT first-year grading system.

Students may take physical education classes at Wellesley on a space-available basis and may apply these classes toward their MIT physical education requirements. MIT students receive full library privileges at the Wellesley College Library.

Wellesley operates free weekday bus service between the two campuses. The service is open to everyone with an MIT or Wellesley identification card, but priority will be given to cross-registered students. The ride is about 50 minutes each way.

Detailed information on registration procedures is available online (http://web.mit.edu/registrar/reg/xreg/MITtoWellesley.html). The Exchange Office at Wellesley is located in Room 339C, Green Hall, 781-283-2325.

Massachusetts College of Art and Design and the School of the Museum of Fine Arts
MIT undergraduates may cross-register at the Massachusetts College of Art and Design (MassArt), a state college, and the School of the Museum of Fine Arts (SMFA), a private school affiliated with the Museum of Fine Arts Boston. Both are highly respected art schools in Boston with studio classes such as drawing, painting, and printmaking that are not offered for credit at MIT.

Classes taken at MassArt and SMFA through the cross-registration program are graded P, D, or F and may not be used to satisfy Institute, departmental, or minor requirements. They may be used toward unrestricted elective credit. Only one subject from either school may be taken in a semester. This program is not applicable to IAP or the summer session.

Students must complete a cross-registration form, available in the Student Services Center, Room 11-120, by the deadline set by the MIT Registrar. Detailed information is available online (http://visualarts.mit.edu/about/xreg_art.html).

INTERNSHIPS ABROAD
Each year, hundreds of MIT students gain international experience by interning at premier corporations, universities, and research institutes abroad. MIT International Science and Technology Initiatives (MISTI) (http://misti.mit.edu) offers internship, teaching, and research opportunities in Africa, Belgium, Brazil, Chile, China, France, Germany, India, Israel, Italy, Japan, Korea, Mexico, Netherlands, Portugal, Russia, Singapore, Spain, and Switzerland.

To help make an international experience available to every MIT student, MISTI internships are all-expenses-paid and open to undergraduates and graduate students. Internships range from three months to one year, with opportunities available for every major. MISTI sends over 700 students abroad each year.
CAREER AND PROFESSIONAL OPTIONS

An MIT education is a valuable investment in the future. Several options are available to students who need or desire career advice or job-search assistance, as well as to those seeking guidance about further study. Students can take advantage of programs to gain international experience or to earn teaching credentials. Leadership and military training opportunities are available through US Reserve Office Training Corps programs. This section describes some of the available options.

GLOBAL EDUCATION AND CAREER DEVELOPMENT

Global Education and Career Development (GECD) (http://gecd.mit.edu) helps MIT students, recent alumni, and postdocs find jobs and internships, explore career options, and apply to graduate and professional schools. Staff also advise MIT students about global programs and manage study abroad for the Institute.

Global Education and Career Development is located in Kendall Square on the third floor of MIT building E39. The office can be reached by phone at 617-715-5329 or by email (gecd@mit.edu).

Career Services

All students are encouraged to make use of GECD’s Career Services early and often. These include:

- Resume, cover letter, and CV review
- Guided self-assessments
- Mock interviews
- Career fair preparation
- Counseling on other career issues, including researching careers, finding jobs and internships, networking, and negotiating job offers
- Workshops and events
- Job postings
- On-campus recruiting and interviews

Many of these services can be accessed via CareerBridge (http://myinterface.com/mit/student), GECD’s online career tool for signing up for appointments, registering for events, and searching job postings.

Freshmen can register for GECD’s Freshmen/Alumni Summer Internship Program (http://gecd.mit.edu/fasip), a 6-unit graded seminar (SP.800 Freshmen/Alumni Summer Internship Program/SP.801 Freshman/Alumni Summer Internship Program II) that offers career development training.

Prehealth Advising

Prehealth Advising, part of GECD and located in Room E39-305, supports students interested in exploring and applying to health professional schools. There is no required major for admission to health professional schools; however, schools do require applicants to complete a number of science and writing subjects prior to admission. Students should visit the website (http://gecd.mit.edu/grad-and-med-school) for information on admissions criteria, the application process, and services provided.

Global Education

Global Education (Room E39-305) is a one-stop office for information on all MIT global education opportunities, helping students identify, prepare for, and integrate global opportunities that match their academic and professional goals into their life at MIT. The staff also provides expertise and consultation to faculty and program directors regarding study abroad and other global opportunities.

Global Education offers comprehensive support to undergraduates interested in and preparing for study abroad, and works with partner programs such as the UROP Office, the Public Service Center, D-Lab, and MISTI to support global opportunities. The office also provides support and guidance to students preparing applications for distinguished fellowships, including but not limited to the Rhodes, Marshall, Mitchell, Gates, and Fulbright fellowships. For further information, see the section on Study at Other Universities (p. 45).

TEACHER LICENSURE AND EDUCATION

Options for MIT students interested in teaching elementary or secondary school range from exploratory activities such as tutoring and participation in the Undergraduate Research Opportunities Program (UROP) (p. 43) to an official teacher certification program.

For students who wish to explore teaching as a career (in the short or long term), the MIT/Wellesley Scheller Teacher Education Program (STEP) (http://education.mit.edu), housed in the Department of Urban Studies and Planning, offers instruction to meet the requirements for Massachusetts State Teacher Certification in math and science at the middle and high school levels (and can be transferred to many other states). Courses offered through STEP are also useful for students preparing to teach at the college level, as well as those who wish to apply their work to related research fields such as curriculum design or educational technology. Those going into industry find that STEP training can apply to workforce development, training, leadership, and mentoring within a company.

Education subjects that focus on math/science teaching at the secondary level (grades 5-12) are offered through Course 11 Urban Studies and Planning. To receive Massachusetts State Teacher Certification, students must complete 300 hours of supervised practice teaching and additional coursework at MIT, or through Wellesley College. A HASS concentration in Urban Studies with emphasis in education is offered as part of the undergraduate curriculum.
To explore K-12 teaching opportunities less formally, students may volunteer as tutors or teacher assistants in local schools, design and teach classes through the Educational Studies Program (https://esp.mit.edu/learn), or work with faculty members who conduct research in schools. (Refer to the UROP Directory for a list of faculty members interested in such research.) Other groups that can help identify similar opportunities on campus are the Student Services Center, Room 11-120; the Public Service Center, Room 3-123; the Edgerton Center, Room 4-408; the MIT Museum, 265 Massachusetts Ave; and MIT Global Education and Career Development, Room E39-305.

ROTC PROGRAMS

Military training has existed at MIT ever since the Institute opened its doors in 1865. More than 12,000 officers have been commissioned from MIT, of whom more than 150 have reached the rank of general or admiral. Students who are United States citizens or who have applied for citizenship, are of good moral character, and are medically qualified for military service, may enroll in the programs for leadership training. Non-citizens who fulfill naturalization requirements for citizenship prior to graduation may enroll and participate in the two-year nonscholarship programs. Any full-time MIT student may participate in the programs for leadership training.

All three programs—Air Force, Army, and Naval ROTC—have the following characteristics in common:

- Application is voluntary.
- Admission is selective.
- All admit men and women.
- Enrollment as a nonscholarship freshman or sophomore does not involve a military service obligation.
- Most students enter the program at the beginning of their freshman year. However, entry up to the middle of the sophomore year is available.
- To be eligible for a commission as an officer in the Armed Forces, students must complete the Reserve Officers’ Training Corps (ROTC) program, including summer training, and earn their bachelor’s degree.
- Upon request by the student, any required summer employment financial aid contribution can be waived if summer training makes such employment impossible.
- Nonscholarship students may compete for ROTC scholarships, many of which cover full tuition and fees, and range from one to four years for the Army, Air Force, and Navy.
- Enrollment as a scholarship recipient beyond the freshman year generally creates an obligation of four years of active duty service in the Navy or Air Force, or four years of active duty or eight years of reserve duty in the National Guard or Reserve for the Army.

Aerospace Studies (AS), Military Science (MS), and Naval Science (NS) subjects are not included in a student’s grade point average, and the credits do not count toward a degree. These subjects can be applied toward the Physical Education Requirement. In some cases, the ROTC programs may include departmentally approved subjects that provide academic credit.

Students who accept a contract to become an officer must maintain acceptable levels of academic performance and physical fitness. ROTC academic performance requirements may exceed Institute standards. Breach or willful evasion of the contract could lead to a period of enlisted service or to repayment of scholarship funds.

Specific information concerning benefits, ROTC training programs, career opportunities, and contractual obligations can be obtained from the program offices listed in this section.

Air Force ROTC

The Air Force ROTC program provides students the opportunity to become commissioned officers in the Air Force after completing their undergraduate or, with exception, graduate degree. It is designed to develop the leadership and management skills essential for an Air Force officer while preparing the student for assignment in a career field related to his or her academic specialty.

Training Program

The program consists of classroom and leadership laboratory work during the four years of academic study and one summer training period of three weeks between the second and third years at an Air Force base. Students with three academic years remaining may enroll in the four-year program by combining the first two years.

The first two years of the four-year program are known as the General Military Course (GMC). Upon completion of the GMC and summer field training, students may compete for entry into the Professional Officer Course (POC). Selection into the POC is based on academic aptitude and performance, successful completion of the GMC and field training, and recommendation of the professor of Aerospace Studies.

Scholarships

Air Force ROTC scholarships are available on a competitive basis to qualified applicants. Scholarships pay up to full tuition, include $600 per year for textbooks, and a $300–500 nontaxable allowance each month. Two- to three-and-a-half-year scholarships are offered on a competitive basis in addition to the four-year scholarships offered to high school seniors. The detachment commander also has three-and-a-half year full-tuition scholarships to award to outstanding freshmen (technical majors) and $18,000 per year scholarships to award to non-technical students.
Classroom Instruction
The Aerospace Studies curriculum emphasizes the history, organization, and mission of the Air Force, including its role in national defense strategy and American society. Academic classes and leadership laboratory activities provide training and practical experience in developing leadership and managerial skills.

Students enrolled in the first two years of the program attend one hour of class and two hours of Leadership Laboratory (LLAB). In the final two years of the program, the class time is three hours per week with the same LLAB requirement. LLAB has always been a highlight of the program, introducing cadets to a variety of motivational and interactive activities. Aside from standard drill practice, students participate in guest-speaker events, athletic competitions, self-defense class, marksmanship training, rock climbing, career day, and much more. Cadets must also complete three hours of physical fitness training each week.

Eligibility Requirements
To be eligible for the Air Force ROTC scholarship program and the POC, students must be citizens of the United States; physically qualified in accordance with existing Air Force regulations; and enrolled at MIT, Harvard University, Salem State University, Suffolk University, Tufts University, or Wellesley College as full-time students.

Application Procedure
Interested students can sign up for the Air Force ROTC program by visiting the Aerospace Studies Department, Room W59-114, call 617-253-4475 or email afrotc@mit.edu.

Army ROTC
The Army ROTC program at MIT (http://web.mit.edu/armyrotc) is designed to enhance a student’s college education by integrating into the curriculum leadership and management theory with leadership practicum modules. Through coursework and in-class practical experience, students will develop decision-making, team-building, and time-management skills—leadership qualities that are essential to success in any field, including corporate or research careers. Students completing the ROTC program earn a commission as a Second Lieutenant in the US Army, Army Reserve, or Army National Guard. Nonscholarship students may participate in the first two years of Army ROTC with no commitment to military service.

The Military Science and Leadership Program is a four-year program composed of the Basic Course (freshman and sophomore years) and the Advanced Course (junior and senior years).

Four-Year Program
The four-year curriculum combines classroom and leadership laboratory work. Any MIT student is eligible to participate in the leadership development courses regardless of academic grade.

During the summer between their junior and senior years, students participate in a four-week Cadet Leadership Course (CLC) at Fort Knox, KY (near Louisville). Upon graduation from college and successful completion of CLC, students are commissioned as officers in the US Army, US Army Reserve, or Army National Guard.

Two-Year Program
The two-year program is designed for students who did not complete the first two years of the Army ROTC program. If students have at least four semesters remaining in their academic program at MIT or are interested in pursuing a graduate degree, they may be eligible to participate in the Advanced Course. Students must participate in a four-week training camp (Cadet Initial Entry Training) at Fort Knox, KY, in lieu of completing the Basic Course (freshman and sophomore years) or be prior service soldiers. Once students complete the Cadet Initial Entry Training, they are eligible to receive the same benefits as members in the four-year program.

Scholarships
Army ROTC scholarships are available on a competitive basis to qualified applicants. Two-, three-, and four-year scholarships are available each year, and are awarded on campus through the professor of military science or through a national selection board. High school seniors may apply for four-year scholarships in conjunction with their application to MIT. Scholarships pay full tuition and all mandatory fees, plus $1,200 for books and supplies each year, and a tax-free stipend ranging from $300 to $500 per month. The scholarship is flexible in that it can be used for either tuition and all mandatory fees or for room and board.

Program of Instruction
The Army ROTC curriculum is designed to enhance a student's college education by providing distinctive leadership and management training in conjunction with realistic experience. The program emphasizes leadership theory and practice, organizational management, public speaking, tactics, purpose and history of the military, and physical fitness.

Students enrolled in the first two years of the program attend one hour of class and three hours of physical fitness each week. Collegiate athletes who meet Army fitness standards are excused from physical fitness training while their sport is in season. In the final two years of the program, class and physical fitness total four to five hours per week. Students also participate in a weekly Leadership Lab that highlights a particular military activity. Finally, students participate in a field training exercise each semester that includes small unit leadership training, military tactics, land navigation, rappelling, obstacle negotiation, and possibly a helicopter orientation ride.

Extracurricular Events
The ROTC program offers MIT students a wide spectrum of opportunities to participate in numerous challenging and rewarding extracurricular activities, such as high adventure training and field
training exercises. Army Airborne, Air Assault, Mountain Warfare, and other military schooling and training programs are available on a voluntary basis to qualified cadets. Also, there are global summer internships available at national research laboratories, numerous Army bases, or the Pentagon. Finally, following graduation there are opportunities—primarily for students going on to law, medical, dental, or veterinary school—to defer the service obligation until completion of their graduate studies. Many graduate study opportunities are funded by the Army.

Opportunities in the US Army Reserve/Army National Guard

Army ROTC offers opportunities to seek a commission as a Second Lieutenant in the Army National Guard or Army Reserve. This unique option provides the flexibility for newly commissioned officers to participate in the Army part time while pursuing an advanced degree or a full-time career.

Eligibility Criteria

Enrollment in the freshman and sophomore ROTC courses is open to all MIT students. To be eligible for Army ROTC scholarships and/or enrollment in the junior- and senior-year ROTC courses, students must be citizens of the United States; physically and medically qualified in accordance with existing Army regulations; and enrolled at MIT, Harvard University, Tufts University, Wellesley College, Lesley University, Endicott College, Gordon College, Gordon-Conwell Theological Seminary, or Salem State University as full-time students.

Application Procedure

Students normally apply for the four-year program during their freshman year, but students may enroll in the course or apply for a campus-based scholarship each semester. Interested students can inquire about the Army ROTC program by visiting the Army ROTC office in Room W59-192, 617-253-4471, or by visiting the website (http://web.mit.edu/armyrotc).

Naval ROTC

The Navy Reserve Officers Training Program (NROTC) (http://www.nrotc.navy.mil) is a multi-year program that runs concurrently with a student’s normal college or university educational course of study. In addition to a normal academic workload leading to a baccalaureate degree, NROTC students attend classes in Naval Science, participate in the NROTC unit for drill, physical training, and other activities. The purpose of the NROTC program is to provide instruction and training in naval science subjects which, when coupled with a bachelor’s degree, qualify students for commissions in the US Navy and US Marine Corps.

The NROTC unit at MIT (http://nrotc.mit.edu) offers two officer development programs for which students attending Tufts and Harvard are also eligible. The Scholarship Program provides full tuition, fees, uniforms, a semester book stipend, and a monthly stipend for two, three, or four years. The length of scholarship benefits is predicated upon the student’s degree plan. Students will receive scholarship benefits only for the time required to receive their Baccalaureate Degree or four years, whichever comes first. If additional benefits are necessary, students may request and, in some cases, be granted fifth-year benefits.

Students in the College Program for two or four years receive naval science books and uniforms. College Program midshipmen accepted for advanced standing receive a monthly stipend for up to 20 months during the last two academic years. Each year, College Program students compete for full-tuition scholarships for their remaining years in school.

Program of Instruction

The NROTC program of instruction includes one Naval Science course each semester which encompasses the science of nautical matters and principles of leadership, ethics, and management. Leadership principles and high ideals of a military officer are taught and practiced during weekly drill instruction periods. Concurrently, midshipmen complete all requirements for a bachelor’s degree under their respective university’s rules and regulations. Navy Option Scholarship Program midshipmen must complete one year of calculus, one year of calculus-based physics, and one year of English grammar and composition. Both Navy and Marine Option midshipmen complete one semester of language or culture. NROTC academic instruction is complemented by tours conducted to local naval facilities, cruises aboard active duty naval vessels, and practical navigation and piloting practice conducted aboard training craft.

Between academic years, Scholarship Program midshipmen attend approximately one month of summer training aboard active duty naval vessels and at shore bases throughout the world to become familiar with Navy and Marine Corps procedures. College Program midshipmen must complete one summer cruise after their junior year.

Graduating Midshipmen

Upon graduation, midshipmen who complete all academic requirements in the NROTC program are offered commissions as Ensigns in the Navy or Second Lieutenants in the Marine Corps. Unrestricted Navy line officers serve in the aviation, submarine, surface warfare, or special operations communities, among others. Additionally, qualified officers may be invited to become Naval Reactors Engineers in Washington, DC. Navy Option Scholarship Program midshipmen are required to serve a minimum of five years of active military service and College Program midshipmen serve a minimum of three years. There may be additional requirements for specific assignments. Marine Corps Option midshipmen serve at least four years on active duty.

Eligibility Requirements

To be eligible for the four-year NROTC program at MIT, Harvard University, or Tufts University, a prospective midshipman must be
accepted at one of these institutions. Additionally he or she must be a United States citizen, not less than 17 years old by September 1 of the year starting college, and no more than 23 on December 31 of that year. Applicants must also be found physically qualified by the Department of Defense Medical Review Board.

Application Procedure
Further detailed information is available at MIT's NROTC website (http://nrotc.mit.edu) and at the Naval Reserve Officers Training Program website (http://www.nrotc.navy.mil). Visitors are also invited to learn more at the NROTC unit at MIT, Room W59-110, or at any US Navy Recruiting Station.

ADMISSIONS

Freshman Admissions
The information provided here contains a broad overview of Admissions policies and procedures. For specific information, please visit the Undergraduate Admissions website (http://mitadmissions.org).

Secondary School Preparation
Although MIT does not have any required high school classes, applicants are expected to have enrolled in a broad, rigorous program in high school. A strong academic foundation in high school will help students make the most of the Institute when they are here. Advice and suggestions on how to Prepare for MIT (http://mitadmissions.org/apply/prepare/highschool) are available on the Admissions website.

Campus Tours and Information Sessions
Prospective applicants and their families are welcome to visit the Admissions Reception Center in Room 10-100, Monday through Friday between 9 am and 5 pm. Undergraduate admissions information sessions are offered most weekdays at 10 am and 2 pm. Student-guided tours of the campus follow immediately after at 11 am and 3 pm. The Visit (http://mitadmissions.org/visit) pages provide an up-to-date schedule and online registration for information sessions and tours, maps, directions, and parking information.

Application Procedures
MIT has its own online application. Students may register for a MyMIT (http://mitadmissions.org/apply/freshman/mymit) account at any time to be added to the mailing list and, when they're ready to apply, use their MyMIT account to access the application. The application will be available online in August of the year prior to proposed entry. Early Action (available to citizens and permanent residents of the United States only) has a November 1 deadline. Regular Action candidates must complete the application process by January 1 of the year of intended entrance. Early Action applications will be considered in mid-December. At that time the committee may offer admission, deny admission, or defer the decision to Regular Action. Deferred applications are reconsidered without prejudice in March. The MIT application fee for 2016 is $75. MIT accepts fee waiver requests.

Additionally, MIT participates in the QuestBridge (http://www.questbridge.org) National College Match program, which aims to increase the percentage of talented low-income students attending the nation's best universities and the ranks of national leadership itself. Interested applicants should consult the QuestBridge website.

Applicant Interviews
MIT recommends that applicants interview with a member of the MIT Educational Council if available. Council members are MIT graduates who have volunteered to interview on behalf of the Office of Admissions. Applicants will be referred via their MyMIT account to a member of the council near the applicant’s home. Students contact their Education Counselor by October 20 for Early Action and December 10 for Regular Action.

Standardized Testing Requirements
Standardized tests are required for all applicants. Specific SAT, ACT, and TOEFL testing requirements are outlined in detail on the Tests & Scores (http://mitadmissions.org/apply/freshman/tests) page of the Admissions website.

Transfer Admissions
Although spaces are very limited, transfer students are welcome on campus for their fresh perspective, maturity, and focus. Students who have completed a minimum of one year with high academic standing at an accredited college, university, technical institute, or community college may be considered for transfer admission. Students with more than two and one-half years of study are not eligible.

Transfer Application Procedures
The MIT transfer application is available online (http://mitadmissions.org/apply/transfer/application). International students are eligible for fall admission only. Students applying for fall admission must complete all testing requirements by January 31 and the transfer application by February 15. Students applying for spring admission must complete all testing requirements by November 30 and the transfer application by November 15. The MIT Transfer application fee is $75. Applicants may request a fee waiver.

Credit Transfer
Students admitted by transfer may receive credit for subjects of study completed elsewhere which are substantially equivalent to corresponding Institute subjects. Academic credit is not assessed until after a student is admitted. You may compare the courses offered at your institution to those offered at MIT this year (http://catalog.mit.edu/subjects).
Undergraduate Special Student Admissions
An undergraduate special student is one whose intended program of study is at the undergraduate level but who is not a degree candidate. Undergraduates enrolled at other universities who wish to take classes not offered at their home university may apply as non-degree undergraduate special students. Undergraduate special student status is available to individuals who have successfully completed at least one year of full-time study, or the equivalent, at the university level. Secondary school students are not eligible.

Undergraduate special students enjoy most of the same privileges as regular students but are not eligible for financial assistance from MIT, are not offered housing, and may not take certain restricted classes. In certain classes with limited space, priority will be given to regular MIT students before special students.

Undergraduate special student status is granted for one term only, and a new application is required for a successive term. Enrollment as a special student is limited to two full academic terms. Admission as a special student does not carry any implication for other applications. It is a guest status only and not a means to an undergraduate degree at MIT.

The Special Student application and more information about the admission process may be found on the Undergraduate Special Student (http://web.mit.edu/admissions/graduate/special.html) website.

COSTS

Tuition and Fees
The basic tuition and fees at MIT for the academic year 2015–2016 (which are reviewed and likely to increase each year) are as follows:

<table>
<thead>
<tr>
<th>Tuition</th>
<th>$46,400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Activity Fee</td>
<td>$304</td>
</tr>
<tr>
<td>MIT Student Extended Insurance Plan</td>
<td>$2,568</td>
</tr>
</tbody>
</table>

Enrollment in the MIT Student Extended Insurance Plan is automatic. Students may submit an online waiver request (http://medweb.mit.edu/healthplans/student/waiver.html) if they have comparable insurance coverage.

Payment of the tuition fee entitles all regular and special students to many health care services at MIT Medical (http://medweb.mit.edu) (Building E23) at no charge. The MIT Student Extended Insurance Plan covers hospitalization due to accidents or illness and meets the state’s requirement for comprehensive health insurance. Insurance is required for all students unless they can demonstrate that they have comparable coverage through another insurance program. Refer to the Medical Requirements (p. 56) section for additional details or read more about the student health plans (https://medical.mit.edu/mit-health-plans/student-health-plans).

The tuition for all regular undergraduates in the fall and spring terms is $23,200 per term. Full tuition in either term of the current year covers the January Independent Activities Period. Tuition rates for the summer session are published each year in the Summer Session Catalog (http://web.mit.edu/catalog/summer), available in April.

Regular undergraduate students who have permission to take only a few subjects are initially charged full tuition. They may then apply to have their tuition charged at the rate of $725 per unit with the approval of the faculty advisor. In such cases, there is a minimum fee of $4,350 for subjects and a minimum of $1,932 for the SB thesis. Registration for 32 or more units will be assessed the full tuition charge. Upon recommendation of a department, the Dean for Undergraduate Education may set a special tuition rate in unusual circumstances. Financial aid will be adjusted based on enrollment costs. Some classes (including ROTC and classes taken on listener status) are not included in the determination of financial aid eligibility.

Special students are charged at the rate of $725 per unit taken either for credit or not for credit. This unit fee applies up to a maximum of $23,200 per term and is subject to the following minimum fees:

| Members of the MIT community (includes special students who are full-time employees of the Institute or who are dependents of full-time employees or regular students) | $4,350 |
| Other special students | $6,525 |

Internship and cooperative programs offered by MIT provide industrial and research experience through a series of work assignments interwoven with regular study at the Institute. The tuition fee for these programs is the same as that for other regular undergraduate students.

Light-load tuition adjustments are not normally available to students who are (or were) in cooperative and internship programs.

Withdrawal
A student withdrawing before the start of a term is not charged any tuition for that term, and any tuition payments previously made for that term will be refunded. Students withdrawing during the fall or spring term are charged one-twelfth of the stated tuition for the term for each week from the starting date of the term, with a minimum two-week charge. A student is financially obligated to the Institute for the tuition appropriate to the program approved by his or her faculty advisor at the beginning of the term. Any subsequent reduction in fees is based on the date that cancellation of subject or withdrawal from the Institute is effected. At that time, any excess payments which the student has made will be refunded.

If the student receives financial aid through one of the federal student financial aid programs, and aid is reduced as a consequence
of the reduced tuition, the reduction in aid will be made in accordance with current federal regulations. Visit the Student Financial Services website (http://web.mit.edu/sfs) for more information.

Miscellaneous Fees

Miscellaneous fees include the following:

<table>
<thead>
<tr>
<th>Fee Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application fee for undergraduate admission</td>
<td>$75</td>
</tr>
<tr>
<td>Fee for late submission of preregistration ($85 if very late)</td>
<td>$50</td>
</tr>
<tr>
<td>Fee for late filing of the degree application ($85 if very late)</td>
<td>$50</td>
</tr>
<tr>
<td>Fee for late initiation of the registration process or very late registration</td>
<td>$100</td>
</tr>
</tbody>
</table>

See Academic Calendar (p. 7) for dates.

The miscellaneous fees and processing charges listed above are nonrefundable unless levied in error.

Processing Charges for Late Changes in Registration

A late change in registration, which requires a petition (http://web.mit.edu/acadinfo/cap/petitions) to the Committee on Academic Performance, is defined as adding a subject after the fifth week or dropping a subject during the last three weeks of a term. The processing charge for late changes is $50. There is an additional charge of $50 for a retroactive change after the end of the term.

Undergraduate Living Costs

Living expenses for undergraduate students vary depending on factors such as availability of resources, interests, and tastes. More than 70% of undergraduate students live on-campus and freshmen are required to live on-campus unless they are granted an exception. Dining options and meal plans are available to all students including those who live in on-campus housing. Students living in Baker House, Maseeh Hall, McCormick Hall, Next House, and Simmons Hall are required to enroll in one of the meal plans designated specifically for their residence and class-year eligibility. On average undergraduates can expect to pay $12,774 for housing and dining. This does not include additional expenses for books, supplies, personal items, and travel.

Payment of Tuition and Other Institute Charges

An individual who registers as a student at MIT agrees to pay all charges on his or her account when due, and acknowledges that the Institute may charge late payment fees, suspend registration, revoke Institute services, and withhold the degree if these charges are not paid.

Student Financial Services (SFS) (http://sfs.mit.edu) gathers, bills, and collects student charges and provides a student account statement of that activity. These charges originate in the offices from which the student receives Institute services. SFS bills by posting a monthly student account electronic billing statement on MITPAY—a secure, paperless online billing and payment system. The statement is posted by the 10th of any month in which there's a new charge or credit on the account. SFS sends courtesy email reminders to students each month to check the statement and pay any balance due. The statement includes charges (e.g., tuition, fees, housing, and library fees), payments (financial aid, tuition awards), additional amounts due, and payment deadlines.

Payment in full or a satisfactory arrangement for payment is due prior to the beginning of each term (July 1, August 1, and January 1). New charges and credits that occur after the initial statement will appear on a subsequent statement. If a student anticipates that he or she may not be able to pay the entire account by the July, August, or January deadline, the MIT Payment Plan is available and should be considered.

The MIT Monthly Payment Plan (http://sfs.mit.edu/billing-repayment/your-billing-statement/how-to-pay-your-bill) is an installment arrangement administered by Tuition Management Systems (TMS) that allows students to pay their bills in monthly installments interest free. The terms and conditions of the monthly payment plan are available on the SFS website.

SFS also offers information on federal student loan programs as additional options for eligible US citizens and permanent residents.

If a student fails to make satisfactory arrangements for payment and has amounts outstanding after a payment due date, that balance will be subject to late fees of 1.5 percent per month (18 percent annual percentage rate). Outstanding balances at the end of a term will result in a hold on the student’s registration or graduation.

Students who have unanticipated financial problems during a term should resolve them using the resources of SFS and Student Support Services (S²), as well as outside sources such as parents and relatives. The policy is designed to allow students sufficient time to resolve their financial difficulties. Students owing fall term balances have six months, from August to January, to clear their accounts before a hold on registration is imposed; students owing spring term balances have five months, from January through May. This should be sufficient time for students to deal with their financial issues.

If a student has an outstanding balance at the end of the term, including Fraternity, Sorority and Independent Living Group charges, the student’s graduation or registration for the subsequent term is placed on hold.

Notifications to Undergraduates with Unpaid Balances

After the fifth week of term, SFS will identify undergraduates who have unpaid balances on their student accounts for that term and who have not made satisfactory arrangements for payment of those balances. SFS will notify these students—both through the regular billing process and by email—informing them of the MIT policy.
reimbursement to credit bureau agencies and/or sent to

the following actions:

• the subsequent term, SFS and other Institute offices may take the

• may not partake of Institute student services. When students have

• previous term may not register for subsequent terms, and therefore

• satisfactory arrangements for payment of unpaid balances from the

• Undergraduate students who have not paid or negotiated

• Services and Other Actions

• allowed to register or receive credit retroactively.

removal of services includes the right to register for the term, Athena access, MIT housing, dining, the MIT Card, and library access. Students who have not made efforts to resolve their financial problems will not be allowed to register or receive credit retroactively.

Removal of Services and Other Actions

Undergraduate students who have not paid or negotiated satisfactory arrangements for payment of unpaid balances from the previous term may not register for subsequent terms, and therefore may not partake of Institute student services. When students have not made satisfactory payment arrangements by Registration Day of the subsequent term, SFS and other Institute offices may take the following actions:

• The right to live in MIT housing is suspended.

• The MIT Card is deactivated, and undergraduates are not authorized to use the services for which the card provides access. These services include but are not limited to the libraries, the dining system, computing resources, and Institute housing.

• Students are permitted to retain an mit.edu email address which will be forwarded to a specified outside email provider until the normal graduation date. All other computer services, including Athena access and use of MIT licensed software, will be suspended.

• Undergraduates will be excluded from the student payroll and UROP systems.

• Undergraduates will not be placed on class rosters. They will not be allowed to participate in class projects. Work that is turned in for the class will not be graded or returned.

• Undergraduates will not have their financial aid applications reviewed for the upcoming academic year until their past due balance is cleared.

Student accounts unpaid after the student has left MIT for any reason may be reported to credit bureau agencies and/or sent to

FINANCIAL AID

MIT meets the full financial need of every undergraduate for all four years of his or her undergraduate career. Student Financial Services (SFS) (http://sfs.mit.edu) awards financial aid based on the financial need of the individual student, as determined by analysis of information provided by the family on the Free Application for Federal Student Aid (FAFSA) and the CSS PROFILE applications. Copies of the most recent parental federal tax return(s) are required in support of aid applications.

SFS reviews applications and makes need-based awards to students from Institute sources. MIT is fortunate in having received gifts from many benefactors, alumni, and friends to help support the educational needs of MIT students.

Students choose term-time work and/or loan eligibility to meet their self-help requirement, which is an amount that students are expected to contribute themselves. Student loan funds allow the student to pay part of the costs of his or her education on long-term credit under favorable financial terms.

Specific jobs are not assigned; students are expected to arrange work most suitable to their own talents and schedules. The SFS website maintains listings of positions for students seeking part-time jobs during the term or full-time summer jobs. On-campus work is usually available in residence halls, offices, libraries, and laboratories. Listings for off-campus positions are also available.

SFS participates in the Federal Community Service Program (part of the Federal Work-Study Program). Eligible students work in jobs that have a direct impact on the Cambridge and Boston communities or their hometowns over the summer. Wages are subsidized up to the student's work-study eligibility.

All students who are thinking of attending MIT are strongly urged to explore all areas of financial assistance, including government and private financial aid programs. A number of states sponsor scholarship programs for residents, and information on eligibility may usually be obtained from secondary school guidance counselors. ROTC programs at MIT may also provide substantial scholarship support.

For more information on financing an MIT education, see the SFS website (http://sfs.mit.edu).
Applications
Details on applying for financial aid (http://sfs.mit.edu/undergraduate-financial-aid/aid-info) are available on the website.

Entering Freshmen and Transfer Students
Students who wish to be considered for financial aid should complete the Free Application for Federal Student Aid (FAFSA) and the CSS PROFILE form. MIT also requires the parents’ most recent tax returns, W-2 forms, and all schedules. An application for admission is not prejudiced by an application for aid; the two decisions are entirely separate. Need criteria have no bearing on admissions, and admissions criteria have no part in determining qualifications for aid.

International Students
As with other undergraduates, MIT meets the full need of international undergraduate students who demonstrate financial need. International students who wish to be considered for financial aid should complete the International Student CSS PROFILE online and provide verification of parent income.

Students should also seek aid from sources other than MIT. International students should make all arrangements for their financial obligations to MIT for their entire stay in the United States before leaving their home country.

For complete instructions on applying for financial aid, including the documents required, visit the Prospective Freshmen and Transfers page (http://sfs.mit.edu/undergraduate-financial-aid/aid-info) on the SFS website.

Upperclass Students
Enrolled students receiving financial aid are required to reapply each year for continued assistance in the following year. Award applications must be submitted no later than April 15 of the year preceding the term in which aid is anticipated. Upperclass students must complete the Free Application for Federal Student Aid (FAFSA) and the CSS PROFILE. The application process also requires a copy of the most recent parental federal tax return(s), and all applicants are expected to apply for a state grant where applicable, as well as any renewable grants received in prior years.

A student’s eligibility for MIT undergraduate grant funds will end when the student receives an initial degree, or after the equivalent of eight attempted or completed terms, whichever occurs first. Students may appeal for eligibility for additional terms by contacting SFS. Eligibility for Federal Pell Grants may continue beyond the eighth term under some conditions, but ends with receipt of a bachelor’s degree.

Eligibility for undergraduate loans continues through all undergraduate programs. A student becomes eligible for the higher loan maximums that pertain to graduate students upon enrollment in a graduate program. Additional information is available at the About Loans page (http://sfs.mit.edu/undergraduate-financial-aid/types-of-aid/loans) on the SFS website.

Veterans’ Benefits
Students who are receiving veterans’ benefits need to verify their enrollment each term in order to be certified. For more information, visit Veterans’ Benefits at MIT (http://sfs.mit.edu/undergraduate-financial-aid/types-of-aid/veterans-benefits).

MEDICAL REQUIREMENTS
Medical Report
MIT requires that all incoming students submit a medical history, have a complete physical examination, and document immunity against certain infectious diseases. Medical Report forms (https://medical.mit.edu/forms-documents/students) need to be submitted before registering for classes. Specific deadlines for each term are listed on the form itself.

Registration will not be permitted for any student who has not complied with the Medical Report and/or immunization requirements stated above.

Health Insurance
All MIT students must have health insurance that meets the requirements for the Massachusetts Student Health Insurance Plan (SHIP) (http://medical.mit.edu/learn-about-health-plans-student/waivers). Students with J-1 visas under MIT sponsorship must have insurance that also meets US Department of State regulations for themselves and their spouses and children who accompany them.

MIT Student Health Plan
The MIT Student Health Plan (http://medical.mit.edu/mit-health-plans/student-health-plans) consists of two health plans, the MIT Student Medical Plan and the MIT Student Extended Insurance Plan.

The MIT Student Medical Plan covers a wide range of services provided at MIT Medical, including primary care, many medical specialties, urgent care seven days a week, mental health care, and other services (see Medical Services (p. 23)). Registered MIT students paying tuition to MIT are automatically enrolled in the MIT Student Medical Plan as part of their tuition. Student partners and children of students may use MIT Medical on a fee-for-service basis for limited services, or by paying a Partner/Child MIT Student Medical Plan premium for comprehensive access. To enroll their families, students must complete the MIT Student Health Plan enrollment form annually during the fall enrollment period. Partners and children of students who purchase the MIT Student Medical Plan premium must also provide evidence that they are enrolled in

MEDICAL REQUIREMENTS
a health insurance plan or may purchase the MIT Student Extended Insurance Plan. If students wish to enroll their spouse (or spousal equivalent) or children, a new enrollment form must be submitted each academic year (September to August).

The MIT Student Extended Insurance Plan is designed to coordinate with the MIT Student Medical Plan and provides coverage for more extensive care, such as hospitalization, diagnostic tests, physical therapy, surgery, prescription medication, and obstetrical care. Since health insurance is mandatory under Massachusetts law, all regular students and special students (registered with 27 or more units), including students on a J-1 or F-1 visa, are automatically enrolled in the MIT Student Extended Insurance Plan. Prior to the beginning of each term, students may submit an online request to waive the Student Extended Insurance Plan if they already have coverage which meets the Massachusetts requirements for student health insurance. J-1 students under MIT visa sponsorship may waive the MIT Student Extended Insurance Plan only if their policies meet both the Massachusetts requirements and specified United States Information Agency (USIA) requirements. Massachusetts state law requires coverage through an insurance carrier based in the United States. New waiver forms must be filled out each academic year.

Special students taking two or more subjects, but registered at MIT with less than 27 units, are eligible to purchase the MIT Student Extended Insurance Plan, but are not enrolled automatically.

The deadline for submitting enrollment forms and waiver forms is September 15 for fall term, February 15 for spring term, and June 15 for summer term.

More information about the MIT Student Health Plans, including benefits, rates, and enrollment or waiver processes, may be found on the website (http://medical.mit.edu/mit-health-plans/student-health-plans).

Please contact MIT Health Plans (stuplan@med.mit.edu) with enrollment or waiver questions, or contact Claims and Member Services (mservices@med.mit.edu) with any questions about benefits or claims.
GRADUATE EDUCATION

MIT graduate programs provide collaborative environments for advanced study by students and faculty working together to extend the boundaries of knowledge. Traditionally a leader in engineering and science graduate education, MIT has also attained national prominence for its doctoral programs in mathematics and the physical and life sciences. Top-ranked graduate programs in economics; political science; linguistics; science, technology, and society; architecture; media studies; urban studies; and management have broadened the spectrum of graduate education at the Institute.

GRADUATE STUDY AT MIT

For more than a century, MIT graduate programs have provided ideal environments for advanced study by faculty and students working together to extend the boundaries of knowledge. Traditionally a leader in engineering and science graduate education, MIT has also attained national prominence for its doctoral programs in mathematics and the physical and life sciences. Top-ranked graduate programs in economics; political science; linguistics; science, technology, and society; architecture; media studies; urban studies; and management have broadened the spectrum of graduate education.

The most important factor in the effectiveness of graduate programs at MIT is the quality of the faculty. MIT is proud of its nationally and internationally recognized faculty of scholars and academic leaders, who are also effective teachers and research collaborators.

The broad scope and high quality of its graduate education have made MIT an international leader. More than a third of its graduate students come from foreign nations. Significant efforts have been made, with some success, to increase the numbers of minority and women students attending MIT’s graduate programs. This representation of students from diverse backgrounds contributes greatly to the richness of the MIT community and to the excellence of its graduate academic programs.

Graduate education at MIT places special emphasis on the relevance of science and technology to the complex problems of society. Such problems frequently require an interdisciplinary approach involving expertise in several different departments.

Extensive resources for graduate study have developed naturally at MIT from a long tradition of emphasis on contributions to new knowledge. The wealth and diversity of teaching and research resources are described in the school and departmental sections.

Although most graduate students find their interests served by programs available within a single department, many elect to work in interdisciplinary fields (described in the sections on Interdisciplinary Graduate Programs (p. 349) and Research and Study (p. 84)), which may reach into two or more departments and involve work in any of MIT’s laboratories and centers. Special committees provide guidance in certain areas such as biomedical engineering, economics and urban studies, environmental engineering, instrumentation, management of technology, medical engineering, medical physics, operations research, technology and policy, and transportation. In other fields, interdepartmental programs are administered by ad hoc committees approved for each student and appointed by the dean for graduate education.

MIT’s libraries are a major resource for graduate study. Comprehensive collections are available in fields where MIT concentrates its teaching and research efforts. Through participation in the Boston Library Consortium and the Ivy League Partnership, graduate students, faculty members, and research staff have access to collections outside the Institute.

Another resource for graduate study is cross-registration in programs with Harvard University and Wellesley College, and joint degree programs with the Woods Hole Oceanographic Institution. Limited study opportunities are also available at Boston University, Brandeis University, Tufts University, and the Graduate Consortium in Women’s Studies.

Graduate students are encouraged to use MIT’s extensive athletic facilities. Teams comprised of both undergraduate and graduate students participate in intercollegiate competitions and the intramural athletic program.

Graduate students also share in the cultural and social activities and recreational facilities at MIT. Concerts and dramatic performances are frequently given by Institute groups and professional performers. Leaders in many fields give on-campus lectures and seminars, which are open to all members of the Institute community. MIT students also take advantage of the numerous cultural and intellectual opportunities in the Boston area, including free admission to the Boston Museum of Fine Arts and the Museum of Science. A more detailed description of campus activities can be found in the section on Campus Life (p. 17).

Independent Activities Period

During the January Independent Activities Period (IAP) (p. 42), graduate students may pursue their own interests, including thesis research and preparation for qualifying exams. They also may lead or participate in special activities during this four-week period.

Graduate students should read the section on Independent Activities Period in the Undergraduate Education portion of this catalog for details concerning academic credit and grades, and special-student status.
Office of the Dean for Graduate Education

The Institute has a single faculty that is responsible for both undergraduate and graduate instruction. The administration of graduate education rests with the president; the provost; the chancellor; the dean and senior associate dean for graduate education; and the Committee on Graduate Programs, a standing committee of the Faculty.

Each department exercises a large measure of autonomy for its graduate programs, under general guidelines established for the Institute as a whole. Each department has a departmental committee on graduate students, including one or more graduate registration officers, to administer department and Institute graduate procedures.

More detailed information about the organization, rules, regulations, and procedures of graduate education is given in the publication, Graduate Policies and Procedures (http://odge.mit.edu/gpp).

Career Development

Global Education and Career Development (GECD) (http://gecd.mit.edu) helps students make informed decisions about career goals and find opportunities related to their professional objectives. Graduate students are encouraged to visit GECD during their first year to learn what career resources are available.

GECD is located in Kendall Square on the third floor of MIT building E39 and can be reached by phone at 617-715-5329 or by email (gecd@mit.edu).

See also the GECD description (p. 48) under Undergraduate Education.

GENERAL DEGREE REQUIREMENTS

Graduate students may pursue work leading to any of the following degrees: Doctor of Philosophy (PhD), Doctor of Science (ScD), Engineer’s degrees, Master of Science (SM), Master of Engineering (MEng), Master of Architecture (MArch), Master of Business Administration (MBA), Master in City Planning (MCP), and Master of Finance (MFin). Graduate programs are described in individual department statements, and in the Interdisciplinary Graduate Programs section.

Each graduate student is officially enrolled in a degree program. The programs are not limited, however, to subjects offered in a single department. Subjects and research programs may be chosen from several departments, given the approval of the departmental faculty advisor to ensure that the overall program is integrated and well balanced with respect to a major field of study.

A student who expects to come to MIT for an advanced degree after earning an undergraduate degree elsewhere should give careful attention to undergraduate prerequisites as outlined by each department or program elsewhere in this catalog. For more specific information, a student should consult the department or program in which he or she wishes to enroll.

MIT degrees are “residence” degrees in the sense that a major portion of the work must be done on campus in association with the faculty, other graduate students, and the Institute community. The amount of time required to attain any one degree varies.

Master’s Degree

Master of Science With and Without Specification

For the degree of Master of Science, the student must have satisfactorily completed a program of study of at least 66 units of subject credit, of which 42 units shall be graduate subjects, and a thesis, approved by the department in which he or she is enrolled. If 34 units and the thesis are in a single approved program, as determined by a departmental committee on graduate students, the degree will be recommended with specification in this program; otherwise, the degree will be recommended without specification. The same high standard of academic performance in a program approved by a departmental committee on graduate students is required for either degree.

The choice of area of specialization must be approved by the committee on graduate students of the department in which the student is enrolled. Approval of the entire program must be obtained from this committee and from the student’s faculty advisor. A special interdepartmental committee, approved by the dean for graduate education, may be appointed to supervise a program in an interdepartmental field.

The satisfactory completion of the master’s degree requires the student to be in residence as a full-time regular graduate student for a minimum of one regular academic term (not the summer session). Every degree candidate working on a thesis must register for thesis in all terms during which his or her thesis research or writing is actually in progress and during the term his or her name appears on the degree list.

Master of Architecture

The graduate degree Master of Architecture is awarded upon the satisfactory completion of a program of study of at least 312 units approved by the Department of Architecture and the completion of a thesis acceptable to the Department of Architecture. The program requires three and one-half academic years of residence to fulfill the requirements. Advanced entry may be considered in exceptional circumstances for students who have majored in architecture
design at a “4 plus 2” architecture school. These students may be considered for completion of the program in as little as two and one-half years and no fewer than 164 units (96 graduate subject units) depending on their academic experience and approved waived requirements.

Master of Business Administration
To be awarded the degree of Master of Business Administration through the two-year MBA program, the student must satisfactorily complete the first-term core classes and at least 144 units of graduate elective subjects. One of these elective classes must be from a list of approved leadership courses. The student must also complete the Sloan Innovation Period (SIP) requirement. A grade point average of B (4.0/5.0) is required at the time of graduation. The candidate must also have been in residence for four consecutive regular academic terms.

To be awarded the MBA degree through the one-year Sloan Fellows Program in Innovation and Global Leadership, the student must satisfactorily complete a program of study that includes a slate of core subjects, plus at least 48 units of graduate subjects. A grade point average of B (4.0/5.0) is required at the time of graduation.

To be awarded the MBA degree through the two-year Executive MBA (EMBA) Program, the student must satisfactorily complete a program of study that includes a slate of core subjects, plus three restricted electives taken at designated times throughout the program. A grade point average of B (4.0/5.0) is required at the time of graduation.

Master in City Planning
To be awarded the degree of Master in City Planning, the student must satisfactorily complete a minimum of 126 units, of which no less than 42 units shall be graduate subjects. The student must also complete a thesis acceptable to the Department of Urban Studies and Planning, and have been in residence for a minimum of two regular academic terms.

Master of Engineering
To be awarded the graduate degree of Master of Engineering, the student must have satisfactorily completed a structured program of at least 90 units, consisting of at least 66 units of subject credit, of which 42 units shall be graduate subjects, and a thesis approved by the department of the School of Engineering in which he or she is enrolled. The candidate must also have been in residence for a minimum of one regular term.

Master of Finance
To be awarded the Master of Finance degree through the one-year Master of Finance (MFin) Program, the student must satisfactorily complete a minimum of 66 units of graduate subjects from within a program of study that includes a slate of required courses, restricted and general electives, and a proseminar. The student must also complete the Sloan Innovation Period (SIP) requirement. A grade point average of B (4.0/5.0) is required at the time of graduation.

The candidate must also have been in residence as a graduate student for at least two consecutive regular academic terms. In most cases, a summer term is also required.

Master of Science in Management Studies
To be awarded the degree of Master of Science in Management Studies through the one-year Master of Science in Management Studies (MSMS) Program, the student must satisfactorily complete a program of study that includes 66 units of graduate subjects acceptable to the Sloan School of Management and a 24-unit thesis. If the student chooses the 12-unit thesis option, then 78 units of graduate subjects acceptable to the Sloan School of Management must be completed. A B (4.0/5.0) grade point average is required at the time of graduation. Candidates must be in residence for two consecutive regular academic terms.

A student pursuing a Master in City Planning in addition to a second master’s degree must have both programs approved in the usual way, but the subject units for the Master in City Planning can be lowered at the discretion of the Department of Urban Studies and Planning.

Individuals who wish to qualify for a Master of Science degree in Real Estate Development, in addition to a Master of Architecture or Master in City Planning degree, will be required to satisfy all the subject requirements of each program. Specifically, candidates for the Master of Architecture degree must take 164 subject units (of which 96 units must be graduate subjects), and Master in City Planning degree candidates must take 126 subject units (of which 42 units must be graduate subjects). Individuals who wish to qualify for the master’s degree in Real Estate Development also must take at least 66 subject units unique to this program, of which at least 42 units must be graduate subjects. Students may submit a single thesis provided it is acceptable to the graduate committees of each program. It is expected that such dual degree candidates will be
in residence at least one term longer than expected if enrolled in a single degree program.

Participation in a dual degree program is limited to students who are already registered in one department and who meet the admissions criteria of the second department. At least two regular terms prior to completion of the program, the student must submit to each department a statement of educational objectives along with a detailed program plan that includes a description of the proposed thesis topic. The total program must meet with the approval of each department, and a petition approved by the dean for graduate education describing the program must be filed with the Registrar’s Office.

The thesis research must be conducted under the supervision of an approved member of one of the two participating departments, with the other department providing a thesis reader. The thesis must be of superior quality. The single thesis cannot be used to satisfy the thesis requirements of any additional graduate degree programs.

In special cases, the standing committee of an approved interdisciplinary program may act in lieu of one of the two participating departments.

Two theses. Occasionally an individual, already admitted for graduate study, may wish to pursue simultaneously two distinct master’s programs, fulfilling the thesis requirement with a separate thesis for each degree program. In such cases, the usual unit requirements for each program apply separately. Registration for two degrees is contingent upon approval by the second department of a request for admission. Such a request can be initiated by a petition approved by both departments and approved by the dean for graduate education.

Simultaneous Award of Bachelor’s and Master’s Degrees

An undergraduate student of the Institute who is enrolled as a candidate for the bachelor’s degree may be admitted by a department as a candidate for the master’s degree. Students must register as graduate students for at least one regular academic term (not the summer session) to be recommended for the simultaneous award of the bachelor’s and master’s degrees. The thesis submitted for the master’s degree may also be accepted by the department in fulfillment of the undergraduate thesis requirement, if any. A student wishing to pursue this type of academic program must apply for graduate admission in the usual way.

Engineer’s Degree

The program for an engineer’s degree requires more advanced and broader competence in engineering and science subjects than for the master’s degree, but with less emphasis on original research than a doctoral program. In general, the engineer’s degree requires two academic years beyond an undergraduate degree.

The following engineer’s degrees are awarded:

- Civil Engineer (CE)
- Electrical Engineer (EE)
- Engineer in Aeronautics and Astronautics (EAA)
- Engineer in Computer Science (ECS)
- Environmental Engineer (EnvE)
- Materials Engineer (MatE)
- Mechanical Engineer (MechE)
- Naval Engineer (NavE)
- Nuclear Engineer (NuclE)

The requirement for such a degree is the satisfactory completion of a program of advanced study and research approved by the appropriate department or interdepartmental committee of the School of Engineering. The minimum program consists of at least 162 subject units (exclusive of thesis units) and the completion of an acceptable thesis. The candidate must also have been in residence for a minimum of two regular academic terms. Every degree candidate working on a thesis is expected to register for thesis in all periods during which the thesis research or writing is actually in progress and during the term his or her name appears on the degree list. A department may accept a master’s thesis of superior quality for the engineer’s degree only if the student intends to use that document to fulfill the requirements of a single master’s degree.

Doctoral Degree

Doctoral degrees are offered by various departments and programs within each of MIT’s five schools; see each school’s description for the lists of degrees. A list of the interdisciplinary graduate degrees offered at MIT, including those offered by the MIT-Harvard Health Sciences and Technology Program and the Joint Program with Woods Hole Oceanographic Institution, is available in the section on Interdisciplinary Graduate Programs (p. 349). MIT offers the degrees of Doctor of Science and Doctor of Philosophy interchangeably in the engineering and science departments (except biology and brain and cognitive sciences) and from the Harvard-MIT Health Sciences and Technology Program. These degrees certify creditable completion of an approved program of advanced study in addition to a research dissertation of high quality based on original research.

The two Institute requirements for a doctorate are completion of a program of advanced study, including a general examination, and completion and oral defense of a thesis on original research.

The course of advanced study and research leading to the doctorate must be pursued under the direction of the departmental committee on graduate students for at least four academic terms. In some cases, the required period of residence may be reduced, but in no
instance can it be reduced to less than two regular academic terms and one summer session.

A student is enrolled in a program of advanced study and research approved by the department. The thesis research is in this same area, but the program often includes subjects reaching into several departments. If the field requires substantial participation by two or more departments, an interdepartmental faculty committee, approved by the dean for graduate education, should be appointed to supervise the student’s program.

Each doctoral candidate must take a general examination in his or her program of study at such time and in such manner as the departmental or interdepartmental committee approves. This examination consists of both oral and written parts.

Nonresident Doctoral Thesis Research Status

Nonresident status is intended for doctoral students who have completed all requirements other than the thesis. Thesis research is ordinarily carried out while the student is in residence at the Institute. However, on some occasions, it may be essential or desirable that the student be absent from the campus during a portion of his or her thesis research or writing. Permission to become a nonresident doctoral candidate must be obtained from the Dean for Graduate Education at least one month prior to Registration Day of the term during which the student wishes to register in this category (a fee will be assessed for late requests). A student who is permitted to undertake nonresident thesis research must register as a nonresident doctoral candidate and pay a substantially reduced tuition. For the first three regular academic terms, tuition is approximately 5 percent of regular full tuition. Thereafter, it is charged at approximately 15 percent.

Nonresident students have limited access to the facilities and academic life of the Institute. However, they are permitted access to the libraries and athletic facilities and have the same student health privileges and options as resident students upon payment of the appropriate fees. For the first three semesters of nonresident status, a student may receive fellowship support from MIT for an amount up to 5 percent of tuition per semester. After the third semester, nonresident students can no longer receive fellowship support from MIT. Eligibility for federal loans and sponsored billing remain unaffected for the length of nonresident tenure. Consult the Office of the Dean for Graduate Education (http://odge.mit.edu) or see Graduate Policies and Procedures (http://odge.mit.edu/gpp/degrees/thesis/nonresident-doctoral-thesis-research-status) for additional information on nonresident status.

Minor Program

Although there is no Institute requirement of a minor for the doctoral degree, certain departments require that candidates take a number of subjects outside their major field.

Language Proficiency

There is no Institute language requirement; however, several departments require that a candidate be able to read or speak one or two foreign languages with intermediate competence. A student may satisfy the requirement in one of three ways: by fulfilling the requirement before entrance by passing one or more intermediate or advanced subjects with a grade of C or better; through examination by the Global Studies and Languages Section; or by taking a two-term subject in a language or languages offered by the Global Studies and Languages Section. Depending on student demand, the section offers a choice of two-term language subjects, stressing the ability to read or speak in Chinese, French, German, Japanese, or Spanish. For the purpose of the second alternative, the section gives written examinations in Chinese, French, German, Japanese, and Spanish twice a year at the end of each term. Examinations in other approved languages are arranged individually upon request.

OTHER INSTITUTIONS

Harvard University

A regular or special full-time graduate student at MIT may enroll to take subjects (exclusive of thesis) at Harvard (except Harvard Extension School and Harvard Summer School) without paying additional tuition, provided that this enrollment does not exceed one-half of the student’s total registration for the term. This cooperative arrangement is not applicable to the summer session.

Requests for cross-registration must be approved by the student’s MIT department of registration and should be confined to subjects that are not offered at MIT. Students will not be allowed to attend classes in which additional registrants put an undue load on the instructors. The procedures to be followed are available on the Office of the Registrar website (http://web.mit.edu/registrar/reg/xreg/harvard.html). Grades earned in Harvard subjects appear on MIT transcripts as the closest equivalent MIT grade.

Wellesley-MIT Exchange

Graduate students are eligible to participate in the Wellesley-MIT Exchange Program. Wellesley courses are not considered graduate-level subjects, but may be accepted for graduate credit toward a student’s degree with the approval of the department. For details about the exchange, see the program description in the section on Undergraduate Education.

Boston University

An arrangement for cross-registration has been made between the MIT departments of Economics and Political Science and the African
In keeping with the collaborative tradition of Women’s and Gender Studies, GCWS offers seminars to students matriculated in graduate programs at our member institutions. Students enrolled in any department or program at MIT may register for GCWS seminars and receive graduate credit. Graduate students receive priority, but MIT undergraduates may also apply.

Several graduate seminars are offered each year including a writing workshop for students currently working on dissertations that incorporate women’s, gender, and sexuality studies’ topics. Examples of past seminars (http://web.mit.edu/gcws/courses/course-archive.html) include Feminist Inquiry; Gender, Health, and Marginalization; and Gender, Race, and the Complexities of Science and Technology, among others. Enrollment in each is limited, so students who are interested in enrolling in GCWS seminars must complete a short GCWS course application online (http://web.mit.edu/gcws/courses/how-to-apply.html). Undergraduate students must first consult with the director of Women’s and Gender Studies at MIT. Admissions decisions are based on the student’s background and brief statement of interest. The list of seminars offered and the online application are available on the GCWS website (http://web.mit.edu/gcws).

In GCWS courses, faculty explicitly integrate gender analyses with issues of class, race, culture, ethnicity, and sexualities, and the practical and public-policy implications of feminist theory and scholarship are considered. Courses are designed not only to examine existing feminist scholarship, but to open paths to the creation of new knowledge. GCWS graduate courses also provide crucial intellectual support for students pursuing feminist work within the framework of traditional disciplines. For additional information, contact the GCWS Office (gcws@mit.edu), Building 14N, Room 211.

Tufts University

A cross-registration agreement exists between MIT and the School of Dental Medicine at Tufts University. The program is restricted to specific graduate subjects at each institution.

Graduate Consortium in Women’s Studies at MIT

Founded in 1992, the Graduate Consortium in Women’s Studies (GCWS) is a pioneering effort by faculty at six degree-granting institutions in the Boston area and MIT to advance women’s and gender studies scholarship through a series of ongoing team-taught interdisciplinary graduate seminars, curriculum development events, and conferences that feature graduate student work. Currently there are nine participating institutions: Boston College, Boston University, Brandeis University, Harvard University, MIT, Northeastern University, Simmons College, Tufts University, and the University of Massachusetts Boston.

In keeping with the collaborative tradition of Women’s and Gender Studies, GCWS offers seminars to students matriculated in graduate programs at our member institutions. Students enrolled in any department or program at MIT may register for GCWS seminars and receive graduate credit. Graduate students receive priority, but MIT undergraduates may also apply.

Several graduate seminars are offered each year including a writing workshop for students currently working on dissertations that incorporate women’s, gender, and sexuality studies’ topics. Examples of past seminars (http://web.mit.edu/gcws/courses/course-archive.html) include Feminist Inquiry; Gender, Health, and Marginalization; and Gender, Race, and the Complexities of Science and Technology, among others. Enrollment in each is limited, so students who are interested in enrolling in GCWS seminars must complete a short GCWS course application online (http://web.mit.edu/gcws/courses/how-to-apply.html). Undergraduate students must first consult with the director of Women’s and Gender Studies at MIT. Admissions decisions are based on the student’s background and brief statement of interest. The list of seminars offered and the online application are available on the GCWS website (http://web.mit.edu/gcws).

In GCWS courses, faculty explicitly integrate gender analyses with issues of class, race, culture, ethnicity, and sexualities, and the practical and public-policy implications of feminist theory and scholarship are considered. Courses are designed not only to examine existing feminist scholarship, but to open paths to the creation of new knowledge. GCWS graduate courses also provide crucial intellectual support for students pursuing feminist work within the framework of traditional disciplines. For additional information, contact the GCWS Office (gcws@mit.edu), Building 14N, Room 211.

Tufts University

A cross-registration agreement exists between MIT and the School of Dental Medicine at Tufts University. The program is restricted to specific graduate subjects at each institution.
entering in June or February. Prospective applicants should check with individual departments about their dates for admission and matriculation. Application deadlines vary by department. Deadlines are noted on the graduate admission application.

All applicants are required to apply online. Each department or program has its own online application with specific instructions. Department websites and application instructions may be found on the Graduate Admissions website (http://web.mit.edu/admissions/graduate).

Inquiries about specific application and testing requirements, deadlines, and notification of decision for admission should be addressed to the appropriate graduate department or program.

Other Employment
A graduate student may not interrupt an academic program to accept employment on the academic, administrative, or research staff, or as an hourly employee at MIT, the Lincoln Laboratory, or the Draper Laboratory either during the academic year or the summer, without the approval of the department head and the appropriate academic dean, and unless the work as an employee is unrelated to the student’s thesis research. A thesis release form indicating such approval must be submitted to the appropriate personnel officer to effect such employment. A graduate student may not include in his or her thesis any material based in whole or in part upon work done while holding an academic or research staff appointment.

International Graduate Admissions
Graduate student applicants who are citizens of countries other than the United States must have received a bachelor’s degree or its equivalent from a college, university, or technical institute of acceptable standing. The academic record and all credentials must indicate the ability of the candidate to complete the approved program of graduate study and research. Applicants are evaluated by the academic departments. Admission is granted on a competitive basis. Competence in written and spoken English is expected.

Students whose native language is not English and whose schooling has not been predominantly in English may be required to submit scores from the International English Language Testing System (IELTS) or the Test of English as a Foreign Language (TOEFL). Inquiries about specific testing requirements for admission should be addressed to the appropriate graduate department.

Special Graduate Student Admissions
A special graduate student is one whose intended program of study is essentially graduate in nature but who is not a candidate for an advanced degree. Students holding a bachelor’s degree or higher who are not currently enrolled in a degree program and are interested in taking classes as a non-degree student at MIT must apply through MIT’s Advanced Study Program. Deadlines for filing applications are May 1 for fall term and December 1 for spring term. The application and additional information may be found on the Advanced Study Program website (http://asp.mit.edu).

Admission is valid only for one term; a student must seek readmission each term to continue at the Institute. Those applying for special graduate student status for the first time must pay an application fee. To be allowed to continue as a special graduate student, satisfactory academic performance must be maintained. Admission as a special graduate student does not imply any commitment toward an individual’s admissibility to regular graduate student status.

A student who is neither a United States citizen nor a United States Permanent Resident is considered an International Student. The form 1-20 or DS 2019 will not be issued for subject registration of less than 36 units. Most subjects at MIT are either 9 or 12 units each. Detailed information about policies and procedures can be found at the Office of the Dean for Graduate Education (ODGE) website (http://odge.mit.edu/gpp/registration/status/special-student).

Graduate Student Status for Research Staff Members
In view of their full-time responsibilities on assigned research and their corresponding salary scales, Institute research staff or employees of the Lincoln Laboratory or the Charles Stark Draper Laboratory may not be full-time regular graduate students, but may, under certain conditions, be granted the status of special graduate student. However, a research staff appointee or an employee of the Lincoln Laboratory or the Draper Laboratory who desires to work for an advanced degree must be admitted as a regular graduate student and must complete the residency and other requirements of the degree program to which the individual has been accepted. This individual may not continue to hold a research staff appointment, nor include any work completed while employed as part of the thesis for an advanced degree.

Any research staff appointee and any employee of the Lincoln Laboratory or the Draper Laboratory may, by written permission from the director of the division (or his or her designate), apply for admission as a special graduate student for enrollment in one subject only per term (but not thesis), either as a listener or for academic credit.

Acceptance for such enrollment will be granted if, in the opinion of the instructor, the individual is qualified to undertake the subject and if section size permits. For this type of enrollment, the student will be assigned to an appropriate registration officer and will pay, whether as a student or listener, the fee established at the special student rate.
COSTS

Tuition and Fees

The basic tuition and fees at MIT for the academic year 2015–2016 (which are reviewed and likely to increase next year) are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$46,400</td>
</tr>
<tr>
<td>Student Activity Fee</td>
<td>$304</td>
</tr>
<tr>
<td>MIT Student Extended Insurance Plan (optional)</td>
<td>$2,568</td>
</tr>
</tbody>
</table>

Enrollment in the MIT Student Extended Insurance Plan is automatic. Students may submit an online waiver request (http://medweb.mit.edu/healthplans/student/waiver.html) if they have comparable insurance coverage.

Payment of the tuition fee entitles all regular and special students to many health care services at MIT Medical (https://medical.mit.edu) (Building E23) at no charge. The MIT Student Extended Insurance Plan covers hospitalization due to accidents or illness and meets the state’s requirement for comprehensive health insurance. Insurance is required for all students unless they can demonstrate that they have comparable coverage through another insurance program. Refer to the Medical Requirements (p. 69) section for additional details or visit MIT Medical (https://medical.mit.edu/mit-health-plans/student-health-plans).

The tuition for all regular students, including graduate student staff, in the first and second terms is $23,200 per term, except for students entering the Sloan Master’s Program, the Leaders for Global Operations Program, and the Supply Chain Management Master of Engineering in Logistics Program, for whom the tuition is $32,723 per term. Full tuition in either term of the current year covers the January Independent Activities Period. The minimum term tuition charge for registration for doctoral thesis upon readmission as a resident student is $34,800 if not registered during the preceding regular term.

The tuition for all regular graduate students, including fellows, trainees, and academic staff in the 2015 summer session was $15,460. Graduate students who are enrolled in a research program, and who are not taking courses, will have their summer tuition subsidized (http://web.mit.edu/registrar/reg/costs/graduate/summersubsidy.html) (that is, paid from other Institute resources). Special tuition rates apply to other students in the summer session. These are published each year in the Summer Session Catalog (http://web.mit.edu/catalog/summer), available in April.

Special students (except in the Sloan School of Management) are charged at the rate of $725 per unit whether taken for credit or not. This unit fee applies up to a maximum of $23,200 per term and is subject to the following minimum fees:

- Members of the MIT community (Includes special students who are full-time employees of the Institute or who are dependents of full-time employees or regular students.): $4,350
- Other special students: $6,525

Any resident graduate student making progress toward a degree is expected to register and is considered a full-time student. If a graduate student requires only part of a term to complete the thesis, full tuition for the term is charged, and adjustments to tuition are made at a later date. If the student was registered for thesis as a resident student in the immediately preceding term, regular or summer, tuition for thesis will be adjusted after acceptance by the department of the completed document on the basis of a charge of $1,932 per week from the starting date of the term, with a minimum of $1,932 for the master’s or engineer’s degree and $3,865 for the doctoral degree. If the immediately preceding term was the summer term and if the graduate student was not registered for thesis in that summer term, but was registered for thesis in residence in the previous second term, the minimum tuition for thesis is $11,600.

A student who continues to hold a fellowship, traineeship, or graduate staff appointment for the remainder of the term after delivery of the thesis continues to be regarded as a full-time student and the tuition will not be adjusted. In unusual circumstances, the dean for graduate education may set special tuition rates for graduate students.

Students who are permitted to undertake nonresident thesis research must register as nonresident doctoral candidates and, in the first three semesters of registration as a nonresident, pay tuition equal to approximately five percent of the regular full tuition ($1,160 per term for 2015–2016). For the fourth and subsequent semesters of registration as a nonresident, tuition will equal approximately 15 percent of the regular full tuition ($3,480 per term for 2015–2016). Following completion of the nonresident period, the student must return to resident status for completion and presentation of the doctoral thesis. If the student requires only part of this first term back in residence to complete the thesis, the tuition will be adjusted subject to a minimum of $11,600. Please consult Graduate Policies and Procedures (http://odge.mit.edu/gpp/degrees/thesis/nonres) for additional information on nonresident status.

Cooperative and practice-school programs offered by MIT provide industrial and research experience through a series of work assignments interwoven with regular study at the Institute. The tuition fees for these programs are the same as those for regular graduate students:

- Chemical Engineering Practice School, Course 10-A
- Electrical Engineering and Computer Science, Course 6-A

The tuition fee for special graduate students in the Sloan School of Management (except for employees of the Institute or their children) is $1,261 per unit of registration, with a minimum charge of $11,349.
There is a maximum charge of $40,375 per term for full-time special graduate students enrolled in the program. Students interested in the Sloan Fellows Program for Innovation and Global Leadership should consult the Sloan School of Management with regard to fees.

Withdrawal
A student withdrawing before the start of a term is not charged any tuition for that term and any tuition payments previously made for that term will be refunded. Students withdrawing during the fall or spring term are charged one-twelfth of the stated tuition for the term for each week from the starting date of the term, with a minimum two-week charge. A student must pay full tuition and fees at the beginning of the term. Any subsequent reduction in fees is based on the date that cancellation of a subject or withdrawal from the Institute is effected. At that time, any excess payments which the student has made will be refunded.

Miscellaneous Fees
Miscellaneous fees include the following:

<table>
<thead>
<tr>
<th>Service</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application for graduate admission</td>
<td>$75</td>
</tr>
<tr>
<td>Application for Master’s Program in Sloan School of Management</td>
<td>$250</td>
</tr>
<tr>
<td>Late submission of preregistration material ($85 if very late)</td>
<td>$50</td>
</tr>
<tr>
<td>Late initiation of registration process or very late registration, or late submission of application for nonresident doctoral status</td>
<td>$100</td>
</tr>
<tr>
<td>Late filing of degree application ($85 if very late)</td>
<td>$50</td>
</tr>
<tr>
<td>Late thesis title</td>
<td>$85</td>
</tr>
<tr>
<td>Library processing fees:</td>
<td></td>
</tr>
<tr>
<td>Doctoral theses</td>
<td>$115</td>
</tr>
<tr>
<td>All other theses for advanced degrees</td>
<td>$50</td>
</tr>
</tbody>
</table>

See the Academic Calendar (p. 7) for dates.

The miscellaneous fees and processing charges listed above are nonrefundable unless levied in error.

Processing Charges for Late Changes in Registration
A late change in registration, which requires a petition (http://odge.mit.edu/gpp/oversight/petitions) to the Office of the Dean for Graduate Education, is defined as adding a subject after the fifth week or dropping a subject during the last three weeks of a term. The processing charge for late changes is $50. There is an additional charge of $50 for a retroactive change after the end of the term.

Graduate Living Costs
Living expenses for graduate students vary widely depending on such factors as marital status, availability of resources, interests, and tastes. Monthly living costs (housing, food, and personal expenses) are roughly $2,590 for a single graduate student. These cost estimates do not include tuition, books, or the Hospital and Accident Insurance Policy. Campus housing for graduate students is limited and less than half of the graduate student population can be accommodated in Institute housing. On-campus dining opportunities are available to graduate students.

Payment of Tuition and Other Charges
An individual who registers as a student at MIT agrees to pay all charges on his or her account when due, and acknowledges that the Institute may charge late charges (or finance charges for MIT Payment Plan accounts), suspend registration, revoke Institute services, and withhold the degree if these charges are not paid.

Student Financial Services (SFS) (http://sfs.mit.edu) gathers, bills, and collects student charges and provides a student account statement of that activity. These charges originate in the offices from which the student receives Institute services. SFS bills by posting a monthly student account billing statement on MITPAY—a secure, paperless online billing and payment system. The statement is posted by the 10th of any month in which there’s a new charge or credit on the account. SFS sends courtesy email reminders to students each month to check the statement and pay any balance due. The statement includes charges (e.g., tuition, fees, housing, and library fees), payments (financial aid, tuition awards), additional amounts due, and payment deadlines.

Payment in full or a satisfactory arrangement for payment is due prior to the beginning of each term, (July 1, August 1, and January 1). New charges and credits that occur after the initial statement will appear on a subsequent statement. If a student anticipates that he or she may not be able to pay the entire account by the July, August, or January deadlines, the MIT Payment Plan is available and should be considered.

The MIT Monthly Payment Plan is an installment arrangement administered by Tuition Management Systems (TMS) that allows students to pay their bills in monthly installments interest free. The terms and conditions of the monthly payment plan are available on the SFS website.

SFS also offers information on federal student loan programs as additional options for eligible US citizens and permanent residents.

If a student fails to make satisfactory arrangements for payment and has amounts outstanding after a payment due date, that balance will be subject to late fees of 1.5 percent per month (18 percent annual percentage rate). Outstanding balances at the end of a term will result in a hold on the student’s registration or graduation.

Notifications to Graduate Students with Unpaid Balances
After the fifth week of the term, SFS will identify graduate students who have unpaid balances on their student accounts for the term and who have not made satisfactory arrangements for payment of those balances. SFS will notify these students—both through the regular billing process and by e-mail—informing them of the MIT
Policy regarding registration and graduation holds for subsequent terms.

After the eleventh week of the term, SFS will identify graduate students who have unpaid balances on their student accounts for the term and who have not made satisfactory arrangements for payment of those balances. SFS will notify these students—both through the regular monthly billing process and by email—informing them of the Institute’s policy regarding financial holds.

Policy on Graduate Student Financial Holds and Other Actions
Graduate students who have not paid their prior term balances or who have not made efforts to resolve their financial problems will not be allowed to register for subsequent terms or receive credit retroactively, and therefore may not partake of Institute student services.

Student accounts unpaid after the student has left MIT for any reason may be reported to credit bureau agencies and/or sent to an outside collection agency and assessed additional fees on the outstanding balance.

FINANCIAL AID
MIT makes financial support available to graduate students from a variety of sources and in several different forms—fellowships, scholarships, traineeships, teaching and research assistantships, on-campus employment, and federal loans. Many forms of support are granted solely on the basis of merit, while others are granted on the basis of financial need or a combination of merit and need.

Neither a department nor the Institute itself has the financial resources to provide support for all deserving students. Thus, it is important that prospective students explore all sources of aid available outside MIT to find means of financing their graduate programs.

Information on fellowships and other financial aid resources is available from individual departments and the Office of the Dean for Graduate Education (http://odge.mit.edu/finances/fellowships), Room 3-138. Information on loans is available from Student Financial Services (SFS) (http://sfs.mit.edu), Room 11-120.

Fellowships, Traineeships, and Scholarships
At MIT, fellowships and traineeships differ from scholarships. A fellowship award to a graduate student covers full or partial tuition, and also provides a stipend to help defray living expenses. In the context of graduate study, a scholarship covers full or partial tuition only. Although most awards are made on the basis of academic merit, financial need is a factor in some instances. Recipients must be enrolled as regular resident students.

The Institute annually receives funds from individual and corporate donors for the support of fellowships and scholarships. In addition, government agencies and private foundations provide grants and fellowships—often directly to outstanding students—for use at institutions of the student’s choice. But occasionally these funds are directed to MIT for Institute designation of recipients.

Applicants to MIT graduate programs who seek financial support from any of the fellowships, traineeships, or scholarships administered by MIT, including those granted by national agencies and foundations for award by the Institute, should inform their academic department. Currently enrolled graduate students who seek financial support should consult with the appropriate departmental office.

Applications for fellowship aid for the academic year, beginning in June or September, must be filed by January 15. Applications for fellowship aid filed after this date will be considered only if funds are available. Final action on applications is taken on the recommendation of departments at the end of March, after the announcement of awards to applicants by the national agencies and foundations under their national competitive programs. A student who wins such a fellowship may be eligible for only a supplementary award in accordance with MIT’s guidelines. For further information on these guidelines, see Graduate Policies and Procedures (http://odge.mit.edu/gpp/assistance/awards/applying).

In accordance with a resolution of the US Council of Graduate Schools (endorsed by most graduate schools), a student has until April 15 to accept or decline an offer. If a student does not reply to an offer by this date, it may be cancelled.

Every student holding a fellowship, traineeship, or scholarship for graduate study at the Institute must register as a full-time regular graduate student for the period of the award. If a student withdraws from the Institute before tenure expires, the award must be relinquished, and the student will be required to refund any payment made in excess of tenure.

Teaching Assistantships
MIT employs about 700 graduate students each year as part-time or full-time teaching assistants to assist the faculty in grading undergraduate quizzes, instructing in the classroom and laboratory, and conducting tutorials.

The departments regard seriously the benefits of a teaching assistantship as a preparation for a career in university teaching. Each year, the Institute offers a prize, the Goodwin Medal, for conspicuously effective teaching by a graduate student.

The units for which an instructor or teaching assistant may register as a student are determined by the department in light of the student’s assistantship duties, program of study, and
compensation. Teaching assistants receive stipends as well as tuition support for the services that they provide.

Appointments to teaching assistantships are made upon recommendation of the head of a department. A student who wishes to be considered for a teaching appointment should contact the departmental graduate administrator. Only full-time graduate students who are candidates for advanced degrees may be appointed. A Free Application for Federal Student Aid (FAFSA) is required for all teaching assistants who are US citizens or permanent residents.

Research Assistantships

Each year about 2,500 graduate students at MIT hold appointments as research assistants. The principal duty of a research assistant is to contribute to a program of departmental or interdepartmental research.

Most students welcome the opportunity to participate as a junior colleague of a faculty member in an ongoing research project that frequently influences their choice of thesis topic. Appointments to research assistantships are made by the department head to full-time students who are candidates for advanced MIT degrees.

The units for which a research assistant may register are determined by the department in light of duties and program of study. Research assistants receive stipends and tuition support for the services they provide, and are compensated on the basis of time devoted to their research.

Students who receive financial support from other sources (fellowships, scholarships, etc.) may receive supplementary stipends as teaching or research assistants in accordance with Institute and departmental guidelines.

Taxes

Tuition payments made through fellowships, scholarships, and research and teaching assistantships are nontaxable.

Teaching and research assistants receive stipends for the services that they provide; these stipends are taxable income that is subject to withholding tax. MIT will issue a W2 form to all students from whom this tax has been withheld. Fellowship stipends are also legally taxable income. However, the tax withholding regulations do not allow for withholding federal and Massachusetts income taxes from the fellowship payments. Thus, students should anticipate the tax obligation, and no W2 will be issued.

When a fellowship does not cover a student’s full tuition and also provides an accompanying stipend, a portion of the stipend may be applied against the remaining tuition, and that portion will not be taxed (provided that the terms of the fellowship do not preclude this). Expenses for books, supplies, and equipment required for courses may also be excluded from taxable income. However, stipends accompanying teaching and research assistantships are taxable regardless of the amount of nontaxable tuition provided.

Students who are on visas should be aware of the US income tax regulations applicable to their visa status.

To help in the preparation of federal taxes, students may wish to consult IRS Publication 970, Tax Benefits for Education. This useful publication addresses a variety of issues related to graduate students and their tax obligations. Chapter 2 of Publication 505, which describes who must pay estimated tax, may also be helpful.

Loan Funds

US Citizens

Graduate students may want to consider federal student loans first as these loans ordinarily have better terms and conditions. To establish eligibility for federal student loans, applicants must complete the Free Application for Federal Student Aid (FAFSA) (http://www.fafsa.ed.gov) and the MIT Graduate Loan Application (http://sfs.mit.edu/graduate-financial-aid/aid-info). The maximum Federal Direct Unsubsidized Loan per year is $20,500. Application forms and details of the application procedure may be obtained from SFS (http://sfs.mit.edu) in Room 11-120. Graduate students who demonstrate exceptional financial need based on information they provide on the FAFSA may be eligible for up to $8,000 per year from the Federal Perkins Loan program.

In determining need for the federal loan programs, MIT compares student resources available, including assets, using appropriate student budgets. Loan eligibility is determined within limits based on those budgets.

Students who need additional student loan funding (beyond the Federal Direct Unsubsidized Loan and the Federal Perkins Loan) may want to consider securing a Federal PLUS Loan, which is not based on financial need. The Federal PLUS Loan may be used to borrow the remainder of a student’s expenses, as may other programs offered by outside agencies.

Other student loans not based on need are available from private sources. MIT does not maintain a preferred lender list, as it believes it is inappropriate to endorse or recommend one private loan product over another as families have different needs and priorities.

International Students

Students who are not US citizens or who do not hold a permanent resident visa are not eligible for federal loans. International students must be prepared to meet their expenses without help from loans from the Institute. International Students may consider applying for loans from private sources as explained in the previous sections. Most of these loans will require a US-based co-signer.
Student Employment
SFS maintains listings of on-campus and off-campus job opportunities (http://sfs.mit.edu/jobs/about-jobs-mit) that are open to graduate students. Some positions are available directly through administrative offices on campus. Graduate students who hold full-time research or teaching assistantships or who receive full support on fellowships or traineeships usually are not eligible for such employment. The Office of the Dean for Graduate Education (http://odge.mit.edu) should be consulted for approval before undertaking such employment. For additional information, visit SFS in Room 11-120.

US graduate students who complete the Free Application for Federal Student Aid (FAFSA) and are eligible for Federal Work-Study may do paid community service. Wages are subsidized for students performing direct community service at approved nonprofit agencies. For additional information, please see the website (http://sfs.mit.edu/jobs/about-jobs-mit).

International students may only work on campus. Those considering off-campus employment must contact the International Students Office (http://web.mit.edu/iso), Room 5-133, before accepting employment.

Graduate Residents
Regular resident graduate students who have completed at least one graduate year at MIT or new students who have been MIT undergraduates may apply for positions as graduate resident tutors (http://studentlife.mit.edu/reslifeanddining/rlp/graduate-resident-tutors) through Student Life Programs, Room W20-549. Such positions provide room and board but no stipend.

Veterans' Benefits
Students who are receiving veterans' benefits need to verify their enrollment each term in order to be certified. For more information, visit Veterans’ Benefits at MIT (http://sfs.mit.edu/undergraduate-financial-aid/types-of-aid/veterans-benefits).

MEDICAL REQUIREMENTS

Medical Report
MIT requires that all incoming students submit a medical history, have a complete physical examination, and document immunity against certain infectious diseases. Medical Report forms (https://medical.mit.edu/forms-documents/students) need to be submitted before registering for classes. Specific deadlines for each term are listed on the form itself.

Registration will not be permitted for any student who has not complied with the Medical Report and/or immunization requirements stated above.

Health Insurance
All MIT students must have health insurance that meets the requirements for the Massachusetts Student Health Insurance Plan (SHIP) (http://medical.mit.edu/learn-about-health-plans-student/waivers). Students with J-1 visas under MIT sponsorship must have insurance that also meets US Department of State regulations for themselves and their spouses and children who accompany them.

MIT Student Health Plan
The MIT Student Health Plan (http://medical.mit.edu/mit-health-plans/student-health-plans) consists of two health plans, the MIT Student Medical Plan and the MIT Student Extended Insurance Plan.

The MIT Student Medical Plan covers a wide range of services provided at MIT Medical, including primary care, many medical specialties, urgent care seven days a week, mental health care, and other services (see Medical Services (p. 23)). Registered MIT students paying tuition to MIT are automatically enrolled in the MIT Student Medical Plan as part of their tuition. Student partners and children of students may use MIT Medical on a fee-for-service basis for limited services, or by paying a Partner/Child MIT Student Medical Plan premium for comprehensive access. To enroll their families, students must complete the MIT Student Health Plan enrollment form annually during the fall enrollment period. Partners and children of students who purchase the MIT Student Medical Plan premium must also provide evidence that they are enrolled in a health insurance plan or may purchase the MIT Student Extended Insurance Plan. If students wish to enroll their spouse (or spousal equivalent) or children, a new enrollment form must be submitted each academic year (September to August).

The MIT Student Extended Insurance Plan is designed to coordinate with the MIT Student Medical Plan and provides coverage for more extensive care, such as hospitalization, diagnostic tests, physical therapy, surgery, prescription medication, and obstetrical care. Since health insurance is mandatory under Massachusetts law, all regular students and special students (registered with 27 or more units), including students on a J-1 or F-1 visa, are automatically enrolled in the MIT Student Extended Insurance Plan. Prior to the beginning of each term, students may submit an online request to waive the Student Extended Insurance Plan if they already have coverage which meets the Massachusetts requirements for student health insurance. J-1 students under MIT visa sponsorship may waive the MIT Student Extended Insurance Plan only if their policies meet both the Massachusetts requirements and specified United States Information Agency (USIA) requirements. Massachusetts state law requires coverage through an insurance carrier based
in the United States. New waiver forms must be filled out each academic year.

Special students taking two or more subjects, but registered at MIT with less than 27 units, are eligible to purchase the MIT Student Extended Insurance Plan, but are not enrolled automatically.

The deadline for submitting enrollment forms and waiver forms is September 15 for fall term, February 15 for spring term, and June 15 for summer term.

More information about the MIT Student Health Plans, including benefits, rates, and enrollment or waiver processes, may be found on the website (http://medical.mit.edu/mit-health-plans/student-health-plans).

Please contact MIT Health Plans (stuplan@med.mit.edu) with enrollment or waiver questions, or contact Claims and Member Services (mservices@med.mit.edu) with any questions about benefits or claims.
ACADEMIC PROCEDURES

What is MIT's policy on grading? On plagiarism? On harassment? Does MIT disclose information about students to persons outside the Institute? This section contains the essential rules and regulation that govern day-to-day operations at MIT.

In addition to the information presented in this catalog, students are expected to be familiar with the Mind and Hand Book (http://studentlife.mit.edu/mindandhandbook) and the Institute Policies and Procedures. (http://web.mit.edu/policies)

REGISTRATION

Information on preregistration and registration procedures is available on the Office of the Registrar website (http://web.mit.edu/registrar/reg).

Retaining Student Status

A person becomes an MIT student at the start of the term for which he or she is admitted or readmitted. Regular student status is retained until graduation, unless the student withdraws or is disqualified.

For the fall and spring terms, undergraduate and graduate students must complete the three steps listed below in order to continue student status during that term:

- Preregistration must be completed according to instructions issued by the Registrar's Office.
- All Institute and Fraternity, Sorority, and Independent Living Group (FSILG) charges must be paid when due, or satisfactory alternative arrangements must be made with Student Financial Services or the FSILG.
- Registration must be approved by the student’s advisor or registration officer and submitted by the student to the Registrar’s Office by the published deadline.

Students who do not complete these steps by the published deadlines are subject to fines. Failure to pay charges and complete registration by the end of the second week of the term will result in the loss of student status.

International students are required by immigration regulations to be registered full-time when school is in session in order to maintain legal status in the US. Students should check with the International Students Office (http://web.mit.edu/iso) for details.

Undergraduate and graduate students registered in the spring term who do not graduate or withdraw from MIT retain their student status through the following summer, whether or not they register for the summer session; they cease being students if they do not register in the fall (although the rules for student status with regard to loan repayment are somewhat different). Graduate students making progress toward a degree during the summer must register for the summer session in accordance with Office of the Dean for Graduate Education regulations.

Students do not have to register for the Independent Activities Period to retain student status between fall and spring terms.

If a student has begun the registration process but wishes to withdraw, he or she must notify Student Support Services if an undergraduate; his or her registration officer if a graduate student; and, in addition, the International Students Office if an international student.

A person wishing to be reinstated as an undergraduate must apply for readmission through Student Support Services. No application for readmission to the undergraduate program will be considered from any applicant who has received a bachelor's degree or the equivalent from another institution. A person wishing to be reinstated as a graduate student must apply for readmission through the Admissions Office and the department. International students also need to be cleared by the International Students Office.

People on campus who are not registered during a term are not considered students and have no student privileges.

Prerequisites

Prerequisites are used to indicate the sequence in which subjects are to be taken and the base of knowledge on which a particular subject will build. Before taking a subject, a student should complete any prerequisite(s) listed for that subject; corequisites, which are listed in italics, are to be taken concurrently. (See subject listings by department/program (http://catalog.mit.edu/subjects)).

Once prerequisites and corequisites are included in a subject listing, it is the responsibility of the instructor to ensure that the subject is taught at the appropriate level. At the first class, instructors should reiterate the prerequisites and corequisites, and describe acceptable substitutions.

Students who do not have the stated prerequisites should obtain the permission of the instructor. Instructors may request that the Registrar's Office identify students without prerequisites, and in some cases, screen them from the subjects.

If the instructor allows a student to waive or make a substitution for a prerequisite, it is then the student's responsibility to master any missing background material in a timely fashion so that the content of the subject does not change for other students in the subject.

The instructor may determine that a student does not have the required preparation and knowledge to take a subject and may, with the help of the Registrar’s Office, exclude the student from the subject.
Some departments require students with a D-level performance in certain prerequisite subjects within the departmental program to do additional work or to retake the prerequisite before proceeding with the follow-on subject.

Credit Hours and Designations for Subjects
The credit hours (units) for each subject indicate the total number of hours spent each week in class and laboratory, plus the estimated time that the average student spends each week in outside preparation, for one regular term. Each subject is listed in the online MIT Subject Listing & Schedule (http://student.mit.edu/catalog), with three credit numbers, showing in sequence the units allotted to class time (lecture and/or recitation); laboratory, design, or fieldwork; and preparation. Each unit represents about 14 hours of work per term. The total unit credit for a subject is obtained by adding together all the units shown. Additional information regarding subject designations may be found in the Explanatory Notes that introduce the online MIT Subject Listing & Schedule (http://student.mit.edu/catalog).

Advanced Standing Examinations for Undergraduates
Advanced standing examinations are given in August/September, December, January/February, and May. These examinations may be taken only by students who have never been registered for or attended class at MIT in the subject concerned. Special students are not eligible to take advanced standing examinations.

Except for entering freshmen and transfer students, who may take advanced standing examinations offered during orientation, students must petition to take an advanced standing examination. The petition must be approved by the instructor in charge of the subject and the student’s advisor, and then submitted to the Registrar’s Office, Room 5-119, at least three weeks before the first day of the examination period.

Students interested in taking higher-level examinations should check in advance what preparation is required. The instructor may require evidence of competence in addition to the examination if the subject normally involves measures of student performance that are qualitatively different from the examination.

If a student fails an advanced standing examination, he or she may not retake the examination, but may register for the same subject in any subsequent term.

For more information, see the advanced standing examination procedures on the Registrar’s website (http://web.mit.edu/registrar/classrooms/exams/ase_exams.html).

TERM REGULATIONS AND EXAMINATION POLICIES

These term regulations and examination policies (http://web.mit.edu/faculty/teaching/termregs.html) derive from Rules and Regulations of the Faculty (http://web.mit.edu/faculty/governance/rules). They apply to academic exercises during the fall and spring terms. Questions of interpretation and requests for exceptions to regulations should be referred to the Chair of the Faculty.

All Subjects

Class Times. Exercises should, in general, be held between 9 am and 5 pm, Monday through Friday. Exercises begin five minutes after and end five minutes before the scheduled hour or half-hour.

Beginning of Term. Early in the term, the faculty member should inform students of expectations regarding permissible academic conduct. Particular attention should be given to such questions as the extent of collaboration permitted or encouraged, and the use of prior years’ materials in completing problem sets, lab reports, and other assignments.

Scheduling Final Examinations. Final examinations are held during the five-day final examination period at the end of each term, and are scheduled through the Schedules Office. Final examinations are scheduled in either the morning (9 am to noon) or afternoon (1:30 pm to 4:30 pm) on examination days. A final examination must be scheduled to last at least one hour and not more than three hours. Final examinations may not be cancelled once they are announced, and, after the final examination schedule is published, the time of the final examination may not be changed. Instructors may not administer a take-home examination as a final examination, except as permitted with respect to ex camera examinations.

Students are responsible for attending the final examinations in subjects for which they are registered. The schedule of final examinations is published on the web by the end of the third week of the term. The Schedules Office contacts students who have conflicts between scheduled final examinations to notify them of the conflict examination schedule, which is announced the day after Drop Date. The Schedules Office also provides instructors with the conflict examination schedule immediately after Drop Date.

After the Last Scheduled Class. No required classes, examinations, oral presentations, exercises, or assignments of any kind may be scheduled after the last regular scheduled class in a subject except for final exams scheduled through the Schedules Office. (The architecture design reviews that occur during finals week are considered to be equivalent to final examinations and are scheduled by the Department of Architecture.)

Formal review must be held during regular class periods. However, instructors may schedule optional reviews or sessions at which the instructing staff is available to answer questions for students who
choose to attend after the last day of classes. No new material may be introduced during optional events.

An instructor may give an extension to an individual student for an assignment, but blanket extensions should not be given to the entire class.

Excused Absences from Final Examinations. A student may be excused from a scheduled final examination for reasons of illness or significant personal problems. To seek an excused absence in these situations, an undergraduate student should contact a dean in Student Support Services and a graduate student should contact the dean for graduate education; faculty members with questions about this process should contact the appropriate office. See definition of "O" and "OX" under Grades.

In addition, the faculty member in charge of a subject may excuse a student from a final examination for reasons such as a conflict with another examination or a religious holiday. In these cases, a mutually satisfactory agreement must be reached between the student and the faculty member, the agreement must be ratified in advance of the examination by the head of the department in which the subject is offered, and the faculty member must be prepared to submit a grade based on other evidence.

Faculty members are not required to provide make-up examinations to accommodate an individual student's personal plans at the end of term.

Undergraduate Subjects

Class Times. For undergraduate subjects taught on campus during the instructional period of the fall and spring terms, there should be no required academic exercises between 5 pm and 7 pm, Monday through Thursday, and between 5 pm Friday and 8 am Monday. This same restriction also applies to undergraduate subjects taught during the Independent Activities Period.

Beginning of Term. By the end of the first week of classes, the faculty member must provide:

- A clear and complete description of the required work including the number and kinds of assignments
- The approximate schedule of tests and due dates for major projects
- Whether or not there will be a final examination
- The grading criteria and procedures to be used

By the end of the third week, the faculty member must provide the precise schedule of tests and major assignments.

Tests and Academic Exercise Outside Scheduled Class Times. Tests, required reviews, and other academic exercises held outside scheduled class times should not be held on Monday nights.

In addition, tests should:

- Not exceed two hours in length
- Be scheduled through the Schedules Office
- Begin no earlier than 7:30 pm when held in the evening

A student who is unable to take the test owing to a conflict with a scheduled academic exercise or extracurricular activity must be allowed to do so at another time.

When a test is held outside scheduled class time, during that calendar week:

- A regularly scheduled class hour (lecture or recitation) should be cancelled, or
- No assignment should fall due

Ex Camera Finals. In some undergraduate subjects, final examinations may be ex camera (out-of-room) examinations. Ex camera examinations are a different mode of testing that gives students access to computers and libraries and evaluates their abilities to select resources and answer questions of an integrative nature. Ex camera final examinations are not intended as a way to increase the amount of material covered.

A faculty member must obtain the permission of the Chair of the Faculty to hold an ex camera final examination and permission will be granted for no more than five years. The ex camera examination must:

- Be scheduled through the Schedules Office
- Be offered over the course of a single afternoon, starting at 1:30 pm and ending no later than 7:30 pm
- Permit students unrestricted use of resources

End-of-Term Tests and Assignments. In all undergraduate subjects, there shall be no tests after the Last Test Date, which is defined as the Friday preceding the start of the Reading Period. Unit tests may be scheduled during the final examination period.

For each subject in which there is testing during the final examination period, no assignment may fall due after the Last Test Date.

For each subject in which there is no testing during the final examination period, at most one assignment may fall due between the Last Test Date and the end of the last scheduled class period in the subject. This single assignment may include both an oral presentation and a written report if the two derive from the same project. However, students may not be required to attend additional lecture or recitation hours beyond the assigned units to accommodate oral presentations.

Optional assignments between the Last Test Date and the last scheduled class period in the subject should be for self-study and
may not be used toward part of the grade in a subject, even for extra points or as substitutes for earlier assignments.

Graduate Subjects

Beginning of the Term. By the end of the third week, the faculty member must provide:

- A clear and complete description of the required work, including the number and kinds of assignments
- The schedule of tests and due dates for major projects
- Whether or not there will be a final examination
- The grading criteria and procedures to be used

Tests and Academic Exercise Outside Scheduled Class Times.
A student who is unable to take a test that is held outside of scheduled class time owing to a conflict with another scheduled academic exercise or extracurricular activity must be allowed to do so at another time.

End-of-Term Tests and Assignments. For each subject with a final examination, no test should be given and no assignment, term paper, or oral presentation should fall due after the Last Test Date.

For each subject without a final examination, at most, either one in-class test may be given, or one assignment, term paper, or oral presentation may fall due between the Last Test Date and the end of the last regularly scheduled class in the subject.

If an in-class test is given, its length is limited to one normal class period (or to one and one-half hours, whichever is shorter).

Students must not be required to attend additional lecture or recitation hours beyond the assigned units to accommodate oral presentations.

Policy for Emergency Closing during Final Exams

Every effort must be made to give final exams as scheduled during the final examination period. Because students have included the final exam in their planning for the subject, faculty members may not choose to cancel exams; they must give the exam as scheduled, or as rescheduled in the event the Institute is closed because of snow or other emergency (see below).

- In case of inclement weather during exams, getting to MIT may be difficult for individuals involved with proctoring an exam. Thus, it is the responsibility of the department and the faculty member in charge to provide in advance for alternate staff who are physically at MIT and who have access to the written exam questions. Exam proctors will accommodate late student arrivals to the extent possible.
- In case of emergency closing or delayed opening during exam week, students, faculty, and staff can call 617-258-8378.

Student Absence for Religious Observances

Massachusetts state law regarding student absence due to religious beliefs has been adopted by the Institute as follows:

Any student who is unable to attend classes or participate in any examination, study, or work requirement on a particular day because of his or her religious beliefs is excused from any such activity. The student will be given the opportunity to make up the work that was missed, provided that the makeup work does not create an unreasonable burden upon MIT.

The Institute will not levy fees or charges of any kind when allowing the student to make up missed work. In addition, no adverse or prejudicial effects will result because students have made use of these provisions.

For more information about religious holidays, visit the Registrar’s website http://web.mit.edu/registrar/calendar/religious.html.

ACADEMIC PERFORMANCE AND GRADATES

Undergraduate Academic Standards

The Committee on Academic Performance (CAP) ensures that the minimum academic standards proposed by the individual departments for undergraduate students are consistent throughout the Institute and conform to the rules and regulations approved by the Faculty. In view of the individual nature of student academic performance, the CAP does not establish rigid standards of academic performance to be used throughout the Institute. The
Institute generally expects undergraduate students to complete the requirements for an SB degree in four years; passing an average of 48 units per term for eight terms will accomplish this goal. Normally, however, the CAP accepts a minimum academic record of at least 36 units of credit with a term rating above 3.0 (on a 5.0 scale) at the end of any regular term, unless the Committee has specifically notified an individual student that a higher level of performance is required. (The latter would only occur as a result of previously poor performance.)

When these criteria are not met, the CAP considers each student’s academic performance on an individual basis. Consideration is given not only to the grades received in the subjects for which the student is registered, but also to the total number of subject units, the nature of the subjects themselves, progress toward the degree, and personal or medical factors that may have affected academic performance in a given term. The CAP website (http://web.mit.edu/acadinfo/cap) gives more detailed information concerning end-of-term review procedures. For further information, contact CAP’s staff associate, Room 5-104, 617-253-4164.

Undergraduate Academic Standards for Federal Student Financial Assistance

Per federal regulations, a regular undergraduate student is eligible to receive federal student financial assistance if the student is enrolled at least half time per term and maintains satisfactory academic progress in his or her course of study.

To achieve satisfactory academic progress for purposes of federal student financial assistance, an MIT undergraduate must achieve the following qualitative and quantitative standards:

- Have a cumulative grade point average (GPA) of at least a C (3.0 on MIT’s 5.0 scale); and
- Pass 67% of cumulative units attempted (defined as “pace”); and
- Not exceed 150% of the published length of the program.

Dropped subjects are not included in the GPA or pace calculations. Transfer credit, which carries no grade, is not included in the GPA calculation, but the number of units credited is included in the pace calculation. Incomplete grades are not included in the GPA calculation, but incomplete subjects are included in the pace calculation. Grades for repeated subjects are included in the GPA calculation, but repeated subjects count as only one subject in the pace calculation.

At the end of each term, the Committee on Academic Performance (CAP) considers the academic performance of undergraduate students eligible for federal student financial assistance whose performance falls below any one of the federal standards. After taking special circumstances into account, CAP decides on the appropriate action.

Students on, or eligible for, federal student financial assistance who are placed on academic warning by CAP are concurrently placed by Student Financial Services (SFS) on federal financial aid warning or federal financial aid probation.

- The status of federal financial aid warning is assigned to students who were not on academic warning in the prior term, but are now placed on academic warning by CAP. Students on federal financial aid warning may continue to receive federal student financial assistance for the academic warning term.

 Federal financial aid warning status has no effect on the amount of financial aid a student is eligible to receive from MIT, the federal government, or any other source during the federal financial aid warning term.

- The status of federal financial aid probation is assigned to students who were on academic warning in the prior term and continue to be placed on academic warning by CAP. Federal regulations mandate that students may only be placed on federal financial aid probation, which allows them to retain eligibility for federal financial aid, after a successful appeal. At MIT, the CAP review of a student’s academic progress and plans constitutes the required appeal process. Any decision by the CAP other than requiring the student to withdraw from MIT constitutes approval of the appeal. Federal financial aid probation status has no effect on the amount of financial aid a student is eligible to receive from MIT, the federal government, or any other source during the federal financial aid probation term.

A student under CAP review will be considered to be making satisfactory academic progress for federal student financial assistance purposes unless the CAP requires the student to withdraw from MIT.

Further information on federal satisfactory academic progress rules can be found on the SFS website (http://sfs.mit.edu).

Graduate Academic Standards

It is the responsibility of the Graduate Academic Performance Group (GAPG) to monitor minimum academic standards for graduate students and special students in accordance with the rules and regulations of the Faculty. Chaired by the dean for graduate education, the GAPG reviews the academic records of all graduate students at the end of each term (including the summer session), giving particular attention to students with cumulative ratings below 3.5 to 4.0. Consideration is given to low grades and factors affecting
a student’s ability to meet the requirements for the degree program in which he or she is enrolled.

Recommendations for action by the GAPG are made by departmental graduate committees. Unless extenuating circumstances are found, students who are not making satisfactory progress towards a degree may be denied permission to continue or may be warned that without substantial improvement in the following term, they may be refused further registration. In addition, departmental graduate committees may recommend to the GAPG that a student be allowed to register only for a less advanced degree.

The GAPG operates with the authority of the Committee on Graduate Programs (CGP). More detailed information concerning procedures followed by this standing faculty committee may be found in the online publication, Graduate Policies and Procedures (http://odge.mit.edu/gpp). It is also important for students to be informed about individual department requirements and expectations concerning academic performance.

Graduate Academic Standards for Federal Student Financial Assistance

Per federal regulations, a regular graduate student is eligible to receive federal student financial assistance if the student is enrolled at least half time per term and maintains satisfactory academic progress in his or her course of study.

Federal student financial assistance for graduate students includes Teacher Education Assistance for College and Higher Education Grants, Federal Perkins Loans, Federal Direct Unsubsidized Stafford Loans, Federal Direct PLUS Loans for Graduate and Professional Degree Students, and Federal Work-Study.

To achieve satisfactory academic progress for purposes of federal student financial assistance, an MIT graduate student must achieve the following qualitative and quantitative standards:

- Have a cumulative grade point average (GPA) exceeding 4.0 on MIT’s 5.0 scale; and
- Pass 67% of cumulative credit units attempted (defined as “pace”); and
- Make satisfactory progress in his/her academic milestones, as evaluated by his/her graduate program; and
- Not exceed five terms of enrollment for a Master’s candidate and 13 for a PhD or ScD candidate.

Dropped subjects are not included in the GPA or pace calculations. Transfer credit, which carries no grade, is not included in the GPA calculation, but the number of units credited is included in the pace calculation. Incomplete grades are not included in the GPA calculation, but incomplete subjects are included in the pace calculation. Grades for repeated subjects are included in the GPA calculation, but repeated subjects count as only one subject in the pace calculation.

At the end of each term, the Graduate Academic Performance Group (GAPG) considers the academic performance of all enrolled graduate students and decides on the appropriate action for those students not making satisfactory academic performance (e.g. **academic warning** or denial of further registration). If a student is placed on **academic warning**, a set of requirements (academic plan) is set forth and communicated to the student for the student to continue to be eligible for enrollment.

Students on, or eligible for, federal student financial assistance who are placed on **academic warning** by GAPG are concurrently placed by Student Financial Services (SFS) on **federal financial aid warning** or **federal financial aid probation**.

- The status of **federal financial aid warning** is assigned to students who were not on **academic warning** in the prior term, but are now placed on **academic warning** by GAPG. Students on **federal financial aid warning** may continue to receive federal student financial assistance for the **academic warning** term. **Federal financial aid warning** status has no effect on the amount of financial aid a student is eligible to receive from MIT, the federal government, or any other source during the **federal financial aid warning** term.

- The status of **federal financial aid probation** is assigned to students who were on **academic warning** in the prior term and continue to be placed on **academic warning** by GAPG. Federal regulations mandate that students may only be placed on **federal financial aid probation**, which allows them to retain eligibility for federal financial aid, after a successful appeal. At MIT, graduate students on **academic warning** are encouraged to engage with and provide relevant information to their academic programs during the GAPG review of the students’ academic progress, which constitutes the required appeal process. Any decision by the GAPG other than requiring the student to withdraw from MIT constitutes a continuation of the student’s academic plan and enables students to be placed on **federal financial aid probation**. **Federal financial aid probation** status has no effect on the amount of financial aid a student is eligible to receive from MIT, the federal government, or any other source during the **federal financial aid probation** term.

Further information on federal satisfactory academic progress rules can be found on the SFS website (http://sfs.mit.edu).

Grades

In determining a student’s grade, consideration is given for elegance of presentation, creativity, imagination, and originality where these may appropriately be called for. Grades at MIT are not rigidly related to any numerical scores or distribution function, that is, grades are not awarded solely according to predetermined percentages. As can be seen from the following grade descriptions, a student’s grade...
in a subject is related more directly to the student's mastery of the material than to the relative performance of his or her peers.

Passing Grades. Undergraduate and graduate students who satisfactorily complete the work of a subject by the end of the term receive one of the following grades:

- **A**: Exceptionally good performance demonstrating a superior understanding of the subject matter, a foundation of extensive knowledge, and a skillful use of concepts and/or materials.

- **B**: Good performance demonstrating capacity to use the appropriate concepts, a good understanding of the subject matter, and an ability to handle the problems and materials encountered in the subject.

- **C**: Adequate performance demonstrating an adequate understanding of the subject matter, an ability to handle relatively simple problems, and adequate preparation for moving on to more advanced work in the field.

Note that the MIT internal grading system includes plus (+) and minus (-) modifiers for use with the letter grades A, B, and C for all academic subjects (except advanced standing exams). These modifiers appear only on internal grade reports. They do not appear on transcripts and are not used in calculating term or cumulative grade-point averages. The MIT grading system for external purposes does not include modifiers.

- **D**: Minimally acceptable performance demonstrating at least partial familiarity with the subject matter and some capacity to deal with relatively simple problems, but also demonstrating deficiencies serious enough to make it advisable to proceed further in the field without additional work. Some departments require students with D-level performance in certain prerequisite subjects within the departmental program to do additional work, or to retake the prerequisite, before proceeding with the follow-on subject.

- **P**: When use of the passing grade P is authorized, it reflects performance at the level A, B, or C (A+ to C- with modifiers used within MIT), with the student graded on a P/D/F basis.

Non-Passing Grades. The grades and notations used for subjects not passed or not completed by the end of the term are as follows.

- **DN**: Signifies a D grade on Freshman Pass/No Record and ABC/No Record.

- **F**: Failed. This grade also signifies that the student must repeat the subject to receive credit.

- **FN**: Signifies an F grade on Freshman Pass/No Record and ABC/No Record.

Absent. This grade indicates that the student was progressing satisfactorily during the term but was absent from the final examination, did not turn in the final paper or project, and/or was absent during the last two weeks of the term. Like an F grade, an O grade carries no credit for the subject, but the O grade can be converted to a grade of OX. Unsatisfactory performance because of absence throughout the term should be recorded as F.

Absence satisfactorily explained to and excused by the dean for undergraduate education in the case of an undergraduate student or by the dean for graduate education in the case of a graduate student. The faculty member in charge of the subject will be notified when an O is changed to an OX. An OX carries no credit for the subject. However, the faculty member in charge must provide the student the opportunity to receive a credit-carrying grade. This may be done with or without the instructor requiring a make-up final examination or other additional evaluation procedure.

Incomplete. The grade I indicates that a minor part of the subject requirements has not been fulfilled and that a passing grade is to be expected when the work is completed. The grade I for the term remains permanently on the student's record even when the subject is completed. The work should normally be completed before Add Date of the succeeding term of the regular academic year; however, the faculty member in charge, in negotiation with the student, has the right to set an earlier or later date for pedagogical reasons or extenuating circumstances. Graduate students may extend the five-week deadline with the explicit approval of the faculty member in charge.

The instructor is required to submit an Instructor’s Report Form for a grade of I reported for an undergraduate. On the form, the instructor provides the date by which the outstanding work is to be completed and a default final grade. The default final grade represents the grade the student would have earned, using appropriately low scores for the missing work. If the subject has not been completed by Add Date of the succeeding regular term, the default final grade will be posted to the student's record unless a later deadline has been specifically agreed upon by the instructor and the student.

No grade of I can be assigned to any undergraduate in the term in which he or she graduates. All grades of Incomplete must be resolved prior to graduation.
Notation assigned for work such as thesis, UROP, Special Subjects, or At Plant registration (internship or industrial practice), which has progressed satisfactorily, but has not been completed. Grade given upon completion of the work in a later term also covers this term. Faculty members must obtain approval from the Committee on Curricula or the Graduate Academic Performance Group to use the grade of J in subjects other than those mentioned above.

U Notation for thesis work that has not been completed and in which progress has been unsatisfactory. Grade given upon completion of the work in a later term also covers this term. Unless a student's progress improves significantly, the student may expect that grade to be failing.

T Temporary notation. Used for subjects which cover the equivalent of one term’s work, but are scheduled over parts of two normal grading periods. Prior approval must have been obtained from the Committee on Curricula for undergraduate subjects or the Committee on Graduate Programs for graduate subjects. This notation is recorded only on the student’s internal record. A permanent grade must be assigned when the subject is finished.

Other Notations. The following notations are also used on the academic record.

S Notation for credit awarded for work done elsewhere.

SA Notation for satisfactorily completed doctoral thesis. Doctoral theses are not graded.

DR Notation used only on the student’s internal record for a subject dropped after the fifth week of the regular term.

LIS Notation used only on the student’s internal record for a subject the student registered for as a listener.

URN Notation for a subject in UROP taken for pay or as a volunteer rather than academic credit.

VIS Notation for a research subject taken as a non-degree visiting student.

Alternate Grades. When a significant disruption of academic activities is declared, as described in the Rules and Regulations of the Faculty (http://web.mit.edu/faculty/governance/rules/2.100.html), the use of the grades below may be authorized. These grades are not included in the calculations of grade point averages.

PE Performance at any of the levels A, B, or C, under the circumstance of an Institute emergency closure.

NE Performance at the level of D or F for which no record will appear on the external transcript.

IE Incomplete. Indicates that a portion of the subject requirements has not been fulfilled, due to a major disruption of the Institute’s academic activities. A letter grade may be assigned if the work is subsequently completed. The grade IE remains permanently on the student’s record even when the subject is completed. To receive a letter grade, the work must be completed prior to a date set by the Chair of the Faculty. If the work is not completed prior to the established completion date, the grade will remain an IE on the student’s record and transcript. A grade of IE does not carry credit but need not be resolved prior to graduation.

Additional information regarding freshman grading, hidden grades, and the sophomore exploratory and junior-senior P/D/F grading options is available in the Undergraduate Education section.

Grade Reports and Transcripts

Students may view their internal grade reports on WebSIS. Transcripts are available in an unofficial version free of charge or in an official version at a cost currently set at $8 per copy. Students wishing to request a copy of their academic record should see the Registrar’s Office website (http://web.mit.edu/transcripts).

Graduation

Degrees are awarded by the Corporation of the Institute in September, February, and June upon recommendation of the Faculty. Favorable faculty action is based upon approval by the Committee on Academic Performance or the Committee on Graduate School Programs on recommendations from departmental committees.

Students must submit an online SB degree application or advanced degree application by the deadline for each regular term or the summer session, as established in the academic calendar. A degree will not be awarded unless all financial obligations to the Institute are clear and there are no pending disciplinary actions.

More information is available on the Registrar’s website (http://web.mit.edu/registrar/graduation).
INSTITUTE REGULATIONS

MIT is a community dedicated to scholarship and leadership. Student members of this community commit to reflect upon and uphold these principles in all academic and non-academic endeavors.

MIT expects that all students come to the Institute for a serious academic purpose and expects them to be responsible individuals who conduct themselves with high standards of honesty, fairness, respect, integrity, and accountability in both their academic and non-academic lives. Students are expected to uphold a high standard of civility and to demonstrate their respect for all members of this diverse community. These expectations are fundamental to the principle of independent learning and professional growth and to the maintenance of a healthy living and learning environment.

POLICIES AND PROCEDURES

Academic Integrity

Cheating, plagiarism, unauthorized collaboration, and other forms of academic dishonesty are considered serious offenses for which disciplinary penalties can be imposed.

Early in the term, the instructor should communicate specific expectations regarding academic conduct and collaboration in the subject. See the information on Term Regulations.

The Institute encourages faculty to take responses to academic dishonesty seriously, while also evaluating each case individually for the most appropriate response. In all cases, documenting the outcome with the Office of Student Citizenship ensures that records of student misconduct are maintained centrally at the Institute, preventing an individual student from committing several instances of academic dishonesty without accountability. The Handbook for Academic Integrity can be found online (http://integrity.mit.edu).

Several degrees of response are available, all of which help uphold the integrity of the Institute and all students’ learning experiences. The Office of Student Citizenship is responsible for facilitating these responses for faculty, as well as maintaining documentation within the Institute on the incident and response. Information for faculty regarding the options for handling academic integrity violations is online (http://studentlife.mit.edu/citizenship/faculty).

Voter Registration

Voter registration forms and instructions (http://web.mit.edu/registrar/vote) are available in the Student Services Center, Room 11-120.

Institute Policy on Harassment

Harassment of any kind is not acceptable behavior at MIT; it is inconsistent with the commitment to community that characterizes MIT’s activities. MIT is committed to creating an environment in which every individual can work, study, and live without being harassed. Harassment may therefore lead to sanctions up to and including termination of employment or student status.

Harassment is any conduct, verbal or physical, on or off campus, that has the intent or effect of unreasonably interfering with an individual’s or group’s educational or work performance at MIT or that creates an intimidating, hostile or offensive educational, work or living environment. Some kinds of harassment are prohibited by civil laws or by MIT policies on conflict of interest and nondiscrimination (see relevant sections of Policies and Procedures (http://web.mit.edu/policies)).

Harassment on the basis of race, color, gender, disability, religion, national origin, sexual orientation, gender identity, veteran’s status, or age includes harassment of an individual in terms of a stereotyped group characteristic, or because of that person’s identification with a particular group.

Sexual harassment may take many forms. Sexual assault and requests for sexual favors that affect educational or employment decisions constitute sexual harassment. However, sexual harassment may also consist of unwanted physical contact, requests for sexual favors, visual displays of degrading sexual images, sexually suggestive conduct, or offensive remarks of a sexual nature.

The Institute is committed under this policy to stopping harassment and associated retaliatory behavior. All MIT supervisors have a responsibility to act to stop harassment in the areas under their supervision.

Any member of the MIT community who feels harassed is encouraged to seek assistance and resolution of the complaint. To implement the policy on harassment, MIT provides a variety of avenues by which an individual who feels harassed may proceed, so that each person may choose an avenue appropriate to his or her particular situation. Institute procedures are intended to protect the rights of both complainant and respondent, to protect privacy, and to prevent supervisory reprisal.

Institute Policy on Hazing

MIT prohibits hazing by individuals or groups and defines it as follows: Any action or activity that is reasonably likely to, or is intended to, endanger the physical or mental health of a person for the purpose of initiation, admission into, affiliation with, or as a condition for continued membership in a group, organization, or living community. This definition shall apply regardless of location or consent of participants. Hazing includes, without limitation, behaviors that violate Massachusetts General Laws Chapter 269, Sections 17-19 (reproduced in their entirety below).

Endangering mental health is defined as sleep deprivation, extended isolation, public degradation, intimidation, creation of artificial and excessive stress, public nudity, and other comparable behaviors that are reasonably likely to, or are intended to, cause a significant degree of distress, disgrace, anguish, or interference with academic, professional, or personal pursuits.

Apathy or acquiescence in the presence of hazing are not neutral acts and constitute hazing as prohibited by this policy. Students and other members of the Institute community must report incidents of hazing that they witness or for which they were present. Incidents of hazing shall be reported to an appropriate law enforcement official and the Office of Student Citizenship. Failure to report incidents of hazing is a violation of this policy and may be a violation of Massachusetts law (M.G.L. c. 269 Section 18).

Any retaliation against any person who reports, is a witness to, is involved with, or cooperates with the adjudication of hazing is strictly prohibited.

Prohibited forms of hazing include but are not limited to:

- **Subtle Hazing:** Behaviors that emphasize a power imbalance between new members and other members of the group or community. This is termed “subtle hazing” because these types of hazing are often taken for granted or accepted as “harmless” or meaningless. Subtle hazing typically involves activities or attitudes that breach reasonable standards of mutual respect and place new members on the receiving end of ridicule, embarrassment, and/or humiliation tactics. New members often feel the need to endure subtle hazing to feel like part of the group or community.

 Examples of subtle hazing include but are not limited to:

 - Deception
 - Silence periods
 - Deprivation of privileges
 - Social isolation
 - Name calling
 - Assignment of duties not assigned to other members.

- **Harassment Hazing:** Behaviors that cause emotional anguish or physical discomfort in order to feel like part of the group. Harassment hazing often confuses, frustrates, and causes undue stress for new members.

 Examples of harassment hazing include but are not limited to:

 - Verbal abuse
 - Threats or implied threats
 - Sexual simulations
 - Requiring situational inappropriately attire
 - Sleep deprivation.

- **Violent Hazing:** Behaviors that do or could cause physical or psychological harm.

 Examples of violent hazing include but are not limited to:

 - Placing students in the shower against their will
 - Forced or coerced alcohol or other drug consumption
 - Forced or coerced sexual acts
 - Beating
 - Paddling, or other forms of assault
 - Forced or coerced ingestion of vile substances
 - Bondage
 - Kidnapping
 - Expected participation in illegal activity.

The sanction of disciplinary suspension or disciplinary expulsion will be strongly considered for individuals or groups found responsible for hazing.

In addition to the foregoing, students are advised that the following is the Massachusetts law on hazing:

> Whoever is a principal organizer or participant in the crime of hazing, as defined herein, shall be punished by a fine of not more than three thousand dollars or by imprisonment in a house of correction for not more than one year, or both such fine and imprisonment.

The term “hazing” as used in this section and in sections eighteen and nineteen, shall mean any conduct or method of initiation into any student organization, whether on public or private property, which willfully or recklessly endangers the physical or mental health of any student or other person. Such conduct shall include whipping, beating, branding, forced calisthenics, exposure to the weather, forced consumption of any food, liquor, beverage, drug or other substance, or any other brutal treatment or forced physical activity which is likely to adversely affect the physical health or safety of any such student or other person, or which subjects such student or other person to extreme mental stress, including extended deprivation of sleep or rest or extended isolation.
Notwithstanding any other provisions of this section to the contrary, consent shall not be available as a defense to any prosecution under this action.” M.G.L. c. 269 Section 17.

Whoever knows that another person is the victim of hazing as defined in section seventeen and is at the scene of such crime shall, to the extent that such a person can do so without danger or peril to himself or others, report such crime to an appropriate law enforcement official as soon as reasonably practicable. Whoever fails to report such crime shall be punished by a fine of not more than one thousand dollars.” M.G.L. c. 269 Section 18.

Each institution of secondary education and each public and private institution of post secondary education shall issue to every student group, student team or student organization which is part of such institution or is recognized by the institution or permitted by the institution to use its name or facilities or is known by the institution to exist as an unaffiliated student group, student team or student organization, a copy of this section and sections seventeen and eighteen; provided, however, that an institution’s compliance with this section’s requirements that an institution issue copies of this section and sections seventeen and eighteen to unaffiliated student groups, teams or organizations shall not constitute evidence of the institution’s recognition or endorsement of said unaffiliated student groups, teams or organizations.

Each such group, team or organization shall distribute a copy of this section and sections seventeen and eighteen to each of its members, plebes, pledges or applicants for membership. It shall be the duty of each such group, team or organization, acting through its designated officer, to deliver annually, to the institution an attested acknowledgement stating that such group, team or organization has received a copy of this section and said sections seventeen and eighteen, that each of its members, plebes, pledges, or applicants has received a copy of sections seventeen and eighteen, and that such group, team or organization understands and agrees to comply with the provisions of this section and sections seventeen and eighteen.

Each institution of secondary education and each public or private institution of post secondary education shall, at least annually, before or at the start of enrollment, deliver to each person who enrolls as a full time student in such institution a copy of this section and sections seventeen and eighteen.

Each institution of secondary education and each public or private institution of post secondary education shall file, at least annually, a report with the board of higher education and in the case of secondary institutions, the board of education, certifying that such institution has complied with its responsibility to inform student groups, teams or organizations and to notify each full time student enrolled by it of the provisions of this section and sections seventeen and eighteen and also certifying that said institution has adopted a disciplinary policy with regard to the organizers and participants of hazing, and that such policy has been set forth with appropriate emphasis in the student handbook or similar means of communicating the institution’s policies to its students. The board of higher education and, in the case of secondary institutions, the board of education shall promulgate regulations governing the content and frequency of such reports, and shall forthwith report to the attorney general any such institution which fails to make such report. M.G.L. c. 269 Section 19.

For further information about hazing and hazing prevention efforts at MIT, visit MIT’s hazing resources website (http://hazefree.mit.edu) contact the Office of Student Outreach and Support in W20-507 or 617-253-3276.

Please note there is an anonymous form to report hazing (https://hazefree.mit.edu/hazing-reporting-form) available for public use.

Other Personal Conduct

All members of the MIT community are expected to conduct themselves with proper respect for one another and for each other’s property. The Institute fosters the attitude that every person brings unique qualities, talents, and dignity to the community and that every individual deserves to be treated, judged, and accorded both common decencies and all the benefits of society in an evenhanded and respectful manner.

The Institute reserves the right to take any action that it deems necessary or appropriate to protect the intellectual integrity, safety, and well-being of the campus community including interim measures such as temporary suspension. To that end, MIT students are expected to abide by the rules, regulations, and policies of the Institute, as well as city, state, and federal laws. Students are expected to be familiar with the Institute’s expectations of them, which are found in the MIT Bulletin, in the Mind and Hand Book (http://studentlife.mit.edu/mindandhandbook), and in the Institute Policies and Procedures (http://web.mit.edu/policies).

MIT expects that members of the MIT community will not engage in behavior that endangers their own sustained effectiveness or that has serious ramifications for their own physical and mental health, safety, welfare, academic well-being, professional obligations, or for that of others. In situations where an individual student’s physical illness or emotional difficulties affect not only the student, but also others in the community, it is the Institute’s responsibility to consider the well-being of the community as well as the individuals in care decisions.

Off-campus misconduct may be a basis for MIT disciplinary action if the Institute considers that such alleged misconduct may have violated Institute policy and expectations of civility, integrity, and respect. Student status in no sense renders an individual
Complaint and Disciplinary Procedures

Students who believe that they have been treated improperly for any reason are encouraged to raise their concerns. Difficulties with other students can be pursued through the group living system, department head, other appropriate venues or groups, and the Office of Student Citizenship (OSC) (citizenship@mit.edu), Room W20-507, 617-253-3276. Students may also bring concerns to the attention of an Ombudsperson (http://web.mit.edu/ombud).

It is the Institute’s policy that individuals will not be retaliated against for initiating an inquiry or complaint in good faith.

Anyone—including individual students, faculty members, and employees of the Institute—may bring a formal complaint against a student to the Committee on Discipline (COD). The COD reviews cases of academic offenses, violations of Institute regulations and standards, and other infractions alleged to have been committed by students.

A formal complaint against a student must be submitted in writing to OSC. The charge and its documentation are transmitted to the chair of the COD. After a review of the documentation, the chair will decide whether or not a hearing by the COD is warranted, and, if so, what the appropriate forum will be. The COD has the authority to impose any sanction it deems appropriate. Possible sanctions include placing a letter in a student’s disciplinary file, probation, suspension, and expulsion. Sanctions may also include educational and/or restorative components meant to address the wrongdoing and serve the larger community. Detailed procedures for resolving complaints alleging that a student has violated MIT policies are available from the OSC (http://studentlife.mit.edu/citizenship) and from the COD (http://cod.mit.edu).

This procedure serves also as the grievance procedure for students as required by Title IX of the Higher Education Act of 1972 with regard to grievances arising out of alleged discrimination on the basis of sex, and for disabled students alleging failure to comply with Sections 503 and 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act of 1990.

A complaint against anyone employed by MIT may go to the immediate or higher supervisor of the apparent offender, or to the Human Resources Office on campus or at Lincoln Laboratory.

A description of the complaint procedures for persons employed at MIT is included in Institute Policy 9.6 (http://web.mit.edu/policies/9/9.6.html). Refer to the COD website (http://cod.mit.edu) for information about COD Rules and Regulations.

PRIVACY OF STUDENT RECORDS

MIT’s Student Information Policy governs the circumstances under which, and the persons to whom, student education records —referred to in MIT’s policy as “student information”—may be disclosed, as well as students’ rights to access their own records and to challenge their accuracy. As required by federal law, this policy includes the rights and privacy protections provided by the Family Educational Rights and Privacy Act, often referred to as “FERPA” (Title 20, US Code, section 1232g, and Title 34, Code of Federal Regulations, Part 99).

The following summarizes in general terms the major student rights under FERPA and MIT’s Student Information Policy. For more detailed information, both FERPA and the MIT policy in their entirety should be consulted. The full text of MIT’s Student Information Policy can be found online at MIT’s Policies & Procedures website (http://web.mit.edu/policies/11/sip.html) or in printed form at the MIT Libraries and at the MIT Information Center, Room 7-121. The full text of FERPA’s regulations is published on the website of the US Department of Education (http://www2.ed.gov/policy/gen/reg/ferpa). MIT has made every effort to provide an accurate summary of FERPA and the Student Information Policy, but in the event of any inconsistencies, the terms of FERPA and the Student Information Policy will govern.

Education Records

Under FERPA, education records include most tangible materials, including computer records, maintained by MIT that relate directly to an identifiable student currently or formerly enrolled at MIT. These include admissions records, grades, most coursework, exams, UROP records, disciplinary records, and financial aid records, as well as gender, nationality, race, ethnicity, and identification photographs. Education records do not include directory information, as described below, or those records of Institute faculty and staff members that are made for, and restricted to, their personal use. Other kinds of information, such as medical and law enforcement records, are
also excluded from the definition of education records. These are sometimes governed by other laws and/or policies.

Disclosure

Under FERPA, students’ education records containing personally identifiable information should generally not be disclosed without their permission, except to the extent that an exception in FERPA authorizes disclosure without consent.

Disclosure Within MIT. Under one FERPA exception, personally identifiable information contained in a student’s education records may, without the student’s consent, be disclosed within MIT to institute officials with a legitimate educational interest, meaning officials who need that specific information in order to fulfill their professional responsibilities. An Institute official is a person employed by the Institute in an administrative, academic or research, supervisory, or support position (including law enforcement unit personnel and health staff); a person or company that acts for the Institute (such as an attorney, auditor, or collection agent); a member of the MIT Corporation; or a student serving on an official committee, such as a disciplinary or grievance committee, or assisting other school officials in performing their tasks. In addition, the outcomes of disciplinary proceedings concerning certain crimes of violence, sexual harassment, or other gender-based misconduct may be disclosed.

Disclosure Outside MIT. As a general rule, personally identifiable information contained in a student’s education records may be disclosed to persons outside MIT only with the student’s consent, written consent. FERPA permits MIT to disclose education records without a student’s consent to other schools in which the student seeks enrollment or is enrolled. The student has the right, upon request, to a copy of the records disclosed to another school. Although parents normally are not entitled to review students’ education records without the students’ consent, appropriate MIT representatives may consult with parents and others, including by disclosing information in education records, in connection with a health and safety emergency. Disclosure may also be made without consent in response to subpoenas and court orders.

Directory Information. A student’s name, term and permanent home addresses, MIT office address, term phone number, term email address, Course, year and registration type, degrees received, dates of attendance, date of birth, honors and awards received, and for an intercollegiate athletic team member, height and weight, is designated as a student’s "directory information." This information may be disclosed within and outside of MIT without a student’s consent. Students have the right to require that some or all of their directory information not be disclosed (except as otherwise permitted under FERPA) by following the instructions on WebSIS. In order to prevent publication in the printed Student Directory published each fall this request must be made at the very beginning of the fall term.

Students’ Access to Their Own Records

A student has the right to inspect and review his or her own education records within 45 days after making a written request to the department or unit that maintains the records, to the registrar, to the Office of the Dean for Undergraduate Education, or to the Office of the Dean for Graduate Education, identifying the records the student wishes to inspect. The appropriate MIT official will make arrangements for access and notify the student of the time and place where the records may be inspected. If the records are not maintained by the MIT official to whom the request was submitted, that official shall, to the extent reasonably possible, advise the student of the correct official to whom the request should be addressed. The right does not extend to portions of a student’s education records that relate to other identifiable students.

Correction of Records

A student has the right to request the amendment of information in his or her education records that the student believes is inaccurate, misleading, or in violation of the student’s rights of privacy. Such a request may be made to the custodian of the record, to the Office of the Dean for Undergraduate Education, or to the Office of the Dean for Graduate Education and should clearly identify the part of the record the student wants changed, and state why it is inaccurate or misleading. If the requested amendment is not made, MIT will notify the student of this decision and that the student has the right to a hearing concerning the requested amendment. Additional information on the hearing procedures will be provided to the student when he or she is notified of the right to a hearing. If the requested amendment is not made as a result of the hearing, the student may include his or her own statement in the record commenting on the contested information or stating why the student disagrees with the decision not to amend. Because grades and evaluations are the result of academic judgment, they are not subject to this type of challenge.

Right to File Complaint

A student has the right to file a complaint with the US Department of Education concerning alleged failures by MIT to comply with the requirements of FERPA. The name and address of the office that administers FERPA is:

Family Policy Compliance Office
US Department of Education
400 Maryland Avenue, SW
Washington DC, 20202-5920
Research can be an invaluable way to broaden a student’s education. Through the Undergraduate Research Opportunities Program (http://web.mit.edu/urop), undergraduates discover avenues for participation in research projects that can count toward their major, including possibilities for thesis work. For graduate students, research opportunities can often lead to thesis topics—and research assistantships—as well as advanced degrees.

Some interdepartmental educational programs have been approved for graduate students by the Committee on Graduate Programs. Students must be admitted by a regular academic department in order to participate in one of these programs (with the exception of the Operations Research Center, which accepts students directly). Each has a standing faculty committee that administers the program, but degrees in the field of study are granted by the student’s department of registration. The program descriptions in this section indicate any advanced degrees that may be offered.

MIT Centers, Labs, and Programs, and Affiliated Institutions

- Broad Institute of MIT and Harvard (p. 85)
- Center for Archaeological Materials (p. 85)
- Center for Biomedical Engineering (p. 85)
- Center for Collective Intelligence (p. 85)
- Center for Computational Engineering (p. 86)
- Center for Computational Research in Economics and Management Science (p. 86)
- Center for Energy and Environmental Policy Research (p. 86)
- Center for Environmental Health Sciences (p. 86)
- Center for Global Change Science (p. 87)
- Center for International Studies (p. 87)
- Center for Materials Science and Engineering (p. 88)
- Center for Real Estate (p. 89)
- Center for Transportation and Logistics (p. 90)
- Clinical Research Center (p. 90)
- Computer Science and Artificial Intelligence Laboratory (p. 91)
- Concrete Sustainability Hub (p. 91)
- Deshpande Center for Technological Innovation (p. 91)
- Division of Comparative Medicine (p. 92)
- Draper Laboratory (p. 92)
- Haystack Observatory (p. 93)
- Initiative on the Digital Economy (p. 93)
- Institute for Medical Engineering and Science (p. 93)
- Institute for Soldier Nanotechnologies (p. 93)
- Institute for Work and Employment Research (p. 94)
- Joint Program on the Science and Policy of Global Change (p. 94)
- Knight Science Journalism Program (p. 95)
- Koch Institute for Integrative Cancer Research (p. 95)
- Laboratory for Financial Engineering (p. 95)
- Laboratory for Information and Decision Systems (p. 96)
- Laboratory for Manufacturing and Productivity (p. 96)
- Laboratory for Nuclear Science (p. 97)
- Legatum Center for Development and Entrepreneurship (p. 97)
- Lincoln Laboratory (p. 97)
- Martin Trust Center for MIT Entrepreneurship (p. 101)
- Materials Processing Center (p. 102)
- McGovern Institute for Brain Research (p. 102)
- Media Lab (p. 102)
- Microsystems Technology Laboratories (p. 103)
- MIT Center for Art, Science, and Technology (p. 98)
- MIT Energy Initiative (p. 98)
- MIT Kavli Institute for Astrophysics and Space Research (p. 99)
- MIT Portugal Program (p. 99)
- MIT Professional Education (p. 100)
- MIT Program in Art, Culture and Technology (p. 100)
- MIT Sea Grant (p. 101)
- Nuclear Reactor Laboratory (p. 103)
- Office of Digital Learning (p. 104)
- Operations Research Center (p. 104)
- Picower Institute for Learning and Memory (p. 104)
- Plasma Science and Fusion Center (p. 104)
- Research Laboratory of Electronics (p. 105)
- Simons Center for the Social Brain (p. 106)
- Singapore-MIT Alliance (p. 106)
- Singapore-MIT Alliance for Research and Technology (p. 107)
- Sociotechnical Systems Research Center (p. 108)
- Technology and Development Program (p. 108)
- Transportation@MIT (p. 108)
- Whitehead Institute for Biomedical Research (p. 109)
- Women’s and Gender Studies Program (p. 109)
BROAD INSTITUTE OF MIT AND HARVARD

The Broad Institute of MIT and Harvard (http://www.broadinstitute.org) seeks to transform medicine by empowering creative and energetic scientists of all disciplines from across the MIT, Harvard, and the Harvard-affiliated hospital communities to work together to address even the most difficult challenges in biomedical research.

Investigators at the Broad Institute come from all of its partner institutions, many of whom are faculty members at MIT or Harvard. Currently there are eight core faculty members with their primary labs located at the Broad, and over 200 associate members, with their primary labs located at one of the universities or hospitals.

The Broad Institute is also home to many postdoctoral and graduate students who perform some or all of their research at the Broad Institute, although graduate students earn their degrees from their respective home institutions. In addition, the Broad Institute offers numerous research opportunities for undergraduate and high school students. To learn more about these programs, visit the Broad website.

The Broad Institute primary research labs are at 415 Main Street, across the street from MIT’s Biology Department and adjacent to the Whitehead Institute, at 320 Charles Street, and at 75 Ames Street.

Further information may be obtained by contacting the Broad Institute Communications Office at 617-714-7000.

CENTER FOR ARCHAEOLOGICAL MATERIALS

The purpose of the Center for Archaeological Materials (http://web.mit.edu/cmrae/cmrae_home.htm) is to encourage incorporation of the natural sciences and engineering in the normal pursuit of anthropological, archaeological, and art historical inquiry.

The center’s particular emphasis is on examining and explaining the nature of prehistoric and non-industrial technologies, especially those technologies of unusual importance in the development of ancient and pre-industrial societies. The center considers not only technologies of subsistence, communication, and production, but technologies whose purposes are largely symbolic, such as information-bearing technologies of art.

The center is concerned with the remains of human activities in the past and the exploration of the imprint of these activities on the environment: what people did in the environment and what the environment was like. Determination of palaeoecologies—climates, floral and faunal populations, food chains, and so forth—provides a strong research focus. The center uses as its evidence all of material culture, and explores cultural and environmental materials through the most up-to-date methods common to chemistry, physics, biology, geology, and materials science and engineering, in conjunction with appropriate mathematical and statistical analyses.

The center’s teaching and research programs incorporate materials science and engineering among the range of methods that archaeologists use to try to render culture history, cultural lifeways, and culture process from what little is preserved of society’s material culture. Research activities are carried out in a network of materials laboratories that include metallurgy, ceramics, photomicrography, and computation. The center emphasizes rigorous laboratory study of artifacts and other kinds of cultural remains to determine the nature and structure of the materials of which they are composed and the extraction and processing regimes they have undergone.

Open to graduate students and senior undergraduates, the center offers graduate-level subjects in the Graduate Archaeological Science Laboratory. Subjects are heavily laboratory-oriented and often cover a single class of materials (e.g., ceramics or metals), or a method for interpreting archaeological data (e.g., computers in archaeology).

The center is administered by the Office of the Provost. Further information about the center may be obtained from the director, Professor Heather Lechtman, Department of Materials Science and Engineering, Room 8-138, 617-253-2172.

CENTER FOR BIOMEDICAL ENGINEERING

The Center for Biomedical Engineering (CBE) (http://web.mit.edu/cbe/www) was established to enhance and coordinate research and education at the interface of engineering with biology, emphasizing bioengineering based on molecular and cellular biology.

CBE initiatives involve faculty and students from a variety of MIT departments in the Schools of Science and Engineering along with associates at Boston-area medical schools.

Core laboratory facilities in real-time PCR, biomolecular modeling and engineering, biomolecular binding interactions, cell and molecular mechanics, cellular responses, cell culture, 2-photon microscopy, and quick freeze-deep etch cryofixation facilities for cells and tissues are available to enhance teaching and research capabilities that combine engineering and life science perspectives. For further information on these facilities, contact Linda Bragman, 617-253-4928.

CENTER FOR COLLECTIVE INTELLIGENCE

The MIT Center for Collective Intelligence (http://cci.mit.edu) brings together faculty from across MIT to conduct research on how new communications technologies, especially the internet, now allow huge numbers of people all over the world to work together in new ways. The center’s basic research question is: How can people
and computers be connected so that—collectively—they act more intelligently than any individuals, groups, or computers have ever done before?

This first-of-its-kind research effort draws on the strengths of many diverse organizations across MIT including the MIT Media Lab, the Computer Science and Artificial Intelligence Laboratory, the Department of Brain and Cognitive Sciences, and the MIT Sloan School of Management.

The Center for Collective Intelligence is directed by Professor Thomas W. Malone. For further information, contact Robert Laubacher (rjl@mit.edu), 617-253-0526.

CENTER FOR COMPUTATIONAL ENGINEERING

The broad mission of the Center for Computational Engineering (CCE) (http://computationalengineering.mit.edu) is to support computational engineering at MIT. The center is comprised of faculty and research partners from across the School of Engineering as well as other departments and units involved in computational engineering research and education around the Institute.

The center’s research focus is on computational approaches for engineering problems: the formulation and implementation of new approaches that are more efficient and capable, and the informed application of existing approaches to important engineering questions. Our emphasis is on the development of the next generation of computational engineering innovators and computational engineering innovations.

CCE oversees a master's program in Computation for Design and Optimization (CDO) (p. 350) and a doctoral program in Computational Science and Engineering (CSE) (p. 352). CDO is an interdisciplinary program that provides students with a strong foundation in computational methods for the design and operation of complex engineered systems. The CSE PhD program allows students to specialize in a computation-related field of their choice through focused coursework and a doctoral thesis. The CSE program is offered through a number of participating departments, including Aeronautics and Astronautics, Chemical Engineering, Civil and Environmental Engineering, Mechanical Engineering, and Nuclear Science and Engineering.

For more information about the Center for Computational Engineering, contact Debra Blanchard (drblnc@mit.edu), Room 3-264, 617-258-5808. For more information about the CDO program and/or the CSE PhD program, contact Kate Nelson (cdo_info@mit.edu), Room 35-329, 617-253-3725.

CENTER FOR COMPUTATIONAL RESEARCH IN ECONOMICS AND MANAGEMENT SCIENCE

This center advances knowledge about modeling in economics, finance, statistics, and management, bringing together researchers from disciplines such as econometrics, statistics, computer science, and operations research to focus on the algorithmic research and related software development that provide a basis for today’s advanced modeling techniques. Current research is focused on predictive data analytics; nonparametric modeling; robust statistics and data-mining; statistical learning; variable and feature selection; risk measurement and portfolio optimization in finance, data visualization, bioinformatics; and the analysis of health and drug surveillance data.

For further information contact Professor Roy E. Welsch (rwelsch@mit.edu), director, Room E62-564, 617-253-6601.

CENTER FOR ENERGY AND ENVIRONMENTAL POLICY RESEARCH

The Center for Energy and Environmental Policy Research (CEEPR) conducts research in energy and environmental policy and economics, primarily drawing on faculty and student resources from the MIT Sloan School of Management, the Department of Economics, and the MIT Energy Initiative. CEEPR also collaborates with engineers and scientists as a co-sponsor of the Joint Program on the Science and Policy of Global Change, along with the Center for Global Change Science.

The center’s distinguishing characteristic is its dedication to high-quality, empirically-grounded analysis of corporate and public policy issues. For over 30 years, CEEPR has made important contributions to the analysis of energy markets, the organization and regulation of energy industries, and attendant environmental challenges. CEEPR’s current research focuses on changing business models and regulatory approaches in the electricity sector; evolving oil and gas markets; energy efficiency and demand response; investment, finance, and risk management in energy and environmental projects; and carbon pricing and regulation. The results of the research are disseminated through publications, workshops, educational programs, and public outreach activities around the world.

Professor Christopher Knittel, of the MIT Sloan School of Management, is the center’s director. For more information, contact the executive director, Michael Mehling, E19-411, 617-324-3745.

CENTER FOR ENVIRONMENTAL HEALTH SCIENCES

The Center for Environmental Health Sciences (CEHS) (http://cehs.mit.edu) consists of approximately 44 research groups across MIT and one group at the Harvard School of Public Health that work
to address the effects of hazardous agents in the environment on humans and the human ecosystem. A signature element of our research portfolio is the integration of science, engineering and policy to solve complex problems in environmental health. The center is funded primarily by the National Institute of Environmental Health Sciences, which is part of the National Institutes of Health.

Our program encompasses five research themes: DNA damage, DNA repair, and mutagenesis; microbes, the microbiome and environmentally induced disease susceptibility; inflammation chemistry and biology; engineering applied to environmental health problems; and chemistry and transport of air and water pollution. Traction on our research themes is enabled by four Facilities Cores, which provide state-of-the-art technology or approaches to research problems in the following areas: genomics and imaging; bioanalytical chemistry; novel animal models; and integrative health sciences. CEHS runs a robust pilot project program that stimulates integration of new ideas and early-stage investigators into the CEHS mission. The center also has a global environmental health program, several seminar and poster presentation programs, a career development program, and a responsible conduct of research training program. Lastly, a central component of our mission is to engage our local community bi-directionally in our activities through our Community Outreach Education and Engagement Core.

Graduate and undergraduate courses dealing with toxicology and environmental health are offered mainly through the Department of Biological Engineering (p. 154), which also manages MIT undergraduate minor in toxicology and environmental health. CEHS also partners with many departments in the Schools of Science and Engineering to create cross-disciplinary opportunities in environmental health science and engineering. The PhD program offered by the Department of Biological Engineering integrates chemistry, molecular biology, and genetics with bioengineering approaches to the understanding of how organisms respond to environmental agents. CEHS also manages a T32 Training Grant in Environmental Toxicology, which supports graduate students and postdoctoral researchers.

For further information, email (cehs@mit.edu) or call 617-452-2072.

CENTER FOR GLOBAL CHANGE SCIENCE

The MIT Center for Global Change Science (CGCS) (http://cgcs.mit.edu) seeks to better understand the natural mechanisms in ocean, atmosphere, and land systems that together control the Earth’s climate, and to apply improved knowledge to problems of predicting climate changes. The center utilizes theory, observations, and numerical models of the Earth’s basic physical and biogeochemical processes to investigate climate phenomena, the linkages among them, and their potential feedbacks in a changing climate.

CGCS was founded in 1990 to foster cooperative effort among faculty, students, and research scientists in meteorology, oceanography, hydrology, atmospheric sciences, climate physics, chemistry, biology, ecology, and satellite remote sensing. Participants are drawn primarily from the departments of Earth, Atmospheric and Planetary Sciences; Civil and Environmental Engineering; Biology; and Electrical Engineering and Computer Science.

The major research initiatives in CGCS are the MIT Climate Modeling Initiative (CMI), the Advanced Global Atmospheric Gases Experiment (AGAGE), and the MIT Joint Program on the Science and Policy of Global Change. Through the latter, CGCS sustains substantial collaborative effort with faculty, students, and researchers in Economics, Political Science, Urban Studies and Planning, the Sloan School of Management, Engineering Systems, and the MIT Energy Initiative.

CMI is an open-source collaborative that has developed the MIT General Circulation Model (MITcgm) which is applied to a wide range of modeling challenges in: atmospheres, oceans, the cryosphere, biogeochemical cycles, ocean ecology and the coupling together of all these processes.

AGAGE measures greenhouse gases globally and infers their sources and sinks using inverse methods. It is distinguished by its capability to measure over the globe at high frequency almost all of the important gas species in the Montreal Protocol (e.g., CFCs, HCFCs) to protect the ozone layer and almost all of the significant non-CO2 gases in the Kyoto Protocol (e.g., HFCs, methane, and nitrous oxide) to mitigate climate change.

Professor Ronald Prinn is the CGCS director. For more information, contact CGCS (cgcs@mit.edu) at Room 54-1312, 617-253-4902.

CENTER FOR INTERNATIONAL STUDIES

The Center for International Studies (CIS) (http://web.mit.edu/cis) supports and promotes international research and education at MIT.

CIS includes 100 members of the MIT faculty and staff, mainly drawn from the departments of Political Science and Urban Studies and Planning, and visiting scholars from around the world. We sponsor formal programs, multidisciplinary working groups and numerous public events. While CIS does not offer courses, students engage with the center’s faculty and staff as colleagues in research, dissertation students, participants in a range of events, and interns in the MIT Science and Technology Initiative (MISTI), the groundbreaking international education program. The center also provides other services to MIT students: internships, other opportunities to work in programs, and help with finding resources for research.

Within CIS is the MIT Security Studies Program (SSP) (http://web.mit.edu/ssp), a graduate-level research and educational
program. SSP’s teaching ties are with the Political Science Department. Courses offered emphasize grand strategy, the causes and prevention of international and civil conflict, military technology, nuclear proliferation, bureaucratic politics, national security, budgetary issues, and security issues in Asia. A special feature of the program is the integration of knowledge on technology with knowledge from the social sciences in the study of international security problems. SSP’s primary task is educating the next generation of security scholars and practitioners.

For more information on SSP, contact Joli Divon Saraf (joli@mit.edu), Room E40-477, 617-258-7608, fax 617-258-7858.

MIT International Science and Technology Initiatives (MISTI) (http://misti.mit.edu) is MIT’s flagship international education program. MISTI matches hundreds of MIT students with fully-funded internship, research, and teaching opportunities abroad. The MISTI Global Seed Funds facilitate international faculty collaborations and develop partnerships with leading companies, research institutes, and universities around the world.

Email MISTI (misti@mit.edu) for more information.

Seminar XXI (https://semxxi.mit.edu) is an educational program for senior military officers, government and NGO officials, and executives in the national security policy community. The program’s objective is to provide future leaders of that community with enhanced analytic skills for understanding foreign countries and the relations among them. The fundamental criterion for fellows is that candidates should reach top decision-making levels in the next three to five years.

The program explores key policy issues by examining countries and problems critical to American interests through a variety of paradigmatic lenses.

For more information, contact Tisha Gomes (tishag@mit.edu), Room E40-445, 617-258-6862.

The Inter-University Committee on International Migration (http://web.mit.edu/cis/www/migration), created 30 years ago, organizes the Myron Weiner seminar series, honoring the late MIT professor and pioneer in migration studies. The committee also undertakes other projects on an ad hoc basis. Member institutions are Boston University, Brandeis University, the Fletcher School of Law and Diplomacy, Harvard, MIT, Tufts University, and Wellesley College. The committee is hosted at MIT by CIS.

Email (cis-migration@mit.edu) for more information.

The Program on Emerging Technologies (PoET) (http://poet.mit.edu) is a collaborative effort between the School of Engineering and the School of Humanities, Arts, and Social Sciences. Researchers at the Center for International Studies collaborate with technologists and scientists from the Synthetic Biology Center; the Computer Science and Artificial Intelligence Laboratory (CSAIL); the Center for Biomedical Innovation and the Technology Policy Program of the Institute for Data, Systems and Society; and Harvard Medical School, as well as with social scientists and humanists from the Department of Political Science and the Program in Science, Technology, and Society. With current, future, and historical focuses, research efforts assess the implications of emerging technologies and encourage responsible technological innovation.

For more information, contact Phiona Lovett (phiona@mit.edu), E40-450, 617-253-3848, fax 617-253-9330.

The Persian Gulf Initiative (http://web.mit.edu/cis/act_pgi.html) was launched in 2005 and has now held workshops on political violence, stability and legitimacy, energy security, the regional impacts of the Iraq war, and other topics. It sponsors research such as the Iraq mortality study, publications, and public forums, several of which have been held in Washington, DC, and New York.

For more information, contact Casey Johnson (caseyj@mit.edu), E40-451, 617-258-8552.

CIS manages the MIT-Japan International Studies Fund Grants (http://web.mit.edu/cis/foz_2.html), intended for advanced doctoral students at MIT working in close collaboration with faculty members on any international aspect of energy, environment, and international affairs.

Among the public events sponsored by CIS are the Starr Forum, the Emile Bustani Middle East Seminar, and the Security Studies Seminar Series. The Starr Forum mounts major public events for the MIT community and the broader public. The center’s website is also a source of information and analysis, news about CIS activities, and a fellowship database. Audits of Conventional Wisdom, the Foreign Policy Index, recent op-eds and articles by CIS scholars, videos of talks, and other resources are found online.

Each year the center appoints as visiting fellows a few academics and government officials, both from the United States and abroad. Supported by their universities, governments, or foundations, these fellows work on problems relevant to the center’s research and training interests. The Robert Wilhelm Visiting Fellow in International Studies is a distinguished visitor with extensive experience in government. The Elizabeth Neuffer Fellow is a woman journalist who reports on human rights and social justice.

For more information, contact executive director John Tirman (tirman@mit.edu), Room E40-447, 617-253-9861.

CENTER FOR MATERIALS SCIENCE AND ENGINEERING

The Center for Materials Science and Engineering (CMSE) (http://mit.edu/cmse), one of a nationwide network of Materials Research Science and Engineering Centers funded by the National Science Foundation, fosters collaborative interdisciplinary research and
CMSE directly supports approximately 15 Undergraduate Research Opportunities Program (UROP) (p. 43) students each year to participate in its research. Another 12 undergraduates from other universities spend the summer performing materials research on campus through the Summer Research Internship Program (http://web.mit.edu/cmse/educational/reu.shtml), jointly sponsored by CMSE and the Materials Processing Center (https://mpc-www.mit.edu).

The center does not offer a degree program or subjects for academic credit. Student registration is handled by academic departments.

Other education and outreach programs sponsored by CMSE include a science and engineering summer day camp for seventh- and eighth-grade students from two Cambridge public schools and a summer research program for a small number of junior high and high school science teachers.

For further information, contact the center's administrative office, Room 13-2106, 617-253-6850, fax 617-258-6478.

CENTER FOR REAL ESTATE

The Center for Real Estate (http://web.mit.edu/cre) provides an intellectual focus for research on issues affecting the real estate industry. Faculty associated with the center are drawn from the departments of Architecture, Urban Studies and Planning, Civil and Environmental Engineering, Economics, and the MIT Sloan School of Management.

The center's research initiatives cover a range of disciplines and areas of application within real estate, and all offer synergy between the real world of practice and MIT's faculty and research capabilities.

New Century Development is the center's initiative aimed at understanding and improving the real estate development process in the 21st century. This initiative is interdisciplinary and international in scope, providing avenues to link across various departments at MIT, and between MIT and the community of professional practice engaged in building the developments of the future.

The Housing Affordability Initiative identifies ways in which MIT can make a unique, policy-relevant contribution to the challenges posed by the high cost of housing in eastern Massachusetts and elsewhere. Initial projects included the development of a multidimensional, micro-level housing affordability index that could help policy makers allocate funds and marshal political support for new housing development at the local level.

The Commercial Real Estate Data Laboratory provides a space (both virtual and real) for quantitative tools for measuring commercial real estate performance. The focus of research includes investment performance, management or operational performance, and environmental or social performance.

The center encourages interaction between members of the real estate industry and the academic community through seminars, colloquia, lectures, and a series of non-credit professional development courses offered through the Professional Development Institute.

The center is supported in part through corporate partnerships and individuals active in the real estate industry.

The center is also home to the Master of Science in Real Estate Development (MSRED) program, an interdisciplinary degree program that combines education in design, planning, construction, management, finance, development, and marketing. It prepares students to assume positions of responsibility in private real estate companies, financial institutions, government agencies, nonprofit development organizations, and consulting firms. The program requires 11 months of intensive study.

For further information about the center, contact Albert Saiz (saiz@mit.edu), director. For more information about the MSRED,
Center for Transportation & Logistics

The MIT Center for Transportation & Logistics (MIT CTL) (http://ctl.mit.edu) is a world leader in supply chain management and transportation education and research. MIT CTL engages in three principal activities: research, outreach, and education.

Research

The center's world-renowned research programs directly involve over 75 faculty and research staff from a wide range of academic disciplines, as well as researchers in various affiliate organizations around the world. MIT CTL has three main research programs: Supply Chain Management and Logistics, Transportation, and the impact of aging on mobility, health, and wellness.

Transportation programs and projects include the New England University Transportation Center and the MIT Program in Intelligent Transportation Systems.

The MIT AgeLab conducts research to improve quality of life for older adults and those who care for them, creating new ideas and translating technology into practical applications.

Outreach

MIT CTL partners with industry to turn the center's innovative research into market-winning applications. MIT CTL currently has more than 45 corporate partners worldwide who participate in events, interact with researchers, and contribute to and help steer research projects.

Education

MIT CTL’s top-ranked Supply Chain Management Program (SCM) (p. 358) offers a 10-month professional master’s degree that prepares students for a supply chain management career in various industries, including consulting, manufacturing, distribution, retail, software, and services.

Additionally, MIT CTL runs the Global Supply Chain and Logistics Excellence (SCALE) Network, which has centers in Europe (Zaragoza, Spain), South America (Bogota, Colombia), and Asia (Kuala Lumpur, Malaysia). Each center runs a graduate program that mirrors MIT’s SCM program. Students from all four SCALE centers work on common projects and participate in a global exchange.

Through MIT CTL, MIT is the lead university in Federal Region I of the University Transportation Centers program administered by the US Department of Transportation. Through this program, full and partial fellowships are awarded to graduate students in transportation. Research and teaching assistantships are also available through this and other programs. Undergraduates may also participate in sponsored research through the Undergraduate Research Opportunities Program.

Students interested in studying supply chain management and logistics, or in learning more about the center and its educational programs, should write to Dr. Bruce Arntzen (barntzen@mit.edu), MIT Center for Transportation & Logistics, Room E40-355.

Students interested in the Master of Science in Transportation (p. 359) program administered through the Department of Civil and Environmental Engineering should contact the director of the Transportation Graduate Program. Several departments offer both master’s and doctoral degrees that allow a focus on transportation, including Aeronautics and Astronautics, Civil and Environmental Engineering, Urban Studies and Planning, and the Institute for Data, Systems, and Society.

Clinical Research Center

The Clinical Research Center (http://crc.mit.edu) is an NIH-funded research facility on campus that provides an infrastructure for interested scientists to perform biomedical research involving human subjects.

Its mission is to support the translation of basic science discoveries into clinical (human) research that may improve the lives of patients and their families. Its existence allows students at all levels to gain experience with human subjects and human disease. Research projects in progress are in the areas of psychiatry, neurology, endocrinology, human nutrition and metabolism, and biomechanical engineering. Disorders under study include autism, dyslexia, ADHD, depression, bipolar disorder, anxiety, social anxiety disorder, and schizophrenia. Most projects involve collaboration between physicians and clinical research scientists, and often involve local hospitals.

The facilities of the center are open to all departments in the Institute, and its principal investigators are faculty members and research scientists from many different departments. The center has state-of-the-art instruments and supports processing of samples. The specialty of clinical research nursing, whose focus is the care of the research participant, provides expertise in the operationalization of research protocols. This practice may include study design consultation, study implementation, data acquisition
and processing, safety monitoring, data management, and subject education.

Research opportunities are available for undergraduate and graduate students contemplating careers in the medical sciences. The Undergraduate Research Opportunities Program (UROP) (p. 43) allows undergraduate students the opportunity to participate in the research process at the Clinical Research Center—either for credit, pay, or on a volunteer basis.

For further information, contact the program director, Dr. Elazer Edelman, or the project manager, Ben Leiden, Room E25-201, 617-253-6331.

COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

The Computer Science and Artificial Intelligence Laboratory (CSAIL) (http://www.csail.mit.edu) pursues fundamental research across the entire breadth of computer science and artificial intelligence. CSAIL is committed to leading the field both in new theoretical approaches and in the creation of applications that have broad societal impact.

CSAIL's current research activities span three principal areas:

• **Artificial Intelligence (AI).** This area of research aims to understand and develop systems—living and artificial—capable of intelligent reasoning, perception, and behavior. Specific research includes core AI computational biology, computer graphics, computer vision, human language technology, machine learning, medical informatics, robotics, and the semantic web.

• **Systems.** This area of research aims to discover common principles, models, metrics, and tools of computer systems, both hardware and software. Specific research includes compilers, computer architecture and chip design, operating systems, programming languages, and computer networks.

• **Theory.** This area of research studies the mathematics of computation and its consequences. Specific research includes algorithms, complexity theory, computations geometry, cryptography, distrust computing, information security, and quantum computing.

CSAIL encourages student participation in its research projects. Undergraduates may become involved through the Undergraduate Research Opportunities Program (UROP) (p. 43), and research assistantships are available to graduate students. CSAIL graduate students are typically enrolled in the departments of Electrical Engineering and Computer Science, Mathematics, Aeronautics and Astronautics, Brain and Cognitive Sciences, and Mechanical Engineering, and the MIT-Harvard Health Sciences and Technology Program.

CONCRETE SUSTAINABILITY HUB

The mission of the Concrete Sustainability Hub (CSH) (http://cs_hub.mit.edu) is to advance the technology transfer from concrete science into engineering practice, by translating the synergy of three fields of study into a powerful hub for concrete sustainability studies relevant to industry and decision makers. CSH fosters a close alliance among academia, industry, and government to facilitate the transfer of knowledge by aligning world-leading research with end-user needs.

More concrete is produced than any other synthetic material on Earth. In the foreseeable future there is no other material that can replace concrete to meet our societies’ legitimate needs for housing, shelter, schools, infrastructure, etc. But concrete faces an uncertain future due to a non-negligible ecological footprint that amounts to 5–10 percent of worldwide CO₂ production.

Emerging breakthroughs in concrete science and engineering hold the promise that concrete can be part of the solution of contributing to sustainable infrastructure development that enables economic growth, and social progress while minimizing the ecological footprint. This requires a holistic approach in which progress in concrete science seamlessly feeds into innovative structural concrete engineering applications, ranging from concrete pavement solutions to wall systems, whose impact on sustainable development are evaluated with advanced environmental-econometric impact studies. An interdisciplinary team of faculty from several MIT departments participates in the CSH. Email (CSHub@mit.edu) for more information.

DESHPANDE CENTER FOR TECHNOLOGICAL INNOVATION

The Deshpande Center (http://deshpande.mit.edu) was established at the MIT School of Engineering to increase the impact of MIT technologies in the marketplace. Founded with an initial donation from Jaishree and Desh Deshpande, the Deshpande Center supports a wide range of emerging technologies including biotechnology, biomedical devices, information technology, new materials, tiny tech, and energy innovations.

Since 2002, the Deshpande Center has awarded over $14 million in grants to support more than 110 MIT faculty-led projects. The objective of the funding is to nurture ideas with market potential and reduce the uncertainty around them so that an external party would invest in the technology. In addition to the funding, the grants bring with them publicity, mentoring, and connections with the business community.

This funding enables MIT faculty and their students to pursue exciting new avenues of research on novel technologies. As a result, 28 projects have spun out of the center as independent startups,
collectively raising more than $500M in outside financing from top-tier venture capital firms and other investors.

There are two ways for students to get involved in projects funded by the Deshpande Center.

- **Deshpande Center Grant Program**: The grant program identifies and supports MIT research that can address important market opportunities. To support this research, the center awards Ignition Grants and Innovation Grants (ranging from $50,000 to $250,000 per project) to MIT faculty. Students may participate through a thesis or research assistantship in the laboratory of a faculty member. A portfolio of projects, including faculty contact information, can be found on the website (http://deshpande.mit.edu/grants-resources).

- **i-Teams (Innovation Teams)**: i-Teams is a course that selects ambitious and highly qualified students interested in helping to bring leading-edge technologies from MIT's world-renowned research laboratories to market. The students join teams devoted to evaluating commercial feasibility and creating go-to-market strategies for technologies within the Deshpande Center portfolio. The course is taught jointly through the Sloan School of Management and the School of Engineering. More information can be found on the website (http://deshpande.mit.edu/grants-resources/other-mit-resources).

The executive director of the Deshpande Center is Leon Sandler. The faculty director of the Deshpande Center is Professor Timothy M. Swager. Staff includes program manager Michelle Grdina and assistant director Maren Cattonar. For more information, contact the Deshpande Center (deshpandecenter@mit.edu), Room 1-229, 617-253-0943.

DIVISION OF COMPARATIVE MEDICINE

The Division of Comparative Medicine (http://web.mit.edu/comp-med) has three basic missions: education, research, and the provision of comprehensive animal husbandry, clinical, and diagnostic services for all research animals at MIT. The division serves as the centralized animal resource on campus and provides the necessary expertise for investigators conducting biomedical research using animal models.

Division staff members educate the MIT research community in the biology and use of research animals as models for biomedical research. The division provides online training materials for researchers working with animals as well as one-on-one training based on individual requirements. Division members teach graduate-level courses in the Department of Biological Engineering (p. 154) and provide mentorship for Undergraduate Research Opportunities Program (UROP) (p. 43) and graduate students.

With an NIH-funded postdoctoral training program for veterinarians specializing in biomedical research, the major long-range goal of the research at the division is to develop animal models or in vitro systems that are pertinent to biomedical research. The division is internationally recognized for characterizing new *Helicobacter* species and studying the relationship of *Helicobacter* to human diseases that are prevalent throughout the world.

DRAPER LABORATORY

The Charles Stark Draper Laboratory (http://www.draper.com) (formerly the Instrumentation Laboratory) separated from MIT in 1973 to become an independent not-for-profit research and educational organization.

Mechanisms exist to permit joint research activities and to allow Draper Lab to continue its unique contributions to the Institute’s educational programs. Research assistantships, denoted as Draper Laboratory Fellows, for SM and PhD candidates are described in the Graduate Education Manual. Copies are available from the Office of the Dean for Graduate Education, Room 3-138, 617-253-4860, and from department graduate offices.

Draper Lab’s pioneering work in instrumentation has led to the development of highly precise sensors and ultra-reliable systems on which the world depends for safe and accurate guidance, navigation, and control. Much of Draper’s current research and development focuses on problems that arise in the measurement, analysis, simulation, and control of complex dynamic systems. This research and development covers a wide range of application areas, including guidance, navigation and control, microsystems, complex reliable systems, autonomous systems, information and decision systems, biomedical and chemical systems, secure networking and communications, energy systems, and commercial space systems.

A number of MIT faculty members maintain a close association with Draper Lab, and thesis research opportunities exist that fulfill the residency requirement for an MIT degree. Students are in direct daily contact with the Draper technical staff of engineers and scientists, and thus learn to appreciate the economic and human as well as the technical aspects of a system. Undergraduate and graduate students also may be employed by the laboratory and work directly on a project.

Draper Laboratory is located adjacent to the main campus at 555 Technology Square.

Information may be obtained by contacting the Draper Office of Education (education@draper.com), 617-258-2393.
HA YSTACK OBSERVATORY

MIT Haystack Observatory (http://www.haystack.mit.edu) provides opportunities for undergraduate and graduate student research in radio astronomy, geodesy, and atmospheric sciences.

Haystack Observatory has long had a worldwide leadership position in the development and use of the Very Long Baseline (VLBI) technique, which uses a global array of radio telescopes to make high-resolution observations of galactic and extragalactic radio sources and to do precision geodetic studies of the Earth’s plate tectonics and motions in space. Using radio telescopes at Haystack and elsewhere around the world, the observatory supports strong programs in both science and technology using VLBI, including unique mm-wavelength observations of the black hole at the center of our galaxy on event-horizon scales.

High-power radars using 46-m and 67-m antennas are used, in conjunction with a variety of other techniques, to study the structure and dynamics of Earth’s upper atmosphere. Emphasis is given to the study of the effects of geomagnetic storms induced by solar disturbances on Earth’s ionosphere. Haystack researchers also study thermal effects in the upper atmosphere, including signatures associated with global climate change.

A strong instrumentation development program is conducted at Haystack Observatory, particularly in the areas of wideband signal processing and high-rate data acquisition. Current applications include the design of large radio arrays to improve the flexibility and sensitivity of radio observations, as well as ultra-broadband receiving systems for VLBI measurements.

Observatory researchers have been heavily involved in the development of low-frequency arrays in Western Australia, as well as an advanced array concept using the latest technologies and techniques. These innovative instruments offer rich opportunities for unique astrophysical, heliospheric, and ionospheric science.

Opportunities exist for students to get involved in all these projects and use the facility instrumentation for research investigations.

The Haystack Observatory is located in Westford, MA, about 35 miles northwest of Cambridge. For further information, email Dr. Colin Lonsdale (clonsdale@haystack.mit.edu) or call 781-981-5542.

INITIATIVE ON THE DIGITAL ECONOMY

The Initiative on the Digital Economy (IDE) (http://mitsloan.mit.edu/ide) is a major effort addressing the impact of digital technology on business, the economy, and society. Drawing upon MIT Sloan’s strengths in technology and innovation, its internationally recognized faculty, and over a decade of research and partnership through Sloan’s Center for Digital Business, the new initiative will analyze the broad sociological changes brought about by digital technology. Many of the key issues are described in two recent books by Professor Erik Brynjolfsson and Dr. Andrew McAfee called Race Against the Machine and The Second Machine Age. Activities include research, events, fellowships, an Inclusive Innovation Competition, and education—including the A-Lab, which is taught in the fall term. IDE offers opportunities to participate in its work through the Undergraduate Research Opportunities Program, research assistantships, and postdoctoral study.

For further information, contact IDE executive director David L. Verrill (dverrill@mit.edu) at 617-452-3216.

INSTITUTE FOR MEDICAL ENGINEERING AND SCIENCE

Launched in 2012, the Institute for Medical Engineering and Science (IMES) (https://imes.mit.edu) is a focal point and effective hub for research and education in medicine, engineering, and science at MIT. IMES is comprised of a community of faculty and researchers from across MIT, Harvard Medical School, collaborating local-area hospitals, and industry with work focused on the intersections of engineering, basic sciences, and clinical research and practice. IMES is dedicated to addressing major challenges to human health using groundbreaking approaches and technologies.

Through its research and educational programs, and as home to the Harvard-MIT Program in Health Sciences and Technology (p. 195), IMES pioneers new research paradigms and novel curricula to advance health and educate a generation of leaders working at the convergence of engineering, science, and clinical medicine. In partnership with Harvard Medical School, IMES also plays a significant role in educating physician-scientists and physician-engineers who can integrate approaches from the physical sciences and engineering with the practice of medicine. IMES is also home to the MIT Medical Electronic Device Realization Center, Clinical Research Center (p. 90), and the MIT-MGH Center for Microbiome Informatics and Therapeutics.

Opportunities for undergraduate research are available through the home department of faculty who are participating in IMES research, and through the Undergraduate Research Opportunities Program (UROP) (p. 43). For further information, contact the director, Professor Arup K. Chakraborty, Room E19-502C, 617-253-3890.

INSTITUTE FOR SOLDIER NANOTECHNOLOGIES

Since 2002, MIT has hosted the Institute for Soldier Nanotechnologies (ISN) (http://isnweb.mit.edu), an interdisciplinary research center established on contract with the US Army.

The ISN mission is to help the Army dramatically improve the protection and survivability of the soldier by working at and extending the frontiers of nanotechnology through fundamental research and transitioning with our Army and industry partners. The
INSTITUTE FOR WORK AND EMPLOYMENT RESEARCH

The Institute for Work and Employment Research (IWER) (http://mitsloan.mit.edu/iwer) is an MIT-wide multidisciplinary research and educational unit located within MIT Sloan School of Management and the Institute for Data, Systems, and Society. Since its establishment in 1937 (as the MIT Industrial Relations Section), IWER has conducted research devoted to the full range of issues related to work, labor and employment relations, human resource management, labor market issues, and related public policies. Participating faculty are drawn from the Sloan School and the departments of Economics, Political Science, Anthropology, and Urban Studies and Planning.

IWER faculty and graduate students conduct research on the broad range of issues related to the role of work and employment in the contemporary economy and society, including labor-management relations, human resource strategies and practices in both mature and new entrepreneurial organizations, work and family relationships, human capital and corporate governance, labor market theory and policy analysis, the changing nature of work and occupations, negotiations theory and practice, dispute resolution, and labor and employment policy. Together with colleagues at Stanford and several other universities, IWER faculty recently launched a major study of employment standards in global supply chains.

The institute administers a PhD program and fellowships primarily for students enrolled in the MIT Sloan PhD program, but students from other departments at MIT are encouraged to become members of IWER, participate in weekly seminars, and work closely with faculty members. The seminar series on Changes and Challenges in the World of Work is held every Tuesday, bringing together faculty and students at MIT and in the Boston area to discuss work in progress and serving as a major focal point for interest in this field.

IWER’s co-directors are Thomas A. Kochan and Paul Osterman. For more information, contact Katherine Bertman (iwer@mit.edu), Room E62-331, 617-253-8515, fax 617-253-2660.

JOINT PROGRAM ON THE SCIENCE AND POLICY OF GLOBAL CHANGE

The MIT Joint Program on the Science and Policy of Global Change (http://globalchange.mit.edu) integrates natural and social science to produce analyses relevant to global change and energy policy debates. By bringing together both science and policy, the Joint Program provides an independent assessment of the impacts of global change and the expected values of responsive action. The research conducted at the Joint Program is valuable to government agencies, who aim to formulate efficient and effective policies; to industry leaders, who aim to create risk management strategies within national, regional, and global market realities; and to other decision-makers, who value a systemic view of the broad interactions inherent in global change. The effort involves an interdisciplinary group of faculty, staff, and student researchers.

The Joint Program combines the capabilities of two complementary research centers: the Center for Global Change Science (CGCS) (p. 87) and the Center for Energy and Environmental Policy Research (CEEPR) (p. 86). Resources of the parent centers are strengthened by links to the Marine Biological Laboratory’s Ecosystems Center in Woods Hole, MA; the MIT Climate Modeling Initiative; and other MIT programs. Cooperative efforts engage the Joint Program with leading research institutions and nonprofit organizations worldwide. Financial support is provided by an international consortium of sponsors from government organizations, foundations, and industry.

The Joint Program’s primary research tool is the MIT Integrated Global System Model (IGSM) framework, which is a facility for simulating global change and for assessing the effects of policy
proposals. IGSM is a comprehensive framework for analyzing potential anthropogenic global climate change and its social and environmental consequences. It combines models of the Earth system and models of human activities and the economy to address global change issues with a holistic, systemic approach. The IGSM can be used to evaluate probabilities, uncertainties, risk, and costs and benefits—information crucial to policy decision making.

Joint Program members communicate research results and interpret policy relevance of analytical work through many professional activities, including publications, workshops, corporate and public briefings, and media interviews. Special briefings from program members have been requested by the US Congress and federal and state agencies, by governmental ministries and international organizations, and by independent research panels. Joint Program research is communicated directly to sponsors through the MIT Global Change Forum. This semiannual event brings together representatives of industry, government, international entities, and research groups for analysis and discussion of science and policy aspects of global change, and for independent assessment of studies and policy proposals.

Ronald Prinn, director of the Center for Global Change Science and professor within the Department of Earth, Atmospheric, and Planetary Sciences and John Reilly, senior lecturer in the Sloan School of Management and the Center for Energy and Environmental Policy Research, codirect the program. For further information, contact the Joint Program office (globalchange@mit.edu), Room E19-411, 617-253-7492, fax 617-253-9845.

KNIGHT SCIENCE JOURNALISM PROGRAM

The Knight Science Journalism Program (http://web.mit.edu/knight-science) offers fellowships for mid-career journalists who cover science, technology, medicine, or the environment for the general public. The program offers fellowships to reporters, writers, editors, producers, illustrators, and photographers.

Journalists who are selected spend one academic year on campus, taking courses at MIT and Harvard, participating in twice-a-week seminars with top researchers, visiting laboratories, going on field trips, and pursuing independent projects.

Science journalists face some of the most difficult challenges of reporting. They must convey complex, technical subjects in direct, simple terms to readers and viewers who demand—and have a right to—accurate, fair, and clear information about scientific developments that affect not only their views of the world, but their lives and livelihoods.

Reporting both the news and its implications is further complicated by the naturally advancing complexity of science.

Knight fellowships are designed to help journalists face these challenges by widening their knowledge of science and technology and deepening their understanding of how these fields interact with society. Also, they provide an opportunity for journalists to re-examine old ways of practicing their craft and to develop new ways.

The John S. and James L. Knight Foundation is the principal sponsor of the fellowships, the only nine-month, mid-career program reserved for science journalists. The fellowships are part of MIT’s Program in Science, Technology, and Society (p. 268).

For further information, contact Bianca Sinausky (singleta@mit.edu), program administrator, Room E19-623, 617-253-3442.

KOCH INSTITUTE FOR INTEGRATIVE CANCER RESEARCH

The Koch Institute for Integrative Cancer Research at MIT (http://ki.mit.edu) is one of the two National Cancer Institute-designated centers in the Greater Boston area. The Koch Institute building opened in 2010 and has brought scientists and engineers together under one roof to develop new ways to detect, diagnose, treat, and manage cancer. The Koch Institute’s researchers include cancer biologists; chemists; materials science, chemical, electrical, and biological engineers; computer scientists; and others, all dedicated to bringing the most advanced science and technology to bear in the fight against cancer.

The Koch Institute draws its faculty from both the School of Science and the School of Engineering. While graduate students typically enroll in their respective departmental program, students in any MIT department may ask to do doctoral thesis research under the supervision of a Koch Institute faculty member. If accepted, they may be eligible for support as research assistants.

Opportunities for undergraduate research are available through the Undergraduate Research Opportunities Program (p. 43). If an undergraduate student is interested in working in a particular lab, they may also contact the appropriate faculty member directly. In addition, the Koch Institute regularly presents seminars on cancer research and public events throughout the year.

For further information, contact Terry Clewley (tclewley@mit.edu), senior human resources and administration manager, 617-258-7448.

LABORATORY FOR FINANCIAL ENGINEERING

The MIT Laboratory for Financial Engineering (LFE) (http://lfe.mit.edu) is a research center created as a partnership between academia and industry, designed to support and promote research in financial engineering and computational finance. The principal focus of LFE is the quantitative analysis of financial markets using mathematical, statistical, and computational models. The goal of LFE is not only to spur advances in financial engineering, but also to reach out to students, industry professionals, regulators, and
policymakers to support their applications of financial technology in practical settings.

LFE’s research projects are grouped into five program areas:
- Foundations of financial behavior and adaptive markets
- Risk management and systemic risk
- Healthcare finance
- Big data and financial technology
- Hedge funds and asset-market dynamics

Students are encouraged to participate in current research projects, which include measuring illiquidity risk in hedge-fund returns; modeling and analyzing the growth of systemic risk in the financial industry, in particular the hedge-fund industry; developing evolutionary and neurobiological models of individual risk preferences and financial-market dynamics; developing new approaches to financing biomedical innovation; and examining the public policy implications of this research. LFE is a research lab for MIT faculty and students and does not offer any degree programs.

Professor Andrew W. Lo is the director of the laboratory. For further information, visit the website (http://lfe.mit.edu) or contact Jayna Cummings, Room E62-611, 617-258-5727.

LABORATORY FOR INFORMATION AND DECISION SYSTEMS

The Laboratory for Information and Decision Systems (LIDS) (http://lids.mit.edu) is an interdepartmental laboratory for research and education in systems, networks, and control. LIDS is staffed by faculty, research scientists, and graduate students from the departments of Electrical Engineering and Computer Science, Aeronautics and Astronautics, and Mechanical Engineering, as well as the Sloan School of Management. LIDS research falls into four main areas.

Research in Networks includes research on communication networks and information theory. The work extends to applications in satellite, wireless and optical communications, and data networks. In addition, major new directions include the analysis of social networks and of interactions among networked systems and/or agents, with applications ranging from analysis of data from large-scale social networks to the dynamics and risk in large interconnected financial, transportation, and power systems.

The Statistical Inference and Machine Learning group analyzes complex systems, phenomena, and data subject to uncertainty and statistical variability. Research ranges from basic theory, methodologies, and algorithms to challenging applications in a broad array of fields. Applications include multi-sensor data assimilation for earth sciences, biomedical image analysis, object recognition and computer vision, and discovery of complex interactions and behaviors in video and other data sources.

Work in Optimization looks at analytical and computational methods for solving optimization problems arising in engineering and operations research. It has applications in communication networks, control theory, power systems, machine learning, and computer-aided manufacturing. In addition to linear, nonlinear, dynamic, convex, and network programming, the solution of large-scale problems exploiting algebraic structure and simulation-based methods is examined.

The Control and System Theory group deals with all aspects of systems analysis, including learning and system identification, controller design and optimization, and analysis of distributed systems involving the interaction of information and control. Theoretical research quantifies fundamental capabilities of learning and feedback control in the presence of uncertainty. Applications include control architectures for unmanned vehicles and controllers for semiconductor manufacturing.

For further information, contact LIDS associate director, Professor Pablo Parrilo, Room 32D-726, 617-324-1542.

LABORATORY FOR MANUFACTURING AND PRODUCTIVITY

The Laboratory for Manufacturing and Productivity (LMP) (http://web.mit.edu/lmp) is a center for education and research in manufacturing and productivity at MIT. The laboratory seeks to establish a rational foundation for manufacturing based on a systematic understanding of the complex interactions among the many areas of manufacturing. The three major objectives are:
- The development of the fundamental principles of manufacturing processes, equipment, and systems
- The application of those principles to the manufacturing
- The education of engineering leaders

The laboratory draws upon faculty and staff mainly from the Department of Mechanical Engineering (p. 208), but participates in wide-ranging programs that involve many other departments and programs at MIT. Since its establishment in 1967, LMP’s research program has contributed to innovation in manufacturing processes and equipment, and has nurtured a greater understanding of planning, design, and production operations.

LMP’s three research focus areas are micro- and nanoscale manufacturing processes and equipment, manufacturing systems and information technology, and sustainability, including photovoltaics and environmentally benign manufacturing.

Opportunities for undergraduate and graduate students are available for thesis research and Undergraduate Research
Opportunities Program (UROP) (p. 43) projects, as are a limited number of postdoctoral research positions.

For additional information, contact the director, Professor Jung-Hoon Chun, Room 35-233, 617-253-1759.

LABORATORY FOR NUCLEAR SCIENCE

Research in the Laboratory for Nuclear Science (LNS) (http://web.mit.edu/lns) seeks to understand the structures and interactions of the fundamental constituents of matter. Nuclear physics experiments are performed with electrons at the Thomas Jefferson National Accelerator Facility and at the Mainz Microtron in Germany, and with neutrons at the Spallation Neutron Source at the Oak Ridge National Laboratory. The high-energy particle physics program involves experiments with both high-energy protons and heavy ions at the Large Hadron Collider at CERN in Switzerland, the search for antimatter and dark matter in space with the Alpha Magnetic Spectrometer on the International Space Station, an additional dark matter experiment, DarkLight, at the Jefferson Laboratory, and construction of a 1,000 liter Dark Matter Time Projection Chamber. Properties of neutrinos are being explored through experiments at Fermi National Accelerator Laboratory in Karlsruhe, Germany, at the South Pole, and with development of a new technique to measure neutrino mass through Cyclotron Radiation Emission Spectroscopy. Searches for extremely rare, neutrino-less nuclear decays are taking place underground in Gran Sasso, Italy. A theoretical program investigates the properties of high-energy plasmas.

LNS supports research interests of faculty in the Department of Physics by supporting and administering facilities for studies of nuclear and particle physics, including the Center for Theoretical Physics, the Bates Linear Accelerator Center, the Bates High Performance Research Computing Facility, and the MIT Central Machine Shop. Students participate in the entire range of research programs in fulfilling their graduate and undergraduate degree requirements or as participants in the Undergraduate Research Opportunities Program.

For further information, contact the director, Professor B. Wyslouch, Room 26-505, 617-253-2395.

The Center for Theoretical Physics is engaged in a broad range of fundamental research activities in theoretical nuclear and particle physics, including study of the fundamental constituents of matter and the theory that governs them, the structure and interactions of nuclei and hadrons, electroweak physics, lattice hadron physics, field theory, string theory and quantum gravity, many-body physics, mathematical physics, cosmology, and quantum computation.

For further information, contact the director, Professor E. Farhi, Room 6-300, 617-253-4871.

The William H. Bates Linear Accelerator Center is operated by LNS as a research and engineering center with particular emphasis on accelerator science and technology. Current efforts include the design, construction, and testing of new detector systems; the design, construction, and testing of a high-intensity polarized electron source for a future high-luminosity electron-ion collider; development and testing of an atomic beam source of polarized \(^3\)He for an experiment to search for the electric dipole moment of the neutron; and development of new accelerator-based techniques for screening cargo for dangerous materials.

For further information, contact the director, Professor R. Redwine, Room 26-453, 617-253-3600.

LEGATUM CENTER FOR DEVELOPMENT AND ENTREPRENEURSHIP

The Legatum Center for Development and Entrepreneurship at MIT (http://legatum.mit.edu) was founded on the belief that economic progress and good governance in low-income countries emerge from entrepreneurship and innovations that empower ordinary citizens. The center administers a competitive fellowship program for MIT graduate students who have demonstrated the potential and commitment to create innovative and inclusive for-profit enterprises in developing countries. The center also convenes a global prize for innovations, hosts lectures at MIT, and publishes case studies on innovative businesses in emerging economies.

Legatum Fellows benefit from one-on-one coaching with the center’s fellowship staff, mentors, and industry experts. Students’ entrepreneurial skills are further developed through workshops, competitions, and opportunities to learn from the center’s expanding network of investors, alumni, and established entrepreneurs. Legatum Fellows are also eligible to apply for seed grants to fund market research, prototype development, pilot testing, and related international travel to their project sites.

The Legatum Center is directed by Professor Fiona Murray. For more information, contact the center (legatum@mit.edu).

LINCOLN LABORATORY

MIT’s Lincoln Laboratory (http://www.ll.mit.edu), in Lexington, MA, is operated as a federally funded center for research and development of advanced technologies in support of national defense.

Lincoln Laboratory’s activities focus on design and development of complex systems, usually incorporating new technologies, devices, and components. The Laboratory’s mission areas are communication systems; space control; air and missile defense technology; intelligence/surveillance/reconnaissance systems and technology; advanced electronics technology; tactical systems; homeland protection; cyber security; and air traffic control.
Lincoln Laboratory Beaverworks is a campus resource that supports project based learning. Contact Beaverworks (llbw-info@ll.mit.edu) or call 617-324-7457.

The Laboratory offers student employment opportunities, which may be viewed on its website (http://www.ll.mit.edu).

MIT CENTER FOR ART, SCIENCE, AND TECHNOLOGY

The Center for Art, Science, and Technology (MIT CAST) (http://arts.mit.edu/cast) facilitates and creates opportunities for exchange and collaboration among artists, engineers, and scientists. A joint initiative of the Office of the Provost, the School of Architecture and Planning, and the School of Humanities, Arts, and Social Sciences, the center is committed to fostering a culture where the arts, science and technology thrive as interrelated, mutually informing modes of exploration, knowledge and discovery.

CAST’s activities include:

- Soliciting and supporting cross-disciplinary curricular initiatives that integrate the arts into the core curriculum and create new artistic work or materials, media, and technologies for artistic expression
- Spearheading a visiting artists program that emphasizes creative process, extensive interaction with MIT faculty, students, and researchers, and cross-fertilization among disciplines
- Assisting in the presentation and curation of performing and visual arts or design relevant to the research of engineers, scientists, and the MIT community as a whole
- Disseminating the creative and intellectual production supported by the center to the public through performances, exhibitions, installations, and a biennial symposium
- Supporting graduate students and postdoctoral researchers whose work advances the mission of the center

The faculty director of CAST is Professor Evan Ziporyn (zipo@mit.edu), Room 10-283. The executive director is Leila Kinney (lwkinney@mit.edu), Room 10-183.

MIT ENERGY INITIATIVE

The MIT Energy Initiative (MITEI) (http://mitei.mit.edu) plays an important catalytic role in accelerating responses to the many challenges facing our global energy system. MITEI does this through research, education, and outreach. MITEI supports energy research teams across the Institute by bringing them together with government and industry to develop solutions. MITEI also leads Institute energy education efforts and delivers comprehensive analyses for policy makers. Our accomplishments are enabled through the investment of member companies, government sponsors and donors.

MITEI is an Institute-wide initiative that, in its depth and breadth, is without peer at US academic institutions. MITEI-sponsored researchers are developing cutting-edge solutions and bringing new technologies to the marketplace.

Research

MITEI pairs MIT’s research teams with industry members responsible for moving the products of this collaboration into the energy marketplace. The resulting enabling energy technologies have the potential to address multiple energy challenges; the delivery of energy products and services at scale; and the provision of energy products and services in highly complex policy, legal, and regulatory environments.

The MITEI Seed Fund Program supports innovative, early-stage research across the energy spectrum—from gas monetization to advanced materials to big data to related environmental areas. The program seeks to encourage researchers from across MIT to collaborate in exploring new energy-related ideas and to open up new avenues for research. Each year, the program attracts well-established energy experts as well as new faculty who need start-up support and others who are applying their expertise in different fields to energy for the first time. Funding is provided by MITEI’s Founding and Sustaining Members and by philanthropic contributors. To date the program has provided about $17.4 million for 140 early-stage research projects.

Education

MITEI’s education program (http://mit.edu/mitei/education) develops cross-disciplinary learning opportunities and assists students with energy opportunities beyond the classroom, supporting students through a variety of programs:

- A highly popular Institute-wide undergraduate Minor in Energy Studies (p. 343) complements the deep expertise obtained in a student’s major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.
- Named MIT Energy Fellowships
- Undergraduate Research Opportunities Program placements and support
- Energy Classes website
- Support for student groups focusing on energy and related environmental topics

The MITEI Education Office supports the Energy Education Task Force with energy curriculum development and establishing and communicating a model for interdisciplinary energy education at the Institute.
Campus Energy Program

In August 2013, MIT’s first Office of Sustainability was established. It is spearheading an expansion and coordination of campus energy and sustainability programs across campus and in the community. MITEI and the Office of Sustainability are continuing the already strong collaboration with the Executive Vice President and Treasurer’s Office and the Department of Facilities in education, faculty engagement and student projects both inside and outside the classroom.

Outreach

MITEI’s Outreach activities include reports based on multi-stakeholder symposia and subsequent research, and a program of interdisciplinary studies on the future of specific energy technologies, including nuclear power, coal, natural gas, solar energy, nuclear fuel cells, and the electric grid.

MITEI’s Outreach activities have included seven major “Future of…” studies in the past eight years. These multi-year, multidisciplinary studies are designed to provide policy makers, researchers, environmentalists, and industry with technically grounded analyses to inform options for a clean energy future. Recent studies have focused on the future of solar energy, the future of the electric grid, and the future of natural gas.

Another group of publications captures the proceedings of the MITEI Associate Member Symposium series. These topical meetings are designed to bring together groups of energy experts and stakeholders to discuss critical and timely energy issues. After each symposium, a report is prepared and published providing a range of findings and recommendations. Graduate student research assistants involved in each project contribute supplemental information to the final presentations.

MITEI sponsors several colloquia and seminars each year. Seminars are designed to share current research from MIT and elsewhere, and are attended by students, faculty, and staff involved in energy research as well as by the local community. Colloquia bring together much larger and diverse MIT constituencies and feature more general-interest energy discussions following talks by prominent policy makers.

MITEI also publishes Energy Futures, a semi-annual magazine of energy research, education, and campus innovation at MIT.
as a large-scale international collaboration bringing together MIT and six leading universities, industry, and government in Portugal. The aim of this partnership is the development of unique education and research programs through the field of Engineering Systems, targeting key areas with high potential economic and social impact in Portugal.

MIT Portugal has developed four PhD and three master’s programs in Bioengineering Systems, Sustainable Energy Systems, Transportation Systems, and Engineering Design and Advanced Manufacturing, as well as joint research projects focused in integrative test-bed research in Portugal involving faculty, students, and industry from both sides of the Atlantic.

MPP initiatives include faculty and students from MIT departments in all five schools at the Institute. MIT faculty regularly teach PhD or master’s courses in Portugal, either in person or via videoconference. MIT students working with these MIT faculty make research trips to Portugal to enhance collaborative relationships on joint projects and serve as research (and occasionally teaching) assistants to these faculty members. In addition, MPP has developed internship opportunities for MIT students to conduct research related to their work at Portuguese companies.

MIT Portugal offers opportunities for MIT students in graduate research collaboration and postdoctoral research as well as sponsored lectures and public colloquia on engineering systems.

For further information, contact the program’s assistant director, Jennifer Kratochwill, Room E40-221, 617-253-5758.

MIT PROFESSIONAL EDUCATION

MIT Professional Education (http://web.mit.edu/professional) provides short courses, semester or longer learning programs, and customized corporate programs for science and engineering professionals at all levels. Taught by renowned faculty from across the Institute, MIT Professional Education programs offer professionals the opportunity to gain crucial knowledge in specialized fields to advance their careers, help their companies, and have an impact on the world.

MIT Professional Education comprises five programs.

Short Programs. (http://web.mit.edu/professional/short-programs) Short Programs offers more than 50 courses in two-to-five day sessions, primarily in the summer. Classes may involve lectures, discussions, readings, interactive problem solving, laboratory work, and collaborative projects among participants, faculty, and peers. These intensive courses are designed for busy professionals wishing to gain new career tools and insights about the impact of evolving technologies. Courses combine MIT’s breakthrough research with insights from industry, government, and academic participants.

Some courses can be offered at company sites for groups of 25 or more.

Digital Programs. (http://web.mit.edu/professional/digital-programs) Digital Programs aims to deliver timely, relevant programs to a global audience using online platforms, including the open-sourced online education platform developed by edX. The benefits of online learning include a flexible schedule that allows busy professionals to take courses at their own convenience; access to advanced professional training from MIT faculty without the need for travel to the MIT campus; and networking opportunities with a diverse population of fellow participants.

Advanced Study Program (ASP). Each semester, professionals in engineering and technical fields come to MIT as fellows in the Advanced Study Program (ASP) to gain knowledge and skills needed to advance their careers and bring innovative ideas and practices to their employers. While at MIT, they are enrolled as graduate students with full privileges. They plan their own academic experience that may include courses from more than 30 disciplines, and some also arrange research opportunities with faculty in their field. Fellows earn grades, MIT credit, and an ASP certificate.

Custom Programs. These are programs designed to meet company-specific training needs, and range from a single day to a year-long sequence of sessions, on or off campus. Courses are generally focused on scientific and technical leadership, combining topics from both technology and management fields. MIT Professional Education will work with companies to match their needs with custom curricula from MIT faculty who have in-depth expertise in relevant disciplines.

International Programs. (http://web.mit.edu/professional/international-programs) MIT Professional Education addresses corporate education needs and strategic goals through educational programs relevant to your region. The staff works with your leadership to help define needs and then coordinate with MIT faculty to design a targeted, needs-based learning experience. These specialized courses (based on Short Programs courses) can be two- to five days and held at your company site, or at an off-site location in your region. Our International Programs apply research insights to your organization’s and country’s real-world challenges while developing productive new networks among employees.

Email (professionaleducation@mit.edu) for more information about MIT Professional Education.

MIT PROGRAM IN ART, CULTURE AND TECHNOLOGY

The MIT Program in Art, Culture and Technology (ACT) (http://act.mit.edu) is an academic program and research center that facilitates artist-thinkers’ exploration of art’s broad, complex, global history and conjunction with culture, science, technology,
and design via rigorous critical artistic practice and practice-driven theory.

This exploration occurs in the program’s academic offerings and the research of faculty, fellows, and guests in individual and collaborative forms and media, including cinema; video; sound; performance; photography; experimental media and new genres; conceptual, sculptural, and spatial experiments; writings; and publications. Critical thinking, knowledge mining, and creative engagement, along with explorations of changing public and private spheres, are of particular relevance. Activities include a cross-disciplinary lecture series, field trips, workshops, studio visits, and public presentations.

ACT’s undergraduate offerings include a concentration within the Bachelor of Science in Architecture degree program and a HASS minor and concentration in art, culture and technology. Its selective two-year graduate program grants a Master of Science in Art, Culture and Technology (SMACT).

For further information, contact ACT (act@mit.edu), Room E15-212, 617-253-5229, fax 617-253-3977.

MIT SEA GRANT

Founded in 1966 by Congress, the National Sea Grant College Program is a network of 33 programs working to promote the conservation and sustainable development of our marine resources through research, education, and outreach. Sea Grant is funded by the US Department of Commerce’s National Oceanic and Atmospheric Administration.

MIT was designated a Sea Grant College Program (http://seagrant.mit.edu) in 1976 and was the first Sea Grant program to receive funding for research. The program’s competitive annual funding for Massachusetts academic investigators supports innovative research that responds to human health and safety concerns, along with efforts that produce new tools, instruments, and pioneering technologies. Projects range from water quality forecasting for ecosystem-based state management to exploring tidal in-stream energy conversion to support science-based decision making by local planning and management agencies.

The program’s Marine Advisory Services (MAS) offers scientific guidance, training, workshops, access to databases, and informational materials to stakeholders. MAS staff includes specialists in marine ecology and biology, coastal policy, social sciences, education, communication, and geospatial and data management, and meets these challenges head-on with marine engineering and ocean literacy education, workshops, and publications that promote the wise and informed use of ocean and coastal resources.

In-house research has established an internationally acclaimed Autonomous Underwater Vehicle (AUV) Laboratory designing marine robots with a multitude of applications in oceanography, environmental monitoring, and underwater resource studies. The Hydrodynamic Modeling Lab develops and applies high-fidelity numerical models to address coastal inundation and wave storm surges and the Ship Design Lab develops innovative tools for high efficiency, low carbon footprint ships, high-speed marine vehicles, including autonomous surface crafts.

Community partners and advisory committees include individuals from academic circles, non-government organizations, industry leaders, and state and local government agencies. Constituents include Massachusetts coastal communities, seafood harvesters and consumers, fellow ocean scientists and engineers, and the general public relying on the ocean for sustenance, energy, recreation, travel, and wonder.

Graduate and undergraduate MIT and visiting students participate in many Sea Grant research projects with support available to them from UROP or from their home institutions.

For more information, contact the director, Professor Chryssostomos Chryssostomidis (chrys@mit.edu), Room E38-300, 617-253-7131.

MARTIN TRUST CENTER FOR MIT ENTREPRENEURSHIP

The Martin Trust Center for MIT Entrepreneurship (http://entrepreneurship.mit.edu) educates and nurtures students from across the Institute who are interested in learning the skills to design, launch, and grow innovation-based ventures. The center supports a variety of teaching activities in all aspects of entrepreneurship, which provide a combination of project-based and theory-based learning. Project-based classes include New Enterprises, Innovation Teams, and Entrepreneurship Lab; theory-based classes include Entrepreneurial Finance, Strategic Management of Innovation and Entrepreneurship, and Dilemmas in Founding New Ventures. Over 30 subjects are offered, involving more than 25 faculty members.

All entrepreneurship subjects, described in the online MIT Subject Listing & Schedule (http://student.mit.edu/catalog), are open to graduate students from all MIT departments, and support the strong community of MIT entrepreneurship and innovation. Subjects frequently feature invited speakers who have significant real-world experience to share. The classes provide students with insights based on leading-edge research on entrepreneurship and related topics, such as the role of science and innovation in economic growth, and the characteristics of effective entrepreneurial firms.

The Martin Trust Center supports and cooperates closely with a wide array of related organizations at MIT, including the MIT Technology Licensing Office, the Deshpande Center for Technological Innovation, the Venture Mentoring Service, the Legatum Center for Development and Entrepreneurship, and the Lemelson-MIT Program. It also supports a range of student activities including the MIT $100K
Entrepreneurship Competition, the MIT Clean Energy Prize, the MIT Entrepreneurship Review, the MIT Venture Capital and Private Equity Club, the MIT Healthcare Club, the MIT Sloan Sales Club, MIT Sloan Entrepreneurs for International Development, and the MIT Energy Club.

Bill Aulet is the managing director, Professor Fiona Murray is the faculty director, and Professor Edward B. Roberts is the founder and chair. The Martin Trust Center is also supported each semester by a group of entrepreneurs-in-residence who have founded high-impact innovation-based companies and organizations from scratch and provide advice to students with similar goals.

For more information, contact the Martin Trust Center (trustcenter@mit.edu), Room E40-160, 617-253-8653, fax 617-253-8633.

MATERIALS PROCESSING CENTER

The Materials Processing Center (MPC) (http://mpc-web.mit.edu), an interdisciplinary center within the School of Engineering (p. 136), provides an environment where industry, government, and academia can collaborate to identify and address multidisciplinary issues in materials processing and manufacturing.

MPC’s focus is on strengthening and enhancing its intellectual community, increasing industrial outreach, and creating partnerships with industry to focus on research and education. The Industry Collegium (https://mpc-www.mit.edu/mpc/collegium) of the MPC expands upon MIT’s traditionally close relationships with industry by providing a direct link between materials science, engineering, and processing research at the university and the short, medium, and long-term needs of a company. These partnerships address current issues in all materials sectors, but especially in biomedicine and biotechnology, chemical and biological sensors, energy generation and storage, environmental sustainability, information systems, nanotechnology, and transportation. MPC also encourages exchanges between academia and industry through visiting scientists, adjunct faculty appointments, and industrial internship educational opportunities. MPC sponsors a major workshop involving both students and faculty during its Materials Day (https://mpc-www.mit.edu/events/materials-day) symposium and poster session each fall.

Each year for nine weeks during the summer, MPC co-sponsors a research internship program, inviting outstanding undergraduate students nationwide to participate in ongoing MIT materials research. The program has brought hundreds of the best science and engineering undergraduates from across the country to conduct graduate-level materials research. Students can select from a wide array of projects available.

For more information about MPC or the Industry Collegium, contact Mark Beals (mbeals@mit.edu), associate director, Room 24-517, 617-253-2129.

MCGOVERN INSTITUTE FOR BRAIN RESEARCH

The McGovern Institute for Brain Research (http://mcgovern.mit.edu) at MIT is a research and teaching institute committed to meeting two great challenges of modern science: understanding how the brain works and discovering new ways to prevent or treat brain disorders.

Research at the McGovern Institute is organized around three broad themes: perception, cognition, and action. Together these themes correspond to the flow of information through the brain—from the sensory systems that receive and interpret input, to the higher regions that underlie cognition, and finally to the motor systems that control our actions. Our research employs the full range of modern neuroscience techniques, from molecular genetics to functional neuroimaging and computational modeling. A deeper knowledge of the human brain will have profound implications, both for our understanding of our own minds and for the treatment of the many brain diseases that lead to human suffering.

The institute currently has 20 principal investigators and continues to grow. All McGovern Institute faculty members hold dual appointments in departments at MIT. Each of our faculty members leads a research team, and the institute as a whole comprises a community of more than 200 researchers and support staff.

The main focus for undergraduate neuroscience education at MIT is Course 9, leading to the Bachelor of Science in Brain and Cognitive Sciences. There are many opportunities for undergraduates to work in McGovern labs, for example through the MIT Undergraduate Research Opportunities Program.

The McGovern Institute does not operate its own graduate program. Instead, graduate students must enroll in one of the departmental or interdepartmental graduate programs at MIT. The majority of graduate students within the McGovern Institute are enrolled in the Brain and Cognitive Sciences graduate program.

For more information about undergraduate and graduate opportunities at the McGovern Institute, visit the website (http://mcgovern.mit.edu/work-here/types-of-positions). To learn more about the institute, contact the director, Dr. Robert Desimone, Room 46-3160, 617-324-0639.

MEDIA LAB

Actively promoting a unique, interdisciplinary culture, the MIT Media Lab (http://www.media.mit.edu) encourages an unconventional mixing and matching of seemingly disparate research areas. Since opening its doors in 1985, the Lab has pioneered such areas as wearable computing, tangible interfaces, and affective computing.
Today, faculty members, research staff, and students at the Lab work in more than 25 research groups on some 350 projects that range from digital approaches for treating neurological disorders; to a stackable, electric car for sustainable cities; to smart prostheses; to advanced imaging technologies that can “see around a corner.” The Lab is supported by more than 70 sponsors, including some of the world’s leading corporations. These sponsors provide a majority of the Lab’s approximately $45-million annual operating budget.

Research at the Media Lab is tightly coupled with the graduate academic Program in Media Arts and Sciences (p. 123), which offers master’s and doctoral degrees.

MICROSYSTEMS TECHNOLOGY LABORATORIES

The Microsystems Technology Laboratories (MTL) (http://www.mtl.mit.edu) provide modern fabrication facilities to enable research and education in nano- and micro-technologies.

The MTL facilities consist of fully equipped cleanroom laboratories and associated design, simulation, testing, and characterization infrastructure, as well as an extensive computational network, supporting wide array of design and layout tools.

MTL’s nano-/micro-fabrication, testing, and computational facilities are available to the entire MIT community as well as researchers from other universities or government laboratories. MTL is also available for limited industrial participation.

Research at MTL is conducted in four separate spaces: the Integrated Circuits Laboratory (ICL), the Technology Research Laboratory (TRL), the Exploratory Materials Laboratory (EML), and the Electron Beam Lithography Laboratory (EBL). ICL has been designed and equipped to serve as a highly advanced integrated circuit, device, structures, and process research facility. TRL supports the development of new process technologies by providing facilities for the fabrication of novel micro- and nano-structures. EML is a highly flexible lab with all basic fabrication capabilities and almost no restriction on materials. The EBL provides advanced electron beam lithography using a high-resolution, fast through-put Elionix F-125 e-beam writer; it is jointly managed by MTL and the Research Laboratory of Electronics.

More than 120 faculty and senior research staff, 540 graduate students, 50 undergraduates, and 80 postdoctoral associates are involved in ongoing activities at MTL. Approximately 34 PhD and 25 SM and MEng degrees whose primary area of research is strongly coupled to MTL facilities are awarded each academic year in more than 10 academic departments.

For information regarding MTL’s technical operations and capabilities, contact Dr. Vicky Diadiuk (diadiuk@mit.edu), associate director for operations, 617-253-0731. For information regarding MTL programs and other general information, contact Debroah Hodges-Pabón, 617-253-5264.

NUCLEAR REACTOR LABORATORY

The MIT Nuclear Reactor Laboratory (NRL) (http://web.mit.edu/ntl/www) is an interdepartmental center that operates a 6 MW research reactor. NRL has a distinguished history of providing faculty and students from MIT and other institutions with a state-of-the-art neutron source as well as a highly efficient and well-organized infrastructure to facilitate its use.

NRL is equipped with a wide variety of sample irradiation facilities, with fast and slow neutron fluxes up to 10^{14} and 5×10^{13} per cm2 per second; temperature-controlled in-pile facilities, a neutron diffractometer; and a fission converter facility. In-pile loops that closely simulate the environment in light water power reactors are available for corrosion and irradiation damage testing. An in-pile high-temperature irradiation facility for advanced materials studies has been successfully demonstrated to operate up to 1500°C. An excellent medical irradiation facility with a clinically useful epithermal beam is available for patient and animal irradiations.

Other experimental facilities and instrumentation include radiochemistry laboratories; hot cells for dismantling or testing; a shielded hot box for handling and nondestructive testing of radioactive materials; nuclear detection equipment; delayed and prompt gamma activation analysis facilities; an inductively coupled plasma spectrometer (ICP-OES); and a materials characterization laboratory. A thermal hydraulic lab was established with the Nuclear Science and Engineering Department to study heat transfer properties of nanofluids for nuclear reactor and other thermal management applications.

Current research topics include applications of nuclear trace analysis to problems in the physical and engineering sciences, life sciences, geosciences, and the environment; radiation effects on materials; advanced fuels irradiation; dose and corrosion reduction in power reactors; reactor engineering; instrumentation for neutron detection; nuclear medicine; and isotope production.

Undergraduates can be involved in the operation of the reactor by completing the reactor operator training program, which can lead to being employed part-time by the NRL as an NRC-licensed reactor operator, and/or utilize the reactor in research activities through special projects or senior theses. In addition, graduate thesis research can be carried on in the various research areas mentioned above.

A current summary report describing NRL activities in greater detail is available. For information, inquire at the office of the director, Dr. David E. Moncton, Room NW12-204, 617-253-8883.
OFFICE OF DIGITAL LEARNING

MIT undergraduate and graduate students can become involved in research and in creating digital courses, modules and tools, which can serve as vehicles to advance understanding of pedagogy and learning.

The MITx Digital Learning Lab (http://odl.mit.edu/mit-faculty/mitx-digital-learning-lab) is a collaborative program between the Office of Digital Learning (ODL) and MIT’s academic departments with a mission to learn about, progress and innovate in digital learning on campus and beyond. Members of the Digital Learning Lab (Digital Learning Scientists and Digital Learning Fellows) serve as ambassadors to MIT departments, collaborating with faculty in developing and delivering digital learning projects.

There are opportunities for post-doctoral, graduate and undergraduate students to join individual course teams or undertake digital learning projects. MITx UROPS have developed a host of tools (http://web.mit.edu/6.mitx/www/#line-fitting-600) from mathlets (http://mathlets.org/about)—highly interactive applets designed to enhance STEM classes—to Shakespeare Visualizations (http://web.mit.edu/6.mitx/www/Shakespeare/charTimelines.html). For more information, contact ODL (http://odl.mit.edu/contact-us).

ODL also sponsors K-12 Science Videos (http://k12videos.mit.edu). This is an educational outreach program, where MIT students produce original digital media and live programming that seeks to educate middle and high school students about science while sparking their curiosity and interest. MIT students can host videos or serve as fellows, who contribute to the program at large including media, technology, and community outreach.

Finally, if you are interested in exploring an opportunity to intern, contact ODL (http://odl.mit.edu/contact-us) to discuss possibilities.

OPERATIONS RESEARCH CENTER

The Operations Research Center (ORC) (http://web.mit.edu/orc/www) provides academic and research opportunities for graduate students and faculty interested in an interdisciplinary field that draws upon ideas from engineering, management, and mathematics in order to apply scientific methods to decision making. ORC includes faculty participants from the Sloan School of Management, as well as from the departments of Electrical Engineering and Computer Science, Aeronautics and Astronautics, Mathematics, Civil and Environmental Engineering, Mechanical Engineering, Urban Studies and Planning, and Economics. More than 50 faculty and 85 graduate students are affiliated with the center.

The center coordinates SM and PhD programs (p. 357) in operations research, which provides a strong background in theory as well as the practical techniques used in building models for a wide variety of applications.

For further information about the Operations Research Center and its degree programs, contact Laura Rose (lrose@mit.edu), Room E40-107, 617-253-9303.

PICOWER INSTITUTE FOR LEARNING AND MEMORY

The Picower Institute for Learning and Memory (http://picower.mit.edu) is an interdisciplinary research entity within MIT’s School of Science, with faculty members holding academic appointments in the Department of Brain and Cognitive Sciences, the Department of Biology, or both.

The Picower Institute’s mission is to unravel the mechanisms that drive human learning and memory, as well as related functions such as perception, attention, and consciousness. The institute offers exciting research opportunities from undergraduate to postdoctoral levels in molecular, cellular, and genetic biology, as well as in systems biology, which explores the cognitive system at the neural circuit and systems level.

Picower Institute investigators explore:

- How memory is formed through genetic, molecular, and cellular neural circuits and neural systems
- How memories of personal experiences are used in daily life and in dreams
- How neurons form synaptic connections and how those connections transmit information and change with experience
- The surprising ability of certain species to grow new brain cells in adulthood and the extraordinary plasticity or adaptability of the developing and adult brain
- The intricacies underlying the executive functions of the cerebral cortex

The institute's highly collaborative, cross-disciplinary strategy spawns exciting joint projects among its various laboratories. Many Picower faculty also are inventors of unique technologies and techniques that are redefining the practice of neuroscience.

Key Picower Institute discoveries are shedding light on disorders ranging from mental retardation and autism to Alzheimer’s, Huntington’s, and Parkinson’s disease, schizophrenia, epilepsy, brain injury, and stroke.

For further information, contact the director, Professor Li-Huei Tsai (lhtsai@mit.edu), Room 46-107, 617-324-1660.

PLASMA SCIENCE AND FUSION CENTER

The timely development of practical fusion energy in the 21st century is arguably one of the most important challenges facing
The scientific and engineering community worldwide. The Plasma Science and Fusion Center (http://www.psfc.mit.edu) provides a focus for experimental and theoretical studies in plasma science, magnetic and inertial fusion research, and the development of related enabling technologies. The center fosters independent creativity and provides the intellectual environment for the educational training of students, research scientists, and engineers. Research activities at the Plasma Science and Fusion Center fall into five major programmatic divisions as described below.

The Alcator C-Mod Project is developing a basic understanding of the stability and transport properties of high-temperature magnetically confined toroidal plasmas at reactor-relevant conditions. Alcator C-Mod, a world-class divertor tokamak, is a compact, high-magnetic-field device (up to 8 Tesla) with record-high plasma pressure and particle and power densities. C-Mod’s present research program is aimed at understanding energy and particle transport at magnetic fields, plasma densities, and first wall power loadings comparable to those of future fusion reactors. In addition, it seeks to optimize plasma performance with RF heating and non-inductive current profile control using high-power RF transmitters (8 MW at 40-80 MHz) and microwaves (3 MW at 4.6 GHz frequency).

The Physics Research Division is developing the basic experimental and theoretical understanding of magnetically confined plasmas, including experimental research in magnetic reconnection in plasmas, and development of advanced and novel plasma diagnostics. The experimental facilities in this division include the Versatile Toroidal Facility for basic plasma science research, and the Levitated Dipole Experiment (LDX) for studying space plasma physics-related phenomena. Scientists, students, and faculty in this division also carry out world-renowned theoretical research.

The High-Energy-Density Physics Division designs and implements experiments on national facilities, such as the OMEGA laser facility at the University of Rochester Laboratory for Laser Energetics, and the National Ignition Facility at Lawrence Livermore National Facility. This division discovered the existence of megagauss magnetic fields in laser-compressed pellets. This division also performs related theoretical calculations to study and explore the nonlinear dynamics and properties of plasmas in inertial fusion and those under the extreme conditions of density (~1000 g/cc), pressure (~1000 gigabar), and field strength (~megagauss). Most recently the division has conducted pioneering nuclear science experiments using high-energy-density plasmas, ushering in a new and exciting field of research, plasma nuclear science, blending the separate disciplines of plasma and nuclear physics.

The Waves and Beams Division conducts experimental and theoretical research on the physical principles of novel sources of high-power, coherent radiation ranging from the microwave to the terahertz region of the electromagnetic spectrum. Current research focuses on the gyrotron (or cyclotron resonance maser), a novel source of millimeter wave and terahertz radiation using high magnetic fields, and on novel forms of the traveling wave tube amplifier. The division also conducts research on novel concepts for high-gradient acceleration of electrons to demonstrate the principles required for future generations of electron linear accelerators. The experimental research utilizes a 25 MeV accelerator to investigate high-gradient acceleration of electrons and coherent radiation by femtosecond electron bunches.

The Fusion Technology and Engineering Division provides critical engineering support to the national fusion energy sciences program for both operating magnetic confinement fusion experiments and advanced fusion design projects. The division has extensive experience in design, analysis, development, and fabrication of advanced high-field copper and superconducting magnet technology. Present research is focused on developing second-generation high-temperature superconductors for high-field, high-current cables for fusion magnets, and for applications of superconducting DC power transmission and distribution. The division is also developing very high-field, compact cyclotron accelerators for applications such as proton radiotherapy for cancer treatment, active detection of strategic nuclear materials for protection against weapons of mass destruction, and variable energy, heavy-ion accelerators for fusion materials research.

As part of the Francis Bitter Magnet Laboratory, the Center for Magnetic Resonance’s (CMR) objectives are to develop sophisticated technologies for magnetic resonance in the areas of solution-state nuclear magnetic resonance (NMR), solid-state NMR, electron paramagnetic resonance (EPR), and dynamic nuclear polarization (DNP); to apply those technologies to biologically and medically significant research, both in-house and collaboratively; to operate a state-of-the-art instrument facility to serve needs of researchers in chemistry, biology, and medicine; and to openly disseminate and provide training in technological developments at the Center.

Many academic departments are affiliated with PSFC, including the Physics, Nuclear Science and Engineering, Electrical Engineering and Computer Science, Materials Science and Engineering, Mechanical Engineering, Chemical Engineering, and Aeronautics and Astronautics. The center’s programs and laboratories provide excellent forums for training students and professional researchers, and offer world-class research facilities to faculty members from many departments. Forty-one graduate students are currently involved at all levels of thesis work. Undergraduates also can participate through the Undergraduate Research Opportunities Program.

For further information contact the director, Professor Dennis Whyte (whyte@psfc.mit.edu), Room NW17-288, 617-253-1748.
great modern interdepartmental research centers. Today, it is one of MIT’s largest, as well as the most diverse in intellectual interests.

RLE research is focused on seven major themes:

- Atomic Physics
- Information Science and Systems
- Quantum Computation and Communication
- Energy, Power and Electromagnetics
- Photonic Materials, Devices and Systems
- Nanoscale Materials, Devices and Systems
- Biomedical Science and Engineering

Over 75 principal investigators—of whom 65 are MIT faculty members—direct RLE’s research projects. These faculty members are drawn from seven MIT departments, including Biological Engineering, Electrical Engineering and Computer Science, Materials Science and Engineering, Mathematics, Mechanical Engineering, Nuclear Science and Engineering, and Physics, and from MIT’s Institute for Medical Engineering and Science.

More than 340 MIT graduate and undergraduate students—also drawn from these departments and divisions—make RLE one of the primary environments for student learning at MIT. In fact, it is the combination of forefront research with student participation across multiple academic disciplines that characterizes the RLE culture.

In 2009, the Laboratory for Electromagnetic and Electronic Systems (LEES) was merged into RLE as part of a growing emphasis on energy-related research. Researchers affiliated with LEES are pioneers in understanding, on one hand, the theoretical basis of advanced electrical power and energy applications, and on the other, the component, circuit, and system technologies required to make such applications into practical realities.

RLE’s research efforts are supported by the most diverse sponsor base at MIT. Principal sponsors include the Department of Defense, National Institutes of Health, National Science Foundation, Department of Energy, industry, and nonprofit foundations and organizations.

In addition, a significant share of RLE’s activities is self-funded from gifts and from the discretionary resources of the laboratory and its principal investigators. Approximately a third of RLE’s activities involves extramural collaborations with universities, institutions, and industry, making the laboratory one of MIT’s principal points of connection with peer institutions, government, and the business world.

Nearly all RLE activities take place at MIT’s main campus in Cambridge. Some also take place at the Massachusetts Eye and Ear Infirmary in Boston.

For further information, contact the RLE Headquarters, Room 36-413, 617-253-2519.

SIMONS CENTER FOR THE SOCIAL BRAIN

The Simons Center for the Social Brain (http://web.mit.edu/scsb) at MIT was established in 2012 with the mission of investigating the neural mechanisms underlying social cognition and behavior, and to translate this knowledge into better diagnosis and treatment of autism spectrum disorders.

Neural correlates of social cognition and behavior exist in diverse species, and the underlying mechanisms will be studied in both humans and relevant model organisms and systems. We expect that experimental approaches will take advantage of strengths at MIT in genetics and genomics, molecular and cell biology, analyses of neural circuits and systems, cognitive psychology, mathematics and engineering.

The center’s goals are to develop MIT-wide programs on genetics and gene discovery, mechanisms and models, cognitive neuroscience, and translation and therapeutics. MIT researchers can contribute uniquely to understanding autism and related brain disorders through the development of novel tools and technologies and advancing new computational and theoretical approaches.

The center supports these programs and themes through seed funds for new investigators proposing novel collaborative research, a postdoctoral fellows program, and support for graduate students and undergraduate researchers. We also work closely with researchers and clinicians at neighboring hospitals and universities.

For further information, contact the program administrator, Eleana Ricci, Room 46-6216, 617-253-9340.

SINGAPORE-MIT ALLIANCE

The Singapore-MIT Alliance (SMA) (http://web.mit.edu/sma) is a global partnership in graduate education created by MIT, the National University of Singapore, and Nanyang Technological University. Setting a new standard for international collaboration in graduate research and education, the alliance educates young engineers to serve as leaders in a technologically advanced economy, and creates a cohort of students and faculty with creativity and entrepreneurial spirit.

All five SMA-2 programs—Advanced Materials for Micro- and Nano-Systems, Chemical and Pharmaceutical Engineering, Computational Engineering, Computational and Systems Biology, Manufacturing Systems and Technology—had their final intake of new dual master’s students. All five programs continue to have engagement with PhD students and active research programs.

For more information about SMA, contact the executive director, John C. Desforge, Room 8-407, 617-452-3014.
SINGAPORE-MIT ALLIANCE FOR RESEARCH AND TECHNOLOGY CENTRE

The Singapore-MIT Alliance for Research and Technology (SMART) (http://smart.mit.edu) Centre is a major research enterprise established by MIT in partnership with the National Research Foundation of Singapore (NRF). The SMART Centre serves as an intellectual hub for research interactions between MIT and Singapore at the frontiers of science and technology. The goals and aims of the SMART Centre are to:

- Identify and carry out research on critical problems of societal significance and develop innovative solutions through its Interdisciplinary Research Groups (IRGs)
- Become a magnet for attracting and anchoring global research talent to Singapore
- Develop robust partnerships with local universities and institutions in Singapore
- Engage in graduate education by co-advising local doctoral students and postdoctoral associates
- Help instill a culture of translational research, entrepreneurship and technology transfer through the SMART Innovation Centre

Established in 2007, the SMART Center further expands and develops this partnership between MIT and Singapore and allows faculty, researchers and graduate students from MIT to collaborate with their counterparts from universities, polytechnics, research institutes, governmental agencies, and industry in Singapore and in Asia.

The SMART Centre is MIT's first research centre outside of Cambridge, and its largest international research endeavor. The centre is also the first entity in the Campus for Research Excellence and Technological Enterprise (CREATE). Other universities located at CREATE are ETH Zurich, Cambridge University, Technical University Munich, Peking University, Technion Israel Institute of Technology, and University of California, Berkeley.

SMART Interdisciplinary Research Groups

The SMART Centre allows researchers from MIT to collaborate with their counterparts from universities, research institutes and industries in Singapore and Asia to perform interdisciplinary, experimental, computational and translational research. With many MIT faculty members, postdoctoral fellows, PhD students, and staff participating at SMART, these IRGs are helping promote a vibrant knowledge-based atmosphere in Singapore.

Five IRGs are under the SMART Centre, each headed by a senior MIT faculty member: BioSystems and Micromechanics, the Centre for Environmental Sensing and Modeling, Future Urban Mobility, Infectious Diseases, and Low Energy Electronic Systems.

Innovation Centre

In addition to the IRGs that carry out research, SMART has also set up an Innovation Centre (http://smart.mit.edu/innovation-centre/innovation-centre.html) modeled on MIT's Deshpande Center but adapted to the culture and practices of Singapore. Its mission is to instill a culture of translational research, entrepreneurship, and technology transfer. Three types of awards are given: Ignition Grants, for very early proof-of-principle development; Innovation Grants, for further proof-of-concept development; and Explorer Grants, for student teams.

The Innovation Centre also conducts educational programmes that team up students from NUS and NTU with students from INSEAD and Singapore Management University (SMU).

SMART Centre Graduate Fellowship Programme

The Graduate Fellowship Programme (http://smart.mit.edu/fellowships/sma3-graduate-fellowship/smart-graduate-fellowship.html) is open to currently enrolled first-year students and entering doctoral students from the Nanyang Technological University (NTU) and the National University of Singapore (NUS), Singapore University for Technology and Design (SUTD), and SMU. Its goal is to attract and retain the best and most talented doctoral students from Singapore, the region and beyond, giving them the unique opportunity to be involved in strategic research at the SMART Centre and to work with faculty members from MIT, NTU, NUS, SUTD, and SMU.

Students selected for the programme receive up to four years of full tuition fees at the student's home university, a monthly stipend, and a travel grant for a six-month residency at MIT.

SMART Centre Undergraduate Research Opportunities Programme

The SMART Undergraduate Research Fellowship Programme (SMURF) (http://smart.mit.edu/fellowships/smurf/smurf.html) allows undergraduates from MIT, NTU, and NUS to participate in an MIT faculty member's research projects at the SMART Centre and interact with students, researchers, and faculty members. Students selected spend a summer at the SMART Centre. Each undergraduate has an MIT faculty member as a mentor/supervisor and the undergraduate has access and use of the faculty's laboratory and equipment.

Students are paid a competitive stipend; those from MIT also have their travel and accommodation paid for. The aim of the SMART SMURF Programme is to expose undergraduate students to research experiences involving an internationally diverse group of investigators.
SMART Centre Postdoctoral Research Fellows Programme

The highly selective Postdoctoral Research Fellows Programme (http://smart.mit.edu/fellowships/smart-scholars/smart-scholars.html) aims to attract exceptionally talented postdoctoral researchers to Singapore. These awards provide a unique opportunity for recent PhD graduates to participate in the SMART Centre in Singapore. The awards, to be given annually, are open to those with less than three years postdoctoral experience.

In contrast to typical postdoctoral programmes where the postdoctoral works for a supervisor on a project defined by the supervisor, this programme allows the investigators to conduct research into questions of their own interest. The fellowship recipient is able to conduct research of his/her own choice within, but not necessarily tied closely to, a current project in one of the existing SMART IRGs. In addition to a generous stipend each fellow also receives a research grant and travel funds.

For more information about SMART, contact the executive director, John C. Desforge, Room 8-407, 617-452-3014.

SOCIOTECHNICAL SYSTEMS RESEARCH CENTER

The Sociotechnical Systems Research Center (SSRC) (http://ssrc.mit.edu) is an interdisciplinary research center at MIT that focuses on the high-impact, complex, sociotechnical systems that shape our world.

SSRC brings together faculty, researchers, students, and staff from across MIT to study and seek solutions to complex systems challenges that span healthcare, energy, infrastructure networks, the environment, and international development.

SSRC research partners include:

- Center for Biomedical Innovation (CBI) (http://cbi.mit.edu)
- Connection Science (http://ssrc.mit.edu/programs/mit-connection-science)
- Ford-MIT Alliance (http://ssrc.mit.edu/ford-mit-alliance)
- Geospatial Data Center (GDC) (http://geospatial.mit.edu)
- Materials Systems Laboratory (MSL) (http://msl.mit.edu)
- MIT Consortium for Engineering Program Excellence (CEPE) (http://ssrc.mit.edu/programs/mit-consortium-engineering-program-excellence)
- MIT Information Quality (MITIQ) (http://mitiq.mit.edu)
- Project Health (http://ssrc.mit.edu/programs/project-health)
- Systems Engineering Advancement Research Initiative (SEArI) (http://seari.mit.edu)

TECHNOLOGY AND DEVELOPMENT PROGRAM

The Technology and Development Program (TDP) (http://web.mit.edu/mit-tdp/www) provides a focus at MIT for interdisciplinary research and education related to the role of science and technology in the socioeconomic growth of newly industrialized countries.

TDP promotes an awareness among faculty and students of the relationships among science, technology, and development; provides a focal point for the activities of faculty, students, and visiting scholars interested in the field of technology and development; and serves as a resource for organizations outside MIT (government, academic, private sector) that wish to explore the institute’s understanding of socioeconomic and technological challenges facing the newly industrialized nations.

TDP is administered by faculty executive committees which oversee the activities of each program. The primary emphasis of each TDP program is on institution building. Through research, education, and industrial outreach activities, the program provides opportunities for industry, government, and academia to pool their resources and enhance the domestic socioeconomic growth of the host country. TDP has worked in numerous parts of the world including Egypt, Lebanon, Thailand, Malaysia, United Arab Emirates, Japan, and South America.

TDP provides educational and research opportunities for master’s candidates interested in specific areas of technology and development. Admission to MIT must first be obtained from the appropriate academic department. The student should then submit a proposal for study to the TDP policy committee for approval. Details of the program are available upon request. Students may receive financial support in the form of research assistantships associated with current TDP research projects.

Further information about the program may be obtained from the director, Professor Fred Moavenzadeh, Room 1-175, 617-253-7178.

TRANSPORTATION@MIT

The greatest wave of mass mobility is yet to come, and it represents a potential economic, health, and ecological disaster on a global scale. In 2009, to address the grand challenge of future mobility, MIT researchers launched Transportation@MIT (http://transportation.mit.edu), a partnership of MIT’s School of Engineering, the Sloan School of Management, and the School of Architecture and Planning. Representing 15 departments, this team of over 240 faculty and senior research is already engaged in transportation-related research. Transportation@MIT is transforming global transportation systems to meet the economic and environmental mobility needs of the 21st century.
Transportation@MIT is building on MIT’s rich tradition of transportation education, which includes a Master of Engineering in Logistics (p. 453) and a Master of Science and a Doctor of Philosophy in Transportation (p. 359), described under Interdisciplinary Graduate Programs. At the undergraduate level, we have introduced transportation technology and systems courses to our curriculum in support of flexible engineering degrees with a transportation concentration.

Our regular seminars highlighting current MIT and external transportation research engage this community of faculty, research staff, and students. At these seminars, students are introduced to potential applications and interdisciplinary collaborations for their work in their vast fields of transportation in academia, government, and industry. Students also have a community within the Institute-wide Transportation Club, which has over 300 members.

WHITEHEAD INSTITUTE FOR BIOMEDICAL RESEARCH

Whitehead Institute for Biomedical Research (http://wi.mit.edu) provides educational and research opportunities for graduate and undergraduate students in the biological sciences.

A nonprofit, independent research institution, Whitehead Institute is affiliated with MIT through its members, who hold faculty positions at MIT. A small number of junior investigators also hold positions at Whitehead Institute as part of the Whitehead Fellows program.

Whitehead Institute's research excellence is nurtured by the collaborative spirit of its faculty and the creativity and dedication of its graduate students and postdoctoral scientists. Whitehead's primary focus is basic science, with an emphasis on molecular and cell biology, genetics and genomics, and developmental biology. Specific areas of inquiry at Whitehead include cancer, transgenic science, stem cells, regenerative biology, genetics, genomics, membrane biology, vertebrate development, and neurological disorders.

Whitehead Institute is engaged in research collaborations with numerous academic and industrial partners. These partnerships expand the scope of Whitehead research, as well as aid the translation of basic research into advances in disease prevention, diagnosis, and therapy.

Whitehead Institute also supports a suite of programs that foster high school science education, and public engagement with science and technology. Students and postdoctoral candidates interested in science education and community outreach are encouraged to participate in these programs.

Each year, a number of graduate students pursue PhD degrees at Whitehead Institute through the Department of Biology. Undergraduate students pursue research objectives through MIT’s Undergraduate Research Opportunities Program.

Further information may be obtained by contacting Communications and Public Affairs, Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142-1479, or call 617-258-5183.

WOMEN’S AND GENDER STUDIES PROGRAM

The Program in Women’s and Gender Studies (WGS) (http://wgs.mit.edu/about-us) educates MIT undergraduates on the importance of gender equity, and promotes a broad understanding of gender and its complex intersection with sexuality, race, ethnicity, class, ability, religious affiliation, and other categories of identity. Courses offer new perspectives in a variety of subjects relating to historical and contemporary questions of gender and sexuality as manifested in the US and across the globe. WGS faculty come from multiple entities across the Institute including Anthropology, Architecture, Comparative Media Studies/Writing, Global Studies and Languages, History, Linguistics and Philosophy, Literature, Political Science, and Science, Technology and Society.

Undergraduates can choose a concentration or a minor in WGS and can petition for a major departure in WGS. The curriculum includes a core subject, Introduction to Women’s and Gender Studies, and a selection of subjects from many departments at the Institute. Special independent study topics and Undergraduate Research Opportunities Program (UROP) (p. 43) projects can be arranged.

Graduate students may receive graduate credit in designated WGS subjects, and may also enroll in courses offered through the Graduate Consortium in Women's Studies (http://web.mit.edu/gcws).

For more information, contact the program manager, Emily Neill (erneill@mit.edu), Room 14E-316, 617-253-2642.
SCHOOLS AND COURSES

Schools
- School of Architecture and Planning (p. 111)
- School of Engineering (p. 136)
- School of Humanities, Arts, and Social Sciences (p. 231)
- MIT Sloan School of Management (p. 271)
- School of Science (p. 287)

Courses
- Aeronautics and Astronautics (Course 16) (p. 141)
- Anthropology (Course 21A) (p. 233)
- Architecture (Course 4) (p. 114)
- Biological Engineering (Course 20) (p. 154)
- Biology (Course 7) (p. 290)
- Brain and Cognitive Sciences (Course 9) (p. 297)
- Chemical Engineering (Course 10) (p. 161)
- Chemistry (Course 5) (p. 302)
- Civil and Environmental Engineering (Course 1) (p. 170)
- Comparative Media Studies/Writing (CMS, Course 21W) (p. 235)
- Data, Systems, and Society (p. 178)
- Earth, Atmospheric, and Planetary Sciences (Course 12) (p. 307)
- Economics (Course 14) (p. 241)
- Electrical Engineering and Computer Science (Course 6) (p. 184)
- Global Studies and Languages (Course 21G) (p. 245)
- Health Sciences and Technology (HST) (p. 195)
- History (Course 21H) (p. 250)
- Humanities (Course 21) (p. 252)
- Linguistics and Philosophy (Course 24) (p. 253)
- Literature (Course 21L) (p. 257)
- Management (Course 15) (p. 274)
- Materials Science and Engineering (Course 3) (p. 201)
- Mathematics (Course 18) (p. 314)
- Mechanical Engineering (Course 2) (p. 208)
- Media Arts and Sciences (MAS) (p. 123)
- Music and Theater Arts (Course 21M) (p. 260)
- Nuclear Science and Engineering (Course 22) (p. 224)
- Physics (Course 8) (p. 320)
- Political Science (Course 17) (p. 264)
- Science, Technology, and Society (STS) (p. 268)
- Urban Studies and Planning (Course 11) (p. 126)
The School of Architecture and Planning (SA+P) has supported MIT’s mission of meeting the world’s greatest challenges since its start in 1865. While advocating the forward-looking, technologically-driven optimism of MIT, the School also invests in critically reflecting on technological innovation, its social impact and its confrontation with cultural values.

SA+P is made up of five main divisions—the Department of Architecture, the Department of Urban Studies and Planning, the Media Lab, the MIT Center for Real Estate, and the Program in Art, Culture, and Technology. Over the years, the School has embraced a broader range of fields that address and improve human environments.

What binds these fields together is a strong commitment to the deployment of technology towards social good. What also binds them together is the use of design and deliberation approaches towards action that are distinct from but complementary to the engineering approach to problem solving.

Design is a main unifying approach of SA+P activities. We believe that design and policy interventions should be grounded in a commitment to improving individual human lives, equity and social justice, cultural enrichment, and the responsible use of resources through creative problem solving and project execution. Our curriculum empowers students with skills that enable them to design physical spaces, policies, and technologies that will shape how those spaces are used with the goal of sustaining and enhancing the quality of the human environment at all scales, from the personal to the global.

Students

The School of Architecture and Planning enrolls an average of 600–700 students a year in a collection of courses ranging from Renaissance architecture to the cities of tomorrow, digital fabrication, motion graphics, shape grammars, photography, sensor systems, integrative design across disciplines, news and participatory media, and construction finance. By far the largest number of those students enter our graduate programs and many of them also pursue cross-disciplinary studies and dual degrees among those programs and others at the Institute.

Throughout the years, we have been noted for the diversity of our student body, drawing on candidates from around the world and from all walks of life. The Department of Architecture graduated its first woman, Sophia Hayden, in 1890, and three years later, Robert Taylor became the first African American to graduate from an American architecture program—a tradition of inclusiveness that continues today.

Global Projects

One of MIT’s founding principles is the belief that professional competence is best fostered by focusing teaching and research on real problems in the real world. Accordingly, a central aspect of our teaching and research is our ongoing participation in global initiatives—many of them collaborative undertakings among our five divisions, with other divisions of MIT, and with public and private institutions in the US and abroad.

SA+P is fully committed to the mission of leadership both locally and globally. As a result of this commitment, faculty play a central role in preparing students to be leaders and good global citizens who are engaged in the problems facing countries at all stages of development, taking part in the public discussion of issues on a global scale, studying, developing and applying best practices all around the world.

History

Our history stretches back a century and a half, providing our current students with a legacy and long tradition of pioneering excellence. The Department of Architecture was the first such department in the nation (1865) and became a leader in introducing Modernism to America. The program in city planning was the second of its kind in the country (1932), later evolving into the current Department of Urban Studies and Planning, the longest continuous planning program in the United States and repeatedly ranked number one in the nation.

The Media Lab, the birthplace of multimedia computing (1985), has come to be known around the world as a world-class incubator of new design ideas; the Center for Real Estate established the nation’s first one-year graduate program in real estate development (1984); and the Center for Advanced Visual Studies (1967), now part of the new Program in Art, Culture and Technology, pioneered the use of technologies such as lasers, plasma sculptures, sky art, and holography as tools of expression in public and environmental art.

More recently the Center for Advanced Urbanism (2012), established as a premier research center focused on the design and planning of large-scale, complex 21st-century metropolitan environments, aims to redefine the field of urban design to meet contemporary challenges utilizing interdisciplinary collaborative practices and the most advanced analytical and representational tools. The Samuel Tak Lee Real Estate Entrepreneurship (2015) promotes social responsibility among entrepreneurs and academics in the real estate profession worldwide, with a particular focus on China. Research topics include development and urbanization through private action and entrepreneurship, urban resilience and adaptation, land use reform regulations and codes, new construction materials, data and technology, affordable housing, environmental aspects of urban growth and development, and land and real property rights.
Resources

The Rotch Library is one of the nation’s premier resources in architecture and planning, offering extensive depth in architecture, building technology, art history, photography, environmental studies, land use, urban design, housing and community development, regional planning, urban transportation, and real estate. Its visual collections hold more than 60,000 digital images and 380,000 slides.

The School’s Wolk Gallery mounts several shows a year in its exhibition space, overseen by the curator of architecture and design at the MIT Museum. The Keller Gallery, a vest-pocket space of about 200 square feet, shows a steady stream of faculty, student, and experimental work, including work from alumni and friends. The PLAZmA Digital Gallery is an electronic showcase of work and events on display in the School’s public areas, featuring faculty and student work.

The MIT Museum frequently features exhibits on architecture and visual studies in its main galleries at 265 Massachusetts Avenue, as well as in its Compton Gallery, located in the heart of campus under the big dome. The Museum’s eGallery, a virtual exhibition space and archive, features sites designed specifically as virtual exhibitions, spotlighting museum collections as well as exhibitions no longer on display in its galleries.

The List Visual Arts Center, three galleries on the first floor of the Media Lab’s Wiesner Building, presents 5–8 shows a year exploring contemporary artmaking in all media. Rotch Library also features exhibits of student, staff, and faculty work, as well as shows from its collections, in its space in Building 7-238.

The School’s newsletter, PLAN, is published in print and online by the Dean’s Office, Room 7-231; it is also available as a PDF and a mobile app. The five divisions of the School can be contacted directly about their lineup of publications.

Degrees Offered in the School of Architecture and Planning

Architecture (Course 4)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Architecture</td>
</tr>
<tr>
<td>SB</td>
<td>Architecture Studies</td>
</tr>
<tr>
<td>MArch</td>
<td>Architecture</td>
</tr>
<tr>
<td>SMArchS</td>
<td>Architecture Studies</td>
</tr>
<tr>
<td>SMACT</td>
<td>Art, Culture and Technology</td>
</tr>
<tr>
<td>SMBT</td>
<td>Building Technology</td>
</tr>
<tr>
<td>PhD</td>
<td>Architecture: Building Technology</td>
</tr>
<tr>
<td>PhD</td>
<td>Architecture: Design and Computation</td>
</tr>
<tr>
<td>PhD</td>
<td>Architecture: History and Theory of Architecture</td>
</tr>
</tbody>
</table>

Urban Studies and Planning (Course 11)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Planning</td>
</tr>
<tr>
<td>MCP</td>
<td>City Planning</td>
</tr>
<tr>
<td>SM</td>
<td>Urban Studies and Planning</td>
</tr>
<tr>
<td>PhD</td>
<td>Urban and Regional Planning</td>
</tr>
<tr>
<td>PhD</td>
<td>Urban and Regional Studies</td>
</tr>
</tbody>
</table>

Dual Degrees

<table>
<thead>
<tr>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media Arts and Sciences (MAS)</td>
</tr>
<tr>
<td>SM Media Technology</td>
</tr>
<tr>
<td>SM Media Arts and Sciences</td>
</tr>
<tr>
<td>PhD Media Arts and Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban Studies and Planning</td>
</tr>
<tr>
<td>SM Urban and Regional Planning</td>
</tr>
<tr>
<td>PhD Urban and Regional Studies</td>
</tr>
</tbody>
</table>

Center for Real Estate

<table>
<thead>
<tr>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRED Real Estate Development</td>
</tr>
</tbody>
</table>

Notes

Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.

Several departments also offer undesignated degrees, which lead to the Bachelor of Science without departmental designation. The curricula for these programs offer students opportunities to pursue broader programs of study than can be accommodated within a four-year departmental program.

Admissions

The selection process at MIT is holistic and student centered: each application is evaluated within its unique context. Selection is based on outstanding academic achievement as well as a strong match between the applicant and the Institute.

Undergraduate applicants do not apply to a particular school, department or program and, although the application asks about a preferred field of study, most admitted undergraduates do not declare a major until the second semester of their freshman year. Admissions information for regular, transfer, and non-degree applicants is provided in the section on Undergraduate Education (p. 30).

Applicants for graduate study apply directly to the particular department or program of interest. See the individual department and program descriptions for specific requirements.
Office of the Dean

Hashim Sarkis, MArch, PhD
Professor of Architecture
Professor of Urban Planning
Dean, School of Architecture and Planning

Dennis Frenchman, MArch, MCP
Norman B. (1938) and Muriel Leventhal Professor of Architecture and Planning
Professor of Urban Design
Associate Dean, School of Architecture and Planning

Peggy Cain
Assistant to the Dean

Ken Goldsmith
Assistant Dean for Finance and Administration

Ramona Allen
Assistant Dean for Human Resources

Dineen Doucette
Finance and Human Resources Administrator

Barbara Feldman
Assistant Dean for Development

Devan Monroe
Administrative Assistant, Finance and Development

Tom Gearty
Director of Communications

Judy Daniels
Administrative Assistant, Communications

James Harrington
Facilities Manager
DEPARTMENT OF ARCHITECTURE

The Department of Architecture (http://architecture.mit.edu) offers degrees at the bachelor, master, and doctoral levels. The department is composed of five discipline groups. They are Architectural Design; Building Technology; Computation; History, Theory and Criticism of Architecture and Art (HTC); and the Program in Art, Culture and Technology (ACT). The Aga Khan Program in Islamic Architecture (AKPIA) is a research group offering its own Master of Science in Architecture Studies and a PhD in association with HTC. The Center for Advanced Urbanism supports both the architecture stream and the Master of Science in Architecture Studies program in urbanism, while acting as an umbrella for research initiatives and collaborative projects between the Departments of Architecture and Urban Studies and Planning. The varied disciplines support substantial research activity.

The department offers seven degree programs: the Bachelor of Science in Architecture (BSA), Bachelor of Science in Architecture Studies (BSAS), Master of Architecture (M Arch), Master of Science in Architecture Studies (SMArchS), Master of Science in Building Technology (SMBT), Master of Science in Art, Culture and Technology (SMACT), and the Doctor of Philosophy (PhD). The SMArchS and PhD programs offer concentrations in multiple research streams.

Architectural Design is taught from a broad range of perspectives. Diverse architectural design studios are offered at both the undergraduate and graduate levels. The undergraduate studio sequence begins with instruction in design fundamentals and continues with design projects of increasing complexity. Entering graduate students enroll in a three-term core program that is tightly integrated with complementary subjects in design skills, geometric disciplines, cultural and theoretical precedents, and materials and construction. Advanced “option” studios give graduate students the opportunity to broaden their experience of culture, contexts, and varying scales for design, and develop their own attitudes and positions toward architectural production. In thesis, a student develops a hypothesis and design strategy for a comprehensive architectural project or a design research inquiry that is carried out as an independent, critical project—from concept to completion—under the guidance of an advising committee.

Computer resources for educational purposes are distributed in the laboratories and studios of the department and overseen by the staff of the School of Architecture and Planning’s computer resources office. Students are required to learn the techniques and applications of computational-based design, production, and advanced representation. Other computation subjects and studio work permit further experimentation with modeling techniques, graphic representations, design methods, technical analysis, prototyping, and assistance with the design process.

The teaching of the Architectural Design faculty occurs primarily in the studio. However, workshops, lectures, seminars, and research projects all contribute to architectural design education. A broad range of topics are introduced and integrated in the curriculum, including sustainability, computation, materials, fabrication, infrastructure, politics, social engagement, and cultural theory. The architecture design studio is the laboratory where these topics intermingle and students synthesize design concepts.

The Department of Architecture offers the Master of Architecture (MArch) degree in three and one-half years. In exceptional circumstances, a student may be admitted with “advanced entry” and complete the program in two and one-half years, subject to prior academic qualifications in architecture. These professional degrees are structured to educate those who aspire to registration and licensure as architects.

The undergraduate Bachelor of Science in Architecture is a preprofessional degree program. It is useful for those wishing a foundation in the field of architecture as preparation for either continued education in a professional degree program or for employment options in fields related to architecture.

The Architectural Design area of study offers a Bachelor of Science in Architecture as well as Master of Architecture and Master of Science in Architecture Studies degrees.

Accreditation for MArch Program

In the United States, most state registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency authorized to accredit US professional degree programs in architecture, recognizes three types of degrees—the Bachelor of Architecture, the Master of Architecture, and the Doctor of Architecture. A program may be granted a six-year, three-year, or two-year term of accreditation depending on the extent of its conformance with established educational standards.

Doctor of Architecture and Master of Architecture degree programs may consist of a preprofessional undergraduate degree and a professional graduate degree that, when earned sequentially, constitute an accredited professional education. However, the preprofessional degree is not, by itself, recognized as an accredited degree.

The Massachusetts Institute of Technology Department of Architecture offers one NAAB-accredited degree program: MArch (non-preprofessional degree plus 312 units and an acceptable 24-unit thesis). The next accreditation visit is in 2015.

Building Technology includes teaching and applications of the fundamentals of technology as well as research in technology for the next generation of buildings. Topics include building structures, materials, appropriate technology for developing countries, sustainable design, indoor air quality, daylighting, building ventilation, heating and cooling systems, energy use and material flows in urban areas, and development of computational
methods for research and design through visualization of building performance in its many aspects. Through lecture subjects, laboratories, workshops, and independent research projects, students may study problems of energy resources and technologies and use this knowledge to design physical environments or buildings that embody current research concepts. Research facilities include a full-scale indoor environmental chamber and computer workstations. Research facilities of other departments such as Mechanical Engineering and Civil and Environmental Engineering are also used in joint research projects.

This area of study offers a Master of Science in Building Technology (SMBT), a Master of Science in Architecture Studies (SMArchS), and a doctoral degree with emphasis on building technology.

The Computation group teaches diverse subjects dealing with theory, history, methods, and applications of computation and digital technology. The aim is to cover the many facets of a rapidly changing and growing area with in-depth, agenda-setting research and teaching. Topics taught cover the description, generation, evaluation, and construction of architectural and urban design through computational means that include computer visualization and modeling, generative theories, software for design synthesis and analysis, and digital fabrication and construction processes and technologies. Students are encouraged to acquire both the technical skills and the theoretical and conceptual foundations to rethink and challenge the limits of current design processes and practices, and to consider the social and cultural implications of their positions.

This area of study offers a concentration in the Master of Science in Architecture Studies (SMArchS) program and a doctoral program. SMArchS and PhD students are encouraged to take subjects in other relevant departments as a means to explore and develop their interests.

The History, Theory and Criticism of Architecture and Art (HTC) group teaches subjects that deal with the history of architecture and art, as well as the theoretical and political presuppositions informing that history. Offerings range in content and method. Some are motivated by questions derived from the problems of contemporary practice. Others work with a body of historical material investigated in ways that develop analytical skills applicable to a wide range of topics. Still others explore themes (e.g., Orientalism, ornament, sustainability) in their historical and theoretical dimensions. Subjects are taught from the Renaissance to the present, with emphasis on topics of modern art and architecture. They focus on materials that are both abstract and concrete, with scales that range from the architectural drawing to the art installation to the urban environment. There is a special emphasis on topics of modern art and architecture in Europe as well as the Americas, with a comparable set of offerings on the Islamic world developed by AKPIA and taught within the HTC group.

HTC offers a HASS concentration and minor in the history of architecture that are open to all MIT undergraduates. There is a SMArchS concentration in HTC, and a doctoral program.

The Aga Khan Program for Islamic Architecture (AKPIA) at MIT is a graduate program dedicated to the study of architecture, urbanism, architectural history, landscape, and conservation in the Islamic world. The program prepares students for careers in research, design, and teaching. Topics covered in its curriculum include critical study of the history and historiography of Islamic architecture; the interaction between architecture, society, and culture; strategies of urban and architectural preservation; and environmental and material-sensitive landscape and design research.

Established in 1979, AKPIA offers students a concentration in Islamic architecture and urbanism as part of the two-year SMArchS degree and the PhD program in HTC. Undergraduates may concentrate in Middle Eastern Studies using subjects offered by AKPIA. The program also has links with the City Design and Development and Environmental Planning and Policy programs in the Department of Urban Studies and Planning, ArchNet, the Aga Khan Programs at Harvard, the Aga Khan Trust for Culture (AKTC), and the Aga Khan Development Network (AKDN).

The Program in Art, Culture and Technology (ACT) explores art broadly and globally in its historic and contemporary forms, relating it to culture, science, technology, and design. This is reflected not only in ACT’s academic offerings, but in its public programs and the research of faculty, fellows, and guests. The program aims to build bridges between MIT discipline areas and departments. Research and pedagogy are intertwined, and MIT’s culture of scientific inquiry informs work in all artistic arenas: cinema, video, sound, performance, photography, experimental media and new genres, conceptual and spatial experiments with architecture and design, and writings and publications. Critical thinking, knowledge mining, and creative engagement, along with explorations of changing public and private spheres, are of particular relevance. The program also maintains and supports the Center for Advanced Visual Studies (CAVS) Archives, which preserves the legacy of the Center and serves as a resource for scholars.

ACT offers a HASS minor and concentration and a two-year graduate program leading to a Master of Science in Art, Culture and Technology (SMACT).

Inquiries
Further information concerning undergraduate and graduate academic programs in the department, admissions, financial aid, and assistantships may be obtained from the Department of Architecture (http://architecture.mit.edu), Room 7-337, 617-253-7387.
Undergraduate Study

The Department of Architecture offers two undergraduate courses of study. They provide a broad undergraduate education for students who have clear professional goals and for those who desire a solid foundation for a number of possible careers. Course 4 leads to the Bachelor of Science in Architecture, and Course 4-B leads to the Bachelor of Science in Architecture Studies.

Bachelor of Science in Architecture (Course 4)

Course 4 (p. 364) offers a program introducing students to the five discipline areas: art, culture and technology; architectural design; building technology; design and computation; and history, theory and criticism of architecture and art.

The requirements for the SB in Architecture (BSA) (p. 364) curriculum begin with an introductory subject, 4.021 Introduction to Architecture Design, intended as an introduction for sophomores. The remaining core subjects include study in the arts, computation, architectural design, building technology, and the history of architecture.

The BSA includes sequential studios. The approach fosters investigation and discussion in the development of sensitivity to the built environment. These sensibilities are linked to values and responsibilities to the community at large. Students in design studios develop technical and analytical skills and learn synthesis and invention using the elements of architectural form: material, structure, construction, light, sound, memory, and place. A thesis is optional and taken during the senior year.

The department offers a foreign exchange study program with Delft University of Technology and the University of Hong Kong for architecture design seniors in the fall term.

Students who plan to continue their studies in a professional graduate program in architecture must apply for admission to a school offering the Master of Architecture (MArch).

Bachelor of Science in Architecture Studies (Course 4-B)

Course 4-B (p. 366) is offered for students who find that their basic intellectual commitments are to subjects within the Department of Architecture but whose educational objectives cut across departmental boundaries. These students may, with the approval of the department, plan a course of study that meets their individual needs and interests while including the fundamental areas within the department. For example, students might create a coherent program combining subjects in Course 4 with subjects in urban studies and planning, comparative media studies, systems analysis, computer science, etc.

As early as possible, students should discuss their interests and intended programs with their advisor and departmental faculty members. A student who wishes to follow Course 4-B must initially register as a Course 4 major and take core subjects in each of the discipline areas within the department. By the end of the sophomore year, the student is expected to submit to the department a proposal that includes a statement of educational goals, a list of subjects to be taken to fulfill these goals (84 units), and a timetable of when the subjects will be taken. When the proposal is approved by the Department of Architecture Undergraduate Curriculum Committee, the student may officially switch to the 4-B major.

During the junior and senior years, the approved interdisciplinary course of study is pursued. A senior thesis, preceded by 4.THT[[]] Thesis Research Design Seminar, is required.

Minor in Architecture

The requirements for a Minor in Architecture are as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.021</td>
<td>Introduction to Architecture Design</td>
<td>12</td>
</tr>
<tr>
<td>4.022</td>
<td>Architecture Design Foundations</td>
<td>12</td>
</tr>
<tr>
<td>4.605</td>
<td>A Global History of Architecture</td>
<td>12</td>
</tr>
</tbody>
</table>

Select one of the following options: 27-48

Option 1:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.023</td>
<td>Architecture Design Studio I</td>
<td></td>
</tr>
<tr>
<td>4.024</td>
<td>Architecture Design Studio II</td>
<td></td>
</tr>
</tbody>
</table>

Option 2:

Select three subjects from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.110[]</td>
<td>Design Across Scales and Disciplines</td>
<td></td>
</tr>
<tr>
<td>4.211[]</td>
<td>The Once and Future City</td>
<td></td>
</tr>
<tr>
<td>4.231</td>
<td>SIGUS Workshop</td>
<td></td>
</tr>
<tr>
<td>4.233</td>
<td>The New Global Planning Practitioner</td>
<td></td>
</tr>
<tr>
<td>4.250[]</td>
<td>Introduction to Urban Design and Development</td>
<td></td>
</tr>
</tbody>
</table>

Up to two from the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.301</td>
<td>Introduction to Artistic Experimentation</td>
<td></td>
</tr>
<tr>
<td>4.302</td>
<td>Foundations in Art, Design, and Spatial Practices</td>
<td></td>
</tr>
<tr>
<td>4.307</td>
<td>Art, Architecture, and Urbanism in Dialogue</td>
<td></td>
</tr>
<tr>
<td>4.312</td>
<td>Advanced Studio on the Production of Space</td>
<td></td>
</tr>
<tr>
<td>4.314</td>
<td>Advanced Workshop in Artistic Practice and Transdisciplinary Research</td>
<td></td>
</tr>
<tr>
<td>4.320</td>
<td>Introduction to Sound Creations</td>
<td></td>
</tr>
<tr>
<td>4.322</td>
<td>Introduction to Three-Dimensional Art Work</td>
<td></td>
</tr>
<tr>
<td>4.330</td>
<td>Introduction to Networked Cultures and Participatory Media</td>
<td></td>
</tr>
<tr>
<td>4.332</td>
<td>Advanced Seminar in Networked Cultures and Participatory Media</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Units</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>4.341</td>
<td>Introduction to Photography and Related Media</td>
<td></td>
</tr>
<tr>
<td>4.344</td>
<td>Advanced Photography and Related Media</td>
<td></td>
</tr>
<tr>
<td>4.352</td>
<td>Advanced Video and Related Media</td>
<td></td>
</tr>
<tr>
<td>4.354</td>
<td>Introduction to Video and Related Media</td>
<td></td>
</tr>
<tr>
<td>4.356</td>
<td>Cinematic Migrations</td>
<td></td>
</tr>
<tr>
<td>4.361</td>
<td>Performance Art Workshop</td>
<td></td>
</tr>
<tr>
<td>4.368</td>
<td>Studio Seminar in Public Art/Public Sphere</td>
<td></td>
</tr>
<tr>
<td>4.373</td>
<td>Advanced Projects in Visual Arts</td>
<td></td>
</tr>
<tr>
<td>Up to two from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.401</td>
<td>Environmental Technologies in Buildings</td>
<td></td>
</tr>
<tr>
<td>4.411[J]</td>
<td>D-Lab Schools: Building Technology Laboratory</td>
<td></td>
</tr>
<tr>
<td>4.432</td>
<td>Modeling Urban Energy Flows for Sustainable Cities and Neighborhoods</td>
<td></td>
</tr>
<tr>
<td>4.440[J]</td>
<td>Building Structural Systems I</td>
<td></td>
</tr>
<tr>
<td>4.444</td>
<td>Analysis of Historic Structures</td>
<td></td>
</tr>
<tr>
<td>Tier I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.601</td>
<td>Introduction to Art History</td>
<td>12</td>
</tr>
<tr>
<td>or 4.602</td>
<td>Modern Art and Mass Culture</td>
<td></td>
</tr>
<tr>
<td>4.605</td>
<td>A Global History of Architecture</td>
<td>12</td>
</tr>
<tr>
<td>or 4.614</td>
<td>Architecture in the Islamic World</td>
<td></td>
</tr>
<tr>
<td>Tier II</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Select three of the following with no more than two subjects from either the history of art or the history of architecture:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.603</td>
<td>Understanding Modern Architecture</td>
<td></td>
</tr>
<tr>
<td>4.606</td>
<td>Visual Perception and Art</td>
<td></td>
</tr>
<tr>
<td>4.610</td>
<td>Civic Architecture in Islamic History</td>
<td></td>
</tr>
<tr>
<td>4.635</td>
<td>Early Modern Architecture and Art</td>
<td></td>
</tr>
<tr>
<td>4.641</td>
<td>19th-Century Art</td>
<td></td>
</tr>
<tr>
<td>4.651</td>
<td>Art Since 1940</td>
<td></td>
</tr>
<tr>
<td>4.671</td>
<td>Nationalism, Internationalism, and Globalism in Modern Art</td>
<td></td>
</tr>
<tr>
<td>4.673</td>
<td>Installation Art</td>
<td></td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
<td>63-84</td>
</tr>
</tbody>
</table>

Minor in the History of Architecture and Art

The HASS Minor in the History of Architecture and Art is designed to enable students to concentrate on the historical, theoretical, and critical issues associated with artistic and architectural production. Introductions to the historical frameworks and stylistic conventions of art and architectural history are followed by more concentrated study of particular periods and theoretical problems in visual culture and in cultural history in general.

The minor consists of six subjects arranged into three levels of study and chosen as follows:

<table>
<thead>
<tr>
<th>Tier I</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.601</td>
<td>Introduction to Art History</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>or 4.602</td>
<td>Modern Art and Mass Culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.605</td>
<td>A Global History of Architecture</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>or 4.614</td>
<td>Architecture in the Islamic World</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tier II</td>
<td>Select three of the following with no more than two subjects from either the history of art or the history of architecture:</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>4.603</td>
<td>Understanding Modern Architecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.606</td>
<td>Visual Perception and Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.610</td>
<td>Civic Architecture in Islamic History</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.635</td>
<td>Early Modern Architecture and Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.641</td>
<td>19th-Century Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.651</td>
<td>Art Since 1940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.671</td>
<td>Nationalism, Internationalism, and Globalism in Modern Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.673</td>
<td>Installation Art</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minor in Art, Culture and Technology

The HASS Minor in Art, Culture and Technology is designed to explore the conjunction of art with culture, science, technology, and design, and to develop critical and production practices.

The minor consists of six subjects arranged into three levels of study and chosen as follows:
Tier I
4.301 Introduction to Artistic Experimentation 12
or 4.302 Foundations in Art, Design, and Spatial Practices
Select one of the following: 12
4.601 Introduction to Art History
4.602 Modern Art and Mass Culture
4.606 Visual Perception and Art
4.635 Early Modern Architecture and Art
4.641 19th-Century Art
4.651 Art Since 1940
4.671 Nationalism, Internationalism, and Globalism in Modern Art
4.673 Installation Art
Tier II
Select two of the following: 24
4.320 Introduction to Sound Creations
4.322 Introduction to Three-Dimensional Art Work
4.330 Introduction to Networked Cultures and Participatory Media
4.341 Introduction to Photography and Related Media
4.354 Introduction to Video and Related Media
Tier III
Select two of the following: 18-24
4.312 Advanced Studio on the Production of Space
4.314 Advanced Workshop in Artistic Practice and Transdisciplinary Research
4.332 Advanced Seminar in Networked Cultures and Participatory Media
4.344 Advanced Photography and Related Media
4.352 Advanced Video and Related Media
4.356 Cinematic Migrations
4.361 Performance Art Workshop
4.368 Studio Seminar in Public Art/Public Sphere
4.373 Advanced Projects in Visual Arts
Total Units 66-72

For a general description of minors, see Undergraduate Education (p. 34).

Graduate Study
The Department of Architecture offers five graduate degree programs—the Master of Architecture (MArch), Master of Science in Architecture Studies (SMArchS), Master of Science in Building Technology (SMBT), Master of Science in Art, Culture and Technology (SMACT), and the Doctor of Philosophy (PhD).

The Master of Architecture is awarded to students who complete a program, accredited by the National Architectural Accrediting Board, which is an essential step toward licensure for architectural practice.

The Master of Science in Architecture Studies program stresses research and inquiry in the built environment; the degree is meant both for students who already have their first professional architecture degree and those whose previous education orients them toward nonprofessional graduate study in architecture.

The Master of Science in Building Technology program is run jointly by the Departments of Architecture, Civil and Environmental Engineering, and Mechanical Engineering. This degree program is intended for students interested in pursuing topics of significant technical and engineering depth.

The Master of Science in Art, Culture and Technology focuses on the development of artist-thinkers in the context of an advanced technological and scientific community. Discussion of contemporary and historical theory and criticism complements rigorous and innovative transdisciplinary studio production.

The PhD program is an advanced degree program in the areas of History, Theory and Criticism; Building Technology; and Design and Computation.

Master of Architecture
The Master of Architecture is awarded upon the satisfactory completion of an approved program of at least 312 units and an acceptable thesis. The program requires three and one-half academic years of residence.

Advanced entry may be considered in exceptional circumstances for students who have majored in architectural design at a "4 plus 2" architecture school. These students may be considered for completion of the program in two and one-half years depending on their academic experience and accomplishments.

The professional MArch program is diverse and open-ended, with many views of appropriate research and practice of architecture available. Shared concerns include an interest in materials, fabrication, and technology; drawing and geometry; theory and criticism; sustainability and climate change; and culture in an age of rapid change and globalization. They also include a commitment to design as it engages related disciplines aligned with architectural production, a view of the environment as an ecologically structured phenomenon, a regard for the fabrication processes of building, a
perspective on new technologies and their impact on practice, and a concern for the spatial, temporal, social, and urban contexts of buildings. Given the varied perspectives from which the curriculum is conceived, an important aspect of the student’s development is to be able to establish links between different areas of focus and its many disciplines.

The focus of the MArch degree program is through architecture design studios integrated with supporting subjects central to the curriculum. While the professional curriculum specifies that a student study a range of subjects in several interrelated fields, students in the MArch program have some choice and are required to develop a concentration in a self-determined area. Required and elective subjects taught by the various discipline groups within the department and in other related departments offer a way of charting multiple paths for future professional possibilities. Therefore, students are expected to develop a cohesive structure for their individual educational interests within the MArch program at MIT beyond the core curriculum and toward the development of a design thesis.

Master of Science in Architecture Studies

This program is designed to provide a climate for research and inquiry that stresses the investigative component of understanding the built environment. It is open to students with professional degrees in architecture and, more rarely, to other university graduates. The SMArchS degree is awarded upon satisfactory completion of an approved program of study of 96 units and the completion of an acceptable thesis. The degree requires two full academic years of residency.

About half of the students in the SMArchS program come from outside the United States; this encourages the exchange of ideas across cultures. Students often use a site in their home countries as a base for their theses.

The program has a strong interest in the methods of inquiry, development and testing of knowledge, and the building and application of theory as it pertains to the built environment. It allows students to specialize in areas in which they wish to obtain particular abilities. There are several areas of study, and interdisciplinary work is encouraged.

The **Architectural Design** program nurtures research that contributes to current thinking about design in the field of architecture. It aims to advance architectural design by cultivating lateral thinking between design expertise and a range of allied fields, such as material sciences, media arts and technology, cultural studies, computation, sustainability, and emerging fabrication protocols. The program provides opportunity for designers to explore theoretical foundations of architectural design as well as its pedagogy, and to provide a platform for applied research and new forms of design practice.

In **Architecture and Urbanism**, design is developed and evaluated as a means to demonstrate the hypothesis that the urban space can be effectively constructed, and made legible and civic, through architecture. Areas of faculty interest include theory of urban form and design, urban ecology, and landscape.

The **Aga Khan Program for Islamic Architecture** supports students interested in pursuing research on architecture, architectural history, landscape, and urbanism in the Islamic world. Faculty interests include Islamic architectural and urban history and historiography, strategies for landscape and urban preservation, and the critique of contemporary architecture in Islamic countries.

The **Computation** group inquires into the varied nature and practice of computation in architectural design and the ways in which design meaning, intention, and knowledge are constructed through sensing, thinking, and making computationally. It focuses on developing innovative computational tools, processes, and theories, and applying them in creative, socially meaningful responses to challenging design problems.

Building Technology focuses on the intersection of design and technical issues for buildings that positively contribute to a more humane and environmentally responsible built world. Research within the group addresses innovative materials and assemblies, low-energy strategies for designing and operating buildings, structural design and analysis, and urban energy and material requirements.

Students in **History, Theory and Criticism** work alongside doctoral students in the study of architecture and art together with historical and methodological issues that inform or link conceptual and practical work.

Simultaneous Master’s Degrees in Architecture and City Planning

Students admitted to the Department of Architecture can propose a program of joint work in Architecture and Urban Studies and Planning that will lead to the simultaneous award of two degrees. Degree combinations may be MArch/Master in City Planning (MCP) or SMArchS/MCP. All candidates for simultaneous degrees must meet the requirements of both programs, but may submit a joint thesis. A student must apply by January 2 before beginning the last full year of graduate study in architecture. Dual-degree applications are submitted to Jordan Pettis in 10-485. Students are first approved by the Dual-Degree Committee and then considered during the spring admissions process. For more information, contact Jordan Pettis at 617-253-5115.

Master of Science in Building Technology

This program provides a focus for graduate students interested in the development and application of advanced technology for buildings and cities. Students in this program take relevant subjects in basic engineering disciplines along with subjects that apply to...
topics to the built environment. The program is open to qualified students with a degree in engineering or in architecture.

The program concentrates on the development of the next generation of technology for the built environment as well as the innovative application of state-of-the-art concepts to building and urban systems. Research programs, in many cases jointly carried out with faculty and students in the School of Engineering, include energy efficiency, sustainable building design, controls, natural ventilation and indoor air quality, innovative materials and structures, and computational simulation of building behavior.

The SMAct degree is generally completed in two years and requires 66 units of coursework and the completion of an acceptable thesis.

Master of Science in Art, Culture and Technology

ACT is an academic program and research center that explores art broadly and globally in historic and contemporary forms relating it to culture, science, technology, and design. It focuses on the development of artist-thinkers advancing their critical and production practices. Strong emphasis is placed on critical thinking, knowledge mining, and creative engagement, along with explorations of changing public and private spheres. Participation in faculty research, collaborations within the Institute, connections with visitors, and an ongoing studio seminar provide students with many opportunities to develop and exchange ideas. ACT maintains the Center for Advanced Visual Studies (CAVS) Archives, supported by its resources and grant funding, which preserves the legacy of the Center and serves as a resource for scholars.

The SMAct degree requires four semesters of on-campus academic work including 156 units of coursework and the completion of a written thesis. For more information, visit the website (http://act.mit.edu).

Doctor of Philosophy

The PhD in Architecture may be pursued in one of the following areas: History and Theory of Architecture/History and Theory of Art; Building Technology; or Design and Computation.

The PhD program in History, Theory and Criticism of Architecture and Art emphasizes the study of art, architecture, and urbanism, together with the historical and methodological issues that inform or link conceptual and practical work. The Aga Khan Program for Islamic Architecture is part of this doctoral program.

The doctoral program in Building Technology is interdepartmental, with important components in the Departments of Civil and Environmental Engineering, Electrical Engineering and Computer Science, Mechanical Engineering, and Urban Studies and Planning. Research programs include energy efficiency, sustainable building design, controls, natural ventilation and indoor air quality, daylighting, masonry structures, innovative materials and structures, material and energy flows in urban areas, and computational simulation of building behavior.

The PhD program in Design and Computation is broadly conceived around computational ideas and digital technologies as they pertain to the understanding, description, generation, and construction of architectural form. Research topics include the mathematical foundations of shape and shape representation; generative tools for design synthesis; advanced modeling and visualization techniques; rapid prototyping and CAD/CAM technologies for physical fabrication; and the analysis of the design process and its enhancement through supporting technologies and workspaces. The mission of the program is to enrich design from a computational perspective, with clear implications for teaching and practice.

Admission and degree requirements vary somewhat in the specific areas listed above, and may be obtained from the Department of Architecture website or in correspondence with the separate areas. The residency requirement for the PhD is a minimum of two full academic years. Completion of all of the requirements for the PhD—including the dissertation—is usually accomplished in five or six years.

Each student admitted to work in the doctoral program should consult closely with one principal professor in his or her area to develop a general plan of study. In all three areas, progress toward the PhD follows a sequence of required subject work, qualifying papers, general examinations, and dissertation research, writing, and defense. Students are encouraged to take subjects appropriate to their study plans in other departments at MIT and at Harvard.

Urban Design Certificate

The Department of Architecture and the Department of Urban Studies and Planning jointly offer a Certificate in Urban Design. The purpose of the program is to provide the fundamental knowledge and special skills required to design urban and suburban environments. Students in the MArch, SMArchS, MCP, or Master of Science in Urban Studies and Planning programs are eligible for a Certificate in Urban Design if they complete a specific set of subjects drawn from the two departments. For further information, contact Jordan Pettis, Room 10-485, 617-253-5115.

Faculty and Teaching Staff

Professors
Michael Dennis, BArch
Professor of Architecture

John E. Fernández, MArch
Professor of Architecture and Building Technology

Antón García-Abril, PhD
Professor of Architecture

Leon R. Glicksman, PhD
Professor of Building Technology

Professor of Mechanical Engineering
Renée Green, BA
Professor of Art, Culture and Technology

Mark Jarzombek, PhD
Professor of the History and Theory of Architecture
(On leave, fall)

Caroline A. Jones, PhD
Professor of the History of Art

Terry W. Knight, PhD
Professor of Design and Computation

Leslie Keith Norford, PhD
George Macomber Professor in Construction Management
Professor of Building Technology

John A. Ochsendorf, PhD
Class of 1942 Professor
Professor of Building Technology
Professor of Civil and Environmental Engineering

Nasser Rabbat, MArch, PhD
Aga Khan Professor
Professor of the History of Architecture

Adèle Naudé Santos, MArch, MCP, MAUD
Professor of Architecture
Professor of Urban Planning

Hashim Sarkis, PhD
Dean, School of Architecture and Planning
Professor of Architecture
Professor of Urban Planning

Andrew M. Scott, BArch
Professor of Architecture
(On leave, spring)

Anne Whiston Spirn, PhD
Professor of Planning
Professor of Landscape Architecture
(On leave, spring)

George N. Stiny, PhD
Professor of Design and Computation

James Wescoat, PhD
Aga Khan Professor
Professor of Urban Studies and Planning

J. Meejin Yoon, MAUD
Head, Department of Architecture
Professor of Architecture

Associate Professors
Alexander D’Hooghe, MAUD, PhD
Associate Professor of Architecture and Urbanism

Arindam Dutta, PhD
Associate Professor of the History of Architecture
(On leave, fall)

Mark Goulthorpe, BArch
Associate Professor of Design

Timothy Hyde, MArch, PhD
Associate Professor of the History of Architecture

Ana Miljacki, MArch, PhD
Associate Professor of Architecture

Takehiko Nagakura, MArch, PhD
Associate Professor of Design and Computation

William O’Brien Jr, MArch
Associate Professor of Architecture

Christoph Reinhart, PhD
Associate Professor of Building Technology

Lawrence Sass, PhD
Associate Professor of Computation and Design

Rafael (Rafi) Segal, PhD
Associate Professor of Architecture and Urbanism
(On leave, fall)

Kristel Smentek, PhD
Associate Professor of the History of Art

Gediminas Urbonas, MFA
Associate Professor of Art, Culture and Technology

Assistant Professors
Azra Aksamija, MArch
Class of 1922 Career Development Professor
Assistant Professor of Architecture and Urbanism

Rania Ghosn, DDes
Assistant Professor of Architecture and Urbanism

Lauren Jacobi, PhD
Class of 1942 Career Development Professor
Assistant Professor of the History of Art
(On leave)

Joel Lamere, MArch
Homer A. Burnell Career Development Professor
Assistant Professor of Architecture
(On leave, spring)
Miho Mazereeuw, MArch, MLA
Ford International Career Development Professor
Assistant Professor of Architecture and Urbanism

Caitlin T. Mueller, PhD
Assistant Professor of Structural Design

Professors of the Practice
Yung Ho Chang, MArch
Professor of the Practice of Architecture
(On leave)

Philip G. Freelon, MArch
Professor of the Practice of Architecture
(Fall)

Sheila Kennedy, MArch
Professor of the Practice of Architecture
(Fall)

Associate Professors of the Practice
Dennis R. Shelden, PhD
Associate Professor of the Practice of Computation
(Fall)

Lecturers
Brandon Clifford, MArch
Belluschi Lecturer of Architecture

Technical Instructors
Christopher B. Dewart, BA
Technical Instructor in Architecture

Justin A. Lavallee, MArch
Technical Instructor in Architecture

Research Staff

Principal Research Associates
Reinhard Goethert, MArch, PhD
Principal Research Associate of Architecture

Principal Research Scientists
Kent Larson, BArch
Principal Research Scientist of Architecture

Research Scientists
Phebe H. M. Dudek, MS
Research Scientist of Architecture

Debora Mesa Molina
Research Scientist of Architecture

Cody Rose, MS
Research Scientist of Architecture

Skylar Tibbits, SMArchS
Research Scientist of Architecture

Research Fellows
Shun Kanda, MArch
Research Fellow of Architecture

Professors Emeriti
Stanford Anderson, MArch, PhD
Associate Professor Emeritus of History and Architecture

Julian Beinart, MArch, MCP
Professor Emeritus of Architecture

John de Monchaux, MArch
Professor Emeritus of Architecture
Professor Emeritus of Urban Studies

Eric J. Dluhosch, MArch, PhD
Professor Emeritus of Building Technology

David Hodes Friedman, PhD
Professor Emeritus of the History of Architecture

N. John Habraken
Professor Emeritus of Architecture

Joan Jonas, MFA
Professor Emerita of Visual Arts

Edward Levine, MA, PhD
Professor Emeritus of Visual Arts

John Randolph Myer, BArch
Professor Emeritus of Architecture

William Lyman Porter, MArch, PhD
Professor Emeritus of Architecture

Maurice K. Smith, BArch
Professor Emeritus of Architecture

Jan Wampler, MArch
Professor Emeritus of Architecture

Krzysztof Wodiczko, MFA
Professor Emeritus of Visual Arts

Waclaw Piotr Zalewski
Professor Emeritus of Structures
The Program in Media Arts and Sciences (MAS) focuses on the invention, study, and creative use of new technologies that change how we express ourselves, how we communicate with each other, how we learn, and how we perceive and interact with the world. The field draws on a number of other disciplines, including computer science, cognitive sciences, communications, design, and the expressive arts. The program offers undergraduate and graduate subjects and a graduate program leading to master's and doctoral degrees. Its academic programs are intimately linked with the research programs of the Media Lab.

Inquiries
Additional information about the programs in Media Arts and Sciences, graduate admissions, research programs, and research assistantships may be obtained from MAS Headquarters (mas@media.mit.edu), Room E15-435, 617-253-5114, fax 617-253-8542.

Undergraduate Study
Most MAS undergraduate subjects are project oriented and relate to ongoing research within the Media Lab. Certain graduate subjects are open to advanced undergraduates (see Subjects for details). Undergraduate Research Opportunities Program (UROP) (p. 43) positions at the Media Lab are a major part of the MAS education offerings to undergraduates. First-year students participating in UROP are encouraged to register for MAS.111 Introduction to Doing Research in Media Arts and Sciences.

The MAS Alternative Freshman Year Program (p. 31) emphasizes project-oriented work and connections to current research topics. Students in this program attend mainstream lectures for core freshman subjects but take recitations/tutorials led by Media Lab researchers, take two MAS subjects, and participate in research through UROP positions at the Media Lab. This program is suitable for first-year students who intend to pursue any undergraduate major.

Graduate Study
Media Arts and Sciences offers a graduate program leading to master's and PhD degrees. Graduate students work closely with a research advisor in an apprenticeship relationship. Students enter the program from a wide variety of backgrounds, including electrical engineering, physics, computer science, cognitive science, mechanical engineering, art and design, and the learning sciences.

For the master's degree, students are required to spend at least four terms in residence (one of which may be a summer term) and to complete a satisfactory research thesis.

Students wishing to pursue a PhD degree must demonstrate exemplary progress in the master's program and gain approval from a departmental committee review. Requirements for the PhD degree include successful completion of MAS general exams, and successful completion and defense of a dissertation based on original and significant research within one of the Media Lab's research groups.

Financial Support
The Program in Media Arts and Sciences offers financial assistance to all successful applicants in the form of research assistantships within the Media Lab, which are an important part of the educational program. Research assistants receive academic credit for part of their research activities.

Faculty and Teaching Staff

Professors
Harold Abelson, PhD
Class of 1992 Professor
Professor of Computer Science and Engineering
Professor of Media Arts and Sciences

Neil Gershenfeld, PhD
Professor of Media Arts and Sciences

Hiroshi Ishii, PhD
Jerome B. Wiesner Professor
Professor of Media Arts and Sciences

Eric Klopfer, PhD
Professor of Education
Professor of Media Arts and Sciences

Tod Machover, MM
Muriel R. Cooper Professor of Interactive Media Design

Patricia Maes, MM, PhD
Head, Media Arts and Sciences Program
Professor of Media Technology

Nicholas P. Negroponte, MArch
Professor of Media Arts and Sciences

Joseph A. Paradiso, PhD
Professor of Media Arts and Sciences

Alex Pentland, PhD
Toshiba Professor of Media Arts and Sciences
Member, Institute for Data, Systems, and Society
Rosalind W. Picard, ScD
Professor of Media Arts and Sciences

Mitchel Resnick, PhD
LEGO Professor of Learning Research

Associate Professors
Edward S. Boyden III, PhD
Associate Professor of Media Arts and Sciences
Associate Professor of Brain and Cognitive Sciences
Associate Professor of Biological Engineering

Cynthia Lynn Breazeal, PhD
Associate Professor of Media Arts and Sciences

Hugh M. Herr, PhD
Associate Professor of Media Arts and Sciences

Cesar A. Hidalgo, PhD
Asahi Broadcasting Corporation Career Development Professor of Media Arts and Sciences
Associate Professor of Media Arts and Sciences

Joseph Jacobson, PhD
Associate Professor of Media Arts and Sciences
Associate Professor of Mechanical Engineering

Sep Kamvar, PhD
LG Career Development Professor of Media Arts and Sciences
Associate Professor of Media Arts and Sciences

Neri Oxman, PhD
Sony Corporation Career Development Professor of Media Arts and Sciences
Associate Professor of Media Arts and Sciences

Ramesh Raskar, PhD
Associate Professor of Media Arts and Sciences

Deb K. Roy, PhD
Associate Professor of Media Arts and Sciences

Assistant Professors
Hiromi Ozaki, MA
NEC Career Development Professor of Computer and Communications
Assistant Professor of Media Arts and Sciences

Kevin Slavin, BFA
Benesse Career Development Professor of Research in Education
Assistant Professor of Media Arts and Sciences

Eduardo José Bayro Corrochano
Visiting Professor of Media Arts and Sciences

George M. Church, PhD
Visiting Professor of Media Arts and Sciences

William D. Hillis
Visiting Professor of Media Arts and Sciences

Lawrence Lessig
Visiting Professor of Media Arts and Sciences

Joachim Meyer, PhD
Visiting Professor of Media Arts and Sciences

Beth Simone Noveck, JD
Visiting Professor of Media Arts and Sciences

Vivek Kumar Singh, PhD
Visiting Professor of Media Arts and Sciences

Visiting Associate Professors
Katherine Crawford
Visiting Associate Professor of Media Arts and Sciences

Kelly E. Dobson, PhD
Visiting Associate Professor of Media Arts and Sciences

Yasuaki Kakehi, PhD
Visiting Associate Professor of Media Arts and Sciences

In Kyu Park
Visiting Associate Professor of Media Arts and Sciences

Visiting Assistant Professors
Karen Ann Brennan, PhD
Visiting Assistant Professor of Media Arts and Sciences

Matthew Goodwin, PhD
Visiting Assistant Professor of Media Arts and Sciences

Max Andrew Little, PhD
Visiting Assistant Professor of Media Arts and Sciences

Francesco Pilla, PhD
Visiting Assistant Professor of Media Arts and Sciences

Lecturers
Preeta Bansal, JD
Lecturer in Media Arts and Sciences

Joost Paul Bonsen
Lecturer in Media Arts and Sciences
Research Staff

Senior Research Scientists
Andrew B. Lippman, MS
Senior Research Scientist of Media Arts and Sciences

Professors Emeriti

Marvin L. Minsky, PhD
Professor Emeritus of Media Arts and Sciences
Professor Emeritus of Computer Science and Engineering

Barry Lloyd Vercoe, DMA
Professor Emeritus of Media Arts and Sciences
Professor Emeritus of Music
The Department of Urban Studies and Planning (DUSP) offers four degree programs: a Bachelor of Science in Planning; a two-year professional Master in City Planning (MCP); a one-year Master of Science in Urban Studies and Planning (reserved for mid-career students); and a PhD in Urban Studies and Planning. In addition, DUSP has other, nondegree programs and affiliations: the Special Program in Urban and Regional Studies (for mid-career professionals from developing countries); the Community Innovators Lab; the Center for Advanced Urbanism, a research-based initiative dedicated to implementing new integrative models of design and development for cities; and the SENSEable City Lab, a research center concerned with the relationship between technology and cities. Once students are admitted and enrolled at MIT, it is possible to apply for certificate programs in urban design (offered jointly with the Department of Architecture) or environmental planning.

City and regional planners in the United States and other parts of the world are involved not only in physical and economic development, but also in management of the environmental, social, and design consequences of development. They engage in a variety of activities aimed at shaping the forms and patterns of human settlements, and at providing people with housing, public services, employment opportunities, and other crucial support systems that comprise a decent living environment. Planning encompasses not just a concern for the structure and experience of the built environment, but also a desire to harness the social, economic, political, and technological forces that give meaning to the everyday lives of men and women in residential, work, and recreational settings. Planners operate at the neighborhood, metropolitan, state, national, or international level, in both the public and the private sectors. Their tasks are the same: to help frame the issues and problems that receive attention; to formulate and implement projects, programs, and policies responsive to individual and group needs; and to work with and for various communities in allocating economic and physical resources most efficiently and most equitably.

Planners are often described as “generalists with a specialty.” The specialties offered at MIT include city design and development; housing, community, and economic development; international development; and environmental policy and planning, as well as cross-cutting opportunities to study urban information systems, multi-regional systems, and mobility systems. These planning specialties can be distinguished by the geographic levels at which decision making takes place—neighborhood, city, regional, state, national, and global. Subspecialties have also been described in terms of the roles that planners are called upon to play, such as manager, designer, regulator, advocate, educator, evaluator, or futurist.

A focus on the development of practice-related skills is central to the department’s mission, particularly for students in the MCP professional degree program. Acquiring these skills and integrating them with classroom knowledge are advanced through the department’s field-based practicum subjects and research, and through internship programs. In fieldwork, students acquire competence by engaging in practice and then bringing field experiences back into the academic setting for reflection and discussion. Students may work with community organizations, government agencies, or private firms under the direction of faculty members involved in field-based projects with outside clients. In some cases, stipends may be available for fieldwork or internship programs. The Department of Urban Studies and Planning is committed to educating planners who can advocate on behalf of underrepresented constituencies.

During the month of January, the department offers a series of "mini-subjects" in specialized fields not covered by the regular curriculum, including both noncredit and for-credit offerings. Specific opportunities for concentration and specialization available to students are detailed in the descriptions of the degree programs that follow.

Undergraduate Study

The Department of Urban Studies and Planning offers a Bachelor of Science in Planning; HASS Minors in Urban Studies and Planning, International Development, and Public Policy, and a variety of HASS concentrations. There is also an accelerated SB/MCP program which allows exceptional students to complete their undergraduate and master’s degree work in five years.

In addition, DUSP also hosts MIT’s Teacher Education Program (TEP), described under Career and Professional Options (p. 48) in the Undergraduate Education section. TEP provides an option for students interested in exploring new ideas in teaching and learning as applied to K-12 schools. Studies in TEP can also lead to licensure in math or science teaching at the high school or middle school levels.

Bachelor of Science in Planning (Course 11)

The Department of Urban Studies and Planning offers an interdisciplinary preprofessional undergraduate major (p. 367) designed to prepare students for careers in both the public and private sectors. The major also provides a foundation for students who are considering graduate work in law, public policy, international development, urban design, management, and planning. The subjects in the major teach students how the tools of economics, policy analysis, political science, and urban design can be used to solve social and environmental problems in the United States and abroad. In addition, students learn the skills and responsibilities of planners who seek to promote effective and equitable social change.

After satisfying the core requirements, students use their electives to pursue a specific track. We suggest one of the following, but will

DEPARTMENT OF URBAN STUDIES AND PLANNING
accept self-designed options to better meet a student's interest: urban and environmental policy and planning; urban society, history, and politics; or urban and regional public policy. The required laboratory emphasizes urban information systems and offers skills for measurement, representation, and analysis of urban phenomena. In the laboratory subject, students also explore the ways emerging technology can be used to improve government decision making.

Students are encouraged to develop a program that will strengthen their analytic skills, broaden their intellectual perspectives, and test these insights in real-world applications. Students must complete a senior project that synthesizes what they have learned. This project may consist of an analysis of a public policy issue, a report on a problem-solving experience from an internship or other field experience, or a synthesis of research on urban affairs.

Five-Year SB-MCP Option
Undergraduate Course 11 majors may apply for admission to the department’s Master in City Planning (MCP) program in their junior year. Students accepted into the five-year program receive both the Bachelor of Science and the MCP at the end of five years. Admission is intended for those undergraduates who have demonstrated exceptional performance in the major and show commitment to the field of city planning. Criteria for admission include the following:

- A strong academic record in Course 11 subjects
- Letters of reference from departmental faculty
- Practical experience in planning, which could be gained through internships, practicums, studios, Undergraduate Research Opportunities Program experiences, summer jobs, etc.
- A mature and passionate interest for the field that warrants further study

Students can obtain more information on the five-year program from Sandra Wellford, undergraduate administrator, Room 7-346A, 617-253-9403.

Minor in Urban Studies and Planning
The six-subject Minor in Urban Studies and Planning offers students the opportunity to explore issues in urban studies and planning in some depth. Students initially take two Tier I subjects that establish the political, economic, and design contexts for local, urban, and regional decision making. Next, students choose three Tier II elective subjects, which provide an opportunity to focus on urban and environmental policy issues or to study urban problems and institutions. Students may also choose from a variety of graduate courses, subject to the instructor's permission. Finally, students take 11.123 Big Plans and Mega-Urban Landscapes, a subject that aims to synthesize past and present efforts to implement knowledge about large-scale projects and policies. Students are encouraged to craft a minor that reflects their own particular interests within the general parameters of the minor program requirements and in consultation with the minor advisor.

<table>
<thead>
<tr>
<th>Tier I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11.001[J]</td>
<td>Introduction to Urban Design and Development</td>
</tr>
<tr>
<td>11.002[J]</td>
<td>Making Public Policy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select three of the following:</td>
<td>27-36</td>
</tr>
<tr>
<td>11.005</td>
<td>Introduction to International Development</td>
</tr>
<tr>
<td>11.011</td>
<td>The Art and Science of Negotiation</td>
</tr>
<tr>
<td>11.013[J]</td>
<td>American Urban History I</td>
</tr>
<tr>
<td>11.014[J]</td>
<td>American Urban History II</td>
</tr>
<tr>
<td>11.016[J]</td>
<td>The Once and Future City</td>
</tr>
<tr>
<td>11.021[J]</td>
<td>Environmental Law, Policy, and Economics: Pollution Prevention and Control</td>
</tr>
<tr>
<td>11.022[J]</td>
<td>Regulation of Chemicals, Radiation, and Biotechnology</td>
</tr>
<tr>
<td>11.025[J]</td>
<td>D-Lab: Development</td>
</tr>
<tr>
<td>11.026[J]</td>
<td>Downtown</td>
</tr>
<tr>
<td>11.137</td>
<td>Financing Economic Development</td>
</tr>
<tr>
<td>11.162</td>
<td>Politics of Energy and the Environment</td>
</tr>
<tr>
<td>11.165</td>
<td>Energy and Infrastructure Technologies</td>
</tr>
<tr>
<td>11.166</td>
<td>Law, Social Movements, and Public Policy: Comparative and International Experience</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11.123</td>
<td>Big Plans and Mega-Urban Landscapes</td>
</tr>
</tbody>
</table>

| Total Units | 60-69 |

Minor in International Development
The HASS Minor in International Development aims to increase students’ ability to understand, analyze, and tackle problems of global poverty and economic development in the developing world. Challenges include increasing urbanization; the need for industrial growth as well as jobs for an increasing number of educated youth; the crisis of resources and infrastructure; the fragmentation of state capacity and rising violence; ethical and moral issues raised by development planning; the role of appropriate technology and research; and popular discontent. The minor emphasizes problem-solving, multidisciplinarity, and an understanding of institutions at various levels—from the local to the global—as the keys to solving today’s problems in emerging countries.

The six-subject minor is structured into two tiers. The subjects in the first tier provide a general overview of the history of international development and major theories and debates in the field, and an introduction to the dilemmas of practice. They also introduce the
challenges of applying models of interventions across contexts and the importance of understanding local institutional frameworks and political economies across scales and levels of governance.

Subjects in the second tier offer an array of more specialized and advanced subjects to allow students greater depth in specific sectors and international development issues such as public finance, infrastructure and energy, sustainability, the role of technology policy, the form and structure of cities, the politics of urban change and development, the role of law and public policy in development, and the rethinking of development in terms of human rights.

Tier I: Introduction to International Development Theories and Practice
Select two of the following: 24

- 11.005 Introduction to International Development
- 11.025[J] D-Lab: Development
- 11.140 Urbanization and Development

Tier II: Specialized Topics in International Development
Select four of the following (in consultation with the minor advisor): 42-48

- 4.233 The New Global Planning Practitioner
- 11.027 City to City: Comparing, Researching and Writing about Cities
- 11.144 Project Appraisal in Developing Countries
- 11.147 Innovative Budgeting and Finance for the Public Sector
- 11.164[J] Human Rights at Home and Abroad
- 11.165 Energy and Infrastructure Technologies
- 11.166 Law, Social Movements, and Public Policy: Comparative and International Experience
- EC.715 D-Lab: Disseminating Water/Environment, Sanitation, and Hygiene Innovations for the Common Good

Total Units 66-72

Additional subjects not listed above may be included in the minor at the discretion of the minor advisor.

Further information can be obtained from Professor Balakrishnan Rajagopal (braj@mit.edu), Room 9-432, 617-253-6315.

Minor in Public Policy
The interdisciplinary HASS Minor in Public Policy (p. 346) is intended to provide a single framework for students interested in the role of public policy in the field of their technical expertise. Because the Course 11 major has a strong public policy element and several subjects are redundant, Course 11 majors are not eligible for the Minor in Public Policy.

HAFF Concentrations
DUSP offers clusters of subjects that satisfy the Institute requirement. These three-subject clusters allow students either to develop competence within a specific discipline or to explore a particular policy problem. Possible areas of concentration include: designing the urban environment, environmental policy, urban history, policy analysis and urban problems, legal issues and social change, and education. Sample programs are available online (http://dusp.mit.edu).

The DUSP concentration focusing on education can also lead to Massachusetts licensure in teaching math and science at the middle and high school levels. This requires taking:

Education Concentration Subjects

11.129	Educational Theory and Practice I	12
11.130	Educational Theory and Practice II	12
11.131	Educational Theory and Practice III	12

Core Subjects

| 11.124 | Introduction to Education: Looking Forward and Looking Back on Education | 12 |
| 11.125 | Introduction to Education: Understanding and Evaluating Education | 12 |

More information is available from Eric Klopfer, Room E15-301, 617-253-2025.

Graduate Study
The Department of Urban Studies and Planning offers graduate work leading to the Master in City Planning and the Doctor of Philosophy. In conjunction with the Center for Real Estate, the department also offers a Master of Science in Real Estate Development. These programs are open to students from a variety of backgrounds. Urban studies, city planning, architecture, urban design, environmental planning, political science, civil engineering, economics, sociology, geography, law, management, and public administration all offer suitable preparation. For further information concerning academic programs in the department, application for admission, and financial aid, contact Graduate Admissions, Room 7-346, 617-253-9403.
Master in City Planning

The principal professional degree in the planning field is the Master in City Planning (MCP). The Department of Urban Studies and Planning provides graduate education for men and women who will assume professional roles in public, private, and nonprofit agencies, firms, and international institutions, in the United States and abroad. The department seeks to provide MCP students with the skills and specialized knowledge needed to fill traditional as well as emerging planning roles. The MCP is accredited by the American Planning Association.

The two-year Master in City Planning degree program emphasizes mastery of tools for effective practice and is therefore distinct from undergraduate liberal arts programs in urban affairs or doctoral programs that emphasize advanced research skills. MCP graduates work in a broad array of roles, from "traditional" city planning to economic, social, and environmental planning, as well as urban design. In addition to its basic core requirements, the program offers four areas of specialization: City Design and Development; Environmental Policy and Planning; Housing, Community, and Economic Development; and International Development. MCP students, in their application to the department, select one of these areas of specialization and, when applicable, indicate interest in cross-cutting programs in transportation planning, urban information systems, and regional planning.

Each student’s plan of study in the MCP Program is set forth in a program statement developed jointly by the student and faculty advisor during the student’s first term. Linked to career development goals, the program statement describes the purposes and goals of study, the proposed schedule of subjects, the manner in which competence in a specialization is developed, and an indication of a possible thesis topic.

Degree Requirements

Students are expected to take a minimum of 36 credit units each term (at least three subjects, though more frequently four), yielding at least 126 total units, in addition to the thesis.

A collection of subjects and requirements to be taken during the student’s two years in the MCP program constitute a "core experience" viewed as central to the professional program. The core subjects and requirements include the following:

An introductory subject in the chosen specialization area, taken in the first term of the first year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.201</td>
<td>Gateway: Planning Action</td>
<td>12</td>
</tr>
<tr>
<td>11.202</td>
<td>Planning Economics</td>
<td>4</td>
</tr>
<tr>
<td>11.203</td>
<td>Microeconomics ¹</td>
<td>8</td>
</tr>
<tr>
<td>11.205</td>
<td>Introduction to Spatial Analysis ¹</td>
<td>6</td>
</tr>
<tr>
<td>11.220</td>
<td>Quantitative Reasoning and Statistical Methods for Planning ¹</td>
<td>12</td>
</tr>
</tbody>
</table>

At least one core practicum subject, selected from an approved list, during the two-year program

A thesis preparation seminar in the area of specialization, taken during the second or third term of study

¹ Students can test out of these subjects.

Students identified as having weaker writing skills are also encouraged to take a writing course.

All students are required to submit a thesis on a topic of their choice. The department encourages MCP students to avoid the traditional perception of the thesis as a "mini-dissertation," and to think instead of a client-oriented, professional document that bridges academic and professional concerns. While most of the thesis work occurs during the last term of the second year, students are urged to begin the process of defining a thesis topic early in the second year through their participation in a required thesis preparation seminar.

Students in the MCP Program are encouraged to integrate fieldwork and internships with academic coursework. The Department of Urban Studies and Planning provides a variety of individual and group field placements involving varying degrees of faculty participation and supervision. Academic credit is awarded for field experience, although some students choose instead to participate in the work-study financial aid program. The department also sponsors a variety of seminars in which students have an opportunity to reflect on their field experiences.

The City Design and Development (CDD) group engages, researches, and projects the physical planning of cities, regions, and their built and natural environments, at scales and locations that range from urban neighborhoods and city cores to outer suburbs. Graduates work in a variety of private, public, and nonprofit roles as urban designers, planning and design consultants, municipal and regional planners, managers of public agencies, advocates of historic and landscape preservation, housing, and land use regulations, real estate development, and as planners of transportation and mobility systems. CDD is closely associated with faculty and students in the Department of Architecture’s Urbanism field, the Center for Advanced Urbanism, Center for Real Estate, SENSEable City Lab, and Media Lab. Many subjects are cross-listed with these groups. CDD’s diverse educational offerings, ranging from studios to seminars, lectures, and workshops, ensure that every student can develop unique competence and intellectual depth in the field. CDD students may also elect to pursue the Urban Design Certificate, for those who wish to be involved in shaping the physical form and logistical function of cities, or pursue an additional year of study through DUSP’s SM in Advanced Urbanism. Individual faculty within CDD also work in areas that include landscape urbanism; resilient cities and housing; land use planning and regulation; innovation districts; parametric urbanism; and much more.
The Center for Advanced Urbanism—jointly administered by faculty from the CDD group and the Urbanism group in the Department of Architecture—is a research-based institution dedicated to implementing new collaborative models of design and urban research.

The Environmental Policy and Planning (EPP) group emphasizes the study of how society conserves and manages its natural resources and works to promote sustainable development. Areas of concern include the role of science in environmental policy making, climate change mitigation and adaptation, sustainable international development, adaptive ecosystem management, environmental justice, global environmental treaty making, environmental regulation, energy efficiency and renewable energy, the role of private corporations in environmental management, and the mediation of environmental disputes. Students investigate the interactions between built and natural systems; the effectiveness of different approaches to environmental planning and policy making; techniques for describing, modeling, forecasting, and evaluating changes in environmental quality; approaches to environmental policy analysis; strategies for stakeholder involvement in environmental planning; and mechanisms for assessing the choices posed by the environmental impacts of new technology in local, state, national, and international contexts.

The Housing, Community, and Economic Development (HCED) group focuses on the equitable development of communities in the United States, at the neighborhood, city, and regional scales. Its mission is to prepare professionals with the skills and knowledge to be responsible leaders of public, private, and nonprofit sector organizations and networks engaged in equitable development. The group is driven by a deep faculty commitment to expanding opportunity and improving quality of life for historically disadvantaged groups. HCED emphasizes ongoing empowering partnerships with those affected by change—often those who are organizing to lead local improvement efforts. Many faculty and students also have an interest in global markets and federal and state policy. For decades, the group’s faculty and students have helped shape policy, practice and research in housing, economic, workforce, and comprehensive community development. Increasingly, HCED connects to efforts that promote public health, environmental sustainability, and more inclusive “digital cities” as well. HCED promotes an integrated and dynamic approach to learning, helping prepare students for careers as problem solvers who can perform in varied roles: policy analyst or policy maker, advocate and organizer, mediator, evaluator, program designer, investor and entrepreneur, project developer and manager. At the doctoral level, HCED prepares students not only to produce but also to shape the next generation of creative teaching and scholarship.

The International Development Group (IDG) draws on the experiences of developing and newly industrializing countries throughout the world as the basis for advice about planning at the local, regional, national, and global levels. IDG provides students with an integrated view of the institutional, legal, historical, economic, technological, and sociopolitical factors that have shaped successful planning experiences and how they translate into action. Class content and faculty expertise include economic development at various scales; human rights and rights-based approaches to development, ethical and moral issues raised by development planning, the challenge of planning amidst popular discontent; regional planning (including decentralization); finance and project evaluation; housing, human settlements, and infrastructure services (transportation, telecommunications, water, sanitation, sewage); institutions of economic growth; law and economic development; industrialization and industrial policies (including privatization); poverty-reducing and employment-increasing interventions including informal sector, nongovernment organizations, and small enterprises; comparative urban and metropolitan politics and policy; property and land rights, comparative property and land use law, collective action, and common property issues (water, forestry, grazing, agriculture); human rights and development; conflict and social dynamics in cities; post-conflict development; and globalization and governance.

Urban Information Systems (UIS) is a cross-cutting group that connects faculty, staff, and students who are interested in the ways information and communication technologies impact urban planning. Research topics include building neighborhood information systems to facilitate public participation in planning; exploring the complex relationships underlying urban spatial structure, land use, transportation, and the environment; modeling urban futures and metropolitan growth scenarios; and experimenting with mobile computing, location-based services, and the community building, planning, and urban design implications of ubiquitous computing. Associated faculty are engaged in many related research projects through the SENSEable City Lab, the Civic Data Design Lab, the Urban Mobility Lab, the Center for Advanced Urbanism, and MIT-wide interdisciplinary research initiatives such as the Future Urban Mobility project in Singapore. Through seminars and related activities, we share experiences and find ways to collaborate on the technical, planning, and social science aspects of making information technology-enabled urban futures more responsive to public and private interests in ways that are transparent and equitable.

Much of UIS’s work involves the development and use of planning-related software and the spatial analysis tools and systems (such as GIS and distributed geoprocessing) that are increasingly important parts of metropolitan information infrastructures. However, UIS interests go beyond the development and use of specific technologies and extend to an examination of the ripple effects of computing, communications, and digital spatial information on current planning practices and on the meaning and value of the impacted communities and planning institutions.
Simultaneous Master's Degrees in City Planning and Architecture
Students who have been admitted to either the Department of Urban Studies and Planning or the Department of Architecture can propose a program of joint work in the two fields that will lead to the simultaneous awarding of two degrees. Degree combinations may be MCP/MArch or MCP/SMArchS. A student must apply by the January deadline prior to beginning the last full year of graduate study for the first degree: MCP and SMArchS. SMArchS students must apply during their first year at MIT (by the end of the first term); MArch students must apply during or before their second year. Students are first approved by the Dual Degree Committee and then considered during the spring admissions process. All candidates for simultaneous degrees must meet the requirements of both degrees, but may submit a joint thesis.

Simultaneous Master's Degrees in City Planning and Transportation
Students who have been admitted to study for the Master in City Planning or the Master of Science in Transportation may apply to the other program during their first year of study and propose a program of joint work in the two fields that will lead to the simultaneous awarding of two degrees. Details of this program are provided under Interdepartmental Programs in the Civil and Environmental Engineering section.

Simultaneous Master's Degrees in City Planning and Real Estate Development
Students who have been admitted to the Master in City Planning Program or the Master of Science in Real Estate Development Program may apply to the other program during their first year of study and propose a program of joint work in the two fields that will lead to the simultaneous awarding of two degrees. Students may submit a joint thesis.

Master of Science in Urban Studies and Planning
Under special circumstances, admission may be granted to candidates seeking a one-year Master of Science (SM) degree. The SM is intended for professionals with a number of years of distinguished practice in city planning or related fields who have a clear idea of the courses they want to take at MIT, the thesis they want to write, and the DUSP faculty member with whom they wish to work. That faculty member must be prepared to advise the candidate when at MIT and to submit a letter of recommendation so indicating as part of the candidate's application. This process means that prior to submitting an application the candidate must contact the appropriate DUSP faculty member to establish such a relationship. The SM does not require the candidate to take the core courses, which are mandatory for MCP candidates. As indicated above, a thesis is required. For further information concerning the SM option, contact Graduate Admissions, Room 7-346, 617-253-9403.

Doctor of Philosophy
The PhD is the advanced research degree in urban planning or urban studies. Admission requirements are substantially the same as for the master's degree, but additional emphasis is placed on academic preparation, professional experience, and the fit between the student's research interests and the department's research activities. Nearly all successful applicants have previously completed a master's degree.

After successful completion of coursework, students are required to take oral and written qualifying general exams in two fields: an intellectual discipline (city design and development, international development, public policy, urban information systems, regional and urban economics, or urban sociology) and a field to which this discipline is applied and that coincides with the student's research interest and possible dissertation topic. Doctoral candidates are expected to complete the qualifying general examinations before beginning their third year of residence. Upon completing the qualifying general examination and a colloquium about the dissertation proposal, a PhD candidate must write and successfully defend a doctoral dissertation that gives evidence of the capacity to do independent and innovative research.

A minimum of 72 units plus 36 units for the dissertation (a minimum of 108 units) is required for the PhD degree.

Interested and qualified students can undertake joint doctoral programs with the Department of Political Science or the Department of Civil and Environmental Engineering.

Interdisciplinary Programs
Graduate Programs in Transportation
MIT provides a broad range of opportunities for transportation-related education. Courses and classes span the School of Engineering, the Sloan School of Management, and the School of Architecture and Planning, with many activities covering interdisciplinary topics that prepare students for future industry, government, or academic careers.

A variety of graduate degrees are available to students interested in transportation studies and research, including a Master of Science in Transportation and PhD in Transportation, described under Interdisciplinary Graduate Programs, as well as a nine-month Master of Engineering Transportation program, described in the Master of Engineering program for the Department of Civil and Environmental Engineering.
Environmental Planning Certificate
Students in the MCP and PhD program who complete a prescribed set of subjects are awarded a Certificate in Environmental Planning. For further information contact Takeo Kuwabara (takeok@mit.edu).

Urban Design Certificate
Students in the MCP, MArch, or SMArchS programs who complete a specific curriculum of subjects in history and theory, public policy, development, studios and workshops, and a thesis in the field of urban design are awarded a Certificate in Urban Design by the School of Architecture and Planning. For further information contact the Joint Program in City Design and Development office, Room 10-485, 617-253-5115.

Nondegree Programs
A limited number of nondegree students are admitted to the department each term. This special student status is especially designed for professionals interested in developing specialized skills, but is also available to others.

The MIT Community Innovators Lab (CoLab) supports faculty and students to work with low-income and excluded people in the United States, Latin America, and the Caribbean, tapping their energy, creativity, and in-depth knowledge of the issues they face to tackle poverty, climate change, and mass urbanization. Launched in 2007, CoLab supports faculty and student collaboration on field-based projects working with departments, laboratories, and centers across the Institute on action research while providing important resources to community leaders. CoLab offers instruction and tools—practice-based classes, study groups, tutoring, coaching, mentoring, as well as IAP courses in reflective practice, civic engagement, action research, use of social media, storytelling, and visual mapping—to help students embed and apply technical learning in real societal contexts, equipping them with the resources they will need to take leadership roles in an increasingly complex world. Its dense network of innovative practitioners in the US, Latin America, and the Caribbean augment faculty instruction with field-based projects with departments, laboratories, and centers across the Institute on action research while providing important resources to community leaders.

In addition to work in communities, CoLab hosts regular programs that bring nationally recognized leaders to share their work and help inform the Institute’s research agenda. The Mel King Community Fellows Program convenes an annual cohort of advanced practitioners from a range of relevant fields who are grappling with challenges of equitable and sustainable development. CoLab also provides community and industry leaders with private deliberative space in which they can explore emerging issues while allowing students up-close opportunities to participate in collaborative brainstorming sessions. Along with CoLab workshops, CoLab Radio (the center’s blog) and online programming, roundtables, speaker series, and lunchtime talks, these activities enliven and enrich the Institute’s intellectual community by infusing it with a powerful diversity of voices and insights.

CoLab is located in Room 9-419. Further information can be found on the CoLab website (http://colab.mit.edu) and blog (http://colabradio.mit.edu).

The Special Program for Urban and Regional Studies (SPURS) is a one-year program designed for mid-career professionals from developing and newly industrializing countries. SPURS was founded in 1967 as part of the Department of Urban Studies and Planning (DUSP), which has a long-standing commitment to bringing outstanding individuals to MIT to reflect on their professional practice in the field of international development. The program is designed to nurture individuals, often at a turning point in their professional careers, to retool and reflect on their policy-making and planning skills. SPURS Fellows return to their countries with a better understanding of the complex set of relationships among local, regional, and international issues. SPURS has hosted over 658 women and men from more than 115 countries in Latin America, Asia, Africa, the Middle East, and Eastern and Central Europe. SPURS alumni/ae hold senior level positions in both the public and private sectors in their countries.

For further information contact Nimfa de Leon, Room 9-435, 617-253-5915 or visit the SPURS website (http://web.mit.edu/spurs/www).

Inquiries
For further information concerning academic programs in the department, application for admission, and financial aid, contact Graduate Admissions, Room 7-346, 617-253-9403.

Faculty and Teaching Staff

Professors
Eran Ben-Joseph, PhD
Head, Department of Urban Studies and Planning
Professor of Landscape Architecture and Urban Planning

Alan M. Berger, MLA
Professor of Urban Design and Landscape Architecture

Xavier de Souza Briggs, PhD
Professor of Community Development and Public Policy
(On leave)

Phillip L. Clay, PhD
Class of 1922 Professor
Professor of Urban Studies and Planning

Joseph Ferreira Jr, PhD
Professor of Urban Planning and Operations Research
Robert M. Fogelson, PhD
Professor of Urban Studies
Professor of History

Dennis M. Frenchman, MArch, MCP
Norman B. (1938) and Muriel Leventhal Professor of Architecture and Planning
Professor of Urban Design

David M. Geltner, PhD
Professor of Real Estate Finance
(On leave, spring)

Amy K. Glasmeier, PhD
Professor of Geography and Regional Planning
(On leave)

Eric Klopfer, PhD
Professor of Education
Professor of Media Arts and Sciences

Jennifer S. Light, PhD
Professor of Science, Technology, and Society
Professor of Urban Studies and Planning

Karen R. Polenske, PhD
Professor of Regional Political Economy and Planning
(On leave, fall)

Adèle Naudé Santos, MArch, MCP, MAUD
Professor of Architecture
Professor of Urban Planning

Bishwapriya Sanyal, PhD
Ford International Professor
Professor of Urban and Regional Planning

Hashim Sarkis, PhD
Dean, School of Architecture and Planning
Professor of Architecture
Professor of Urban Planning

Anne Whiston Spirn, PhD
Professor of Planning
Professor of Landscape Architecture
(On leave, spring)

Lawrence E. Susskind, PhD
Ford Professor in Urban Studies
Professor of Urban and Environmental Planning

Lawrence Vale, DPhil
Ford International Professor in Urban Studies
Professor of Urban Design and Planning

James Wescoat, PhD
Aga Khan Professor
Professor of Urban Studies and Planning

Associate Professors
Janelle Knox-Hayes, PhD
Associate Professor of Economic Geography and Planning

Balakrishnan Rajagopal, SJD
Associate Professor of Law and Development

Brent D. Ryan, PhD
Associate Professor of Urban Design and Public Policy

Albert Saiz, PhD
Daniel Rose Professor
Associate Professor of Urban Economics

J. Phillip Thompson, PhD
Associate Professor of Urban Politics and Community Development

P. Christopher Zegras, PhD
Associate Professor of Urban Planning and Transportation

Assistant Professors
Mariana Arcaya, ScD
Assistant Professor of Urban Planning and Public Health

Gabriella Carolini, PhD
Ford Career Development Professor
Assistant Professor of International Development and Urban Planning
(On leave, fall)

David Hsu, PhD
Assistant Professor of Urban and Environmental Planning

Justin Steil, JD, PhD
Assistant Professor of Law and Urban Planning

Sarah E. Williams, MCP
Ford International Career Development Professor
Assistant Professor of Information Technologies and Urban Planning
Member, Institute for Data, Systems, and Society

Jinhua Zhao, PhD
Edward H. (1962) and Joyce Linde Career Development Professor
Assistant Professor of Urban Planning and Transportation

Professors of the Practice
Ceasar L. McDowell, EdD
Professor of the Practice of Community Development

Carlo Ratti, PhD
Professor of the Practice of Urban Studies and Planning
Visiting Associate Professors
Meng-Tzu Cheng, PhD
Visiting Associate Professor of Urban Studies and Planning
Hongyan Cui
Visiting Associate Professor of Urban Studies and Planning
Eva Kassens-Noor, PhD
Visiting Associate Professor of Urban Studies and Planning

Visiting Assistant Professors
Amin Anjomshoaa, PhD
Visiting Assistant Professor of Urban Studies and Planning

Adjunct Professors
Terry S. Szold, MRP
Adjunct Professor of Land Use Planning

Senior Lecturers
Claus Otto Scharmer, PhD
Senior Lecturer in Management
Senior Lecturer in Urban Studies and Planning
Karl Seidman, MPP
Senior Lecturer in Urban Studies and Planning
Walter N. Torous, PhD
Senior Lecturer of Urban Studies and Planning
Senior Lecturer in Management

Lecturers
Cherie Abbanat, MCP
Lecturer of Urban Studies and Planning
James Buckley, PhD
Lecturer in Urban Studies and Planning
Dayna L. Cunningham, MBA, JD
Lecturer in Urban Studies and Planning
Ezra Glenn, MA
Lecturer of Urban Studies and Planning
Christopher Gordon, MS
Lecturer of Urban Studies and Planning
Yu-Hung Hong, PhD
Lecturer of Urban Studies and Planning
John Kennedy, MS
Lecturer of Urban Studies and Planning
Miloon Kothari, BArch
Lecturer of Urban Studies and Planning
Fadi Masoud, MLA
Lecturer in Urban Studies and Planning
W. Tod McGrath, MBA
Lecturer of Urban Studies and Planning
Julie Newman, PhD
Lecturer of Urban Studies and Planning
Mary Anne O’Campo, MArch
Lecturer of Urban Studies and Planning
Peter Roth, MS, MArch
Lecturer of Urban Studies and Planning
José (Jota) Samper, PhD
Lecturer in Urban Studies and Planning
Gloria Schuck, PhD
Lecturer of Urban Studies and Planning
Susan Silberberg, MCP
Lecturer in Urban Studies and Planning
Yanni Tsipis, MS
Lecturer of Urban Studies and Planning

Research Staff

Research Scientists
Aikaterini Bagiati
Research Scientist of Urban Studies and Planning
Stanislav Sobolevsky, PhD
Research Scientist of Urban Studies and Planning

Visiting Scholars
Kenneth Reeves, JD
Visiting Scholar of Urban Studies and Planning

Professors Emeriti
John de Monchaux, MArch
Professor Emeritus of Architecture
Professor Emeritus of Urban Studies
Ralph Gakenheimer, PhD
Professor Emeritus of Urban Planning
Gary A. Hack, MArch, PhD
Professor Emeritus of Urban Design
Frank S. Jones, MBA
Professor Emeritus of Urban Affairs
Langley C. Keyes Jr, PhD
Ford International Professor Emeritus
Professor Emeritus of City and Regional Planning

Melvin H. King, MEd
Senior Lecturer Emeritus of Urban Studies and Planning

Tunney F. Lee, BArch
Professor Emeritus of Architecture and Urban Studies and Planning

Frank Levy, PhD
Daniel Rose Professor Emeritus
Professor Emeritus of Urban Economics

Gary Marx, PhD
Professor Emeritus of Sociology

Lisa R. Peattie, PhD
Professor Emerita of Urban Anthropology

Martin Rein, PhD
Professor Emeritus of Social Policy

Judith Tendler, PhD
Professor Emerita of Political Economy

William C. Wheaton, PhD
Professor Emeritus of Urban Studies
Professor Emeritus of Economics

Clarence G. Williams, PhD
Adjunct Professor Emeritus of Urban Studies and Planning
SCHOOL OF ENGINEERING

An engineering education from MIT provides students with exceptional opportunities to define and impact the future of their fields, as well as related areas such as medicine, management, law, and government. Never have the challenges and opportunities of engineering been more exciting or more critical to the long-term well-being of society than they are today.

Technology’s enormous influence on society is creating an increasing demand for engineering graduates. Engineers provide important leadership to society through their central role in scientific and technological innovation. By creating, developing, and managing complex technologies and products, they contribute directly to the betterment of humanity and to shaping our world. Seeking solutions to the most difficult challenges of our day in the context of physical, economic, human, political, legal, and cultural realities makes engineering a tremendously rewarding endeavor.

The first-year curriculum for all MIT undergraduates includes physics, chemistry, mathematics, biology, and the humanities, arts, and social sciences. An undergraduate student normally becomes affiliated with a particular department or course of study at the beginning of sophomore year and works closely with an advisor from that department or program to shape their course of study. Students who would like to explore an engineering major are encouraged to seek out and get involved with one of the engineering departments during freshman year. Every department offers exciting subjects that introduce freshmen to engineering; they also offer Freshman Advising Seminars that bring students together in small groups to discuss their field with department faculty. Undergraduate Research Opportunities Projects (UROPs) (p. 43) are a great way to delve into cutting-edge engineering research.

Once a student chooses an undergraduate major, there are many opportunities for individual initiatives. For example, the flexible engineering degree program offers students in several departments the opportunity to satisfy department-based core requirements and declare an additional concentration, which can be broad and interdisciplinary in nature (energy, health, or the environment), or focused on areas that can be applied to multiple fields (robotics and controls, computational engineering, or engineering management). Students may also elect to create their own concentrations under supervision from department faculty. In addition, many undergraduates combine their primary major with a second one in another area, such as management, political science, economics, one of the sciences, or another area of engineering. Others organize their programs so they can receive both undergraduate and graduate degrees simultaneously. A series of minor programs from across the Institute is also available.

Pioneering Programs in Engineering Education

Engineering education has been at the core of the Institute’s mission since its founding in 1861. MIT created the contemporary model of engineering education grounded in a dynamic, changing base of science. It pioneered the modern model of the research university, with externally sponsored research programs and a matrix of academic departments and research laboratories working across various disciplines. MIT also contributed in significant ways to the creation of entire new fields, for example, chemical engineering, sanitary engineering, naval architecture and marine engineering, and soil mechanics, and also offered the first course in aeronautical engineering. More recently, it has created new avenues for students to pursue concentrations in broad, interdisciplinary areas such as energy, medical science and engineering, robotics, computational engineering, or poverty alleviation.

The School has distinguished itself as a leader in engineering education, where the teaching of applied, hands-on engineering is of the utmost importance. In 1916, it created one of the first industrial internship programs, now the David H. Koch School of Chemical Engineering Practice. Over the last several decades, the School of Engineering has launched numerous pioneering programs, many with industry, such as Leaders for Global Operations (1988), System Design and Management (1997), the Deshpande Center for Technological Innovation (2001), the Undergraduate Practice Opportunities Program (2001), the Bernard M. Gordon–MIT Engineering Leadership Program (2008), and (in collaboration with partners throughout the Institute), MITx and edX (2011).

The School of Engineering is constantly innovating in engineering education, developing novel pedagogical approaches, designing new subject offerings to strengthen current programs, and creating new disciplines, fields of study, majors, and graduate programs. Today, the School offers more than two dozen exciting engineering degree programs for its undergraduates. Two examples are the interdepartmental degree offered by the Departments of Electrical Engineering and Computer Science and Biology, Course 6-7, that offers rigorous training in both molecular biology and computer science, an SB in Chemical-Biological Engineering—MIT’s first undergraduate engineering degree with modern molecular biology as its core science; and, since 2005–2006, the SB in Biological Engineering. A number of other new degree programs have launched in the past decade: the SB in Mechanical and Ocean Engineering, MEng in Manufacturing, SM in Computation for Design and Optimization, PhD in Computational and Systems Biology, PhD in Engineering Systems, and the flexible SB in Engineering degree in Mechanical Engineering, Aeronautics and Astronautics, Chemical Engineering, or Civil and Environmental Engineering.

The School of Engineering also offers a range of co-curricular activities designed to enhance students’ academic and non-academic experiences at MIT. The Bernard M. Gordon–MIT Engineering Leadership Program seeks to train tomorrow’s
engineering leaders through project-based learning, extensive interaction with industry leaders, hands-on product development, engineering leadership labs, and authentic leadership challenges and exercises. The Undergraduate Practice Opportunities Program (UPOP) is an innovative sophomore program that provides opportunities for students to learn first-hand about engineering practice outside the academic context through internships and intensive experiential-learning workshops that emphasize development of professional abilities and attitudes required in engineering work.

Because of its unique role in technological innovation, the School of Engineering is also the home of the Lemelson-MIT Program, an educational initiative that recognizes outstanding inventors as role models, encourages sustainable new solutions to real-world problems, and enables and inspires youth to pursue creative lives and careers through invention.

The School of Engineering is generally ranked at the top of its fields by third-party rankings and surveys. *US News and World Report* has placed the School at the top of its engineering rankings every year they have run their survey, as has the QS World University Rankings. The School's eight academic departments, two institutes, and one division are home to 375 faculty members, more than a third of the Institute's total faculty. Among the most distinguished in the nation, nearly one third of the School's current and emeritus faculty and research staff have been inducted into the National Academy of Engineering.

Almost 70 percent of MIT undergraduates with declared majors and half of all graduate students at MIT are enrolled in School of Engineering degree programs.

Interdepartmental Research Programs

Within the School of Engineering, a student may develop a program that satisfies his or her own intellectual and professional objectives. A student interested in an interdepartmental program should study the department descriptions and interdisciplinary program description for opportunities that combine disciplines from MIT's four other schools with those of the School of Engineering.

While the School's academic departments provide continuity and stability for the basic engineering disciplines, they increasingly share interests in the way their individual disciplines are expressed and applied. Interdepartmental centers, laboratories, and programs provide opportunities for faculty, students, and research staff to undertake collaborative research and engage in educational programs dealing with these and other interdisciplinary applications of importance to society.

Interdisciplinary centers and laboratories in which School of Engineering faculty play leading roles include the following:

- Center for Advanced Nuclear Energy Systems
- Center for Computational Engineering
- Center for Materials Science and Engineering
- Center for Ocean Engineering
- Center for Transportation and Logistics
- Computer Science and Artificial Intelligence Laboratory
- Deshpande Center for Technological Innovation
- Industrial Performance Center
- Institute for Data, Systems, and Society
- Institute for Medical Engineering and Science
- Koch Institute for Integrative Cancer Research
- Laboratory for Information and Decision Systems
- Laboratory for Manufacturing and Productivity
- Materials Processing Center
- Microsystems Technology Laboratories
- MIT Energy Initiative
- Research Laboratory of Electronics
- Singapore-MIT Alliance
- Sociotechnical Systems Research Center
- Transportation@MIT

School of Engineering faculty members also participate in the activities of other research centers and laboratories that are administered outside the School of Engineering. For more information, see the section on Research and Study (p. 84).

Degrees Offered in the School of Engineering

Aeronautics and Astronautics (Course 16)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Aerospace Engineering</td>
</tr>
<tr>
<td>SB</td>
<td>Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Aeronautics and Astronautics</td>
</tr>
<tr>
<td>SM/MBA</td>
<td>Engineering/Management—dual degree with Leaders for Global Operations Program 1</td>
</tr>
<tr>
<td>Engineer</td>
<td>Aeronautics and Astronautics</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Aeronautics and Astronautics</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Aerospace Computational Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Air-Breathing Propulsion</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Aircraft Systems Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Air Transportation Systems</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Autonomous Systems</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Communications and Networks</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Controls</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Humans in Aerospace</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Materials and Structures</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Space Propulsion</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Space Systems</td>
</tr>
</tbody>
</table>

1. Leaders for Global Operations Program
Biological Engineering (Course 20)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Biological Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Toxicology</td>
</tr>
<tr>
<td>SM/MBA</td>
<td>Engineering/Management—dual degree with Leaders for Global Operations Program</td>
</tr>
<tr>
<td>MEng</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Applied Biosciences</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Bioengineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Biological Engineering</td>
</tr>
</tbody>
</table>

Chemical Engineering (Course 10)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>SB</td>
<td>Chemical-Biological Engineering</td>
</tr>
<tr>
<td>SB</td>
<td>Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Chemical Engineering Practice</td>
</tr>
<tr>
<td>SM</td>
<td>Chemical Engineering Practice</td>
</tr>
<tr>
<td>SM/MBA</td>
<td>Engineering/Management—dual degree with Leaders for Global Operations Program</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>PhD</td>
<td>Chemical Engineering Practice</td>
</tr>
</tbody>
</table>

Civil and Environmental Engineering (Course 1)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Engineering as Recommended by the Department of Civil and Environmental Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Civil and Environmental Engineering</td>
</tr>
<tr>
<td>SM/MBA</td>
<td>Engineering/Management—dual degree with Leaders for Global Operations Program</td>
</tr>
<tr>
<td>MEng</td>
<td>Civil and Environmental Engineering</td>
</tr>
<tr>
<td>Civil Engineer</td>
<td></td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Biological Oceanography (jointly with WHOI)</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Chemical Oceanography (jointly with WHOI)</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Civil and Environmental Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Civil and Environmental Systems</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Coastal Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Construction Engineering and Management</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Environmental Biology</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Environmental Chemistry</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Environmental Fluid Mechanics</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Geotechnical and Geoenvironmental Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Hydrology</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Information Technology</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Oceanographic Engineering (jointly with WHOI)</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Structures and Materials</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Transportation</td>
</tr>
<tr>
<td>PhD</td>
<td>Civil Engineering and Computation</td>
</tr>
</tbody>
</table>

Computation for Design and Optimization

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Computation for Design and Optimization</td>
</tr>
</tbody>
</table>

Computational and Systems Biology (CSB)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Computational and Systems Biology</td>
</tr>
</tbody>
</table>

Computational Science and Engineering

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Computational Science and Engineering</td>
</tr>
</tbody>
</table>

Computer Science and Molecular Biology (Course 6-7)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Computer Science and Molecular Biology</td>
</tr>
<tr>
<td>MEng</td>
<td>Computer Science and Molecular Biology</td>
</tr>
</tbody>
</table>

Data, Systems, and Society

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Technology and Policy</td>
</tr>
</tbody>
</table>

Design and Management (Integrated Design and Management & System Design and Management)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Engineering and Management</td>
</tr>
</tbody>
</table>

Electrical Engineering and Computer Science (Course 6)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Engineer</td>
<td></td>
</tr>
<tr>
<td>Engineer in Computer Science</td>
<td></td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Computer Science</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Computer Science and Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Electrical Engineering and Computer Science</td>
</tr>
</tbody>
</table>

Health Sciences and Technology (HST)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Health Sciences and Technology</td>
</tr>
<tr>
<td>MD</td>
<td>Medical Sciences (degree from Harvard Medical School)</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Health Sciences and Technology</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Health Sciences and Technology—Bioastronautics</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Health Sciences and Technology—Bioinformatics and Integrative Genomics</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Health Sciences and Technology—Medical Engineering and Medical Physics</td>
</tr>
</tbody>
</table>

PhD | Environmental Engineering and Computation |

COMPUTATION FOR DESIGN AND OPTIMIZATION

SM | Computation for Design and Optimization

COMPUTATIONAL AND SYSTEMS BIOLOGY (CSB)

PhD | Computational and Systems Biology

COMPUTATIONAL SCIENCE AND ENGINEERING

PhD | Computational Science and Engineering

COMPUTER SCIENCE AND MOLECULAR BIOLOGY (Course 6-7)

SB | Computer Science and Molecular Biology

DATA, SYSTEMS, AND SOCIETY

SM | Technology and Policy

DESIGN AND MANAGEMENT (INTEGRATED DESIGN AND MANAGEMENT & SYSTEM DESIGN AND MANAGEMENT)

SM | Engineering and Management

ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (Course 6)

Electrical Engineer

Engineer in Computer Science

PhD, ScD | Computer Science

PhD, ScD | Computer Science and Engineering

PhD, ScD | Electrical Engineering

PhD, ScD | Electrical Engineering and Computer Science

HEALTH SCIENCES AND TECHNOLOGY (HST)

SM | Health Sciences and Technology

MD | Medical Sciences (degree from Harvard Medical School)

ScD, PhD | Health Sciences and Technology

ScD, PhD | Health Sciences and Technology—Bioastronautics

ScD, PhD | Health Sciences and Technology—Bioinformatics and Integrative Genomics

ScD, PhD | Health Sciences and Technology—Medical Engineering and Medical Physics
ScD, PhD Health Sciences and Technology—Speech and Hearing Bioscience and Technology

Materials Science and Engineering (Course 3)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Archaeology and Materials</td>
</tr>
<tr>
<td>SB</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Materials Science and Engineering</td>
</tr>
<tr>
<td>Materials Engineer</td>
<td></td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Archaeological Materials</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Materials Science and Engineering</td>
</tr>
</tbody>
</table>

Mechanical Engineering (Course 2)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Engineering</td>
</tr>
<tr>
<td>SB</td>
<td>Mechanical and Ocean Engineering</td>
</tr>
<tr>
<td>SB</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Naval Architecture and Marine Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Ocean Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Oceanographic Engineering (jointly with WHOI)</td>
</tr>
<tr>
<td>SM/MBA</td>
<td>Engineering/Management—dual degree with Leaders for Global Operations Program</td>
</tr>
<tr>
<td>MEng</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>Mechanical Engineer</td>
<td></td>
</tr>
<tr>
<td>Naval Engineer</td>
<td></td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Naval Architecture and Marine Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Ocean Engineering</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Oceanographic Engineering (jointly with WHOI)</td>
</tr>
</tbody>
</table>

Microbiology

<table>
<thead>
<tr>
<th>Degree</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Microbiology</td>
</tr>
</tbody>
</table>

Nuclear Science and Engineering (Course 22)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Nuclear Science and Engineering</td>
</tr>
<tr>
<td>SM</td>
<td>Nuclear Science and Engineering</td>
</tr>
<tr>
<td>Nuclear Engineer</td>
<td></td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Nuclear Science and Engineering</td>
</tr>
</tbody>
</table>

Polymers and Soft Matter

<table>
<thead>
<tr>
<th>Degree</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Polymers and Soft Matter</td>
</tr>
</tbody>
</table>

Supply Chain Management

<table>
<thead>
<tr>
<th>Degree</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEng</td>
<td>Logistics</td>
</tr>
</tbody>
</table>

Transportation

<table>
<thead>
<tr>
<th>Degree</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Transportation</td>
</tr>
<tr>
<td>PhD</td>
<td>Transportation</td>
</tr>
</tbody>
</table>

Notes

Many departments make it possible for a graduate student to pursue a simultaneous master's degree.

Several departments also offer undesignated degrees, which lead to the Bachelor of Science without departmental designation. The curricula for these programs offer students opportunities to pursue broader programs of study than can be accommodated within a four-year departmental program.

1. See Interdisciplinary Programs (p. 327).

2. Some departments make it possible for a doctoral student to pursue a simultaneous master's degree.

Admissions

The selection process at MIT is holistic and student centered: each application is evaluated within its unique context. Selection is based on outstanding academic achievement as well as a strong match between the applicant and the Institute.

Undergraduate applicants do not apply to a particular school, department or program and, although the application asks about a preferred field of study, most admitted undergraduates do not declare a major until the second semester of their freshman year. Admissions information for regular, transfer, and non-degree applicants is provided in the section on Undergraduate Education (p. 30).

Applicants for graduate study apply directly to the particular department or program of interest. See the individual department and program descriptions for specific requirements.

Office of the Dean

Ian A. Waitz, PhD
Jerome C. Hunsaker Professor
Professor of Aeronautics and Astronautics
Dean, School of Engineering

Vladimir Bulović, PhD
Fariborz Maseeh (1990) Professor in Emerging Technology
Professor of Electrical Engineering
Associate Dean for Innovation, School of Engineering

Eileen Ng-Ghavidel, MBA
Assistant Dean for Finance and Human Resources

Donna R. Savicki, MA
Assistant Dean for Administration

Danielle Festino, MPA
Assistant Dean for Development
Chad Galts, MA
Director of Communications

Brian Tavares, BSBA
Senior Financial Officer

School Professors
Nicholas A. Ashford, JD, PhD
Professor of Technology and Policy

Timothy Berners-Lee
3Com Founders Professor of Engineering
DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS

The students, faculty, and staff in the Department of Aeronautics and Astronautics (AeroAstro) share a passion for air and space vehicles, the technologies that enable them, and the missions they fulfill.

Aerospace is an intellectually challenging, economically important, and exciting field, offering unique opportunities for students and researchers to contribute to the future of exploration, transportation, communication, and security. The department's mission is to prepare engineers for success and leadership in the conception, design, implementation, and operation of aerospace and related engineering systems. It achieves this through its commitment to educational excellence, and to the creation, development, and application of the technologies critical to aerospace vehicle and information engineering, and the architecture and engineering of complex high-performance systems.

The department has a tradition of both strong scholarship and of contributing to the solution of “industrial-strength” problems. Its reach within aerospace extends to high levels of policy and practice. The MIT AeroAstro community includes a former space shuttle astronaut, former leaders of industry, a former secretary and former chief scientists of the Air Force, a former NASA associate administrator, as well as numerous National Academy of Engineering members, American Institute of Aeronautics and Astronautics fellows, and Guggenheim Medal recipients.

Several years ago, working closely with its student, alumni, industry, government, and academic stakeholders around the world, AeroAstro developed and implemented a landmark educational initiative for its degree programs, known as CDIO. The CDIO initiative reflects the department’s belief that its graduates must be knowledgeable in all phases of the aerospace system life cycle: conceiving, designing, implementing, and operating. The department adopted a new form of undergraduate engineering education, motivating its students to master a deep working knowledge of the technical fundamentals while giving them the skills, knowledge, and attitudes necessary to lead in the creation and operation of products, processes, and systems. It reformed its teaching methods, redesigned its curriculum, and performed a $20 million state-of-the-art reconstruction of its teaching laboratories. AeroAstro’s academic program and facilities now serve as models for more than 90 engineering schools on four continents.

The reconstruction of the teaching laboratories resulted in the creation of the Learning Laboratory for Complex Systems. The Learning Laboratory provides enhanced opportunities for hands-on learning experiences closely integrated with the department’s curriculum. The Learning Lab’s Arthur Gelb Laboratory features a modern machine shop, composites fabrication facility, electronics design lab, and large team projects area with equipment for student projects. The Robert C. Seamans Jr. Laboratory is a community study area with meeting and discussion rooms, and an extensively IT-equipped design/conference room. The Design Studio, which replicates facilities at major aerospace companies, provides IT and software resources to support concurrent team engineering sessions and distance learning. The Gerhard Neumann Hangar includes low-speed and supersonic wind tunnels, computers equipped with flight simulation applications, engineering hardware displays, and workspace for large-scale student projects.

AeroAstro students, faculty, and staff work with each other, with colleagues across MIT, and with institutions around the world. These linkages enable them to tackle challenging multidisciplinary problems and to amplify their contributions. As a result, the department is connected, busy, global, hectic, open, collegial, and fun. Faculty and students are engaged in hundreds of research projects under the auspices of the department's laboratories and centers. Many research activities in other MIT laboratories and centers are open to AeroAstro students as well. See the Research Laboratories and Activities section below for more information.

Graduates with an aerospace engineering degree find careers in commercial and military aircraft and spacecraft engineering, space exploration, air- and space-based telecommunication industries, teaching, research, military service, and related technology-intensive fields such as transportation, information, and the environment. The comprehensive technical education, with its strong emphasis on understanding complex systems, is also excellent preparation for careers in business, law, medicine, and public service.

In looking toward future challenges and opportunities in the aerospace field, the department has identified eight areas in which it is committed to building and strengthening its ability to make important contributions: space exploration; autonomous systems; environment; communications and networks; computation, design, and simulation; air transportation; large-scale complex systems; and advancing engineering education. By striving for excellence in the underlying core disciplines and emphasizing the collaborative problem solving required for tackling the complex, multidisciplinary problems that characterize this industry, AeroAstro is positioning itself to respond to these and future opportunities.

Sectors of Instruction

The department’s faculty are organized into three sectors of instruction. Typically, a faculty member teaches both undergraduate and graduate subjects in one or more of the sectors.

Information Sector

Most of the aerospace systems of the future will either revolve around or critically depend upon information technology, and all will exploit information technology to an increasing extent. The missions of many aerospace systems are fundamentally centered on gathering, processing, and transmitting information. Examples where information technology is central include communication satellites, surveillance and reconnaissance aircraft and satellites,
and uncertainty. The systems engineer must deal simultaneously with optimal or best-value trade-offs among them while considering risk and uncertainty. The systems engineer must deal simultaneously with these factors, whether the objective is the transport of passengers in commercial aircraft, orbital communications, or the exploration of space, among others.

This sector addresses traditional vehicle design issues integrated with other issues, including environmental impact, how humans interact with aerospace vehicles, and information-related aspects. Safety, fault-tolerance, verification, and validation are also significant areas of inquiry. Ongoing research in the sector includes investigation of air traffic management, distributed satellite systems, environmental impact of aerospace systems, enterprise architecture, integrated design of space-based optical systems, micro-gravity research into human physiology, and software development methods for flight and mission-critical systems.

Students interested in systems engineering should develop a strong background in some of the disciplines that support systems analysis, such as probability, statistics, optimization, operations research, manufacturing, and economics. Research labs associated with the activities of this sector include the Man Vehicle Laboratory, Space Systems Laboratory, Lean Advancement Initiative, International Center in Air Transportation, Laboratory for Aviation and the Environment. Operations Research Center, and the System Safety Research Laboratory. Many of the department faculty in this sector are also associated with the Institute for Data, Systems, and Society.

Vehicle Technologies Sector
The design of an aerospace vehicle requires not only depth in a number of disciplines, but also the ability to integrate and optimize across these disciplines so the result is greater than the sum of the individual parts. For the former, the vehicle sector faculty represent, in both research and teaching, a broad suite of disciplines ranging across the fields of computation, fluid mechanics, propulsion, materials, and structures. For the latter, there is strong interest in, and many successful examples of, collaborations that bring these different disciplines together to solve important problems beyond the reach of a single faculty member.

The research footprint of the sector spans from fundamental engineering science to design techniques to the rigorous engineering of complex vehicle components and systems. One specific embodiment of such “intellectual vertical integration” has been the development of a first-principles conceptual design procedure for advanced aircraft. There is also substantive research engagement with industry, both in sponsorship of projects and through collaboration.

Topics of current interest include aviation and ground transportation climate and air quality impacts; computational design and simulation of fluid, material, and structural systems, including computational aerodynamics as well as, more broadly, numerical methods, optimization, and uncertainty quantification for large-scale engineering systems: composite materials and structures, including nano-engineered composites; simulation of the dynamic performance, economic viability, manufacture, acceptability, and operation of engineering systems—technical, social, environmental, production, financial, and safety aspects—and attempts to find optimal or best-value trade-offs among them while considering risk and uncertainty. The systems engineer must deal simultaneously with these factors, whether the objective is the transport of passengers in commercial aircraft, orbital communications, or the exploration of space, among others.

This sector addresses traditional vehicle design issues integrated with other issues, including environmental impact, how humans interact with aerospace vehicles, and information-related aspects. Safety, fault-tolerance, verification, and validation are also significant areas of inquiry. Ongoing research in the sector includes investigation of air traffic management, distributed satellite systems, environmental impact of aerospace systems, enterprise architecture, integrated design of space-based optical systems, micro-gravity research into human physiology, and software development methods for flight and mission-critical systems.

Students interested in systems engineering should develop a strong background in some of the disciplines that support systems analysis, such as probability, statistics, optimization, operations research, manufacturing, and economics. Research labs associated with the activities of this sector include the Man Vehicle Laboratory, Space Systems Laboratory, Lean Advancement Initiative, International Center in Air Transportation, Laboratory for Aviation and the Environment. Operations Research Center, and the System Safety Research Laboratory. Many of the department faculty in this sector are also associated with the Institute for Data, Systems, and Society.

Vehicle Technologies Sector
The design of an aerospace vehicle requires not only depth in a number of disciplines, but also the ability to integrate and optimize across these disciplines so the result is greater than the sum of the individual parts. For the former, the vehicle sector faculty represent, in both research and teaching, a broad suite of disciplines ranging across the fields of computation, fluid mechanics, propulsion, materials, and structures. For the latter, there is strong interest in, and many successful examples of, collaborations that bring these different disciplines together to solve important problems beyond the reach of a single faculty member.

The research footprint of the sector spans from fundamental engineering science to design techniques to the rigorous engineering of complex vehicle components and systems. One specific embodiment of such “intellectual vertical integration” has been the development of a first-principles conceptual design procedure for advanced aircraft. There is also substantive research engagement with industry, both in sponsorship of projects and through collaboration.

Topics of current interest include aviation and ground transportation climate and air quality impacts; computational design and simulation of fluid, material, and structural systems, including computational aerodynamics as well as, more broadly, numerical methods, optimization, and uncertainty quantification for large-scale engineering systems: composite materials and structures, including nano-engineered composites; simulation of the dynamic
deformation and failure response of materials, with application to concepts and material for force protection, physics of plasma, and electrospay space propulsion with particular application to microthrusters; turbomachinery and internal flows in fluid machinery; gas turbine engines; and aero-acoustics. Beyond these topics, there is outreach and interest in leveraging our skills into applications that lie outside the traditional boundaries of aerospace.

Research laboratories affiliated with the sector include the Aerospace Computational Design Laboratory, Gas Turbine Laboratory, Laboratory for Aviation and the Environment, Nano-Engineered Composite Aerospace Structures Consortium, Laboratory for Aviation and the Environment, Space Propulsion Laboratory, and Technology Laboratory for Advanced Materials and Structures.

Undergraduate Study

Undergraduate study in the department leads to the Bachelor of Science in Aerospace Engineering (Course 16), or the Bachelor of Science in Engineering (Course 16-ENG) at the end of four years.

Bachelor of Science in Aerospace Engineering (Course 16)

This program is designed to prepare the graduate for an entry-level position in aerospace and related fields and for further education at the master’s level; it is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org). The program includes an opportunity for a year’s study abroad.

The formal learning in the program builds a conceptual understanding in the foundational engineering sciences and professional subjects that span the topics critical to aerospace. This learning takes place within the engineering context of conceiving-designing-implementing-operating (CDIO) aerospace and related complex high-performance systems and products. The skills and attributes emphasized go beyond the formal classroom curriculum and include: modeling, design, the ability for self education, computer literacy, communication and teamwork skills, ethics, and—underlying all of these—appreciation for and understanding of interfaces and connectivity between various disciplines.

Opportunities for formal and practical (hands-on) learning in these areas are integrated into the departmental subjects through examples set by the faculty, subject content, and the ability for substantive engagement in the CDIO process in the department’s Learning Laboratory for Complex Systems.

The curriculum (p. 370) includes the General Institute Requirements (p. 35) and the departmental program. The departmental program includes a fall-spring-fall sequence of subjects called Unified Engineering, subjects in dynamics and principles of automatic control, a statistics and probability subject, a subject in computers and programming, professional area subjects, an experimental projects laboratory, and a capstone design subject. The program also includes the subject 18.03 or 18.034 Differential Equations.

Unified Engineering is offered in sets of two 12-unit subjects in two successive terms. These subjects are taught cooperatively by several faculty members. Their purpose is to introduce new students to the disciplines and methodologies of aerospace engineering at a basic level, with a balanced exposure to analysis, empirical methods, and design. The areas covered include statics, materials, and structures; thermodynamics and propulsion; fluid mechanics; and signals and systems. Several laboratory experiments are performed and a number of systems problems tying the disciplines together and exemplifying the CDIO process are included.

Unified Engineering is usually taken in the sophomore year, Statistics and Probability in the spring of the sophomore year, and the subjects Dynamics and Principles of Automatic Control in the first term of the junior year. Introduction to Computer Science and Programming in Python and Introduction to Computational Thinking and Data Science can be taken at any time, starting in the freshman year, but the fall term of the sophomore year is recommended.

The professional area subjects offer a more complete and in-depth treatment of the materials introduced in the core courses. Students must take four subjects (48 units) from among the professional area subjects, with subjects in at least three areas. Students may choose to complete an option in Aerospace Information Technology by taking 36 units from a designated group of subjects specified in the degree chart (p. 370).

Professional Area Subjects in the four areas of Fluid Mechanics, Materials and Structures, Propulsion, and Computational Tools represent the advanced aerospace disciplines encompassing the design and construction of airframes and engines. Topics within these disciplines include fluid mechanics, aerodynamics, heat and mass transfer, computational mechanics, flight vehicle aerodynamics, solid mechanics, structural design and analysis, the study of engineering materials, structural dynamics, and propulsion and energy conversion from both fluid/thermal (gas turbines and rockets) and electrical devices.

Professional Area Subjects in the four areas of Estimation and Control, Computer Systems, Communications Systems, and Humans and Automation are in the broad disciplinary area of information, which plays a dominant role in modern aerospace systems. Topics within these disciplines include feedback, control, estimation, control of flight vehicles, software engineering, human systems engineering, aerospace communications and digital systems, the way in which humans interact with the vehicle through manual control and supervisory control of telerobotic processes (e.g., modern cockpit systems and human centered automation), and how planning and real-time decisions are made by machines.

The capstone subjects serve to integrate the various disciplines and emphasize the CDIO context of the AeroAstro curriculum. They also satisfy the Communication Requirement (p. 35) as Communication-Intensive in the Major (CI-M) subjects. The vehicle and system design subjects require student teams to apply their undergraduate
knowledge to the design of an aircraft or spacecraft system. One of these two subjects is required and is typically taken in the second term of the junior year or in the senior year. The rest of the capstone requirement is met by one of three 18-unit subjects or subject sequences, as outlined in the Course 16 degree chart; these sequences satisfy the Institute Laboratory Requirement. In 16.821 and 16.831[J], students build and operate the vehicles or systems developed in 16.82 and 16.83[J]. In 16.621/16.622, students conceive, design, and execute an original experimental research project in collaboration with a partner and a faculty advisor.

To take full advantage of the General Institute Requirements (p. 35) and required electives, the department recommends the following: 3.091 Introduction to Solid-State Chemistry for the chemistry requirement; the ecology option of the biology requirement; a subject in economics (e.g., 14.01 Principles of Microeconomics) as part of the HASS Requirement; and elective subjects such as 16.00 Introduction to Aerospace and Design, a mathematics subject (e.g., 18.06 Linear Algebra, 18.075 Methods for Scientists and Engineers, or 18.085 Computational Science and Engineering I), and additional professional area subjects in the departmental program. Please consult the department’s Academic Programs Office (Room 33-208) for other elective options.

Bachelor of Science in Engineering as Recommended by the Department of Aeronautics and Astronautics (Course 16-ENG)

Course 16-ENG is an engineering degree program designed to offer flexibility within the context of aerospace engineering and is a complement to our Course 16 aerospace engineering degree program. The program leads to the Bachelor of Science in Engineering as recommended by the Department of Aeronautics and Astronautics (p. 385). The 16-ENG degree is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org). Depending on their interests, Course 16-ENG students can develop a deeper level of understanding and skill in a field of engineering that is relevant to multiple disciplinary areas (e.g., robotics and control, computational engineering, mechanics, or engineering management), or a greater understanding and skill in an interdisciplinary area (e.g., energy, environment and sustainability, or transportation). This is accomplished first through a rigorous foundation within core aerospace engineering disciplines, followed by a six-subject concentration tailored to the student's interests, and completed with hands-on aerospace engineering lab and capstone design subjects.

The core of the 16-ENG degree is very similar to the core of the 16 degree. A significant part of the 16-ENG curriculum consists of electives (72 units) chosen by the student to provide in-depth study of a field of the student’s choosing. A wide variety of concentrations are possible in which well-selected academic subjects complement a foundation in aerospace engineering and General Institute Requirements. Potential concentrations include aerospace software engineering, autonomous systems, communications, computation and sustainability, computational engineering, embedded systems and networks, energy, engineering management, environment, space exploration, and transportation. AeroAstro faculty have developed specific recommendations in these areas; details are available from the AeroAstro Undergraduate Office and on the departmental website. However, concentrations are not limited to those listed above. Students can design and propose technically oriented concentrations that reflect their own needs and those of society.

The student’s overall program must contain a total of at least one and one-half years of engineering content (144 units) appropriate to his or her field of study. The required core, lab, and capstone subjects include 102 units of engineering topics. Thus, concentrations must include at least 42 more units of engineering topics. In addition, each concentration must include 12 units of mathematics or science.

The culmination of the 16-ENG degree program is our aerospace laboratory and capstone subject sequences. The capstone subjects serve to integrate the various disciplines and emphasize the CDIO context of our engineering curriculum. They also satisfy the Communication Requirement as CI-M subjects. The specific options available to students are identical to the Course 16 degree program (see the description of this program for additional details on the laboratory and capstone sequences).

Double Major

Students may pursue two majors under the Double Major Program (p. 33). In particular, some students may wish to combine a professional education in aeronautics and astronautics with a liberal education that links the development and practice of science and engineering to their social, economic, historical, and cultural contexts. For them, the Department of Aeronautics and Astronautics and the Program in Science, Technology, and Society offer a double major program (p. 268) that combines majors in both fields.

Other Undergraduate Opportunities

Undergraduate Research Opportunities Program

To take full advantage of the unique research environment of MIT, undergraduates are encouraged to become involved in the research activities of the department through the Undergraduate Research Opportunities Program (UROP) (p. 43). Many of the faculty actively seek undergraduates to become a part of their research teams. Specific areas of research opportunity are outlined in the section Research Centers (p. 148). For more information, contact Marie Stuppard (mas@mit.edu) in the AeroAstro Academic Programs Office, Room 33-202, 617-253-2279.

Advanced Undergraduate Research Opportunities Program

Juniors and seniors in Course 16 may participate in an advanced undergraduate research program (SuperUROP), which was launched as a collaborative effort between the Department of Electrical Engineering and Computer Science (EECS) and the Undergraduate
Research Opportunities Program (UROP) (p. 43). More information is available on the EECS website (https://eecs-superurop.mit.edu/about) or by contacting the AeroAstro Academic Programs Office, Room 33-202, 617-253-2279.

Undergraduate Practice Opportunities Program
The Undergraduate Practice Opportunities Program (UPOP) (http://upop.mit.edu) is a program sponsored by the School of Engineering and administered through the Office of the Dean of Engineering. Open to all School of Engineering sophomores, this program provides students an opportunity to develop engineering and business skills while working in industry, nonprofit organizations, or government agencies. UPOP consists of three parts: an intensive one-week engineering practice workshop offered during IAP, 10–12 weeks of summer employment, and a written report and oral presentation in the fall. Students are paid during their periods of residence at the participating companies and also receive academic credit in the program. There are no obligations on either side regarding further employment.

Summer Internship Program
The Summer Internship Program provides undergraduates in the department the opportunity to apply the skills they are learning in the classroom in paid professional positions with employers throughout the United States. During recruitment periods, representatives from firms in the aerospace industry will visit the department and offer information sessions and technical talks specifically geared to Course 16 students. Often, student resumes are collected and interviews conducted for summer internships as well as long-term employment. Employers wishing to offer an information session or seeking candidates for openings in their company may contact Marie Stuppard (mas@mit.edu), 617-253-2279.

Students are also encouraged to take advantage of other career resources available through the Career Services Office in MIT’s Global Education and Career Development Center. This office coordinates several annual career fairs and offers workshops on how to navigate these fairs as well as critique on resume writing and cover letters.

Year Abroad Program
Through the MIT Global Education Office, students can apply to spend the junior year abroad. In particular, the department participates in the Cambridge University-MIT Exchange and in the University of Pretoria-MIT Exchange programs. In any year-abroad experience, students enroll in the academic cycle of the host institution and take courses in the local language. They plan their course of study in advance; this includes securing credit commitments in exchange for satisfactory performance abroad. A grade average of B or better is normally required of participating AeroAstro students.

For more information, contact Marie Stuppard (mas@mit.edu). Also refer to Undergraduate Education (p. 30) for more details on the exchange programs.

Massachusetts Space Grant Consortium
MIT leads the NASA-supported Massachusetts Space Grant Consortium (MASGC) in partnership with Amherst College, Boston University, Bridgewater State University, Harvard University, College of the Holy Cross, Framingham State University, Holyoke Community College, Mount Holyoke College, Northeastern University, Olin College of Engineering, Roxbury Community College, Smith College, Tufts University, University of Massachusetts (Amherst, Dartmouth, and Lowell), Wellesley College, Williams College, Worcester State University, Worcester Polytechnic Institute, Boston Museum of Science, the Christa McAuliffe Center, the Clay Observatory, the Maria Mitchell Observatory, the Five College Astronomy Department, and many aerospace companies and laboratories throughout the United States. The program has the principal objective of stimulating and supporting student interest, especially that of women and underrepresented minorities, in space engineering and science at all educational levels, primary through graduate. The program offers a number of activities to this end, including sponsorship of undergraduate research projects, support for student travel to present conference papers, a January internship at the Kennedy Space Center, a spring undergraduate seminar on modern space science and engineering, an annual public lecture by a distinguished member of the aerospace community, and summer workshops for pre-college teachers. An important function of the program is coordinating placement of students in summer positions in industry and at NASA centers for summer academies and research opportunities. MASGC also participates in a number of public outreach and education policy initiatives in Massachusetts to increase public awareness and inform legislators about the importance of science, technology, engineering, and math education in the state.

For more information, contact the program coordinator (masgc@mit.edu) of the Massachusetts Space Grant Consortium, Helen Halaris (halaris@mit.edu), 617-258-5546.

Inquiries
For additional information concerning academic and undergraduate research programs in the department, suggested four-year undergraduate programs, and interdisciplinary programs, contact the Department of Aeronautics and Astronautics Academic Programs Office (mas@mit.edu), Room 33-202, 617-253-2279.

Graduate Study
Graduate study in the Department of Aeronautics and Astronautics includes graduate-level subjects in Course 16 and others at MIT, and research work culminating in a thesis. Degrees are awarded at the master’s and doctoral levels. The range of subject matter is described under Sectors of Instruction (p. 141). The
Research Centers (p. 148) section provides an overview of research interests. Detailed information may be obtained from the Department Academic Programs Office or from individual faculty members.

Admission Requirements

In addition to the general requirements for admission to the Graduate School, applicants to the Department of Aeronautics and Astronautics should have a strong undergraduate background in the fundamentals of engineering and mathematics as described in the Undergraduate Study section.

International students whose language of instruction has not been English in their primary and secondary schooling must pass the Test of English as a Foreign Language (TOEFL) with a minimum score of 100 out of 120, or the International English Language Testing System (IELTS) with a minimum score of 7 out of 9 to be considered for admission to this department. TOEFL waivers are not accepted. No other exams fulfill this requirement.

All applicants to the graduate program in Aeronautics and Astronautics also must submit the Graduate Record Examination (GRE) test results.

New graduate students are normally admitted as candidates for the degree of Master of Science. Admission to the doctoral program is offered to students who have been accepted for graduate study through a three-step process:

1. **Passing performance on the field exam (FE).** The standard for passing the FE is the demonstration of superior intellectual ability through skillful use of concepts, including synthesis of multiple concepts, in foundational, graduate-level material in a field of aerospace engineering.

2. **Passing performance on the research evaluation (RE).** The standard for passing the RE is the demonstration of superior ability to solve research-oriented problems, with guidance, in a field relevant to aerospace engineering.

3. **Granting of admission to the doctoral program through a faculty review consisting of an examination of the student’s achievements, including an assessment of the quality of past research work and evaluation of the student’s academic record in light of the performance on the FE and RE.**

The FE and RE examination is offered once each year during the January Independent Activities Period. Students who wish to be considered for the doctoral program must take the FE and RE before the fourth term following initial registration in the graduate program.

The Department of Aeronautics and Astronautics requires that all entering graduate students demonstrate satisfactory English writing ability by taking the Graduate Writing Examination offered by the Comparative Media Studies/Writing Program. The examination is usually administered in July, and all entering candidates must take the examination electronically at that time. Students with deficient skills must complete remedial training specifically designed to fulfill their individual needs. The remedial training prescribed by the CMS/Writing Program must be completed by the end of the first Independent Activities Period following initial registration in the graduate program or, in some cases, in the spring term of the first year of the program.

All incoming graduate students whose native language is not English are required to take the Department of Humanities English Evaluation Test (EET) offered at the start of each regular term. This test is a proficiency examination designed to indicate areas where deficiencies may still exist and recommend specific language subjects available at MIT.

Degree Requirements

All entering students are provided with additional information concerning degree requirements, including lists of recommended subjects, thesis advising, research and teaching assistantships, and course and thesis registration.

Degrees Offered

Master of Science in Aeronautics and Astronautics

The Master of Science (SM) degree is a one- to two-year graduate program with a beginning research or design experience represented by the SM thesis. This degree prepares the graduate for an advanced position in the aerospace field, and provides a solid foundation for future doctoral study.

The general requirements for the Master of Science degree are cited in the section on General Degree Requirements (p. 59) for graduate students. The specific departmental requirements include at least 66 subject units, typically in graduate subjects relevant to the candidate’s area of technical interest. Of the 66 units, 42 units must be graduate subjects, of which at least 21 units must be in departmental subjects. To be credited toward the degree, graduate subjects must carry a grade of B or better. In addition, a 24-unit thesis is required beyond the 66 units of coursework. Full-time students normally must be in residence one full academic year. Special students admitted to the SM program in this department must enroll in and satisfactorily complete at least two graduate subjects while in residence (i.e., after being admitted as a degree candidate) regardless of the number of subjects completed before admission to the program. Students holding research assistantships typically require a longer period of residence.

In addition, the department’s SM program requires one graduate-level mathematics subject. The requirement is satisfied only by graduate-level subjects on the list approved by the department graduate committee. The specific choice of math subjects is arranged individually by each student in consultation with their faculty advisor.
Doctor of Philosophy and Doctor of Science

AeroAstro offers doctoral degrees (PhD and ScD) that emphasize in-depth study, with a significant research project in a focused area. The admission process for the department’s doctoral program is described previously in this section under Admission Requirements. The doctoral degree is awarded after completion of an individual course of study, submission and defense of a thesis proposal, and submission and defense of a thesis embodying an original research contribution.

The general requirements for this degree are given in the section on General Degree Requirements (p. 59). A detailed description of the program requirements are outlined in a booklet titled The Doctoral Program (http://mit.edu/aeroastro/academics/grad/forms/New_Doctoral_Booklet.pdf). After successful admission to the doctoral program, the doctoral candidate selects a field of study and research in consultation with the thesis supervisor and forms a doctoral thesis committee, which assists in the formulation of the candidate’s research and study programs and monitors his or her progress. Demonstrated competence for original research at the forefront of aerospace engineering is the final and main criterion for granting the doctoral degree. The candidate’s thesis serves in part to demonstrate such competence and, upon completion, is defended orally in a presentation to the faculty of the department, who may then recommend that the degree be awarded.

Interdisciplinary Programs

The department participates in several interdisciplinary fields at the graduate level, which are of special importance for aeronautics and astronautics in both research and the curriculum.

Biomedical Engineering

The department offers opportunities for students interested in biomedical instrumentation and physiological control systems where the disciplines involved in aeronautics and astronautics are applied to biology and medicine. Graduate study combining aerospace engineering with biomedical engineering may be pursued through the Bioastronautics program offered as part of the Medical Engineering and Medical Physics PhD program in the Institute for Medical Engineering and Science (IMES) via the Harvard-MIT Program in Health Sciences and Technology (HST).

Students wishing to pursue a degree through HST must apply to that graduate program. At the master’s degree level, students in the department may specialize in biomedical engineering research, emphasizing space life sciences and life support, instrumentation and control, or in human factors engineering and in instrumentation and statistics. Most biomedical engineering research in the Department of Aeronautics and Astronautics is conducted in the Man Vehicle Laboratory.

Computation for Design and Optimization

The Computation for Design and Optimization (CDO) (http://computationalengineering.mit.edu/education) program offers a master’s degree to students interested in the analysis and application of computational approaches to designing and operating engineered systems. The curriculum is designed with a common core serving all engineering disciplines and an elective component focusing on specific applications. Current MIT graduate students may pursue a CDO master’s degree in conjunction with a department-based master’s or PhD program. For more information, see the full program description (p. 350) under Interdisciplinary Graduate Programs.

Computational Science and Engineering

The Computational Science and Engineering (CSE) (http://computationalengineering.mit.edu/education) program allows students to specialize at the doctoral level in a computation-related field of their choice through focused coursework and a doctoral thesis through a number of participating host departments. The CSE program is administered jointly by the Center for Computational Engineering (CCE) and the host departments, with the emphasis of thesis research activities being the development of new computational methods and/or the innovative application of computational techniques to important problems in engineering and science. For more information, see the full program description (p. 352) under Interdisciplinary Graduate Programs.

Flight Transportation

For students interested in a career in flight transportation, a program is available that incorporates a broader graduate education in disciplines such as economics, management, and operations research than is normally pursued by candidates for degrees in engineering. Graduate research emphasizes one of the four areas of flight transportation: airport planning and design; air traffic control; air transportation systems analysis; and airline economics and management, with subjects selected appropriately from those available in the departments of Aeronautics and Astronautics, Civil and Environmental Engineering, Economics, and the interdepartmental Master of Science in Transportation (MST) program. Doctoral students may pursue a PhD with specialization in air transportation in the Department of Aeronautics and Astronautics or in the interdepartmental PhD program in transportation or in the PhD program of the Operations Research Center (see the section on Graduate Programs in Operations Research under Research and Study).

Leaders for Global Operations

The 24-month Leaders for Global Operations (LGO) (http://lgo.mit.edu) program combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field. During the two-year program, students complete a six-month internship at one of LGO’s partner companies, where they conduct research that forms
the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of seven engineering programs, some of which have optional or required LGO tracks. After graduation, alumni take on leadership roles at top global manufacturing and operations companies.

System Design and Management
The System Design and Management (SDM) (http://sdm.mit.edu) program is a partnership among industry, government, and the university for educating technically grounded leaders of 21st-century enterprises. Jointly sponsored by the School of Engineering and the Sloan School of Management, it is MIT’s first degree program to be offered with a distance learning option in addition to a full-time in-residence option.

Technology and Policy
The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) (http://web.mit.edu/tpp) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description under the Institute for Data, Systems, and Society (p. 178).

Financial Support
Financial assistance for graduate study may be in the form of fellowships or research or teaching assistantships. Both fellowship students and research assistants work with a faculty supervisor on a specific research assignment of interest, which generally leads to a thesis. Teaching assistants are appointed to work on specific subjects of instruction.

A special relationship exists between the department and the Charles Stark Draper Laboratory. This relationship affords fellowship opportunities for SM and PhD candidates who perform their research as an integral part of ongoing projects at the Draper Laboratory. Faculty from the department maintain close working relationships with researchers at Draper, and thesis research at Draper performed by Draper fellows can be structured to fulfill MIT residency requirements. Further information on the Draper Laboratory can be found in the section on Research and Study.

Inquiries
For additional information concerning admissions, financial aid and assistantships, and academic, research, and interdisciplinary programs in the department, contact Beth Marois (bethamar@mit.edu), Room 33-202, 617-253-0043.

Research Laboratories and Activities
The department’s faculty, staff, and students are engaged in a wide variety of research projects. Graduate students participate in all the research projects. Projects are also open to undergraduates through the Undergraduate Research Opportunities Program (UROP). Some projects are carried out in an unstructured environment by individual professors working with a few students. Most projects are found within the departmental laboratories and centers listed below. Faculty also undertake research in the Computer Science and Artificial Intelligence Laboratory, Draper Laboratory, Laboratory for Information and Decisions Systems, Lincoln Laboratory, Operations Research Center, Research Laboratory of Electronics, and the Program in Science, Technology, and Society, as well as in interdepartmental laboratories and centers listed in the introduction to the School of Engineering. Refer to the section on Research and Study for more detailed descriptions.

Aerospace Computational Design Laboratory
The mission of the Aerospace Computational Design Laboratory (ACDL) (http://acdl.mit.edu) is to lead the advancement and application of computational engineering for design, optimization, and control of aerospace and other complex systems. ACDL research addresses a comprehensive range of topics, including advanced computational fluid dynamics and mechanics, uncertainty quantification, data assimilation and inference, surrogate and reduced modeling, and simulation-based design techniques.

Aerospace Controls Laboratory
The Aerospace Controls Laboratory (http://acl.mit.edu) investigates estimation, learning, and control systems for modern aerospace applications, with particular attention to distributed, multivehicle architectures. Example applications involve cooperating teams of UAVs identifying different flight patterns and detecting or compensating for faults during flight. The research goal is to increase the level of autonomy in these systems by incorporating higher-level decisions such as vehicle-waypoint assignment and collision avoidance routing into feedback control systems. Core competencies include optimal estimation and control, optimization for path-planning and operations research, receding-horizon/model predictive control, and advanced machine learning techniques.

Gas Turbine Laboratory
The mission of the Gas Turbine Laboratory (GTL) (http://web.mit.edu/aeroastro/www/labs/GTL) is to advance the state-of-the-art in fluid machinery for power and propulsion. Research is focused on advanced propulsion systems, energy conversion, and power, with activities in computational, theoretical, and experimental study of loss mechanisms and unsteady flows in fluid machinery, dynamic behavior and stability of compression systems, instrumentation and diagnostics, advanced centrifugal compressors and pumps for energy conversion, gas turbine engine and fluid machinery noise.

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS

reduction and aero-acoustics, and novel aircraft and propulsion system concepts for reduced environmental impact.

Examples of current research projects include a new modeling approach for rotating cavitatin instabilities in rocket engine turbopumps, a unified approach for vaned diffuser design in advanced centrifugal compressors, a methodology for centrifugal compressor stability prediction, improved performance return channel design for multistage centrifugal compressors, investigation of real gas effects in supercritical CO₂ compression systems, modeling instabilities in high-pressure pumping systems, aeromechanic response in a high performance centrifugal compressor stage, ported shroud operation in turbochargers, manifestation of forced response in a high performance centrifugal compressor stage for aerospace applications, return channel design optimization using adjoint method for multistage centrifugal compressors, a two-engine integrated propulsion system, propulsion system integration and noise assessment of a hybrid wing-body aircraft, fan-inlet integration for low fan pressure ratio propulsors, aerodynamics and heat transfer in gas turbine tip shroud cavity flows, secondary air interactions with main flow in axial turbines, compressor aerodynamics in large industrial gas turbines for power generation, turbine tip clearance loss mechanisms, and flow and heat transfer in modern turbine rim seal cavities.

International Center for Air Transportation
The mission of the International Center for Air Transportation (ICAT) (http://aeroastro.mit.edu/faculty-research/research-labs/#icat) is to contribute to improving the safety, efficiency, environmental performance, and effectiveness of air transportation worldwide by education and the use of information technologies. Current areas of research interest include advanced Air Traffic Control and Management (ATM, ATC) systems; satellite based Communication, Navigation, and Surveillance (CNS) systems in mature and developing world regions; advanced flight information systems; airline management; and operations (both flight operations and operations research). ICAT works closely with the Laboratory for Aviation and the Environment and the MIT Transportation Initiative.

Laboratory for Aviation and the Environment
The Laboratory for Aviation and the Environment (http://lae.mit.edu) addresses a major challenge facing the aviation industry today: understanding and reducing aviation’s environmental impacts. The lab advances our knowledge of how aviation impacts the environment and collaboratively develops mitigation strategies. Research thrusts include evaluating the climate and air quality impacts of aircraft emissions, including quantifying the impact of airport emissions on near-airport air quality, aircraft cruise emissions on global air quality, and contrails on regional climate; developing tools to enable designers, policymakers, and researchers to evaluate policy and design decisions' environmental implications, including a quantitative understanding of uncertainty; environmentally optimizing both ground and en route operations, including developing and testing procedures for minimizing ground fuel burn, computing the air quality impacts of controller decisions in real time, and developing metrics for the environmental performance of aircraft; assessing potential alternative jet fuels that can reduce adverse climate and air quality impacts, involving assessing the life-cycle environmental impacts of alternative fuel production and use, as well as broader environmental and economic implications.

Among other activities, the Laboratory for Aviation and the Environment hosts the headquarters of the Partnership for Air Transportation Noise and Emissions Reduction (PARTNER), an FAA Center of Excellence with participation from 12 universities and 50 industry and government organizations.

Man Vehicle Laboratory
The Man Vehicle Laboratory’s (http://mvl.mit.edu) goal is to optimize human-vehicle system effectiveness by improving our understanding of human physiological and cognitive capabilities with emphasis on aerospace vehicle applications. Research is interdisciplinary, utilizing techniques from manual and supervisory control, estimation, signal processing, robotics, biomechanics, cognitive psychology, artificial intelligence, sensory-motor physiology, human factors, and biostatistics. Current projects are sponsored by NASA, the National Space Biomedical Institute, the US Navy and the Federal Railway Administration, the MIT-Portugal Program, and the MIT Skoltech Initiative. Research addresses spatial orientation, posture and locomotion in altered gravitation environments; physiological and human factors aspects of EVA and artificial gravity systems; human automation task allocation in planetary landing and robotic control; failure detection, fatigue, and circadian effects on complex task performance; aircraft cockpit and locomotive displays and controls; and systems design of exploration class missions.

Space Systems Laboratory
The Space Systems Laboratory’s (http://aeroastro.mit.edu/faculty-research/research-labs/#ssl) mission is to develop the technology and systems analysis associated with small spacecraft, precision optical systems, and International Space Station technology research and development. The laboratory encompasses expertise in optics, adaptive optics, space environment effects, structural dynamics, control, thermal, space power, software development, and systems. Major activities include the development of small spacecraft systems and the distribution of function among satellites. In addition, technology is being developed for spaceflight validation in support of a new class of space-based telescopes which exploit the physics of interferometry to achieve dramatic breakthroughs in angular resolution. The objective of the laboratory is to explore innovative concepts for the integration of future space systems and to train a generation of researchers and engineers.
System Safety Research Lab

Increasing complexity and coupling as well as the introduction of new digital technology are introducing new challenges for engineering, operations, and sustainment. Researchers in the System Safety Research Lab (SSRL) are designing system modeling, analysis, and visualization theory and tools to assist in the design and operation of safer systems with greater capability. To accomplish these goals, a system’s approach to engineering is applied that includes building technical foundations and knowledge and integrating these with the organizational, political, and cultural aspects of system construction and operation.

While the main emphasis is aerospace systems and applications, SSRL research results are applicable to complex systems in such domains as transportation, energy, and health. Current research projects include accident modeling and design for safety; model-based system and software engineering; reusable, component-based system architectures; interactive visualization; human-centered system design; system sustainment; and organizational factors in engineering and project management.

Technology Laboratory for Advanced Materials and Structures

The Technology Laboratory for Advanced Materials and Structures (TELAMS) (http://web.mit.edu/telams), formerly known as TELAC, has provided leadership in advancing the knowledge and capabilities of the composites and structures community through education of students, original research, and interaction with the community at large. The laboratory’s emphasis on composite materials has led to research topics ranging from a basic understanding of composite materials to their behavior in specific structural configurations, with the ultimate objective of gaining a sufficient understanding of their properties and how those properties interact to determine the behavior of laminates and structures. This includes multiscale modeling and simulation of the mechanics of advanced materials used in the aerospace industry.

Wright Brothers Wind Tunnel

The largest on the MIT campus, this wind tunnel (http://web.mit.edu/aeroastro/labs/wbwt) has a 7x10-foot cross-section, and is capable of steady flow speeds up to 200 mph. The facility is used for graduate and undergraduate instruction and research, as well as testing for outside companies. Active research and educational programs include aerodynamics of airplanes and space vehicles and the simulation of wind loads on architectural structures. Recently, the tunnel has been involved in aerodynamic test programs for Olympic athletes and sporting equipment such as bicycles and skis.

Faculty and Teaching Staff

Professors

Richard P. Binzel, PhD
Professor of Planetary Sciences
Professor of Aeronautics and Astronautics

Edward F. Crawley, ScD
Ford Foundation Professor of Engineering
Professor of Aeronautics and Astronautics
(On leave)

David L. Darmofal, PhD
Professor of Aeronautics and Astronautics

Olivier L. de Weck, PhD
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Mark Drela, PhD
Terry J. Kohler Professor
Professor of Aeronautics and Astronautics

Emilio Frazzoli, PhD
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Edward M. Greitzer, PhD
H. N. Slater Professor in Aeronautics and Astronautics

Steven Hall, ScD
Professor of Aeronautics and Astronautics

Robert J. Hansman Jr, PhD
T. Wilson (1953) Professor in Aeronautics

Wesley L. Harris, PhD
Charles Stark Draper Professor of Aeronautics and Astronautics

Daniel E. Hastings, PhD
Cecil and Ida Green Professor in Education
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Jonathan P. How, PhD
Richard Cockburn Maclaurin Professor in Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Paul A. Lagacé, PhD
Professor of Aeronautics and Astronautics

Nancy G. Leveson, PhD
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society
David W. Miller, ScD
Jerome C. Hunsaker Professor
Professor of Aeronautics and Astronautics

David A. Mindell, PhD
Frances and David Dibner Professor in the History of Engineering and Manufacturing
Professor of Aeronautics and Astronautics

Eytan H. Modiano, PhD
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Dava Newman, PhD
Apollo Program Professor
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Jaime Peraire, PhD
H. N. Slater Professor in Aeronautics and Astronautics
Head, Department of Aeronautics and Astronautics

Raúl Radovitzky, PhD
Professor of Aeronautics and Astronautics

Zoltan S. Spakovszky, PhD
Professor of Aeronautics and Astronautics

Ian A. Waitz, PhD
Jerome C. Hunsaker Professor
Dean, School of Engineering
Professor of Aeronautics and Astronautics

Brian L. Wardle, PhD
Professor of Aeronautics and Astronautics

Sheila E. Widnall, ScD
Institute Professor
Professor of Aeronautics and Astronautics

Karen E. Willcox, PhD
Professor of Aeronautics and Astronautics

Moe Z. Win, PhD
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Associate Professors
Hamsa Balakrishnan, PhD
Associate Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Steven Barrett, PhD
Finmeccanica Career Development Professor in Engineering
Associate Professor of Aeronautics and Astronautics

Paulo C. Lozano, PhD
Associate Professor of Aeronautics and Astronautics

Youssef M. Marzouk, PhD
Associate Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Nicholas Roy, PhD
Associate Professor of Aeronautics and Astronautics

Julie A. Shah, PhD
Associate Professor of Aeronautics and Astronautics

Russell L. Tedrake, PhD
Associate Professor of Computer Science and Engineering
Associate Professor of Aeronautics and Astronautics
Associate Professor of Mechanical Engineering

Qiqi Wang, PhD
Associate Professor of Aeronautics and Astronautics

Assistant Professors
Kerri Cahoy, PhD
Assistant Professor of Aeronautics and Astronautics
Assistant Professor of Earth, Atmospheric and Planetary Sciences

Warren W. Hoburg, PhD
Boeing Career Development Professor in Aeronautics and Astronautics
Assistant Professor of Aeronautics and Astronautics

Sertac Karaman, PhD
Assistant Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Leia A. Stirling, PhD
Assistant Professor of Aeronautics and Astronautics

Professors of the Practice
Jeffrey A. Hoffman, PhD
Professor of the Practice of Aeronautics and Astronautics

Robert Liebeck, PhD
Professor of the Practice of Aerospace Engineering

Visiting Professors
M. L. Cummings, PhD
Visiting Professor of Aeronautics and Astronautics

Robert Kenyon, PhD
Visiting Professor of Aeronautics and Astronautics
David Wolpert, PhD
Visiting Professor of Aeronautics and Astronautics

Visiting Associate Professors
Carlo Fischione, PhD
Visiting Associate Professor of Aeronautics and Astronautics

Senior Lecturers
Rudrapatna V. Ramnath, PhD
Senior Lecturer in Aeronautics and Astronautics

Lecturers
Peter P. Belobaba, PhD
Lecturer of Aeronautics and Astronautics
Torin Clark, BS
Lecturer of Aeronautics and Astronautics

Technical Instructors
T. Billings
Technical Instructor of Aeronautics and Astronautics
David Robertson, BEng
Technical Instructor of Aeronautics and Astronautics

Research Staff

Senior Research Engineers
Charles M. Oman, PhD
Senior Research Engineer of Aeronautics and Astronautics
Choon S. Tan, PhD
Senior Research Engineer of Aeronautics and Astronautics

Principal Research Engineers
Robert Haimes, MS
Principal Research Engineer of Aeronautics and Astronautics

Principal Research Scientists
Ngoc Cuong Nguyen, PhD
Principal Research Scientist of Aeronautics and Astronautics
Principal Research Scientist of Management
Alvar Saenz-Otero, PhD
Principal Research Scientist of Aeronautics and Astronautics

Research Engineers
Steven R. Allmaras, PhD
Research Engineer of Aeronautics and Astronautics
Marshall C. Galbraith, PhD
Research Engineer of Aeronautics and Astronautics
Claudio Lettieri, PhD
Research Engineer of Aeronautics and Astronautics
Rebecca A. Masterson, PhD
Research Engineer of Aeronautics and Astronautics
Alan H. Midkiff, PhD
Research Engineer of Aeronautics and Astronautics
William S. Swelbar, MBA
Research Engineer of Aeronautics and Astronautics
John Thomas, PhD
Research Engineer of Aeronautics and Astronautics
Alejandra Uranga Cabrera, PhD
Research Engineer of Aeronautics and Astronautics
Brian Yutko, PhD
Research Engineer of Aeronautics and Astronautics

Research Scientists
Andrew Menching Liu, PhD
Research Scientist of Aeronautics and Astronautics
Robert Malina, PhD
Research Scientist of Aeronautics and Astronautics
Alan Natapoff, PhD
Research Scientist of Aeronautics and Astronautics
Raymond L. Speth, PhD
Research Scientist of Aeronautics and Astronautics

Research Specialists
Paul Bauer, BS
Research Specialist of Aeronautics and Astronautics
Matthew Pearlson, MS
Research Specialist of Aeronautics and Astronautics

Professors Emeriti
John J. Deyst Jr, ScD
Professor Emeritus of Aeronautics and Astronautics
Steven Dubowsky, PhD
Professor Emeritus of Mechanical Engineering
Professor Emeritus of Aeronautics and Astronautics
John Dugundji, ScD
Professor Emeritus of Aeronautics and Astronautics
Alan H. Epstein, PhD
Richard Cockburn Maclaurin Professor Emeritus
Professor Emeritus of Aeronautics and Astronautics
Walter M. Hollister, ScD
Professor Emeritus of Aeronautics and Astronautics
Jack L. Kerrebrock, PhD
Professor Emeritus of Aeronautics and Astronautics

James Mar, ScD
Professor Emeritus of Aeronautics and Astronautics

Manuel Martínez-Sánchez, PhD
Professor Emeritus of Aeronautics and Astronautics

Earll M. Murman, PhD
Ford Professor of Engineering Emeritus
Professor Emeritus of Aeronautics and Astronautics

Amedeo R. Odoni, PhD
T. Wilson (1953) Professor Emeritus
Professor Emeritus of Aeronautics and Astronautics
Professor Emeritus of Civil and Environmental Engineering

Thomas B. Sheridan, ScD
Professor Emeritus of Engineering and Applied Psychology
Professor Emeritus of Aeronautics and Astronautics

Robert Simpson, PhD
Professor Emeritus of Aeronautics and Astronautics

Leon Trilling, PhD
Professor Emeritus of Aeronautics and Astronautics
Professor Emeritus of Science, Technology, and Society

Wallace E. Vandervelde, ScD
Professor Emeritus of Aeronautics and Astronautics

Emmett Whitmer, ScD
Professor Emeritus of Aeronautics and Astronautics

Laurence R. Young, ScD
Apollo Program Professor Emeritus
Professor Emeritus of Aeronautics and Astronautics
Professor Emeritus of Health Sciences and Technology
DEPARTMENT OF BIOLOGICAL ENGINEERING

The Department of Biological Engineering (BE) is to educate next-generation leaders and to generate and translate new knowledge in a new bioscience-based engineering discipline. Fusing engineering analysis and synthesis approaches with modern molecular-to-genomic biology. Combining quantitative, physical, and integrative principles with advances in mechanistic molecular and cellular bioscience, biological engineering increases understanding of how biological systems function as both physical and chemical mechanisms; how they respond when perturbed by factors such as medical therapeutics, environmental agents, and genetic variation; and how to manipulate and construct them toward beneficial use. Through this understanding, new technologies can be created to improve human health in a variety of medical applications, and biology-based paradigms can be generated to address many of the diverse challenges facing society across a broad spectrum, including energy, the environment, nutrition, and manufacturing.

The department’s premise is that the science of biology is as important to the development of technology and society in the 21st century as physics and chemistry were in the 20th century, and that an increasing ability to measure, model, and manipulate properties of biological systems at the molecular, cellular, and multicellular levels will continue to shape this development. A new generation of engineers and scientists is learning to address problems through their ability to measure, model, and rationally manipulate the technological and environmental factors affecting biological systems. They are applying not only engineering principles to the analytical understanding of how biological systems operate, especially when impacted by genetic, chemical, physical, infectious, or other interventions; but also a synthetic design perspective to creating biology-based technologies for medical diagnostics, therapeutics, and prosthetics, as well as for applications in diverse industries beyond human health care.

Undergraduate Study

Bachelor of Science in Biological Engineering (Course 20)

The Department of Biological Engineering (BE) offers an undergraduate curriculum emphasizing quantitative, engineering-based analysis, design, and synthesis in the study of modern biology from the molecular to the systems level. Completion of the curriculum leads to the Bachelor of Science in Biological Engineering and prepares students for careers in diverse fields ranging from the pharmaceutical and biotechnology industries to materials, devices, ecology, and public health. Graduates of the program will be prepared to enter positions in basic research or project-oriented product development, as well as graduate school or further professional study.

The required core curriculum includes a strong foundation in biological and biochemical sciences, which are integrated with quantitative analysis and engineering principles throughout the entire core. Students who wish to pursue the Bachelor of Science in Biological Engineering (p. 373) are encouraged to complete the Biology General Institute Requirement during freshman year and may delay completion of Physics II until the fall term of sophomore year if necessary. The optional subject Introduction to Biological Engineering Design, offered during the spring term of freshman year, provides a framework for understanding the Biological Engineering SB program.

Students are encouraged to take the sophomore fall-term subject 20.110 Thermodynamics of Biomolecular Systems. This subject also fulfills an SB degree requirement in Biology. Alternatively, sophomores, or freshmen with advanced standing may take the spring-term 20.111 Physical Chemistry of Biomolecular Systems. Students are also encouraged to take Organic Chemistry I and Differential Equations during their sophomore year in order to prepare for the introductory biological engineering laboratory subject 20.109 Laboratory Fundamentals in Biological Engineering that provides context for the lecture subjects and a strong foundation for subsequent undergraduate research in biological engineering through Undergraduate Research Opportunities Program projects or summer internships.

The advanced subjects required in the junior and senior years introduce additional engineering skills through lecture and laboratory subjects and culminate in a senior design project. These advanced subjects maintain the theme of molecular to systems-level analysis, design, and synthesis based on a strong integration with biology fundamentals. They also include a variety of restricted electives that allow students to develop expertise in one of six thematic areas: systems biology, synthetic biology, biophysics, pharmacology/toxicology, cell and tissue engineering, and microbial systems. Many of these advanced subjects are jointly taught with other departments in the School of Engineering or School of Science and may fulfill degree requirements in other programs.

Minor in Biomedical Engineering

An interdepartmental Minor in Biomedical Engineering (p. 342) is available to all undergraduate students outside the BE (Course 20) major. See Interdisciplinary Programs (p. 342) for detailed information.

Minor in Toxicology and Environmental Health

The Department of Biological Engineering offers an undergraduate Minor in Toxicology and Environmental Health. The goal of this program is to meet the growing demand for undergraduates to acquire the intellectual tools needed to understand and assess the impact of new products and processes on human health, and to provide a perspective on the risks of human exposure to synthetic and natural chemicals, physical agents, and microorganisms.
Given the importance of environmental education at MIT, the program is designed to be accessible to any MIT undergraduate. The program consists of three required didactic core subjects and one laboratory subject, as well as one restricted elective. The prerequisites for the core subjects are 5.111 / 5.112 Principles of Chemical Science or 3.091 Introduction to Solid-State Chemistry plus Introductory Biology (7.012 / 7.013 / 7.014 / 7.015 / 7.016).

Core Subjects
20.102 Stem Cells in Organogenesis, Carcinogenesis, and Atherogenesis
20.104[J] Environmental Cancer Risks, Prevention, and Therapy
20.106[J] Systems Microbiology

Laboratory Core
Select one of the following: 12-18
5.310 Laboratory Chemistry
7.02[J] Introduction to Experimental Biology and Communication
20.109 Laboratory Fundamentals in Biological Engineering

Restricted Electives
Select one of the following: 12
1.080A Environmental Chemistry I
& 1.080B and Environmental Chemistry II
1.089 Environmental Microbiology
5.07[J] Biological Chemistry I
7.05 General Biochemistry
7.06 Cell Biology
7.28 Molecular Biology
20.URG Undergraduate Research Opportunities
22.01 Introduction to Nuclear Engineering and Ionizing Radiation

Total Units 60-66

Inquiries
For further information on the undergraduate programs, see the Biological Engineering website (http://web.mit.edu/be) or contact the BE Academic Office (be-acad@mit.edu), Room 16-267, 617-253-1712.

Graduate Study

Master of Engineering in Biomedical Engineering
The Master of Engineering in Biomedical Engineering (MEBE) program is a five-year program leading to a bachelor’s degree in a science or engineering discipline along with a Master of Engineering in Biomedical Engineering. The program emphasizes the fusion of engineering with modern molecular-to-genomic biology, as in our SB and PhD degree programs. Admission to the MEBE program is open only to MIT undergraduate students, and requires candidates to demonstrate adequate quantitative and engineering credentials through their undergraduate coursework.

In addition to satisfying the requirements of their departmental program, candidates also are expected to complete the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>5.12</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>5.07[J]</td>
<td>Biological Chemistry I</td>
</tr>
<tr>
<td>or 7.05</td>
<td>General Biochemistry</td>
</tr>
</tbody>
</table>

Select one of the following: 12
2.005 Thermal-Fluids Engineering I
6.002 Circuits and Electronics

Select two of the following: 24
1.010 Uncertainty in Engineering
2.086 Numerical Computation for Mechanical Engineers
3.016 Mathematical Methods for Materials Scientists and Engineers
6.041 Probabilistic Systems Analysis
18.05 Introduction to Probability and Statistics

Applications to the MEBE program are accepted from students in any of the departments in the School of Engineering or School of Science. Students interested in applying to the MEBE program should submit a standard MIT graduate application by the end of their junior year; they are informed of the decision by the end of that summer.

Additional information on application procedures, objectives, and program requirements can be obtained by contacting the BE Academic Office (be-acad@mit.edu), Room 16-127.

Program Requirements
In addition to thesis credits, at least 66 units of coursework are required. At least 42 of these subject units must be from graduate subjects. The remaining units may be satisfied, in some cases, with advanced undergraduate subjects that are not requirements in MIT’s undergraduate curriculum. Of the 66 units, a minimum distribution in each of three categories is specified below.

Bioengineering Core
Select two of the following: 24
20.410[J] Molecular, Cellular, and Tissue Biomechanics
20.420[J] Biomolecular Kinetics and Cellular Dynamics
Biomolecular Kinetics and Cellular Cancer Research (p. 109), the Synthetic Biology Engineering Research Center (http://www.synberc.org). These opportunities include collaboration with faculty in the Schools of Engineering, including HST.¹

Thesis
The student is required to complete a thesis that must be approved by the program director. The thesis is an original work of research, design, or development. If the supervisor is not a member of the Department of Biological Engineering, a reader who belongs to the BE faculty must also approve and sign the thesis. The student submits a thesis proposal by the end of the fourth year.

Doctoral Program in Biological Engineering
The Department of Biological Engineering offers a PhD program and, in certain cases, an SM degree. Graduate students in the Department of Biological Engineering can carry out their research as part of a number of multi-investigator, multidisciplinary research centers at MIT, including the Center for Biomedical Engineering (p. 85), the Center for Environmental Health Sciences (p. 86), the Division of Comparative Medicine (p. 92), and the Synthetic Biology Engineering Research Center (http://www.synberc.org). These opportunities include collaboration with faculty in the Schools of Engineering (p. 136) and Science (p. 287), the Koch Institute for Integrative Cancer Research (p. 95), the Whitehead Institute for Biomedical Research (p. 109), and the Broad Institute (p. 85), along with the Harvard University School of Medicine, Harvard University School of Dental Medicine, Harvard School of Public Health, and Boston University School of Medicine.

The Biological Engineering graduate program educates students to use engineering principles in the analysis and manipulation of biological systems, allowing them to solve problems across a spectrum of important applications. The curriculum is inherently interdisciplinary in that it brings together engineering and biology as fundamentally as possible and cuts across the boundaries of the traditional engineering disciplines.

The written part of the doctoral qualifying examinations—focused on the core curriculum—is taken after the second term. The student selects a research advisor, typically by the start of the spring term in the first year, and begins research before the end of that year. The oral part of the doctoral qualifying examinations, which focuses on the student's area of research, is taken prior to December 1 of the third year. A total of approximately five years in residence is needed to complete the doctoral thesis and other degree requirements.

Students admitted to the Biological Engineering graduate program typically have a bachelor's or master's degree in science or engineering. Foundational coursework in biochemistry and molecular cell biology is required, either prior to admission or during the first year of graduate study. Students who have not taken biochemistry previously should take 7.05 General Biochemistry or 5.07[J] Biological Chemistry I, and those who have not taken cell biology previously should take 7.06 Cell Biology, prior to taking the core classes. During their first year, students pursue a unified core curriculum in which engineering approaches are used to analyze biological systems and technologies over a wide range of length and time scales. The subjects in the unified core bring central engineering principles to bear on the operation of biological systems from molecular to cell to tissue/organ/device systems levels. These are then supplemented by electives in the biological sciences and engineering to enhance breadth and depth.

Unified Core

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.420[J]</td>
<td>Biomolecular Kinetics and Cellular Dynamics</td>
<td>12</td>
</tr>
<tr>
<td>20.440</td>
<td>Analysis of Biological Networks (Electives)</td>
<td>12</td>
</tr>
</tbody>
</table>

Electives

One graduate subject in biological science offered by the Department of Biology
One graduate subject from a restricted set of Biological Engineering offerings beyond the core subjects
One graduate subject in Biological Engineering
One additional graduate engineering or science subject

Faculty members associated with the program possess a wide range of research interests. Areas in which students may specialize include systems and synthetic biology; biological and physiological transport phenomena; biological imaging and functional measurement; biomolecular engineering; cell and tissue engineering; computational modeling of biological and physiological systems; bioinformatics; design, discovery, and delivery of molecular therapeutics; molecular, cell, and tissue biomechanics; development of in vitro models of the immune system and lymphoid tissue; development of molecular methods for direct measurement of mutations in humans; metabolism of foreign compounds; genetic toxicology; the molecular aspects and dosimetry of interactions between mutagens and carcinogens with nucleic acids and proteins; molecular mechanisms of DNA damage and repair; design and mechanisms of action of chemotherapeutic agents; environmental carcinogenesis and epidemiology; molecular mechanisms of carcinogenesis; cell physiology; extracellular regulation and signal transduction; molecular and pathologic

Total Units 66

¹ A list of suggested subjects is available from the BE Academic Office (be-acad@mit.edu), Room 56-651.
interactions between infectious microbial agents and carcinogens; and new tools for genomics, proteomics, and glycomics.

Interdisciplinary Programs

Leaders for Global Operations
The 24-month Leaders for Global Operations (LGO) (http://lgo.mit.edu) program combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field. During the two-year program, students complete a six-month internship at one of LGO’s partner companies, where they conduct research that forms the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of seven engineering programs, some of which have optional or required LGO tracks. After graduation, alumni take on leadership roles at top global manufacturing and operations companies.

Polymers and Soft Matter
The Program in Polymers and Soft Matter (PPSM) (http://polymerscience.mit.edu) offers students from participating departments an interdisciplinary core curriculum in polymer science and engineering, exposure to the broader polymer community through seminars, contact with visitors from industry and academia, and interdepartmental collaboration while working towards a PhD or ScD degree.

Research opportunities include functional polymers, controlled drug delivery, nanostructured polymers, polymers at interfaces, biomaterials, molecular modeling, polymer synthesis, biomimetic materials, polymer mechanics and rheology, self-assembly, and polymers in energy. The program is described in more detail under Interdisciplinary Graduate Programs (p. 358).

Inquiries
For further information on the graduate programs, see the Biological Engineering website (http://web.mit.edu/be) or contact the BE Academic Office (be-acad@mit.edu), Room 16-267, 617-253-1712.

Faculty and Teaching Staff

Professors
Angela M. Belcher, PhD
Professor of Biological Engineering
Professor of Materials Science and Engineering

Christopher B. Burge, PhD
Professor of Biology
Professor of Biological Engineering

Arup K. Chakraborty, PhD
Robert T. Haslam (1911) Professor
Director, Institute for Medical Engineering and Science
Robert T. Haslam Professor of Chemical Engineering
Professor of Biological Engineering
Professor of Chemistry
Professor of Physics

James J. Collins, PhD
Termee Professor of Medical Engineering and Science
Professor of Biological Engineering
Core Faculty, Institute for Medical Engineering and Science

Peter C. Dedon, MD, PhD
Underwood-Prescott Professor
Professor of Toxicology and Biological Engineering

Edward DeLong, PhD
Professor of Biological Engineering

Bever P. Engelward, DSc
Professor of Biological Engineering

John M. Essigmann, PhD
William R. (1956) and Betsy P. Leitch Professor in Residence
Professor of Toxicology and Biological Engineering
Professor of Chemistry

James G. Fox, DVM
Professor of Biological Engineering

Linda G. Griffith, PhD
School of Engineering Professor of Teaching Innovation
Professor of Biological Engineering
Professor of Mechanical Engineering

Alan J. Grodzinsky, ScD
Professor of Biological Engineering
Professor of Electrical Engineering
Professor of Mechanical Engineering

Jongyoon Han, PhD
Professor of Electrical Engineering
Professor of Biological Engineering

Darrell J. Irvine, PhD
Professor of Biological Engineering
Professor of Materials Science

Alan P. Jasanoff, PhD
Professor of Biological Engineering
Professor of Nuclear Science and Engineering
Professor of Brain and Cognitive Sciences
Roger Dale Kamm, PhD
Cecil H. Green Distinguished Professor
Professor of Mechanical Engineering
Professor of Biological Engineering
(On sabbatical)

Amy E. Keating, PhD
Professor of Biology
Professor of Biological Engineering

Alexander M. Klibanov, PhD
Novartis Professor of Chemistry
Professor of Bioengineering

Robert Langer, ScD
David H. Koch (1962) Institute Professor
Professor of Chemical Engineering
Professor of Mechanical Engineering
Professor of Biological Engineering
Member, Health Sciences and Technology Faculty

Douglas A. Lauffenburger, PhD
Ford Foundation Professor of Engineering
Professor of Biological Engineering
Professor of Chemical Engineering
Professor of Biology
Head, Department of Biological Engineering

Harvey F. Lodish, PhD
Professor of Biology
Professor of Biological Engineering

Scott R. Manalis, PhD
Andrew (1956) and Erna Viterbi Professor
Professor of Biological Engineering
Professor of Mechanical Engineering

Leona D. Samson, PhD
Uncas (1923) and Helen Whitaker Professor
Professor of Toxicology and Biological Engineering
Professor of Biology

Ram Sasisekharan, PhD
Alfred H. Caspary Professor
Professor of Biological Engineering

Peter T. C. So, PhD
Professor of Biological Engineering
Professor of Mechanical Engineering

Steven R. Tannenbaum, PhD
Underwood-Prescott Professor
Professor of Toxicology and Biological Engineering
Professor of Chemistry

William G. Thilly, ScD
Professor of Genetics, Toxicology, and Biological Engineering

Bruce Tidor, PhD
Professor of Electrical Engineering and Computer Science
Professor of Biological Engineering

Krystyn J. Van Vliet, PhD
Professor of Biological Engineering
Professor of Materials Science and Engineering

Christopher A. Voigt, PhD
Professor of Biological Engineering

Ron Weiss, PhD
Professor of Computer Science
Professor of Biological Engineering

Forest M. White, PhD
Professor of Biological Engineering

Karl Dane Wittrup, PhD
Carbon P. Dubbs Professor in Chemical Engineering
Professor of Biological Engineering

Michael B. Yaffe, MD, PhD
David H. Koch Professor in Science
Professor of Biology
Professor of Biological Engineering

Ioannis V. Yannas, PhD
Professor of Mechanical Engineering and Polymer Science
Professor of Biological Engineering
Member, Health Sciences and Technology Faculty

Associate Professors

Eric J. Alm, PhD
Associate Professor of Biological Engineering
Associate Professor of Civil and Environmental Engineering

Mark Bathe, PhD
Associate Professor of Biological Engineering
Associate Professor of Mechanical Engineering

Edward S. Boyden III, PhD
Associate Professor of Media Arts and Sciences
Associate Professor of Brain and Cognitive Sciences
Associate Professor of Biological Engineering

Ernest Fraenkel, PhD
Associate Professor of Biological Engineering

Timothy K. Lu, MD, PhD
Associate Professor of Electrical Engineering and Computer Science
Associate Professor of Biological Engineering

Jacquin Niles, MD, PhD
Associate Professor of Biological Engineering
Katharina Ribbeck, PhD
Eugene Bell Career Development Professor of Tissue Engineering
Associate Professor of Biological Engineering

Assistant Professors
Paul C. Blainey, PhD
Assistant Professor of Biological Engineering

Angela N. Koehler, PhD
Karl Van Tassel (1925) Career Development Professor
Assistant Professor of Biological Engineering

Jonathan Runstadler, DVM, PhD
Assistant Professor of Biological Engineering and Comparative Medicine

Visiting Professors
Seok Chung, PhD
Visiting Professor of Biological Engineering

Paul T. Matsudaira, PhD
Visiting Professor of Biological Engineering

Senior Lecturers
Noubar Afeyan, PhD
Senior Lecturer in Management
Senior Lecturer in Biological Engineering

Mark A. Murcko, PhD
Senior Lecturer in Biological Engineering

Alexander Wood, PhD
Senior Lecturer in Biological Engineering

Lecturers
John Pierce, PhD
Lecturer in Biological Engineering

Instructors
Jaime Goldstein, MEd
Instructor of Biological Engineering

Maxine Jonas, PhD
Instructor of Biological Engineering

Steven F. Nagle, PhD
Laboratory Instructor of Biological Engineering

Steven Wasserman, MS
Laboratory Instructor of Biological Engineering

Technical Instructors
Noreen L. Lyell, PhD
Technical Instructor of Biological Engineering

Leslie Marie McClain, PhD
Technical Instructor of Biological Engineering

Research Staff

Senior Research Scientists
John S. Wishnok, PhD
Senior Research Scientist of Biological Engineering

Principal Research Engineers
Eliot Frank, PhD
Principal Research Engineer of Biological Engineering

Principal Research Scientists
Paul L. Skipper, PhD
Principal Research Scientist of Biological Engineering

Research Scientists
Murat Cirit, PhD
Research Scientist of Biological Engineering

Robert G. Croy, PhD
Research Scientist of Biological Engineering

Michael S. DeMott, PhD
Research Scientist of Biological Engineering

Mohammad Reza Ebrahimkhani, MD
Research Scientist of Biological Engineering

Leonid Gaydukov, PhD
Research Scientist of Biological Engineering

David B. Gordon, PhD
Research Scientist of Biological Engineering

Elena V. Gostjeva, PhD
Research Scientist of Biological Engineering

Shannon Kay Hughes, PhD
Research Scientist of Biological Engineering

Kok Seong Lim, PhD
Research Scientist of Biological Engineering

Erin Prestwich, PhD
Research Scientist of Biological Engineering

Rahul Raman, PhD
Research Scientist of Biological Engineering

Vidya Subramanian, PhD
Research Scientist of Biological Engineering

Nevin M. Summers, MS, MArch
Research Scientist of Biological Engineering
Kannan Tharakaraman, PhD
Research Scientist of Biological Engineering

Professors Emeriti

C. Forbes Dewey Jr, PhD
Professor Emeritus of Mechanical Engineering
Professor Emeritus of Biological Engineering

Gerald N. Wogan, PhD
Professor Emeritus of Biological Engineering
Professor Emeritus of Chemistry
DEPARTMENT OF CHEMICAL ENGINEERING

Chemical engineering encompasses the translation of molecular information into discovery of new products and processes. It involves molecular transformations—chemical, physical, and biological—with multi-scale description from the submolecular to the macroscopic, and the analysis and synthesis of such systems. The chemical engineer is well prepared for a rewarding career in a strikingly diverse array of industries and professional arenas. Whether these industries are at the cutting edge—e.g., nanotechnology or biotechnology—or traditional, they depend on chemical engineers to make their products and processes a reality. The effectiveness of chemical engineers in such a broad range of areas begins with foundational knowledge in chemistry, biology, physics, and mathematics. From this foundation, chemical engineers develop core expertise in engineering thermodynamics, transport processes, and chemical kinetics, creating a powerful and widely applicable combination of molecular knowledge and engineering problem solving. To cope with complex, real-world problems, chemical engineers develop strong synthetic and analytic skills. Through creative application of these chemical engineering principles, chemical engineers create innovative solutions to important industrial and societal problems in areas such as development of clean energy sources, advancement of life sciences, production of pharmaceuticals, sustainable systems, and responsible environmental stewardship, and discovery and production of new materials.

The Department of Chemical Engineering at MIT offers four undergraduate programs. Course 10 leads to the Bachelor of Science in Chemical Engineering through a curriculum that prepares the graduate for a wide range of career pursuits. Course 10-B leads to the Bachelor of Science in Chemical-Biological Engineering, which includes the basic engineering core from the Course 10 degree and adds material in basic and applied biology. Course 10-ENG leads to the Bachelor of Science in Engineering, a more flexible curriculum that supplements a chemical engineering foundation with an area of technical specialization. Course 10-C leads to the Bachelor of Science without specification; this non-accredited degree requires fewer chemical engineering subjects. Undergraduates have access to graduate-level subjects in their upperclass years. Undergraduate students are also encouraged to participate in research through the Undergraduate Research Opportunities Program (UROP) (http://web.mit.edu/urop).

The department offers a broad selection of graduate subjects and research topics leading to advanced degrees in chemical engineering. Multidisciplinary approaches are highly valued, leading to strong ties with other MIT departments. In addition, the department maintains alliances, arrangements, and connections with institutions and industries worldwide. Areas for specialization include, but are not limited to: biochemical engineering, biomedical engineering, biotechnology, chemical catalysis, chemical process development, environmental engineering, fuels and energy, polymer chemistry, surface and colloid chemistry, systems engineering, and transport processes. Additional information may be found under Graduate Education (p. 58) and on the department’s website (http://web.mit.edu/cheme).

The School of Chemical Engineering Practice, leading to five-year bachelor’s and master’s degrees, involves one term of work under the direction of an Institute staff member resident at Practice School sites. This program provides students with a unique opportunity to apply basic professional principles to the solution of practical industrial problems.

Undergraduate Study

The undergraduate curriculum in chemical engineering provides basic studies in physics, biology, and mathematics, advanced subjects in chemistry or biology, and a strong core of chemical engineering. The four-year undergraduate programs provide students with the fundamentals of the discipline and allow some room for focus in subdisciplines or subjects that strengthen their preparation for advanced work.

In addition to science and engineering, students take an integrated sequence of subjects in the humanities and social sciences. Specific subject selection allows students to meet individual areas of interest. The curriculum provides a sound preparation for jobs in industry or government, and for graduate work in chemical engineering.

Chemical engineering also provides excellent preparation for careers in medicine and related fields of health science and technology. The department’s strong emphasis on chemistry and biology provides excellent preparation for medical school. Students interested in medical school work with their faculty and premedical advisor to create the best program. A minor in biomedical engineering is also available.

Bachelor of Science in Chemical Engineering (Course 10)

This degree (p. 375) is intended for the student who seeks a broad education in the application of chemical engineering to a variety of specific areas, including energy and the environment, nanotechnology, polymers and colloids, surface science, catalysis and reaction engineering, systems and process design, and biotechnology. The degree requirements include the core chemical engineering subjects with a chemistry emphasis, and the opportunity to add subjects in any of these application areas.

Course 10 is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org) as a chemical engineering degree.
Bachelor of Science in Chemical-Biological Engineering (Course 10-B)

This degree (p. 374) is intended for the student who is specifically interested in the application of chemical engineering in the areas of biochemical and biomedical technologies. The degree requirements include core chemical engineering subjects and additional subjects in biological sciences and applied biology. This degree is excellent preparation for students also considering the biomedical engineering minor or medical school.

Course 10-B is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org) as a chemical and biological engineering degree.

Students who decide early to major in either Course 10 or Course 10-B are encouraged to take subjects such as 5.111/5.112 Principles of Chemical Science, 5.12 Organic Chemistry I, and 7.01X Introductory Biology in their freshman year. Then 5.60 Thermodynamics and Kinetics, 18.03 Differential Equations, 10.10 Introduction to Chemical Engineering, 10.213 Chemical and Biological Engineering Thermodynamics, and 10.301 Fluid Mechanics may be taken in the sophomore year. The student is then well positioned for more in-depth and specialized subjects in the third and fourth years.

Some students may wish to defer choice of a major field or exercise maximum freedom during the first two years. If the Restricted Electives in Science and Technology (REST) Requirement subjects chosen in the second year include 18.03 Differential Equations and two subjects in the fields of fluid mechanics, thermodynamics, chemistry, biology, or chemical engineering, students can generally complete the requirements for a degree in chemical engineering in two more years. Students are advised to discuss their proposed program with a Course 10 faculty advisor as soon as they become interested in a degree in chemical engineering. Faculty advisors are assigned to students as soon as they declare their major and then work with the students through graduation. Further information may be obtained from Dr. Barry S. Johnston.

Additional information is available on the Chemical Engineering Department website (http://web.mit.edu/cheme/). Undergraduates are encouraged to take part in the research activities of the department through the Undergraduate Research Opportunities Program (UROP) (http://web.mit.edu/urop).

Bachelor of Science (Course 10-C)

The curriculum (p. 377) for students in Course 10-C involves basic subjects in chemistry and chemical engineering. Instead of continuing in depth in these areas, students can add breadth by study in another field, such as another engineering discipline, biology, biomedical engineering, economics, or management. Course 10-C is attractive to students who wish to specialize in an area such as those cited above while simultaneously gaining a broad exposure to the chemical engineering approach to solving problems.

Students planning to follow this curriculum should discuss their interests with their faculty advisor in the department at the time they decide to enter the Course 10-C program, and submit to Dr. Barry S. Johnston in the department’s Undergraduate Office a statement of goals and a coherent program of subjects no later than spring term of junior year. Please direct questions about this program to Dr. Johnston.

Bachelor of Science in Engineering as Recommended by the Department of Chemical Engineering (Course 10-ENG)

The 10-ENG degree program (p. 386) is designed to offer flexibility within the context of chemical engineering while ensuring significant engineering content, and is a complement to our chemical engineering degree programs 10 and 10-B. The degree is designed to enable students to pursue a deeper level of understanding in a specific interdisciplinary field that is relevant to the chemical engineering core discipline. The degree requirements include all of the core chemical engineering coursework, plus a chosen set of three foundational concept subjects and four subjects with engineering content that make up a comprehensive concentration specific to the interdisciplinary area selected by the student. The concentrations have been selected by the Department of Chemical Engineering to represent new and developing cross-disciplinary areas that benefit from a strong foundation in engineering within the chemical engineering context. Details of the concentrations are available from the Chemical Engineering Student Office and the department’s website (http://web.mit.edu/cheme/academics/undergrad).

The foundational concept component of the flexible engineering degree consist of basic science and engineering subjects that help lay the groundwork for the chosen concentration. Three subjects must be selected from a list of potential topics. One of the foundational concept subjects must be a chemical engineering CI-M subject, and one must be a laboratory subject that satisfies the Institute Laboratory Requirement. The subjects should be selected with the assistance of a 10-ENG degree advisor from the Chemical Engineering Department so as to be consistent with the degree requirements of the program and the General Institute Requirements. Several of these subjects can satisfy the program's CI-M requirement.

The flexible engineering concentration consists of four subjects that are selected by the student from a suggested subject list provided for each 10-ENG concentration; the student also may propose subjects that fit the theme of the chosen concentration. These lists are included in the concentration descriptions provided on the department's website and at the Chemical Engineering Student Office. Students work with their 10-ENG advisors to propose a 10-ENG degree program, which must then be approved by the Chemical Engineering Undergraduate Committee.

The flexible engineering degree major capstone experience consists of 12 units and/or a senior-level project. Alternatively, the student may choose to complete a senior thesis in a topic area relevant to
the concentration. Senior-level projects or senior thesis projects are specifically designed to integrate engineering principles into specific applications or problems and are not standard UROP projects; such projects require the preliminary approval of the department’s undergraduate officer.

Course 10-ENG is awaiting accreditation by the Engineering Accreditation Commission of ABET (http://www.abet.org) as an engineering degree.

Five-Year Programs and Joint Programs
In addition to offering separate programs leading to the Bachelor of Science and Master of Science in Chemical Engineering, the department offers a program leading to the simultaneous award of both degrees at the end of five years. A detailed description of this program is available from the Graduate Student Office. Students in the five-year program normally enroll in the School of Chemical Engineering Practice.

For chemical engineering students interested in nuclear applications, the Department of Chemical Engineering and the Department of Nuclear Engineering offer a five-year program leading to the joint Bachelor of Science in Chemical Engineering and Master of Science in Nuclear Engineering. Such programs are approved on an individual basis between the registration officers of the two departments.

Inquiries
Additional information concerning undergraduate academic and research programs may be obtained by writing to Dr. Barry S. Johnston (bsjohnst@mit.edu), undergraduate officer, Department of Chemical Engineering, Room 66-368, 617-258-7141, fax 617-258-0546. For information regarding admissions and financial aid, contact the Admissions Office, Room 3-108, 617-253-4791.

Graduate Study
Graduate study provides both rigorous training in the fundamental core discipline of chemical engineering and the opportunity to focus on specific subdisciplines. In addition to completing the four core subject requirements in thermodynamics, reaction engineering, numerical methods, and transport phenomena, students select a research advisor and area for specialization, some of which are discussed below.

Thermodynamics and Molecular Computation. Thermodynamics is a cornerstone of chemical engineering. Processes as diverse as chemical production, bioreaction, creation of advanced materials, protein separation, and environmental treatment are governed by thermodynamics. The classical concepts of equilibrium, reversibility, energy, and entropy are basic to the analysis and design of these processes. The extension of classical thermodynamics to molecular scales by use of statistical mechanics has made molecular simulation an increasingly valuable tool for the chemical engineer.

Prediction of macroscopic behavior from molecular computations is becoming ever more feasible. This venerable field continues to yield fruitful areas of inquiry.

Opportunities in the department for graduate study in this field include predicting properties of materials and polymers from molecular structure, applying quantum mechanics to catalyst design, supercritical fluid processing, the behavior of complex fluids with environmental and biomedical applications, phase equilibrium with simple and complex molecular species, immunology, protein stabilization, nucleation and crystallization of polymer and pharmaceuticals, and many other areas of classical and statistical thermodynamics.

Transport Processes. A fluid deforming and flowing as forces are imposed on it, its temperature varying as heat is transferred through it, the interdiffusion of its distinct molecular species—these are examples of the processes of transport. These transport processes govern the rates at which velocity, temperature, and composition vary in a fluid; chemical engineers study transport to be able to describe, predict, and manage these changes. Research includes experimental testing and analytical and computational modeling; its applications range among an enormous variety of mechanical, chemical, and biological processes.

Current work includes the study of polymer molecular theory and polymer processing, transport and separations in magnetorheological fluids, membrane separations, diffusion in complex fluids, defect formation and evolution in near-crystalline materials, microfluidics, fluid instability, transport in living tissue, numerical solution of field equations, and many other areas of transport phenomena.

Catalysis and Chemical Reaction Engineering. A simple chemical reaction—the rearrangement of electrons and bonding partners—occurs between two small molecules. From understanding the kinetics of the reaction, and the equilibrium extent to which it can proceed, come applications: the network of reactions during combustion, the chain reactions that form polymers, the multiple steps in the synthesis of a complex pharmaceutical molecule, the specialized reactions of proteins and metabolism. Chemical kinetics is the chemical engineer’s tool for understanding chemical change.

A catalyst influences the reaction rate. Catalysts are sought for increasing production, improving the reaction conditions, and emphasizing a desired product among several possibilities. The challenge is to design the catalyst, to increase its effectiveness and stability, and to create methods to manufacture it.

A chemical reactor should produce a desired product reliably, safely, and economically. In designing a reactor, the chemical engineer must consider how the chemical kinetics, often modified by catalysis, interacts with the transport phenomena in flowing materials. New microreactor designs are expanding the concept of...
what a reactor may do, how reactions may be conducted, and what is required to scale a process from laboratory to production.

Research is being conducted in the department at the forefront of catalyst design, complex chemical synthesis, bioreactor design, surface- and gas-phase chemistry, miniaturization of reactors, mathematical modeling of chemical reaction networks, and many other areas of chemical reaction engineering. Applications include the manufacturing of chemicals, refining of fuels for transportation and power, and microreactors for highly reactive or potentially hazardous materials.

Polymers. Wondrous materials found in nature and now synthesized in enormous quantity and variety, polymers find an ever-increasing use in manufactured products. Polymers are versatile because their properties are so wide-ranging, as is evident even in the conceptually simple polymers made from a single molecular species. The versatility becomes more profound in the copolymers made from multiple precursors, and the polymers compounded with filler materials. Research in polymers encompasses the chemical reactions of their formation, methods of processing them into products, means of modifying their physical properties, and the relationship between the properties and the underlying molecular- and solid-phase structure.

Graduate research opportunities in the department include studies of polymerization kinetics, non-Newtonian rheology, polymer thin films and interfaces, block copolymers, liquid crystalline polymers, nanocomposites and nanofibers, self-assembly and patterning, and many other areas of polymer science and engineering. In addition to a program in graduate study in polymers within the department, the interdisciplinary Program in Polymers and Soft Matter (PPSM) provides a community for researchers in the polymer field and offers a program of study that focuses on the interdisciplinary nature of polymer science and engineering.

Materials. The inorganic compounds found in nature are the basis for new materials made by modifying molecular composition (such as purifying silicon and doping it with selected impurities) and structure (such as control of pore and grain size). These materials have electronic, mechanical, and optical properties that support a variety of novel technologies. Other materials are applied as coatings—thin films that create a functional surface. Still other materials have biological applications, such as diagnostic sensors that are compatible with living tissue, barriers that control the release of pharmaceutical molecules, and scaffolds for tissue repair. A new generation of biomaterials is being derived from biological molecules. Research in materials is wide-ranging and highly interdisciplinary, both fundamental and applied. In the department, materials research includes studies in plasma etching, thin-film chemical vapor deposition, crystal growth, nano-crystalline structure, molecular simulation, scaffolds for bone and soft tissue regeneration, biocompatible polymers, and many other areas of materials engineering.

Surfaces and Nanostructures. In many arrangements of matter, the interfaces between phases—more than their bulk compositions—are critical to the material structure and behavior. The surfaces of solids offer a platform for functional coating; coatings may be deposited from vapor, applied as a volatile liquid, or assembled from solution onto the solid, in a pattern determined by the molecular properties. This self-assembly tendency may be exploited to arrange desired patterns that have operational properties. Interfacial effects are also responsible for stable dispersions of immiscible phases, leading to fluids with complex microstructure. Other structured fluids arise from large molecules whose orientation in the solvent is constrained by molecular size and properties. In solids, tight control of pore size, grain size, chemical composition, and crystal structure offer a striking range of catalytic, mechanical, and electromagnetic properties. The understanding of gas-solid kinetics is crucial to the study of heterogeneous catalysis and integrated circuit fabrication. Structure is the basis for function, and by manipulating tiny length scales, the resulting nanostructure makes available new capabilities, and thus new technologies and products. Graduate study in surfaces and nanostructures may include studies of colloids, emulsions, surfactants, and other structured fluids with biological, medical, or environmental applications. It also encompasses thin films, liquid crystals, sol-gel processing, control of pharmaceutical morphology, nanostructured materials, carbon nanotubes, surface chemistry, surface patterning, and many other areas of nanotechnology and surface science.

Biological Engineering. Chemical engineering thermodynamics, transport, and chemical kinetics, so useful for manufacturing processes, are fruitful tools for exploring biological systems as well. Biological engineering research may be directed at molecular-level processes, the cell, tissues, the organism, and large-scale manufacturing in biotech processes. It may be applied to producing specialized proteins, genetic modification of cells, transport of nutrients and wastes in tissue, therapeutic methods of drug delivery, tissue repair and generation, purification of product molecules, and control strategies for complex bioproduction plants. Its methods include analytical chemistry and biochemistry techniques, bioinformatic processing of data, and computational solution of chemical reaction and transport models. Biological engineering is an extraordinarily rich area for chemical engineers, and its consequences—theoretical, medical, commercial—will be far-reaching.

Opportunities in the department for graduate study in biological engineering include manipulation and purification of proteins and other biomolecules, research into metabolic processes, tissue regeneration, gene regulation, bioprocesses, bioinformatics, drug delivery, and biomaterials, to name a few. Both experimental and computational methods are used, including statistical mechanics and systems theory. Chemical engineering faculty are also involved in the Center for Biomedical Engineering, created to enhance interdisciplinary research and education at the intersection of engineering, molecular and cell biology, and medicine. The Novartis-
MIT Center for Continuous Manufacturing, another center of research activity involving chemical engineers, promises to revolutionize the chemical processing of pharmaceuticals.

Energy and Environmental Engineering. Making energy available to society requires finding and producing a range of fuels, improving the efficiency of energy use under the ultimate limits imposed by thermodynamics, and reducing the effects of these processes on the environment. The widespread use of fossil fuels increases the amount of carbon dioxide in the atmosphere, leading to concerns about global warming. Other sustainability indicators also suggest that we now need to transform our energy system to a more efficient, lower-carbon future. This transformation provides many opportunities for chemical engineers to evaluate and explore other energy supply options such as renewable energy from solar, biomass, and geothermal resources, nonconventional fuels from heavy oils, tar sands, natural gas hydrates, and oil shales. Developing technologies for transporting and storing thermal and electrical energy over a range of scales are also of interest.

Further environmental distress can result from manufacturing processes and society’s use of the manufactured products. The traditional response of treating process wastes is still useful, but there is growing emphasis on designing new processes to produce less waste. This might be done by improving catalysts to decrease unwanted by-products, finding alternatives to volatile solvents, and developing more effective separation processes. Chemical engineers are at work in these areas, and in developing alternative energy sources and assessing the effects of pollutants on human health.

In the department, students will find expertise in combustion, chemical reaction networks, renewable energy and upgrading of nonconventional fuels, carbon dioxide capture and sequestration, water purification and catalytic treatment of pollutants, global air pollution modeling, design of novel energy conversion processes, energy supply chains, and many other areas of energy and environmental engineering. Faculty in the department are actively involved in the MIT Energy Initiative.

Systems Design and Simulation. From early in the development of chemical engineering, processes were represented as combinations of unit operations. This concept was useful in analyzing processes, as well as providing a library of building blocks for creating new processes. Process and product design are imaginative activities, an artful blend of intuition and analysis. Design is aided by mathematical tools that simulate the behavior of the process or product and seek optimum performance. Effective use of simulation and optimization tools allows unexpected pathways to be explored, dangerous operating regions to be identified, and transient and accident conditions to be tested. Process and product systems engineering brings it all together, placing the technical features of a process or product in the context of operations, economics, and business. The end result is improved economy, reliability, and safety. Methodologies for process and product modeling and simulation, computer-aided engineering, operations research, optimization theory and algorithms, process and product design strategy, treatment of uncertainty, multiscale systems engineering, and many other areas of systems engineering are being developed in the Department of Chemical Engineering. Such research leads to new prototypes for process systems, design of new molecules with desired properties, and processes with better operability, control, safety, and environmental performance.

School of Chemical Engineering Practice

Since 1916, the David H. Koch School of Chemical Engineering Practice has been a major feature of the graduate education in the department. In this unique program, students receive intensive instruction to broaden their education in the technical aspects of the profession, and also in communication skills and human relations, which are frequently decisive factors in the success of an engineering enterprise. The Practice School program stresses problem solving in an engineering internship format, where students undertake projects at industrial sites under the direct supervision of resident MIT faculty. Credit is granted for participation in the Practice School in lieu of preparing a master’s thesis.

The operation of the Practice School is similar to that of a small consulting company. The resident staff work closely with the technical personnel of the host companies in identifying project assignments with significant educational merit, and with solutions that make important contributions to the operation of the company.

During Practice School, students work on three or four different projects. Groups and designated group leaders change from one project to another, giving every individual an opportunity to be a group leader at least once.

Students in the Practice School program are required to demonstrate proficiency, or take one graduate subject, in each of the following areas: thermodynamics, heat and mass transfer, applied process chemistry, kinetics and reactor design, systems engineering, and applied mathematics.

Master of Science in Chemical Engineering

Programs for the Master of Science in Chemical Engineering usually are arranged as a continuation of undergraduate professional training, but at a greater level of depth and maturity. The general requirements for a master's program are given in the section on Graduate Education (p. 58). To complete the requirement of at least 66 subject units, of which 42 units must be graduate subjects, together with an acceptable thesis, generally takes four terms.

Master of Science in Chemical Engineering Practice

The unit requirements for the Master of Science in Chemical Engineering Practice (Course 10-A) are the same as those for the Master of Science in Chemical Engineering, except that 48 units of Practice School experience replace the master's thesis.

In some cases, Bachelor of Science graduates of this department can meet the requirements for the Master of Science in Chemical
Engineering Practice (Course 10-A) in two terms. Beginning in September following graduation, students complete the required coursework at the Institute. The spring semester is spent at the Practice School field stations. Careful planning of the senior year schedule is important.

For students who have graduated in chemical engineering from other institutions, the usual program of study for the Master of Science in Chemical Engineering Practice involves two terms at the Institute followed by field station work in the Practice School. Graduates in chemistry from other institutions normally require an additional term.

Doctor of Science or Doctor of Philosophy

Doctoral candidates are required to pass a written general examination early in their program of study. Given in January and May, the written examination is usually taken at the end of the first term in residence as a graduate student. There is also an oral general examination, which consists of the presentation of a thesis proposal to a faculty committee; this is normally done during the second year of residence. Completing a master's degree is not a prerequisite for entering the doctoral program or obtaining a doctoral degree.

The requirements for the doctoral degree include a program of advanced study, a minor program, a biology requirement, and a thesis. The program of advanced study and research is normally carried out in one of the fields of chemical engineering under the supervision of one or more faculty members in the Department of Chemical Engineering. A thesis committee of selected faculty monitors the doctoral program of each candidate.

Doctor of Philosophy in Chemical Engineering Practice

This degree program provides educational experience that combines advanced work in manufacturing, independent research, and management. The program is built on the outstanding research programs within the department, the unique resources of the David H. Koch School of Chemical Engineering Practice, and the world-class resources of the Sloan School of Management. Students are prepared for a rapid launch into positions of leadership in industry and provided with a foundation for completion of an MBA degree.

The program consists of three major parts: the first year is devoted to coursework and the Practice School, the two middle years are devoted to research, and the final year is completed in the Sloan School of Management. In addition, an integrative project combines the research and management portions of the program.

Students in the PhD in Chemical Engineering Practice (PhDCEP) program must pass the department’s written and oral examinations. The progress of their research is monitored by a faculty committee, and the final thesis document is defended in a public forum. The normal completion time should be four calendar years for the PhDCEP program.

Interdisciplinary Programs

Computational Science and Engineering

The Computational Science and Engineering (CSE) (http://computationalengineering.mit.edu/education) program allows students to specialize at the doctoral level in a computation-related field of their choice through focused coursework and a doctoral thesis through a number of participating host departments. The CSE program is administered jointly by the Center for Computational Engineering (CCE) and the host departments, with the emphasis of thesis research activities being the development of new computational methods and/or the innovative application of computational techniques to important problems in engineering and science. For more information, see the full program description (p. 352) under Interdisciplinary Graduate Programs.

Leaders for Global Operations

The 24-month Leaders for Global Operations (LGO) (http://lgo.mit.edu) program combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field. During the two-year program, students complete a six-month internship at one of LGO’s partner companies, where they conduct research that forms the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of seven engineering programs, some of which have optional or required LGO tracks. After graduation, alumni take on leadership roles at top global manufacturing and operations companies.

Microbiology

The MIT Microbiology Graduate PhD Program (p. 356) is an interdepartmental, interdisciplinary program that provides students broad exposure to underlying elements of modern microbiological research and engineering, and depth in specific areas of microbiology during the student's thesis work. MIT has a long-standing tradition of excellence in microbiological research; currently, more than 50 faculty from different departments study or use microbes in significant ways in their research. The program integrates educational resources across the participating departments to build connections among faculty with shared interests from different units and to build an educational community for training students in the study of microbial systems. Students apply to the Microbiology program and conduct research in the labs of faculty in one of the participating departments: Biology; Biological Engineering; Chemical Engineering; Chemistry; Civil and Environmental Engineering; Earth, Atmospheric and Planetary Sciences; Electrical Engineering and Computer Science; Materials Sciences and Engineering; and Physics. Graduates of this program will be prepared to enter a range of fields in microbial science and engineering, and will have excellent career options in academic, industrial, and government settings.
Polymers and Soft Matter
The Program in Polymers and Soft Matter (PPSM) (http://polymerscience.mit.edu) offers students from participating departments an interdisciplinary core curriculum in polymer science and engineering, exposure to the broader polymer community through seminars, contact with visitors from industry and academia, and interdepartmental collaboration while working towards a PhD or ScD degree.

Research opportunities include functional polymers, controlled drug delivery, nanostructured polymers, polymers at interfaces, biomaterials, molecular modeling, polymer synthesis, biomimetic materials, polymer mechanics and rheology, self-assembly, and polymers in energy. The program is described in more detail under Interdisciplinary Graduate Programs (p. 358).

Financial Support
The department has a wide variety of financial support options for graduate students, including teaching and research assistantships, fellowships, and loans. Information about financial assistance may be obtained by writing to the Graduate Student Office, but consideration for awards cannot be given before admissions decisions have been made.

Inquiries
For additional information concerning graduate programs, admissions, financial aid, and assistantships, contact the Graduate Student Office (chemegrad@mit.edu), Department of Chemical Engineering, Room 66-366, 617-253-4579.

Faculty and Teaching Staff

Professors
Robert C. Armstrong, PhD
Professor of Chemical Engineering
Paul I. Barton, PhD
Lammot du Pont Professor in Chemical Engineering
Martin Z. Bazant, PhD
Professor of Chemical Engineering
Professor of Mathematics
Daniel Blankschtein, PhD
Herman P. Meissner (1929) Professor in Chemical Engineering
Richard D. Braatz, PhD
Edwin R. Gilliland Professor
Professor of Chemical Engineering
Arup K. Chakraborty, PhD
Robert T. Haslam (1911) Professor
Director, Institute for Medical Engineering and Science
Robert T. Haslam Professor of Chemical Engineering
Professor of Biological Engineering
Professor of Chemistry
Professor of Physics
Robert E. Cohen, PhD
Professor of Chemical Engineering
Clark K. Colton, PhD
Professor of Chemical Engineering
Charles L. Cooney, PhD
Robert T. Haslam (1911) Professor in Chemical Engineering
Patrick S. Doyle, PhD
Robert T. Haslam (1911) Professor in Chemical Engineering
Karen K. Gleason, PhD
Alexander and I. Michael Kasser (1960) Professor
Professor of Chemical Engineering
Associate Provost
William H. Green Jr, PhD
Hoyt Hottel Professor in Chemical Engineering
Paula T. Hammond, PhD
David H. Koch Professor in Engineering
Professor of Chemical Engineering
Head, Department of Chemical Engineering
T. Alan Hatton, PhD
Professor of Chemical Engineering
Klavs F. Jensen, PhD
Warren K. Lewis Professor in Chemical Engineering
Robert Langer, ScD
David H. Koch (1962) Institute Professor
Professor of Chemical Engineering
Professor of Mechanical Engineering
Professor of Biological Engineering
Member, Health Sciences and Technology Faculty
Douglas A. Lauffenburger, PhD
Ford Foundation Professor of Engineering
Professor of Biological Engineering
Professor of Chemical Engineering
Professor of Biology
Head, Department of Biological Engineering
Gregory C. Rutledge, PhD
Lammot du Pont Professor in Chemical Engineering
George Stephanopoulos, PhD
Arthur Dehon Little Professor
Professor of Chemical Engineering

Gregory Stephanopoulos, PhD
Willard Henry Dow Professor in Chemical Engineering

Michael S. Strano, PhD
Carbon P. Dubbs Professor in Chemical Engineering

Bernhardt L. Trout, PhD
Raymond F. Baddour Professor
Professor of Chemical Engineering

Daniel I. Wang, PhD
Institute Professor
Professor of Chemical Engineering

Karl Dane Wittrup, PhD
Carbon P. Dubbs Professor in Chemical Engineering
Professor of Biological Engineering

Associate Professors

Daniel Griffith Anderson, PhD
Associate Professor of Chemical Engineering
Core Faculty, Institute for Medical Engineering and Science

Jesse Kroll, PhD
Associate Professor of Civil and Environmental Engineering
Associate Professor of Chemical Engineering

J. Christopher Love, PhD
Associate Professor of Chemical Engineering

Bradley D. Olsen, PhD
Paul M. Cook Career Development Professor
Associate Professor of Chemical Engineering

Kristala L. Jones Prather, PhD
Associate Professor of Chemical Engineering

Yuriy Roman, PhD
Associate Professor of Chemical Engineering

Preetinder S. Virk, ScD
Associate Professor of Chemical Engineering

Assistant Professors

Fikile Richard Brusheitt, PhD
Raymond (1921) and Helen St. Laurent Career Development Professor
Assistant Professor of Chemical Engineering

Kwanghun Chung, PhD
Hermann L. F. von Helmholtz Career Development Professor
Assistant Professor of Chemical Engineering
Assistant Professor of Brain and Cognitive Sciences
Core Faculty, Institute for Medical Engineering and Science

Heather J. Kulik, PhD
Joseph R. Mares (1924) Career Development Professor
Assistant Professor of Chemical Engineering

Hadley Sikes Johnson, PhD
Assistant Professor of Chemical Engineering

James W. Swan, PhD
Texaco-Mangelsdorf Career Development Professor
Assistant Professor of Chemical Engineering

William A. Tisdale, PhD
Assistant Professor of Chemical Engineering

Professors of the Practice

Allan S. Myerson, PhD
Professor of the Practice of Chemical Engineering

Visiting Assistant Professors

Narendra Maheshri, PhD
Visiting Assistant Professor of Chemical Engineering

Senior Lecturers

Robert J. Fisher, PhD
Senior Lecturer in Chemical Engineering

Robert T. Hanlon, ScD
Senior Lecturer in Chemical Engineering

Barry S. Johnston, PhD
Senior Lecturer in Chemical Engineering

Claude Lupis, ScD
Senior Lecturer in Chemical Engineering

Lecturers

William H. Dalzell, PhD
Lecturer in Chemical Engineering

Daniel Adam Doneson, PhD
Lecturer in Chemical Engineering

Research Staff

Research Engineers

Jean-François P. Hamel, PhD
Research Engineer of Chemical Engineering

Takuya Harada, PhD
Research Engineer of Chemical Engineering

Alex Martinez, MEng
Research Engineer of Chemical Engineering

Guokui Qin, PhD
Research Engineer of Chemical Engineering
David S. Simakov, PhD
Research Engineer of Chemical Engineering

Forrest Whitcher
Research Engineer of Chemical Engineering

Research Scientists
Lev E. Bromberg, PhD
Research Scientist of Chemical Engineering

Nicole M. Iverson, PhD
Research Scientist of Chemical Engineering

Luis Perez-Breva, PhD
Research Scientist of Chemical Engineering

Professors Emeriti
János M. Beér, ScD, PhD
Professor Emeritus of Chemical Engineering

Robert A. Brown, PhD
Professor Emeritus of Chemical Engineering

William M. Deen, PhD
Carbon P. Dubbs Professor Emeritus in Chemical Engineering

Lawrence B. Evans, PhD
Professor Emeritus of Chemical Engineering

Gregory J. McRae, PhD
Professor Emeritus of Chemical Engineering

Edward W. Merrill, ScD
Professor Emeritus of Chemical Engineering

Herbert Harold Sawin, PhD
Professor Emeritus of Chemical Engineering
Professor Emeritus of Electrical Engineering

Kenneth A. Smith, PhD
Professor Emeritus of Chemical Engineering

Jefferson W. Tester, PhD
Professor Emeritus of Chemical Engineering
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

The Department of Civil and Environmental Engineering (CEE) seeks to understand the world, invent, and innovate with creative design. To address some of the greatest challenges of our time, the department uses approaches that range from basic scientific principles to complex engineering design, at scales from the nano to the global. Emphasizing the use of quantitative approaches, CEE features two vibrant centers of gravity: environment (what exists as natural systems) and infrastructure (what is created by human activity). The department is organized into two laboratories around these focus areas: the Parsons Laboratory for Environmental Science and Engineering and the Pierce Laboratory for Infrastructure Science and Engineering, which emphasizes materials and systems. CEE consists of people from a broad range of academic disciplines who work together to contribute to exciting intellectual networks across the department and MIT, solving tomorrow’s problems to build a better future through discovery and innovation.

An education in civil and environmental engineering provides an excellent foundation to solve the world’s greatest challenges in areas such as sustainability, environment, or energy. It prepares students for careers in fields as diverse as engineering design, education, law, medicine, and public health, as well as for graduate study in engineering and science. Graduates teach and carry out research in universities, work for large firms, start their own businesses, and hold leadership positions in government and nonprofit organizations. The department’s undergraduate program provides a solid background in science and engineering fundamentals while emphasizing hands-on design and research projects that provide real-world context. Students focus on the use of large data, computation, probability, and data analysis, and learn how to combine theory, experiments, and modeling to understand and solve complex science and engineering problems.

Course 1-ENG is the undergraduate degree program offered by the Department of Civil and Environmental Engineering. 1-ENG leads to a Bachelor of Science in Engineering as Recommended by the Department of Civil and Environmental Engineering, and has a flexible curriculum that supplements a civil and environmental engineering foundation with an area of core coursework in a field of specialization, introducing exciting opportunities for disciplinary or multidisciplinary focus. The department is seeking general engineering accreditation from ABET for this degree.

The department also offers graduate degrees within the broadly defined areas of environmental science and engineering (which includes environmental chemistry, environmental fluid mechanics, environmental microbiology, and hydrology and hydroclimatology), mechanics of materials and structures, geotechnical engineering and geomechanics, and transportation. The depth and breadth of coursework and research required differ for each degree program.

The department’s graduate degrees are as follows: Master of Engineering (MEng), Master of Science in Transportation (MST), Master of Science (SM), Civil Engineer, Environmental Engineer, Doctor of Philosophy (PhD), and Doctor of Science (ScD).

Undergraduate Study

The Department of Civil and Environmental Engineering offers an undergraduate program, Course 1-ENG, leading to the Bachelor of Science in Engineering as Recommended by the Department of Civil and Environmental Engineering.

Undergraduates are encouraged to participate in the research activities of the department and in many cases obtain degree credit for such work. In general, students are encouraged to plan their programs for the third and fourth years so they dovetail with possible graduate study, including the department’s Master of Engineering degree. This is readily accomplished by those students who embark on the departmental program in their second year. Under certain circumstances, students are permitted to work toward receiving simultaneous undergraduate and graduate degrees.

Bachelor of Science in Engineering as Recommended by the Department of Civil and Environmental Engineering (Course 1-ENG)

The degree of Bachelor of Science in Engineering as Recommended by the Department of Civil and Environmental Engineering (Course 1-ENG) (p. 388) is designed to prepare students to make an impact in solving the world’s greatest challenges. The program, for which the department plans to obtain ABET accreditation in general engineering, offers possibilities to select tracks of study for in-depth exploration of particular areas, or to focus on cross-cutting, multidisciplinary studies within and outside the department in emerging areas of civil and environmental engineering, broadly defined. Refer to the website (http://cee.mit.edu/undergraduate) for further details on 1-ENG sample educational tracks and educational opportunities.

The 1-ENG program provides significant flexibility through a track structure that is consistent with the diverse nature of our disciplinary groups and responsive to students’ interests in new educational offerings. The program is built around a solid foundation in mathematics, big data, sensing, and computing, and is complemented by laboratory subjects on data analysis. It includes a capstone subject that provides ample opportunities for students to solve complex problems. The 1-ENG program enables students to design individualized programs to meet particular educational objectives. For example, students interested in careers in fields such as sustainability, environmental science and engineering, microbiology, sustainable materials, geochemistry, energy resources, structural/architectural engineering, oceanography, or environmental law can design programs that provide both depth and breadth.
The main component of the 1-ENG program is a small set of General Department Requirements (GDRs) consisting of subjects that focus on mathematics, computation, probability and statistics, and data analysis, plus a capstone. Students select one of several core options, each consisting of subjects that build a solid background in one of three areas: environment, mechanics/materials, or systems. Students can also combine cores to define a tailored program with approval of the CEE undergraduate officer. Their selections of a core and a consistent set of four or five restricted elective subjects, in consultation with a CEE faculty advisor, define their track of undergraduate study.

Restricted electives may be selected from subjects within or outside the Department of Civil and Environmental Engineering. To satisfy the CI-M component of the Communication Requirement, students must take two of the department’s CI-M subjects (from among 1.011 Project Evaluation and Management, 1.013 Senior Civil and Environmental Engineering Design, and 1.092 Traveling Research Environmental eXperience (TREX): Fieldwork, Analysis, and Communication) or, if appropriate, take one Course 1 CI-M subject and petition the Subcommittee on the Communication Requirement to substitute one CI-M from another science or engineering field. Any outside CI-M must fit into the coherent program of electives approved by the student’s academic advisor. The remaining part of the 1-ENG program consists of unrestricted electives, bringing the total number of required units beyond the General Institute Requirements to 180.

Minor in Civil Engineering
The Minor in Civil Engineering consists of the following subjects:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.050</td>
<td>Solid Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>1.060A</td>
<td>Fluid Mechanics I</td>
<td>6</td>
</tr>
<tr>
<td>1.060B</td>
<td>Fluid Mechanics II</td>
<td>6</td>
</tr>
<tr>
<td>1.101</td>
<td>Introduction to Civil and Environmental Design I</td>
<td>6</td>
</tr>
<tr>
<td>1.102</td>
<td>Introduction to Civil and Environmental Design II</td>
<td>6</td>
</tr>
<tr>
<td>1.035</td>
<td>Mechanics of Structures and Soils</td>
<td>18</td>
</tr>
<tr>
<td>1.041[J]</td>
<td>Transportation Systems Modeling</td>
<td>12</td>
</tr>
<tr>
<td>or 1.036</td>
<td>Structural and Geotechnical Engineering Design</td>
<td></td>
</tr>
</tbody>
</table>

Minor in Environmental Engineering
The Minor in Environmental Engineering Science consists of the following subjects:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.020</td>
<td>Principles of Energy and Water Sustainability</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.101</td>
<td>Introduction to Civil and Environmental Design I</td>
<td>6</td>
</tr>
<tr>
<td>1.102</td>
<td>Introduction to Civil and Environmental Design II</td>
<td>6</td>
</tr>
<tr>
<td>1.080A</td>
<td>Environmental Chemistry I</td>
<td>6</td>
</tr>
<tr>
<td>1.080B</td>
<td>Environmental Chemistry II</td>
<td>6</td>
</tr>
<tr>
<td>1.107</td>
<td>Environmental Chemistry and Biology Laboratory</td>
<td>6</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.801[J]</td>
<td>Environmental Law, Policy, and Economics: Pollution Prevention and Control</td>
<td>12</td>
</tr>
<tr>
<td>11.002[J]</td>
<td>Making Public Policy</td>
<td></td>
</tr>
<tr>
<td>14.01</td>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 66

Substitution of equivalent subjects offered by other departments is allowed, with permission of the minor advisor. However, at least three full 12-unit subjects must be Course 1 subjects.

For a general description of the minor program, see Undergraduate Education.

Other Undergraduate Opportunities

Undergraduate Summer Internship Program
Sophomores and juniors majoring in civil and environmental engineering may apply to participate in the Undergraduate Summer Internship Program (http://cee.mit.edu/undergraduate/internships), coordinated by the Department of Civil and Environmental Engineering. The internship program helps MIT students find summer employment opportunities with companies and agencies engaged in civil and environmental engineering. For more information and a partial listing of companies and agencies that students have worked with in the past, see the Summer Internship Program (http://cee.mit.edu/undergraduate/internships) description on the departmental website.

Undergraduate Practice Opportunities Program
The Undergraduate Practice Opportunities Program (UPOP) is a full-year co-curricular professional development program sponsored by the School of Engineering that prepares sophomores for success in the workplace. UPOP is open to all sophomores, regardless of major. Over the course of the program, students receive classroom instruction and personalized coaching focused on advancing both short- and long-term professional goals, with support provided in finding and securing a summer internship. UPOP students participate in professional development workshops and one-to-one coaching during both fall and spring semesters. Students also attend a one-week course over IAP focusing on foundational decision making, team dynamics and development, and communication—essential tools for workplace success. Experiential modules are taught by MIT faculty and coached by MIT alumni mentor-instructors,
providing students with an opportunity to practice professional skills with highly experienced industry professionals. UPOP’s two-unit curriculum also serves as the foundation of the Bernard M. Gordon-MIT Engineering Leadership (GEL) Program. Contact the Undergraduate Practice Opportunities Program (upop@mit.edu), Room 12-193, 617-253-0077, or Leo McGonagle, executive director, for further information.

Electives and Research Opportunities
A list of undergraduate electives in civil and environmental engineering may be obtained from the department (http://cee.mit.edu/undergraduate/courses). Students registered in the department are encouraged to consider appropriate subjects offered by other departments as part of their elective programs.

Students wishing to work closely with a member of the faculty on research may obtain permission to register for thesis, or to enroll in 1.999 Undergraduate Studies in Civil and Environmental Engineering. In addition, numerous possibilities exist in the Undergraduate Research Opportunities Program (UROP) (p. 43), and several UROP traineeships are awarded to undergraduates by the department each spring.

Graduate Study
The Department of Civil and Environmental Engineering grants the following advanced degrees: Master of Engineering in Civil and Environmental Engineering, Master of Science in Transportation, Master of Science, Master of Science in Civil and Environmental Engineering, Civil Engineer, Doctor of Science, and Doctor of Philosophy. The Institute’s general requirements for these degrees are described under Graduate Education. Detailed information on the departmental requirements for each degree may be obtained from the Academic Programs Office, Room 1-290.

Admission Requirements
The primary requirements for graduate study are a strong intellect and the ability and interest to pursue rigorous, focused study. Applicants do not need an undergraduate degree in civil engineering. For students with backgrounds in other branches of engineering, science, and certain social sciences, opportunities exist for interdisciplinary research that brings people of complementary backgrounds together in search of solutions to major societal problems. For example, graduate students and faculty in the department have experience in geology, chemistry, physics, biology, computer science, economics, political science, sociology, architecture, urban and regional planning, and management.

All applicants are required to submit scores from the GRE Aptitude Test. With some exceptions, applicants whose first language is not English are required to submit scores from either the International English Language Testing System (IELTS), the preferred exam, or the Test of English as a Foreign Language (TOEFL). More information about individual graduate programs can be obtained from the website (http://cee.mit.edu) or by email (cee-admissions@mit.edu).

Master of Engineering
The Department of Civil and Environmental Engineering’s Master of Engineering (MEng) (http://cee.mit.edu/master-of-engineering) is a nine-month program that provides a practice-oriented education with a focus on real-world engineering challenges. It is designed for people with a bachelor’s degree in engineering (or related field) who want to enter or return to professional practice. Our graduates routinely join leading engineering design firms, consulting companies, and government agencies; some go on to pursue a PhD. The distinctive element of the program is a professional practice experience comprising a group project and an individual, practice-oriented thesis.

MEng students specialize in one of four tracks: environmental and water quality engineering, geotechnology, high-performance structures, or transportation.

Because of their intensive coursework, MEng students do not have time to work as research or teaching assistants. Admission standards are the same as for the Master of Science degree. Strong communication skills are expected. MIT undergraduates may apply to the program at the end of their third year.

Master of Science and Doctoral Degrees
Programs of graduate study are available in the following areas: environmental chemistry, environmental fluid mechanics, environmental microbiology, geotechnical engineering and geomechanics, hydrology and hydroclimatology, the mechanics of materials and structures, and transportation.

The program in environmental chemistry focuses on processes governing the fates and effects of natural and anthropogenic chemicals. In environmental systems, quantitative knowledge is commonly sought using chemical measurements made in controlled laboratory experiments, as well as in environmental samples of air, water, sediments, soils, and biota. Such data are synthesized within mass balance models so as to anticipate how the combination of chemical transport and transformation processes control human and ecosystem exposures. Knowledge of the mechanisms that regulate the cycling of materials through natural and man-made ecosystems is essential to address and avoid environmental problems.

Environmental fluid mechanics considers the physical processes associated with water and water motion that are essential to the understanding, protection, and improvement of the environment. The program includes theoretical, numerical, experimental, and field studies, which range in scale from the swimming of microorganisms to the transport of carbon dioxide through the global ocean basin. While rooted in the fundamental analyses of fluid physics, our projects are guided by practical problems in environmental science such as the protection of coastal water quality, the prediction and
mitigation of coastal erosion, and the restoration of channels and coastal zones.

Environmental microbiology focuses on microbial properties and processes that define the structure and function of natural and man-made ecosystems. Water is a key medium through which energy and elements are transported within and between ecosystems, and it is also a conduit for the transport of anthropogenic materials and waste. Microorganisms are the primary living constituents in aquatic ecosystems and mediate globally important processes. Our studies are grounded in microbial genomics, population genetics, physiology, ecology, evolution and environmental science and engineering. This program emphasizes PhD-level research.

Geotechnical engineering and geomechanics addresses a wide range of problems posed by the spatial variability and complex material properties of soils and rocks. Geotechnical engineers are dealing with the design and construction of major infrastructure projects ranging from tunnels to offshore structures, and with natural hazards from landslides to earthquakes. Geoenvironmental problems of subsurface waste containment, groundwater contamination and site remediation are also a major focus of the profession, as are problems related to resource extraction, including engineered geothermal systems. The graduate program includes core subjects in soil mechanics; engineering geology and groundwater hydrology; application subjects involving geotechnical and geoenvironmental problems; and specialized subjects in geomaterial (soil and rock) behavior, theoretical and experimental methods, and underground construction.

Graduate study in hydrology considers a range of scientific and engineering issues associated with water, energy and biogeochemical cycles. These include better understanding of basic processes and fluxes, such as precipitation and evapotranspiration, partitioning of moisture at the land surface, chemical transport processes in the surface and subsurface, and coupled multiphase flow and geomechanics. It also includes the investigation of critical water problems, such as the effects of climate change on the global distribution of fresh water, extreme events and hazards, the connections between water and human health, and the water-food-energy nexus. The hydrology program is multi-faceted, and it combines theoretical, modeling, laboratory, and field studies. It is also multi-disciplinary, embracing many fields, including fluid mechanics, chemistry, biology, physical geography, mathematics, computer science, remote sensing, geology, and geophysics. Opportunities are available for graduate study at the doctoral level.

The graduate program in the mechanics of materials and structures emphasizes fundamental understanding of, and innovative approaches to, materials and structural engineering problems by considering a vast range of scales from the nano to the macro, and by introducing new methods such as nanotechnology, innovative laboratory approaches to experimental mechanics, and innovations in design. The impact of these studies includes the development and use of better infrastructure materials, new structural design, advanced manufacturing methods such as additive manufacturing and self-assembly, bio-inspired materials, and designing for increased performance by improving safety, lowering costs, and mitigating the impact on the environment. The program emphasizes studies of the mechanical behavior of materials and the mechanics of materials at all scales using methods of statistical mechanics and multiscale.

Graduate study in transportation examines all major forms of transportation, including passenger and freight systems, as well as the increasing demand for transportation systems at the local, regional, and international levels. Projects and coursework consider the critical issues involved in meeting transportation needs in a sustainable way, considering all modes of transportation where appropriate. The interdisciplinary Transportation program, based in CEE, emphasizes the complexity of transportation and its dependence on the interaction of technology, operations, planning, management, and policy making. Our focus includes study of the interactions of transportation infrastructure and operations, urban spatial structure and land use, economic growth, resource and energy use, and environmental impacts at various spatial and temporal scales.

Financial Assistance
The research of the department is an integral part of the graduate program, and approximately 175 graduate students each year receive appointments as research or teaching assistants. Most of these appointments fully cover tuition, individual health insurance, and reasonable living expenses in the Boston area.

Applicants are encouraged to apply for traineeships and fellowships offered nationally by the National Science Foundation, NASA, DOE, and other governmental agencies that traditionally support students in the department. For an extensive list of such opportunities, visit the Office of the Dean for Graduate Education website (http://odge.mit.edu/finances/fellowships).

Interdisciplinary Programs
Through its interdisciplinary programs, the Department of Civil and Environmental Engineering brings together the science, technology, systems, and management skills necessary to deal with the important engineering problems of the future.

Computational Science and Engineering
The Computational Science and Engineering (CSE) (http://computationalengineering.mit.edu/education) program allows students to specialize at the doctoral level in a computation-related field of their choice through focused coursework and a doctoral thesis through a number of participating host departments. The CSE program is administered jointly by the Center for Computational Engineering (CCE) and the host departments, with the emphasis of thesis research activities being the development of new computational methods and/or the innovative application of computational techniques to important problems in engineering
and science. For more information, see the full program description (p. 352) under Interdisciplinary Graduate Programs.

Graduate Programs in Transportation

MIT provides a broad range of opportunities for transportation-related education. Courses and classes span the School of Engineering, the Sloan School of Management, and the School of Architecture and Planning, with many activities covering interdisciplinary topics that prepare students for future industry, government, or academic careers.

A variety of graduate degrees are available to students interested in transportation studies and research, including a Master of Science in Transportation and PhD in Transportation, described under Interdisciplinary Graduate Programs, as well as a nine-month Master of Engineering Transportation program, described in the Master of Engineering program for the Department of Civil and Environmental Engineering.

Leaders for Global Operations

The 24-month Leaders for Global Operations (LGO) (http://lgo.mit.edu) program combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field. During the two-year program, students complete a six-month internship at one of LGO’s partner companies, where they conduct research that forms the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of seven engineering programs, some of which have optional or required LGO tracks. After graduation, alumni take on leadership roles at top global manufacturing and operations companies.

Joint Program with the Woods Hole Oceanographic Institution

The Joint Program with the Woods Hole Oceanographic Institution (WHOI) (http://mit.whoi.edu) is intended for students whose primary career objective is oceanography or oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in their home department. The program is described in more detail under Interdisciplinary Graduate Programs (p. 354).

Inquiries

Detailed information about the academic policies and programs of the department (http://cee.mit.edu) may be obtained by writing (cee-apo@mit.edu) to or visiting the Academic Programs Office, Room 1-290, 617-253-9723.

Research Laboratories and Activities

The Department of Civil and Environmental Engineering occupies two buildings on the MIT campus: Building 1 (the Henry L. Pierce Laboratory) and Building 48 (the Ralph M. Parsons Laboratory for Environmental Science and Engineering). These buildings contain specialized research and teaching facilities. In addition, department faculty collaborate with many of the interdisciplinary centers, labs and programs, notably the Concrete Sustainability Hub, Singapore-MIT Alliance for Research and Technology, and Center for Global Change Science, described under Research and Study.

Ralph M. Parsons Laboratory for Environmental Science and Engineering

The Ralph M. Parsons Laboratory for Environmental Science and Engineering is a four-story structure containing about 31,000 square feet of classrooms, teaching and research laboratories, machine shops, computer facilities, and offices. Approximately 18 faculty members, 75 graduate students, and 33 postdocs and 11 research staff have offices and laboratories on the premises. Facilities exist for hydrodynamic studies involving flow through vegetation, free surface flows, and flows in porous media. Seven laboratories are set up for research in inorganic chemistry, and organic geoatmospheric chemistry, and microbial ecology/genomics/biochemistry. Especially notable instrumentation includes several gas chromatographs, mass spectrometers, a GC-MS atomic absorption spectrophotometers, and an ICP-MS, alpha and gamma spectrometry counting systems, scintillation counters, several flow cytometers, DNA sequencing equipment and walk in incubators and cold room, as well as several -80°C freezers.

One laboratory is a dedicated teaching facility for fluid mechanics, hydrology, aquatic and atmospheric chemistry, and microbiology. Equipment is available for instruction in a wide range of field sampling methods, biological and microbiological evaluations, and instrumental chemical analyses of natural waters. In addition to a recent acquisition of a two-channel auto analyzer, two state-of-the-art analytical instruments have been purchased for the student laboratory: an inductively coupled plasma-mass spectrometer and a gas chromatographic-mass spectrometer.

Henry L. Pierce Laboratory

Located in one of MIT’s original buildings, overlooking the Charles River, the Pierce Laboratory, includes over 40,000 square feet of classrooms, teaching and research laboratories, and offices for approximately 140 graduate students, 32 faculty members and research staff, and 25 postdocs.

Research activities focus on two major areas: materials/mechanics and systems/transportation. Among the classrooms is the state-of-the-art Bechtel Lecture Hall. The facilities include an undergraduate teaching/project laboratory, a materials testing laboratory, and geotechnical laboratories. The materials laboratory has a machine shop, electronics room, and support equipment (3-D printer, and laser cutter, and others), used to process, fabricate, and create prototype devices and specimens, to test materials under various stress and environmental conditions, and to investigate physical properties of materials and structures. The laboratory includes
several automated universal test frames, a biaxial loading system, and an environmentally controlled nano-indentation system. The geotechnical laboratories combine conventional and state-of-the-art as well as a number of specialty research devices. Capabilities and equipment include industrial radiography; centralized data acquisition; computer-automated consolidation triaxial cells; simple shear devices; and a hollow cylinder apparatus.

The Pierce Laboratory offers diverse and advanced computational facilities. The computing facilities feature various structural, project management, geotechnical, and materials modeling software such as SAP, GSA, PLAXIS, AutoCAD, KeyCreator, ANSYS, ABAQUS, as well as various molecular and quantum mechanical modeling software and others.

Faculty and Teaching Staff

Professors

Cynthia Barnhart, PhD
Ford Professor of Engineering
Professor of Civil and Environmental Engineering
Chancellor

Moshe E. Ben-Akiva, PhD
Edmund K. Turner Professor of Civil and Environmental Engineering

Markus J. Buehler, PhD
Head, Department of Civil and Environmental Engineering
Professor of Civil and Environmental Engineering

Oral Buyukozturk, PhD
Professor of Civil and Environmental Engineering

Sallie W. Chisholm, PhD
Institute Professor
Professor of Civil and Environmental Engineering
Professor of Biology

Herbert H. Einstein, ScD
Professor of Civil and Environmental Engineering

Erfatih A. B. Eltahir, ScD
Professor of Civil and Environmental Engineering

Dara Entekhabi, PhD
Bacardi and Stockholm Water Foundation Professor
Professor of Civil and Environmental Engineering
Professor of Earth, Atmospheric and Planetary Sciences

Philip M. Gschwend, PhD
Ford Foundation Professor of Engineering
Professor of Civil and Environmental Engineering

Charles F. Harvey, PhD
Professor of Civil and Environmental Engineering

Harold F. Hemond, PhD
Professor of Civil and Environmental Engineering

William E. Leonhard (1940) Professor
Professor of Civil and Environmental Engineering

Patrick Jaillet, PhD
Dugald C. Jackson Professor in Electrical Engineering
Professor of Civil and Environmental Engineering
Member, Institute for Data, Systems, and Society

Dennis McLaughlin, PhD
H. M. King Bhumibol Professor
Professor of Civil and Environmental Engineering

Heidi Nepf, PhD
Donald and Martha Harleman Professor of Civil and Environmental Engineering

John A. Ochsendorf, PhD
Class of 1942 Professor
Professor of Building Technology
Professor of Civil and Environmental Engineering

Martin F. Polz, PhD
Professor of Civil and Environmental Engineering

Yossi Sheffi, PhD
Elisha Gray II Professor
Professor of Civil and Environmental Engineering
Member, Institute for Data, Systems, and Society

Franz-Josef Ulm, PhD
Professor of Civil and Environmental Engineering

John R. Williams, PhD
Professor of Civil and Environmental Engineering

Associate Professors

Eric J. Alm, PhD
Associate Professor of Biological Engineering
Associate Professor of Civil and Environmental Engineering
Daniel James Cziczo, ScD
Victor P. Starr Career Development Professor
Associate Professor of Atmospheric Chemistry
Associate Professor of Civil and Environmental Engineering

Michael J. Follows, PhD
Associate Professor of Oceanography
Associate Professor of Civil and Environmental Engineering

Colette L. Heald, PhD
Mitsui Career Development Professor in Contemporary Technology
Associate Professor of Civil and Environmental Engineering
Associate Professor of Earth, Atmospheric and Planetary Sciences

Ruben Juanes, PhD
Atlantic Richfield Career Development Professor
Associate Professor of Civil and Environmental Engineering

Jesse Kroll, PhD
Associate Professor of Civil and Environmental Engineering
Associate Professor of Chemical Engineering

Pedro M. Reis, PhD
Gilbert Winslow Career Development Professor
Associate Professor of Mechanical Engineering
Associate Professor of Civil and Environmental Engineering

Xuanhe Zhao, PhD
Robert N. Noyce Career Development Professor
Associate Professor of Civil and Environmental Engineering

Saurabh Amin, PhD
Assistant Professor of Civil and Environmental Engineering

Lydia Bourouiba, PhD
Esther and Harold E. Edgerton Career Development Professor
Assistant Professor of Civil and Environmental Engineering

Otto Xavier Cordero Sánchez, PhD
Assistant Professor of Civil and Environmental Engineering

Marta C. González, PhD
Assistant Professor of Civil and Environmental Engineering

Benjamin David Kocar, PhD
Assistant Professor of Civil and Environmental Engineering

Benedetto Marelli, PhD
Assistant Professor of Civil and Environmental Engineering

Admir Masic, PhD
Assistant Professor of Civil and Environmental Engineering

Carolina Osorio, PhD
Assistant Professor of Civil and Environmental Engineering

Serguei Saavedra, PhD
Assistant Professor of Civil and Environmental Engineering

Visiting Assistant Professors
Janelle Renée Thompson, PhD
Visiting Assistant Professor of Civil and Environmental Engineering

Senior Lecturers
Frederick P. Salvucci, MEng
Senior Lecturer in Civil and Environmental Engineering

Research Staff

Senior Research Engineers
E. Eric Adams, PhD
Senior Research Engineer of Civil and Environmental Engineering

Senior Research Scientists
Roland Pellens, PhD
Senior Research Scientist of Civil and Environmental Engineering

Principal Research Engineers
Earle R. Williams, PhD
Principal Research Engineer of Civil and Environmental Engineering

Research Associates
John Attanucci, MS
Research Associate of Civil and Environmental Engineering

Research Engineers
John K. MacFarlane, MS
Research Engineer of Civil and Environmental Engineering

Research Scientists
Eben Cross, PhD
Research Scientist of Civil and Environmental Engineering

Konrad J. Krakowiak, PhD
Research Scientist of Civil and Environmental Engineering

Kunal Kupwade Patil, PhD
Research Scientist of Civil and Environmental Engineering

Zhao Qin, PhD
Research Scientist of Civil and Environmental Engineering

Roberto Rusconi, PhD
Research Scientist of Civil and Environmental Engineering

Abel Sánchez, PhD
Research Scientist of Civil and Environmental Engineering
Professors Emeriti

Rafael Luis Bras, ScD
Professor Emeritus of Civil and Environmental Engineering

Jerome J. Connor Jr, ScD
Professor Emeritus of Civil and Environmental Engineering

Peter Sturges Eagleson, ScD
Edmund K. Turner Professor Emeritus of Civil and Environmental Engineering

Lynn Walter Gelhar, PhD
Professor Emeritus of Civil and Environmental Engineering

Eduardo A. Kausel, PhD
Professor Emeritus of Civil and Environmental Engineering

Charles Cushing Ladd, ScD
Edmund K. Turner Professor Emeritus of Civil and Environmental Engineering

Thomas William Lambe, ScD
Edmund K. Turner Professor Emeritus of Civil and Environmental Engineering

Robert Daniel Logcher, ScD
Professor Emeritus of Civil and Environmental Engineering

Ole S. Madsen, ScD
Professor Emeritus of Civil and Environmental Engineering

David H. Marks, PhD
Morton and Claire Goulder Family Professor Emeritus
Professor Emeritus of Civil and Environmental Engineering

Chiang C. Mei, PhD
Ford Professor Emeritus of Engineering
Professor Emeritus of Civil and Environmental Engineering
Professor Emeritus of Mechanical Engineering

Fred Moavenzadeh, PhD
James Mason Crafts Professor Emeritus
Professor Emeritus of Civil and Environmental Engineering

Amedeo R. Odoni, PhD
T. Wilson (1953) Professor Emeritus
Professor Emeritus of Aeronautics and Astronautics
Professor Emeritus of Civil and Environmental Engineering

Frank Edward Perkins, ScD
Professor Emeritus of Civil and Environmental Engineering

Daniel Roos, PhD
Professor Emeritus of Data, Systems, and Society
Professor Emeritus of Civil and Environmental Engineering

Nigel H. M. Wilson, PhD
Professor Emeritus of Civil and Environmental Engineering
INSTITUTE FOR DATA, SYSTEMS, AND SOCIETY

MIT’s new Institute for Data, Systems, and Society (IDSS), is charged with the following mission:

- Creating a research and educational environment that enables analyzing, predicting, designing, and controlling complex social, technological, and economic systems
- Creating an MIT-wide focal point for advancing research and educational programs related to statistics
- Creating new research and educational programs in data science that includes addressing the processing, analyzing, and understanding of big data as it pertains to real-world challenges

Background

In recent decades, large-scale, heterogeneous, and interconnected systems have emerged from technological advancements, including smart and embedded sensors, high-speed communication, social networking, and real-time decision capabilities. The behavior and function of these systems depend not only on the individual subsystems but on the structure of complex interconnections between the subsystems. Analyzing and modeling these complex, interconnected systems presents a major challenge to researchers and practitioners. Their design, control, and often regulation are even more challenging, and yet these systems must continuously satisfy critical societal needs.

The systems directly impacting our society often involve the interactions of three heterogeneous features: an engineered or natural physical system, the social behavior of people interacting with the system, and the institutional behavior of organized units such as regulators and markets that govern the system. Traditionally, such systems have been analyzed and (when possible) designed with each of these features in isolation. This has resulted in suboptimal and fragile interconnections. However, technological advancements, in combination with increased computational capabilities, and the ability to collect vast amounts of detailed data, provide a new opportunity to holistically, systematically, and scientifically address the broad challenges facing these complex systems.

Examples of systems of interest to IDSS include, but are not limited to, energy, transportation, finance, health care, manufacturing, and social networks.

Graduate Study

IDSS provides educational programs anchored in the following intellectual pillars: statistics, information and decision sciences, and human and institutional behavior.

IDSS’s academic programs embrace the collision and synthesis of ideas and methods from analytical disciplines, including statistics, stochastic modeling, information theory and inference, systems and control theory, optimization, economics, human and social behavior, and network science. Each of these fields in isolation is an insufficient basis for a deep understanding of complex interactions and systems. However, the intersections of these disciplines provide new tools and perspectives for understanding complex systems, addressing overarching challenges (including sustainability and systemic risk), and presenting design principles and architectures that enable those systems’ quantification, management, and regulation.

Over a period of several years, IDSS will launch and support several academic programs to advance this vision. Initial offerings include the Master of Science in Technology and Policy.

Inquiries about IDSS academic programs may directed to the Academic Office (idss_academic_office@mit.edu).

Admission Requirements for Graduate Study

Application forms for all programs are available online (http://web.mit.edu/admissions/graduate). Applicants whose first language is not English must offer evidence of written and oral proficiency in English by registering (http://www.ielts.org) for the International English Language Testing System (IELTS) exam, academic format, and achieving a score of 7.5 or better. Information about the Graduate Record Examinations (GRE) can be obtained through the website (http://www.ets.org/gre). Applicants should refer to the details of each program concerning specific requirements for admission.

Master of Science in Technology and Policy

The Technology and Policy Program (TPP) (http://web.mit.edu/tpp) educates students seeking leadership roles in the constructive development and use of technology—an area that is not well served by the traditional education of technical or social science specialists. TPP focuses on meeting the need for leaders who are engineers and scientists—people with not only strong technical foundations but also the skills and abilities to deal cogently and effectively with the economic, political, and administrative dimensions of the technological challenges of the 21st century.

The Master of Science in Technology and Policy is an engineering research degree with a focus on the increasingly central role of technology in the framing, formulation, and resolution of policy problems. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science, such as political science or urban studies and planning.

TPP’s coursework provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. All students must complete a satisfactory research thesis that has a
substantial technology and policy component. In order to prepare students for effective professional practice, TPP stresses leadership and communication. It also encourages students to participate in TPP’s summer internship program, which places students in government and industry in the US and around the world.

The TPP curriculum consists of three blocks of subjects and a research thesis. The first block is a required integrative subject in technology and policy and a set of program seminars focusing on leadership and presentation skills. The second block focuses on training in formal frameworks for policy development and consists of restricted electives in microeconomics, political economy, and legal processes. The third block comprises a minimum of three coherent electives that fulfill professional and research objectives. The research thesis is the culmination of scholarship integrating technology and policy.

Completion of the academic and research requirements of the TPP SM typically takes four terms.

The subjects required for the TPP degree include:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD.101</td>
<td>Concepts and Research in Technology and Policy</td>
<td>6</td>
</tr>
</tbody>
</table>

Complete the following or their equivalents:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.011</td>
<td>Economic Analysis for Business Decisions</td>
<td>9</td>
</tr>
<tr>
<td>ESD.103[J]</td>
<td>Science, Technology, and Public Policy</td>
<td>12</td>
</tr>
<tr>
<td>ESD.132</td>
<td>Law, Technology, and Public Policy</td>
<td>12</td>
</tr>
<tr>
<td>ESD.864[J]</td>
<td>Modeling and Assessment for Policy</td>
<td>9</td>
</tr>
</tbody>
</table>

Three additional graduate subjects are required to form a technical concentration with two additional integrative seminars in leadership and research. Other subjects may be suggested by TPP academic advisors, depending upon a student’s background, research interests, and ultimate academic goals.

The TPP curriculum normally begins in September; applications are due by December 15. All applicants should have a strong basis in engineering or science, and must take the GRE. Strong candidates for the program typically score in the top 10 percent of all three GRE areas: verbal, quantitative, and analytic writing. Participants in TPP should generally have two years of work experience and be able to demonstrate evidence of leadership and initiative in their professional or other activities.

Contact the TPP program office (tpp@mit.edu), Room E40-369, 617-253-7693, for additional information.

Interdisciplinary Programs

Leaders for Global Operations
The 24-month Leaders for Global Operations (LGO) (http://lgo.mit.edu) program combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field. During the two-year program, students complete a six-month internship at one of LGO’s partner companies, where they conduct research that forms the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of seven engineering programs, some of which have optional or required LGO tracks. After graduation, alumni take on leadership roles at top global manufacturing and operations companies.

Supply Chain Management
The Supply Chain Management Program (SCM) (http://scm.mit.edu) is designed to supply the global logistics industry with a new type of supply chain professional who is highly trained in both analytical problem solving and change management leadership. This one-of-a-kind professional degree program offered through MIT’s Center for Transportation & Logistics (CTL) prepares graduates for logistics and supply chain management careers in manufacturing, distribution, retail, transportation, logistics, consulting, and software development organizations.

System Design and Management
The System Design and Management (SDM) (http://sdm.mit.edu) program is a partnership among industry, government, and the university for educating technically grounded leaders of 21st-century enterprises. Jointly sponsored by the School of Engineering and the Sloan School of Management, it is MIT’s first degree program to be offered with a distance learning option in addition to a full-time in-residence option.

Research Centers
Research in IDSS addresses overarching challenges, including the modeling and prediction of system behavior and performance; systems design and architecture; and issues including social welfare, monetization, and regulation, as well as sustainability and resilience, cascades and contagion phenomena, and systemic risk.

IDSS will sustain this research agenda by fostering and prioritizing several types of strong connections, including:

- A community of experts, at MIT and elsewhere, with demonstrated success performing impactful, multidisciplinary research in these domains.

- A close connection between research and domain expertise, to enable a contextually-informed understanding of the challenges and opportunities in complex systems.

- Educational and research methodologies, not considered in isolation, but instead anchored in one or several of the cross-disciplinary fields of statistics, information and decision sciences, the science of interconnections, as well as the study of social and institutional behavior.
Laboratory for Information and Decision Systems

The Laboratory for Information and Decision Systems (LIDS) (http://lids.mit.edu) is an interdepartmental laboratory for research and education in systems, networks, and control. LIDS is staffed by faculty, research scientists, and graduate students from the departments of Electrical Engineering and Computer Science, Aeronautics and Astronautics, and Mechanical Engineering, as well as the Sloan School of Management. LIDS research falls into the areas of networks, statistical Inference and machine learning, optimization, and control and system theory.

For further information, see the Research and Study (p. 96) section.

Sociotechnical Systems Research Center

The Sociotechnical Systems Research Center (SSRC) (http://ssrc.mit.edu) is an interdisciplinary research center that focuses on the study of high-impact, complex, sociotechnical systems that shape our world.

SSRC brings together faculty, researchers, students, and staff from across MIT to study and seek solutions to complex societal challenges that span healthcare, energy, infrastructure networks, the environment, and international development.

For further information on SSRC and its programs, see the Research and Study (p. 108) section.

Faculty and Teaching Staff

Professors

Daron Acemoglu, PhD
Elizabeth and James Killian (1926) Professor
Professor of Economics
Member, Institute for Data, Systems, and Society

Nicholas A. Ashford, JD, PhD
Professor of Technology and Policy
Member, Institute for Data, Systems, and Society

Dimitri P. Bertsekas, PhD
Jerry McAfee (1940) Professor in Engineering
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Robert C. Berwick, PhD
Professor of Computer Science and Engineering
Professor of Computational Linguistics
Member, Institute for Data, Systems, and Society

Emery N. Brown, MD, PhD
Edward Hood Taplin Professor of Medical Engineering
Professor of Computational Neuroscience
Member, Institute for Data, Systems, and Society

Core Faculty, Institute for Medical Engineering and Science

Warren M. Zapol Professor of Anaesthesia, MGH
Co-Director, Health Sciences and Technology Program

Victor V. Chernozhukov, PhD
Professor of Economics
Member, Institute for Data, Systems, and Society

Munther A. Dahleh, PhD
William A. Coolidge Professor
Professor of Electrical Engineering and Computer Science
Director, Institute for Data, Systems, and Society

Richard de Neufville, PhD
Professor of Data, Systems, and Society

Olivier L. de Weck, PhD
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Esther Duflo, PhD
Abdul Latif Jameel Professor in Poverty Alleviation and Development Economics
Member, Institute for Data, Systems, and Society

Emilio Frazzoli, PhD
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

David Gamarnik, PhD
Nanyang Technological University Professor
Professor of Operations Research
Member, Institute for Data, Systems, and Society

Polina Golland, PhD
Professor of Computer Science and Engineering
Member, Institute for Data, Systems, and Society

Stephen C. Graves, PhD
Abraham J. Siegel Professor of Management
Professor of Operations Management and Leaders for Global Operations
Member, Institute for Data, Systems, and Society

Daniel E. Hastings, PhD
Cecil and Ida Green Professor in Education
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society
Jonathan P. How, PhD
Richard Cockburn Maclaurin Professor in Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Tommi S. Jaakkola, PhD
Professor of Computer Science and Engineering
Member, Institute for Data, Systems, and Society

Patrick Jaillet, PhD
Dugald C. Jackson Professor in Electrical Engineering
Professor of Civil and Environmental Engineering
Member, Institute for Data, Systems, and Society

Thomas Anton Kochan, PhD
George Maverick Bunker Professor of Management
Professor of Work and Employment Research
Member, Institute for Data, Systems, and Society

Richard Charles Larson, PhD
Mitsui Professor
Professor of Data, Systems, and Society

Nancy G. Leveson, PhD
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Andrew W. Lo, PhD
Charles E. and Susan T. Harris Professor
Professor of Finance
Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Stuart E. Madnick, PhD
John Norris Maguire (1960) Professor
Professor of Information Technology
Member, Institute for Data, Systems, and Society

Thomas L. Magnanti, PhD
Institute Professor
Professor of Operations Research
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Alexandre Megretski, PhD
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Sanjoy K. Mitter, PhD
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Eytan H. Modiano, PhD
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Joel Moses, PhD
Institute Professor
Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Dava Newman, PhD
Apollo Program Professor
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society
Member, Health Sciences and Technology Faculty
(On leave)

Asuman E. Ozdaglar, PhD
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Pablo A. Parrilo, PhD
Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Alex Pentland, PhD
Toshiba Professor of Media Arts and Sciences
Member, Institute for Data, Systems, and Society

Yossi Sheffi, PhD
Elisha Gray II Professor
Professor of Civil and Environmental Engineering
Member, Institute for Data, Systems, and Society

Scott Roger Sheffield, PhD
Professor of Mathematics
Member, Institute for Data, Systems, and Society

Susan S. Silbey, PhD
Leon and Anne Goldberg Professor of Humanities
Professor of Sociology and Anthropology
Professor of Behavioral and Policy Studies
Member, Institute for Data, Systems, and Society
(On leave)

David Simchi-Levi, PhD
Professor of Civil and Environmental Engineering
Member, Institute for Data, Systems, and Society

John Sterman, PhD
Jay W. Forrester Professor in Computer Science
Professor of System Dynamics
Member, Institute for Data, Systems, and Society

Joseph M. Sussman, PhD
JR East Professor
Professor of Civil and Environmental Engineering
Member, Institute for Data, Systems, and Society

John N. Tsitsiklis, PhD
Clarence J. Lebel Professor in Electrical Engineering
Member, Institute for Data, Systems, and Society
Roy E. Welsch, PhD
Eastman Kodak Leaders for Global Operations Professor of Management
Professor of Statistics
Member, Institute for Data, Systems, and Society

Alan S. Willsky, PhD
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Moe Z. Win, PhD
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Gregory W. Wornell, PhD
Sumitomo Electric Industries Professor in Engineering
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Fotini Christia, PhD
Associate Professor of Political Science
Member, Institute for Data, Systems, and Society
(On leave)

Youssef M. Marzouk, PhD
Associate Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Kenneth A. Oye, PhD
Associate Professor of Political Science
Member, Institute for Data, Systems, and Society

Yury Polyanskiy, PhD
Associate Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Noelle Eckley Selin, PhD
Esther and Harold E. Edgerton Career Development Professor
Associate Professor of Data, Systems, and Society
Associate Professor of Earth, Atmospheric and Planetary Sciences

Devavrat Shah, PhD
Associate Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Tamara Broderick, PhD
ITT Career Development Professor in Computer Technology
Member, Institute for Data, Systems, and Society

Stefanie Jegelka, ScD
X-Window Consortium Career Development Professor
Assistant Professor of Computer Science and Engineering
Member, Institute for Data, Systems, and Society

Sertac Karaman, PhD
Assistant Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Philippe Rigollet, PhD
Assistant Professor of Mathematics
Member, Institute for Data, Systems, and Society

Jessika Trancik, PhD
Atlantic Richfield Career Development Professor in Energy Studies
Assistant Professor of Data, Systems, and Society

Yury Polyanskiy, PhD
Assistant Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Sertac Karaman, PhD
Assistant Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Philippe Rigollet, PhD
Assistant Professor of Mathematics
Member, Institute for Data, Systems, and Society

Yousef M. Marzouk, PhD
Associate Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society

Kenneth A. Oye, PhD
Associate Professor of Political Science
Member, Institute for Data, Systems, and Society

Yury Polyanskiy, PhD
Associate Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Noelle Eckley Selin, PhD
Esther and Harold E. Edgerton Career Development Professor
Associate Professor of Data, Systems, and Society
Associate Professor of Earth, Atmospheric and Planetary Sciences

Devavrat Shah, PhD
Associate Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Assistant Professors

Guy Bresler, PhD
Assistant Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Visiting Professors

Ali Jadbaie, PhD
Visiting Professor of Data, Systems, and Society

José Ignacio Pérez Arriaga, PhD
Visiting Professor of Management
Visiting Professor of Data, Systems, and Society

Adjunct Professors

G. David Forney, ScD
Adjunct Professor of Electrical Engineering
Adjunct Professor of Data, Systems, and Society
Lecturers
Bruce Gregory Cameron
Lecturer of Data, Systems, and Society

Research Staff

Senior Research Engineers
Frank R. Field III, PhD
Lecturer of Data, Systems, and Society

Senior Research Scientists
Stan N. Finkelstein, MD
Senior Research Scientist of Data, Systems, and Society

Principal Research Scientists
Mardavij Roozbehani, PhD
Principal Research Scientist of Data, Systems, and Society

Research Associates
Lisa D'Ambrosio, PhD
Research Associate of Data, Systems, and Society

Professors Emeriti
Daniel Roos, PhD
Professor Emeritus of Data, Systems, and Society
Professor Emeritus of Civil and Environmental Engineering
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Electrical engineers and computer scientists are everywhere—in industry and research areas as diverse as computer and communication networks, electronic circuits and systems, lasers and photonics, semiconductor and solid-state devices, nanoelectronics, biomedical engineering, computational biology, artificial intelligence, robotics, design and manufacturing, control and optimization, computer algorithms, games and graphics, software engineering, computer architecture, cryptography and computer security, power and energy systems, financial analysis, and many more. The infrastructure and fabric of the information age, including technologies such as the internet and the web, search engines, cell phones, high-definition television, and magnetic resonance imaging, are largely the result of innovations in electrical engineering and computer science. The Department of Electrical Engineering and Computer Science (EECS) (http://www-eecs.mit.edu) at MIT and its graduates have been at the forefront of a great many of these advances. Current work in the department holds promise of continuing this record of innovation and leadership, in both research and education, across the full spectrum of departmental activity.

The career paths and opportunities for EECS graduates cover a wide range and continue to grow: fundamental technologies, devices, and systems based on electrical engineering and computer science are pervasive and essential to improving the lives of people around the world and managing the environments they live in. The basis for the success of EECS graduates is a deep education in engineering principles, built on mathematical, computational, physical, and life sciences, and exercised with practical applications and project experiences in a breadth of areas. Our graduates have also demonstrated over the years that EECS provides a strong foundation for those whose work and careers develop in areas quite removed from their origins in engineering.

Undergraduate students in the department take two core subjects that introduce electrical engineering and computer science, and then systematically build up broad foundations and depth in selected intellectual theme areas that match their individual interests. Laboratory subjects, independent projects, and research provide engagement with principles and techniques of analysis, design, and experimentation in a variety of fields. The department also offers a range of programs that enable students to gain experience in industrial settings, ranging from collaborative industrial projects done on campus to term-long experiences at partner companies.

Graduate study in the department moves students toward mastery of areas of individual interest, through coursework and significant research, often defined in interdisciplinary areas that take advantage of the tremendous range of faculty expertise in the department and, more broadly, across MIT.

Undergraduate Study

For MIT undergraduates, the Department of Electrical Engineering and Computer Science offers several programs leading to the Bachelor of Science:

- The 6-1 program (p. 383) leads to the Bachelor of Science in Electrical Science and Engineering. It is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org).
- The 6-3 program (p. 378) leads to the Bachelor of Science in Computer Science and Engineering. It is accredited by both the Engineering and Computing Accreditation Commissions of ABET (http://www.abet.org).
- The 6-2 program (p. 380) leads to the Bachelor of Science in Electrical Engineering and Computer Science and is for those whose interests cross this traditional boundary. It is accredited by both the Engineering and Computing Accreditation Commissions of ABET (http://www.abet.org).
- The 6-7 program (p. 328), offered jointly by the Department of Electrical Engineering and Computer Science and the Department of Biology (Course 7), is for students specializing in computer science and molecular biology. A detailed description of the list of requirements for this degree program may be found in the section on Interdisciplinary Programs (p. 327).

The bachelor's programs in 6-1, 6-2, and 6-3 build on the General Institute Requirements (p. 35) in science and the humanities, and are structured to provide early, hands-on engagement with ideas, activities, and learning that allow students to experience the range and power of electrical engineering and computer science in an integrated way. The required introductory core subjects 6.01 Introduction to EECS I and 6.02 Introduction to EECS II both involve substantial work in the laboratory. These are complemented by two mathematics subjects and followed by a choice of three or four foundation courses (depending on the program selected) from a set of subjects that provide the basis for subsequent specialization. Students define their specialization by selecting three header subjects, a department laboratory subject, and two advanced undergraduate subjects from a quite extensive set of possibilities, and also carry out an advanced undergraduate project. Combining these with the four free electives permits students considerable latitude in shaping their program to match diverse interests, while ensuring depth and mastery in a few selected areas.

All students in any EECS Bachelor of Science program may also apply for one of the Master of Engineering programs offered by the department, which require an additional year of study for the simultaneous award of both degrees.
Three MEng Programs are available:

- The Master of Engineering in Electrical Engineering and Computer Science (Course 6-P) program is intended to provide the depth of knowledge and the skills needed for advanced graduate study and for professional work, as well as the breadth and perspective essential for engineering leadership in an increasingly complex technological world.

- The 6-A Master of Engineering Thesis Program with Industry combines the Master of Engineering academic program with periods of industrial practice at affiliated companies. An undergraduate wishing to pursue this degree should initially register for one of the department’s three bachelor’s programs.

- The Department of Electrical Engineering and Computer Science jointly offers a Master of Engineering in Computer Science and Molecular Biology (6-7P) with the Department of Biology (Course 7). This program is modeled on 6-P program, but provides additional depth in computational biology through coursework and a substantial thesis.

Master of Engineering in Electrical Engineering and Computer Science (Course 6-P)

Through a seamless, five-year course of study, the Master of Engineering in Electrical Engineering and Computer Science (6-P) (p. 382) program leads directly to the simultaneous awarding of the Master of Engineering and one of the three bachelor’s degrees offered by the department. The 6-P program is intended to provide the skills and depth of knowledge in a selected field of concentration needed for advanced graduate study and for professional work, as well as the breadth and perspective essential for engineering leadership in an increasingly complex technological world. The student selects 42 units from a list of subjects approved by the Graduate Office; these subjects, considered along with the two advanced undergraduate subjects from the bachelor’s program, must include at least 36 units in an area of concentration. A further 24 units of electives are chosen from a restricted departmental list of mathematics, science, and engineering subjects.

Master of Engineering Thesis Program with Industry (Course 6-A)

The 6-A Master of Engineering Thesis Program with Industry (http://vi-a.mit.edu) enables students to combine classroom studies with practical experience in industry through a series of supervised work assignments at one of the companies or laboratories participating in the program, culminating with a Master of Engineering thesis performed at a 6-A member company. Collectively, the participating companies provide a wide spectrum of assignments in the various fields of electrical engineering and computer science, as well as an exposure to the kinds of activities in which engineers are currently engaged. Since a continuing liaison between the companies and faculty of the department is maintained, students receive assignments of progressive responsibility and sophistication that are usually more professionally rewarding than typical summer jobs.

The 6-A program is primarily designed to work in conjunction with the department’s five-year Master of Engineering degree program. Internship students generally complete three assignments with their cooperating company—usually two summers and one regular term. While on 6-A assignment, students receive pay from the participating company as well as academic credit for their work.
During their graduate year, 6-A students generally receive a 6-A fellowship or a research or teaching assistantship to help pay for the graduate year.

The department conducts a fall recruitment during which juniors who wish to work toward an industry-based Master of Engineering thesis may apply for admission to the 6-A program. Acceptance of a student into the program cannot be guaranteed, as openings are limited. At the end of their junior year, most 6-A students can apply for admission to 6-PA, which is the 6-A version of the department’s five-year 6-P Master of Engineering degree program. 6-PA students do their Master of Engineering thesis at their participating company’s facilities. They can apply up to 24 units of work-assignment credit toward their Master of Engineering degree. The first 6-A assignment may be used for the advanced undergraduate project that is required for award of a bachelor’s degree, by including a written report and obtaining approval by a faculty member.

At the conclusion of their program, 6-A students are not obliged to accept employment with the company, nor is the company obliged to offer such employment.

Additional information about the program is available at the 6-A Office, Room 38-409E, 617-253-4644.

Master of Engineering in Computer Science and Molecular Biology (Course 6-7P)

The Department of Electrical Engineering and Computer Science jointly offers a Master of Engineering in Computer Science and Molecular Biology (6-7P) (p. 452) with the Department of Biology (Course 7). A detailed description of the list of requirements for this degree program may be found under the section on Interdisciplinary Programs (p. 327).

Predoctoral and Doctoral Programs

The programs of education offered by the Department of Electrical Engineering and Computer Science at the doctoral and predoctoral level have three aspects. First, a variety of classroom subjects in physics, mathematics, and fundamental fields of electrical engineering and computer science is provided to permit students to develop strong scientific backgrounds. Second, more specialized classroom and laboratory subjects and a wide variety of colloquia and seminars introduce the student to the problems of current interest in many fields of research, and to the techniques that may be useful in attacking them. Third, each student conducts research under the direct supervision of a member of the faculty and reports the results in a thesis.

Three advanced degree programs are offered in addition to the Master of Engineering program described above. A well-prepared student with a bachelor’s degree in an appropriate field from some school other than MIT (or from another department at MIT) normally requires about one and one-half to two years to complete the formal studies and the required thesis research in the Master of Science degree program. (Students who have been undergraduates in Electrical Engineering and Computer Science at MIT and who seek opportunities for further study must complete the Master of Engineering rather than the Master of Science degree program.) With an additional year of study and research beyond the master's level, a student in the doctoral or predoctoral program can complete the requirements for the degree of Electrical Engineer or Engineer in Computer Science. The doctoral program usually takes about four to five years beyond the master's level.

There are no fixed programs of study for these doctoral and predoctoral degrees. Each student plans a program in consultation with a faculty advisor. As the program moves toward thesis research, it usually centers in one of a number of areas, each characterized by an active research program. Areas of specialization in the department that have active research programs and related graduate subjects include communications, control, signal processing, and optimization; computer science; artificial intelligence, robotics, computer vision, and graphics; electronics, computers, systems, and networks; electromagnetics and electrodynamics; optics, photonics, and quantum electronics; energy conversion devices and systems; power engineering and power electronics; materials and devices; VLSI system design and technology; nanoelectronics; bioelectrical engineering; and computational biology.

In addition to graduate subjects in electrical engineering and computer science, many students find it profitable to study subjects in other departments such as Biology, Economics, Linguistics and Philosophy, Management, Mathematics, Physics, and Brain and Cognitive Sciences.

The informal seminar is an important mechanism for bringing together members of the various research groups. Numerous seminars meet every week. In these, graduate students, faculty, and visitors report their research in an atmosphere of free discussion and criticism. These open seminars are excellent places to learn about the various research activities in the department.

Research activities in electrical engineering and computer science are carried on by students and faculty in laboratories of extraordinary range and strength, including the Laboratory for Information and Decision Systems, Research Laboratory of Electronics, Computer Science and Artificial Intelligence Laboratory, Center for Materials Science and Engineering, Laboratory for Energy and the Environment (see MIT Energy Initiative), Kavli Institute for Astrophysics and Space Research, Lincoln Laboratory, Media Laboratory, Francis Bitter Magnet Laboratory, Operations Research Center, Plasma Science and Fusion Center, and the Microsystems Technology Laboratories. Descriptions of many of these laboratories may be found under the section on Research and Study (p. 84).

Because the backgrounds of applicants to the department’s doctoral and predoctoral programs are extremely varied, both to field (electrical engineering, computer science, physics, mathematics, biomedical engineering, etc.) and to level of previous degree (bachelor’s or master’s), no specific admissions requirements are
listed. All applicants for any of these advanced programs will be evaluated in terms of their potential for successful completion of the department’s doctoral program. Superior achievement in relevant technical fields is considered particularly important.

Master of Science in Electrical Engineering and Computer Science
The general requirements for the degree of Master of Science are listed under Graduate Education (p. 59). The department requires that the 66-unit program consist of at least four subjects from a list of approved subjects by the Graduate Office which must include a minimum of 42 units of advanced graduate subjects. In addition, a 24-unit thesis is required beyond the 66 units. Students working full-time for the Master of Science degree may take as many as four classroom subjects per term. The subjects are wholly elective and are not restricted to those given by the department. The program of study must be well balanced, emphasizing one or more of the theoretical or experimental aspects of electrical engineering or computer science.

Electrical Engineer or Engineer in Computer Science
The general requirements for an engineer’s degree are given under the section on Graduate Education (p. 59). These degrees are open to those able students in the doctoral or predoctoral program who seek more extensive training and research experiences than are possible within the master’s program. Admission to the engineer’s program depends upon a superior academic record and outstanding progress on a thesis. The course of studies consists of at least 162 units, 90 of which must be from a list of subjects approved by the Graduate Office, and the thesis requirements for a master’s degree.

Doctor of Philosophy or Doctor of Science
The general requirements for the degree of Doctor of Philosophy or Doctor of Science are given under the section on Graduate Education (p. 59). Doctoral candidates are expected to participate fully in the educational program of the department and to perform thesis work that is a significant contribution to knowledge. As preparation, MIT students in the Master of Engineering in Electrical Engineering and Computer Science program will be expected to complete that program. Students who have received a bachelor’s degree outside the department, but who have not completed a master’s degree program, will normally be expected to complete the requirements for the Master of Science degree described earlier, including a thesis. Students who have completed a master’s degree elsewhere without a significant research component will be required to register for and carry out a research accomplishment equivalent to a master’s thesis before being allowed to proceed in the doctoral program.

Details of how students in the department fulfill the requirements for the doctoral program are spelled out in an internal memorandum. The department does not have a foreign language requirement, but does require an approved minor program.

Graduate students enrolled in the department may participate in the research centers described in the Research and Study (p. 84) section, such as the Center for Biomedical Engineering and the Operations Research Center.

Financial Support

Master of Engineering Degree Students
Students in the fifth year of study toward the Master of Engineering degree are commonly supported by a graduate teaching or research assistantship. In the 6-A Master of Engineering Thesis Program with Industry students are supported by paid company internships. Students supported by full-time research or teaching assistantships may register for no more than two regular classes totaling at most 27 units. They receive additional academic units for their participation in the teaching or research program. Support through an assistantship may extend the period required to complete the Master of Engineering program by an additional term or two. Support is granted competitively to graduate students and may not be available for all of those admitted to the Master of Engineering program. The MEng degree is normally completed by students taking a full load of regular subjects in two graduate terms. Students receiving assistantships commonly require a third term and may petition to continue for a fourth graduate term.

Master of Science, Engineer, and Doctoral Degree Students
Studies toward an advanced degree can be supported by personal funds, by an award such as the National Science Foundation Fellowship (which the student brings to MIT), by a fellowship or traineeship awarded by MIT, or by a graduate assistantship. Assistantships require participation in research or teaching in the department or in one of the associated laboratories. Full-time assistants may register for no more than two scheduled classroom or laboratory subjects during the term, but may receive additional academic credit for their participation in the teaching or research program.

Inquiries
Additional information concerning graduate academic and research programs, admissions, financial aid, and assistantships may be obtained from the Electrical Engineering and Computer Science Graduate Office, Room 38-444, 617-253-4605, or visit the website (http://www-eecs.mit.edu).

Interdisciplinary Programs

Computation for Design and Optimization
The Computation for Design and Optimization (CDO) (http://computationalengineering.mit.edu/education) program offers a master’s degree to students interested in the analysis and application of computational approaches to designing and operating engineered systems. The curriculum is designed with a common core serving all engineering disciplines and an elective component focusing on specific applications. Current MIT graduate
students may pursue a CDO master’s degree in conjunction with a department-based master’s or PhD program. For more information, see the full program description (p. 350) under Interdisciplinary Graduate Programs.

Joint Program with the Woods Hole Oceanographic Institution
The Joint Program with the Woods Hole Oceanographic Institution (WHOI) (http://mit.whoi.edu) is intended for students whose primary career objective is oceanography or oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in their home department. The program is described in more detail under Interdisciplinary Graduate Programs (p. 354).

Leaders for Global Operations
The 24-month Leaders for Global Operations (LGO) (http://lgo.mit.edu) program combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field. During the two-year program, students complete a six-month internship at one of LGO’s partner companies, where they conduct research that forms the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of seven engineering programs, some of which have optional or required LGO tracks. After graduation, alumni take on leadership roles at top global manufacturing and operations companies.

System Design and Management
The System Design and Management (SDM) (http://sdm.mit.edu) program is a partnership among industry, government, and the university for educating technically grounded leaders of 21st-century enterprises. Jointly sponsored by the School of Engineering and the Sloan School of Management, it is MIT’s first degree program to be offered with a distance learning option in addition to a full-time in-residence option.

Technology and Policy
The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) (http://web.mit.edu/tpp) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description under the Institute for Data, Systems, and Society (p. 178).

Faculty and Teaching Staff

Professors
Harold Abelson, PhD
Class of 1992 Professor
Professor of Computer Science and Engineering
Professor of Media Arts and Sciences

Elfar Adalsteinsson, PhD
Professor of Electrical Engineering and Computer Science
Core Faculty, Institute for Medical Engineering and Science

Anant Agarwal, PhD
Professor of Computer Science and Engineering

Akintunde I. Akinwande, PhD
Professor of Electrical Engineering

Saman P. Amarasinghe, PhD
Professor of Computer Science and Engineering

Dimitri A. Antoniadis, PhD
Ray and Maria Stata Professor of Electrical Engineering

Arthur B. Baggeroer, ScD
Professor of Mechanical and Ocean Engineering
Professor of Electrical Engineering

Hari Balakrishnan, PhD
Fujitsu Professor in Computer Science and Engineering

Marc A. Baldo, PhD
Professor of Electrical Engineering

Regina Barzilay, PhD
Professor of Computer Science and Engineering

Bonnie Berger, PhD
Professor of Applied Mathematics
Professor of Computer Science
Member, Health Sciences and Technology Faculty

Karl K. Berggren, PhD
Professor of Electrical Engineering and Computer Science

Tim Berners-Lee, BA
3 Com Founders Professor of Engineering

Dimitri P. Bertsekas, PhD
Professor of Electrical Engineering and Computer Science

Jerry McAfee (1940) Professor in Engineering
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society
Robert C. Berwick, PhD
Professor of Computer Science and Engineering
Professor of Computational Linguistics
Member, Institute for Data, Systems, and Society

Sangeeta N. Bhatia, MD, PhD
John and Dorothy Wilson Professor of Biochemistry
Professor of Electrical Engineering
Core Faculty, Institute for Medical Engineering and Science

Duane S. Boning, PhD
Professor of Electrical Engineering and Computer Science

Louis D. Braida, PhD
Henry Ellis Warren (1894) Professor
Professor of Electrical Engineering
Member, Health Sciences and Technology Faculty

Rodney Brooks, PhD
Professor of Computer Science and Engineering

Vladimir Bulovic, PhD
Fariborz Maseeh (1990) Professor in Emerging Technology
Professor of Electrical Engineering

Vincent W. S. Chan, PhD
Joan and Irwin M. (1957) Jacobs Professor
Professor of Electrical Engineering

Anantha P. Chandrakasan, PhD
Joseph F. and Nancy P. Keithley Professor in Electrical Engineering
Head, Department of Electrical Engineering and Computer Science

Fredo Durand, PhD
Professor of Computer Science and Engineering

Yoel Fink, PhD
Professor of Materials Science and Engineering
Professor of Electrical Engineering and Computer Science

Clifton G. Fonstad Jr, PhD
Professor of Electrical Engineering

Dennis M. Freeman, PhD
Dean for Undergraduate Education
Professor of Electrical Engineering
Member, Health Sciences and Technology Faculty

William T. Freeman, PhD
Professor of Computer Science and Engineering

James G. Fujimoto, PhD
Elihu Thomson Professor in Electrical Engineering

Robert G. Gallager, ScD
Professor of Electrical Engineering

David K. Gifford, PhD
Professor of Computer Science and Engineering

Shafi Goldwasser, PhD
RSA Professor
Professor of Computer Science and Engineering

Polina Golland, PhD
Professor of Computer Science and Engineering
Member, Institute for Data, Systems, and Society

Isaac L. Chuang, PhD
Professor of Electrical Engineering
Professor of Physics

Munther A. Dahleh, PhD
William A. Coolidge Professor
Professor of Electrical Engineering and Computer Science
Director, Institute for Data, Systems, and Society

Luca Daniel, PhD
Professor of Electrical Engineering

Randall Davis, PhD
Professor of Computer Science and Engineering

Jesús A. del Alamo, PhD
Donner Professor of Science
Professor of Electrical Engineering

Erik D. Demaine, PhD
Professor of Computer Science and Engineering

Srinivas Devadas, PhD
Edwin Sibley Webster Professor of Electrical Engineering and Computer Science

W. Eric L. Grimson, PhD
Bernard M. Gordon Professor in Medical Engineering
Professor of Electrical Engineering and Computer Science
Chancellor for Academic Advancement

Alan J. Grodzinsky, ScD
Professor of Biological Engineering
Professor of Electrical Engineering
Professor of Mechanical Engineering

David K. Gifford, PhD
Professor of Computer Science and Engineering

Shafi Goldwasser, PhD
RSA Professor
Professor of Computer Science and Engineering

Polina Golland, PhD
Professor of Computer Science and Engineering
Member, Institute for Data, Systems, and Society

Isaac L. Chuang, PhD
Professor of Electrical Engineering
Professor of Physics

Munther A. Dahleh, PhD
William A. Coolidge Professor
Professor of Electrical Engineering and Computer Science
Director, Institute for Data, Systems, and Society

Luca Daniel, PhD
Professor of Electrical Engineering

Randall Davis, PhD
Professor of Computer Science and Engineering

Jesús A. del Alamo, PhD
Donner Professor of Science
Professor of Electrical Engineering

Erik D. Demaine, PhD
Professor of Computer Science and Engineering

Srinivas Devadas, PhD
Edwin Sibley Webster Professor of Electrical Engineering and Computer Science
Frederick C. Hennie III, PhD
Professor of Computer Science and Engineering

Berthold Klaus Paul Horn, PhD
Professor of Computer Science and Engineering

Judy L. Hoyt, PhD
Professor of Electrical Engineering

Qing Hu, PhD
Professor of Electrical Engineering

Piotr Indyk, PhD
Professor of Computer Science and Engineering

Tommi S. Jaakkola, PhD
Professor of Computer Science and Engineering

Member, Institute for Data, Systems, and Society

Daniel Jackson, PhD
Professor of Computer Science and Engineering

Patrick Jaillet, PhD
Dugald C. Jackson Professor in Electrical Engineering

Professor of Civil and Environmental Engineering

Member, Institute for Data, Systems, and Society

M. Frans Kaashoek, PhD
Charles A. Piper (1935) Professor

Professor of Computer Science and Engineering

Leslie P. Kaelbling, PhD
Professor of Computer Science and Engineering

David R. Karger, PhD
Professor of Computer Science and Engineering

John G. Kassakian, ScD
Professor of Electrical Engineering

Dina Katabi, PhD
Andrew (1956) and Erna Viterbi Professor

Professor of Computer Science and Engineering

Manolis Kellis, PhD
Professor of Electrical Engineering and Computer Science

James L. Kirtley Jr., PhD
Professor of Electrical Engineering

Leslie A. Kolodziejski, PhD
Professor of Electrical Engineering

Jing Kong, PhD
Professor of Electrical Engineering

Jeffrey H. Lang, PhD
Vitesse Professor

Professor of Electrical Engineering

Hae-Seung Lee, PhD
Advanced Television and Signal Processing Professor

Professor of Electrical Engineering

Steven B. Leeb, PhD
Professor of Electrical Engineering

Professor of Mechanical Engineering

Charles E. Leiserson, PhD
Edwin Sibley Webster Professor of Electrical Engineering

Professor of Computer Science and Engineering

Jae S. Lim, PhD
Professor of Electrical Engineering

Barbara H. Liskov, PhD
Institute Professor

Professor of Computer Science

Andrew W. Lo, PhD
Charles E. and Susan T. Harris Professor

Professor of Finance

Professor of Electrical Engineering and Computer Science

Member, Institute for Data, Systems, and Society

Tomás Lozano-Pérez, PhD
Professor of Computer Science and Engineering

Nancy Ann Lynch, PhD
NEC Professor of Software Science and Engineering

Samuel R. Madden, PhD
Professor of Computer Science and Engineering

Thomas L. Magnanti, PhD
Institute Professor

Professor of Operations Research

Professor of Electrical Engineering

Member, Institute for Data, Systems, and Society

Roger Greenwood Mark, MD, PhD
Distinguished Professor in Health Sciences and Technology

Core Faculty, Institute for Medical Engineering and Science

Professor of Electrical Engineering and Computer Science

Muriel Médard, ScD
Cecil H. Green Professor in Electrical Engineering

Alexandre Megretski, PhD
Professor of Electrical Engineering

Member, Institute for Data, Systems, and Society

Albert R. Meyer, PhD
Hitachi America Professor of Engineering

Professor of Computer Science and Engineering
Silvio Micali, PhD
Ford Foundation Professor of Engineering
Professor of Computer Science and Engineering

Robert C. Miller, PhD
Professor of Computer Science and Engineering

Arvind Mithal, PhD
Charles W. and Jennifer C. Johnson Professor in Computer Science and Engineering

Sanjoy K. Mitter, PhD
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Robert T. Morris, PhD
Professor of Computer Science and Engineering

Joel Moses, PhD
Institute Professor
Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Alan V. Oppenheim, PhD
Ford Professor of Engineering
Professor of Electrical Engineering and Computer Science

Terry Philip Orlando, PhD
Professor of Electrical Engineering

Asuman E. Ozdaglar, PhD
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Pablo A. Parrilo, PhD
Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Li-Shiuan Peh, PhD
Professor of Electrical Engineering and Computer Science

David J. Perreault, PhD
Professor in Power Engineering

Rajeev J. Ram, PhD
Professor of Electrical Engineering

L. Rafael Reif, PhD
President
Professor of Electrical Engineering

Martin C. Rinard, PhD
Professor of Computer Science and Engineering

Ronald L. Rivest, PhD
Institute Professor
Professor of Computer Science and Engineering

Ronitt Rubinfeld, PhD
Professor of Computer Science and Engineering

Daniela L. Rus, PhD
Andrew (1956) and Erna Viterbi Professor
Professor of Computer Science and Engineering

Martin A. Schmidt, PhD
Provost
Professor of Electrical Engineering and Computer Science

Jeffrey H. Shapiro, PhD
Professor of Electrical Engineering

Nir N. Shavit
Professor of Computer Science and Engineering

Charles G. Sodini, PhD
Clarence J. Lebel Professor in Electrical Engineering

Collin M. Stultz, MD, PhD
Professor of Electrical Engineering and Computer Science
Core Faculty, Institute for Medical Engineering and Science

Gerald Jay Sussman, PhD
Panasonic Professor
Professor of Electrical Engineering

Peter Szolovits, PhD
Professor of Computer Science and Engineering
Member, Health Sciences and Technology Faculty

Bruce Tidor, PhD
Professor of Electrical Engineering and Computer Science
Professor of Biological Engineering

Antonio Torralba, PhD
Professor of Electrical Engineering and Computer Science

John N. Tsitsiklis, PhD
Clarence J. Lebel Professor in Electrical Engineering
Member, Institute for Data, Systems, and Society

George C. Verghese, PhD
Henry Ellis Warren Professor of Electrical Engineering

Joel Voldman, PhD
Professor of Electrical Engineering

Stephen A. Ward, PhD
Professor of Computer Science and Engineering

Cardinal Warde, PhD
Professor of Electrical Engineering

Ron Weiss, PhD
Professor of Computer Science
Professor of Biological Engineering
Jacob K. White, PhD
Cecil H. Green Professor in Electrical Engineering

Alan S. Willsky, PhD
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Patrick Henry Winston, PhD
Ford Foundation Professor of Engineering
Professor of Electrical Engineering and Computer Science

Gregory W. Wornell, PhD
Sumitomo Electric Industries Professor in Engineering
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Lizhong Zheng, PhD
Professor of Electrical Engineering

Victor W. Zue, ScD
Delta Electronics Professor
Professor of Electrical Engineering and Computer Science

Associate Professors
Scott Aaronson, PhD
Associate Professor of Electrical Engineering and Computer Science

Adam Chlipala, PhD
Associate Professor of Electrical Engineering and Computer Science

Konstantinos Daskalakis, PhD
Associate Professor of Computer Science and Engineering

Peter L. Hagelstein, PhD
Associate Professor of Electrical Engineering

Timothy K. Lu, MD, PhD
Associate Professor of Electrical Engineering and Computer Science
Associate Professor of Biological Engineering

Wojciech Matusik, PhD
Associate Professor of Electrical Engineering and Computer Science

Tomás Palacios, PhD
Associate Professor of Electrical Engineering

Yury Polyanskiy, PhD
Associate Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Rahul Sarapeshkar, PhD
Associate Professor of Electrical Engineering

Devavrat Shah, PhD
Associate Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Armando Solar Lezama, PhD
Associate Professor of Computer Science and Engineering

Russell L. Tedrake, PhD
Associate Professor of Computer Science and Engineering
Associate Professor of Aeronautics and Astronautics
Associate Professor of Mechanical Engineering

Vinod Vaikuntanathan, PhD
Steven G. (1968) and Renée Finn Career Development Professor
Associate Professor of Computer Science and Engineering

Michael Watts, PhD
Associate Professor of Electrical Engineering and Computer Science

Dana Weinstein, PhD
Associate Professor of Electrical Engineering

Nickolai Zeldovich, PhD
Associate Professor of Computer Science and Engineering

Assistant Professors
Mohammadreza Alizadeh Attar, PhD
Assistant Professor of Electrical Engineering and Computer Science

Guy Bresler, PhD
Assistant Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Tamara Broderick, PhD
ITT Career Development Professor in Computer Technology
Member, Institute for Data, Systems, and Society

Dirk Robert Englund, PhD
Assistant Professor of Electrical Engineering and Computer Science

Ruonan Han, PhD
E. E. Landsman (1958) Career Development Professor
Assistant Professor of Electrical Engineering and Computer Science

Thomas Heldt, PhD
Hermann L. F. von Helmholtz Career Development Professor
Assistant Professor of Electrical Engineering and Computer Science
Core Faculty, Institute for Medical Engineering and Science

Stefanie Jegelka, ScD
X-Window Consortium Career Development Professor
Assistant Professor of Computer Science and Engineering
Member, Institute for Data, Systems, and Society

Luqiao Liu, PhD
Assistant Professor of Electrical Engineering and Computer Science

Aleksander Madry, PhD
Assistant Professor of Computer Science and Engineering

Dana Hadar Moshkovitz, PhD
Assistant Professor of Electrical Engineering and Computer Science
Daniel Sánchez, PhD
Assistant Professor of Electrical Engineering and Computer Science

Vivienne Sze, PhD
Emanuel E. Landsman (1958) Career Development Professor
Assistant Professor of Electrical Engineering and Computer Science

Caroline Uhler, PhD
Henry L. and Grace Doherty Professor in Ocean Utilization
Assistant Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Matei A. Zaharia, PhD
Assistant Professor of Computer Science and Engineering

Professors of the Practice
Joel S. Emer, PhD
Professor of the Practice of Electrical Engineering and Computer Science

Joel E. Schindall, PhD
Bernard M. Gordon Professor in Product Engineering
Professor of the Practice of Electrical Engineering and Computer Science

Visiting Professors
Mehmet Fatih Yanik, PhD
Visiting Professor of Electrical Engineering and Computer Science

Visiting Associate Professors
Sanjoy Mahajan, PhD
Visiting Associate Professor of Electrical Engineering and Computer Science

Adjunct Professors
G. David Forney, ScD
Adjunct Professor of Electrical Engineering
Adjunct Professor of Data, Systems, and Society

Franz X. Kaertner, PhD
Adjunct Professor of Electrical Engineering and Computer Science

Butler W. Lampson, PhD
Adjunct Professor of Computer Science and Engineering

Michael Stonebraker, PhD
Adjunct Professor of Computer Science and Engineering

Madhu Sudan, PhD
Adjunct Professor of Computer Science and Engineering

Senior Lecturers
Tony Eng, PhD
Senior Lecturer in Electrical Engineering and Computer Science

Christopher J. Terman, PhD
Senior Lecturer of Electrical Engineering and Computer Science

Lecturers
Ana Bell, PhD
Lecturer in Electrical Engineering and Computer Science

Max Goldman
Lecturer in Electrical Engineering and Computer Science

Silvina Z. Hanono Wachman, PhD
Lecturer in Electrical Engineering and Computer Science

Adam J. Hartz, MEng
Lecturer in Electrical Engineering and Computer Science

Gim P. Hom, MS, MS, EE
Lecturer in Electrical Engineering and Computer Science

Katrina Leigh LaCurts, PhD
Lecturer in Electrical Engineering and Computer Science

Joseph Daly Steinmeyer, PhD
Lecturer in Electrical Engineering and Computer Science

Technical Instructors
Gavin Darcey, MEng
Technical Instructor of Electrical Engineering and Computer Science

David L. Lewis
Technical Instructor of Electrical Engineering and Computer Science

Scott Poesse, AA
Technical Instructor of Electrical Engineering and Computer Science

Research Staff

Senior Research Scientists
David D. Clark, PhD
Senior Research Scientist of Electrical Engineering and Computer Science

Professors Emeriti
Michael Athans, PhD
Professor Emeritus of Electrical Engineering

Abraham Bers, ScD
Professor Emeritus of Electrical Engineering

James Donald Bruce, ScD
Professor Emeritus of Electrical Engineering

Fernando José Corbató, PhD
Professor Emeritus of Computer Science and Engineering
Jack B. Dennis, ScD
Professor Emeritus of Computer Science and Engineering

Mildred Dresselhaus, PhD
Institute Professor
Professor of Electrical Engineering
Professor of Physics

Murray Eden, PhD
Professor Emeritus of Electrical Engineering

David Jacob Epstein, ScD
Professor Emeritus of Electrical Engineering

Robert Mario Fano, ScD
Ford Professor Emeritus of Engineering

Lawrence S. Frishkopf, PhD
Professor Emeritus of Electrical and Bioengineering

Harry Constantine Gatos, PhD
Professor Emeritus of Molecular Engineering
Professor Emeritus of Electronic Materials

Paul E. Gray, ScD
President Emeritus
Professor Emeritus of Electrical Engineering

Carl Eddie Hewitt, PhD
Associate Professor Emeritus of Computer Science and Engineering

Erich P. Ippen, PhD
Eliehu Thomson Professor Emeritus
Professor Emeritus of Physics
Professor Emeritus of Electrical Engineering

Robert S. Kennedy, ScD
Professor Emeritus of Electrical Engineering

Francis Fan Lee, PhD
Professor Emeritus of Electrical Engineering and Computer Science

Alan L. McWhorter, ScD
Professor Emeritus of Electrical Engineering

Marvin L. Minsky, PhD
Professor Emeritus of Media Arts and Sciences
Professor Emeritus of Computer Science and Engineering

Walter E. Morrow Jr, MS
Professor Emeritus of Electrical Engineering

Ronald R. Parker, PhD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Electrical Engineering

William T. Peake, ScD
Professor Emeritus of Electrical and Bioengineering
Professor Emeritus of Health Sciences and Technology

Paul L. Penfield Jr, PhD
Professor Emeritus of Electrical Engineering

George W. Pratt Jr, PhD
Professor Emeritus of Electrical Engineering

Jack P. Ruina
Professor Emeritus of Electrical Engineering

Jerome H. Saltzer, ScD
Professor Emeritus of Computer Science and Engineering

Herbert Harold Sawin, PhD
Professor Emeritus of Chemical Engineering
Professor Emeritus of Electrical Engineering

Campbell L. Searle, MEng
Professor Emeritus of Electrical Engineering

Stephen D. Senturia, PhD
Professor Emeritus of Electrical Engineering

William M. Siebert, PhD
Ford Professor Emeritus of Engineering

Henry Ignatius Smith, PhD
Professor Emeritus of Electrical Engineering and Computer Science

Richard D. Thornton, ScD
Professor Emeritus of Electrical Engineering

Thomas F. Weiss, PhD
Professor Emeritus of Electrical and Bioengineering

Gerald L. Wilson, PhD
Vannevar Bush Professor Emeritus
Professor Emeritus of Electrical Engineering
Professor Emeritus of Mechanical Engineering

John L. Wyatt, PhD
Professor Emeritus of Electrical Engineering

Markus Zahn, ScD
Professor Emeritus of Electrical Engineering
HARVARD-MIT HEALTH SCIENCES AND TECHNOLOGY PROGRAM

Founded in 1970, the Harvard-MIT Health Sciences and Technology (HST) Program is one of the oldest and largest biomedical engineering and physician-scientist training programs in the United States and the longest-standing collaboration between Harvard and MIT. Since 2012, HST has been housed in the Institute for Medical Engineering and Science (IMES) (p. 93).

HST’s unique interdisciplinary educational program brings engineering as well as the physical and biological sciences from the scientist’s bench to the patient’s bedside. Conversely, it brings clinical insight from the patient’s bedside to the laboratory bench. In this way, HST students are trained to have deep understanding of engineering, physical sciences, and the biological sciences, complemented with hands-on experience in the clinic or in industry; and they become conversant with the underlying quantitative and molecular aspects of medicine and biomedical science. Within HST, approximately 300 graduate students work with eminent faculty and affiliated faculty members from the MIT and Harvard communities.

In addition to its outstanding record of accomplishment for research in human health care, HST educational programs are distinguished by three key elements:

- A strong quantitative orientation
- Required hands-on experience in a clinical setting
- A focused interdisciplinary research project

HST currently offers degrees in three multidisciplinary areas of graduate study:

- Medical Sciences MD Program
- Medical Engineering and Medical Physics Doctoral Program
- Speech and Hearing Bioscience and Technology Doctoral Program

Graduate Study

Doctoral Programs

Medical Sciences

HST’s Medical Sciences Program leads to the MD degree from Harvard Medical School. It is oriented toward students with a strong interest and background in quantitative science, especially in the biological, physical, engineering, and chemical sciences. The subjects in human biology developed for this curriculum represent the joint efforts of life scientists, physicians, physical scientists, and engineers from the faculties of Harvard and MIT.

The programs of study are designed to meet the interests and needs of the individual student. The student is encouraged to pursue advanced study in areas of interest that may complement the subjects offered in HST. Such study may be undertaken as part of the MD degree requirements or may be pursued in a program that combines the MD with a master’s or doctoral degree. Like all Harvard Medical School students, HST MD students complete two years of clinical training in local hospitals.

Because HST is committed to educating physicians who have a deep understanding of the scientific basis of medicine and who are well equipped for an interdisciplinary research career, HST encourages students in the MD curriculum to devote time to research and requires a thesis for completion of the degree. Many MD students desire even more research training than is possible during the standard four-year MD curriculum. For such students, one option is to pursue a formal PhD program in addition to an MD program. Another option expands the MD program to five or more years in order to include a major research training component.

Further details on the Medical Sciences Program and application forms may be obtained from:

Office of Admissions
Harvard Medical School
25 Shattuck Street
Boston, MA 02115

Applications must be submitted by October 15 of the year before desired matriculation. For further information, candidates can contact HST’s medical sciences admissions coordinator (hst-md-admissions@mit.edu).

Medical Engineering and Medical Physics

The Medical Engineering and Medical Physics (MEMP) Program is a five-to-seven year program that leads to the PhD in Medical Engineering and Medical Physics awarded by MIT or by the Harvard Faculty of Arts and Sciences. The program trains students as engineers or physical scientists who also have extensive knowledge of the medical sciences. By understanding engineering and physical science applications, as well as their clinical implications, graduates of this program are well positioned to define new questions and formulate novel approaches in biomedical research.

The MEMP program is founded on a philosophy of openness and collaboration, characteristics that encourage innovative and independent thinking and creativity. This philosophy is fostered by the unique environment in which MEMP students study. While each MEMP student has depth in one classical discipline of engineering or physical science, the collective community has students in all disciplines. MEMP students also have peers with diverse career paths in medicine, science, engineering, business, and government. This community promotes an open exchange of ideas and exposes students to different perspectives on the health sciences. Moreover, MEMP students have access to research opportunities in labs at Harvard, MIT, and the Harvard teaching hospitals. Students can do research with faculty at any of these institutions and have many
opportunities through classes, events, and projects to interact with faculty from all of these institutions.

The program’s academic curriculum includes multiple components that prepare students to be medical innovators who will advance human health. First, HST provides MEMP students with a thorough graduate education in a classical discipline of engineering or physical science. Each student selects a concentration area, such as mechanical engineering, chemistry and chemical engineering, materials science, electrical engineering, computer science, physics, aeronautics and astronautics, brain and cognitive science, or nuclear engineering, and completes substantial coursework in this discipline.

Students then become conversant in the biological sciences through preclinical coursework followed by a series of clinical experiences. Courses such as pathology and pathophysiology are taken together with HST MD students. Then students engage in immersive clinical experiences where they acquire a hands-on understanding of clinical care, medical decision-making, and the role of technology in medical practice. Through these experiences, students become fluent in the language and culture of medicine and gain a firsthand understanding of the opportunities for, and constraints on, applying scientific and technological innovations in health care.

Two seminar classes help students integrate science and engineering with medicine and develop professional skills. A two-stage qualifying examination ensures that each student is proficient in his or her chosen concentration area, can integrate information from diverse sources into a coherent research proposal, and is able to defend that research proposal in an oral presentation.

Finally, MEMP students investigate important problems at the interfaces of science, technology, and clinical medicine through individualized research projects that prepare them to undertake independent research. MEMP students have the opportunity to perform thesis research in laboratories at MIT, Harvard, and the Harvard affiliated teaching hospitals.

Neuroimaging and bioastronautics are areas of specialization within MEMP for which HST offers specially designed training programs. MEMP candidates may choose to apply through MIT, Harvard, or both. Those applying to MEMP through MIT should submit a single application. Those applying to MEMP through Harvard must also apply to the School of Engineering and Applied Sciences or the Biophysics Program. Additional information about applying to MEMP is available on the MEMP website (http://hst.mit.edu/academics/memp/admissions).

Speech and Hearing Bioscience and Technology
HST’s doctoral program in Speech and Hearing Bioscience and Technology (SHBT), formerly Speech and Hearing Sciences, prepares students with an undergraduate background in science or engineering to have a broad acquaintance with the field of speech and hearing, and to develop specialized knowledge that focuses on a particular approach in research. The only program of its type in the country—and the only doctoral training program funded in this area by the National Institutes of Health—SHBT is designed to develop research scientists who can apply the concepts and methods of the physical and biological sciences to basic and clinical problems in speech and hearing using innovative research. No other research training program provides the multidisciplinary depth and breadth offered by SHBT. The five-to-seven–year program leads to a PhD in speech and hearing bioscience and technology from MIT. SHBT’s more than 50 participating faculty members represent 10 academic departments from Harvard and MIT, with research facilities at MIT, Harvard University, Harvard Medical School and affiliated teaching hospitals, and the Massachusetts Eye and Ear Infirmary (MEEI). The small class size of this unique program ensures personalized and high-quality training by a diverse and dedicated faculty from the two institutions.

SHBT’s curriculum provides an effective method of training researchers by introducing the physical and biological bases of speech and hearing mechanisms involved in the communications process. While SHBT seeks to develop research scientists rather than clinical practitioners, there is a strong emphasis on providing students with exposure to clinical problems, approaches, and techniques. Graduates are thoroughly prepared for successful careers in basic and applied research in industry, universities, or government laboratories involved with biological and synthetic communication systems.

Typically, a student’s first two years in the program are devoted to coursework, which is supplemented by significant exposure to various research projects. Courses in the first year assume familiarity with calculus and differential equations, college-level physics, probability and statistics, and biology. The core curriculum covers the anatomical, acoustical, physiological, perceptual, and cognitive basics, as well as the clinical approaches to speech and hearing problems. The early introduction of important concepts in acoustics, anatomy, and physiology provides a solid base from which to pursue individual research interests. Early in the curriculum, students are introduced to various research laboratories that use different approaches to solving speech and hearing problems. This involvement in research provides an immediate application of classroom subjects. Students work with research advisors to develop a thorough understanding of basic concepts and tools in their fields of concentration. Later, students participate in subjects that require them to apply basic concepts to clinical problems and scientific research. Throughout the curriculum, special attention is devoted to developing personal integrity, scientific values, and scholarly practice. With faculty guidance, each student plans a concentration tailored to the student’s particular interest.

By the end of their second year, students identify an area of professional interest and choose a research project that forms the basis for their doctoral thesis. SHBT research in the speech and hearing sciences focuses on the biological and physical mechanisms underlying human communication by spoken language.
The processes addressed by these sciences include the physical acoustics of sound and the perceptual neurophysiological bases of hearing, as well as the linguistic, cognitive, and motor levels of processing by talkers and listeners.

The SHBT training program is offered through HST to students who enrolled in fall 2011 and earlier. The program is formally transitioning and is now administered through Harvard Medical School's Division of Medical Sciences (DMS). Interested candidates should apply via DMS, not through HST. Please see the DMS website (http://www.hms.harvard.edu/dms/shbt) for more information.

Inquiries

Additional information on degree programs, admissions, and financial aid can be obtained from HST’s Academic Office, Room E25-518, 617-253-7470.

Faculty and Teaching Staff

Professors

Elfar Adalsteinsson, PhD
Professor of Electrical Engineering and Computer Science
Core Faculty, Institute for Medical Engineering and Science

Bonnie Berger, PhD
Professor of Applied Mathematics
Professor of Computer Science
Member, Health Sciences and Technology Faculty

Sangeeta N. Bhatia, MD, PhD
John and Dorothy Wilson Professor of Biochemistry
Professor of Electrical Engineering
Core Faculty, Institute for Medical Engineering and Science

Louis D. Braida, PhD
Henry Ellis Warren (1894) Professor
Professor of Electrical Engineering
Member, Health Sciences and Technology Faculty

Emery N. Brown, MD, PhD
Edward Hood Taplin Professor of Medical Engineering
Professor of Computational Neuroscience
Member, Institute for Data, Systems, and Society
Core Faculty, Institute for Medical Engineering and Science
Warren M. Zapol Professor of Anaesthesia, MGH
Co-Director, Health Sciences and Technology Program

Arup K. Chakraborty, PhD
Robert T. Haslam (1911) Professor
Director, Institute for Medical Engineering and Science
Robert T. Haslam Professor of Chemical Engineering
Professor of Biological Engineering
Professor of Chemistry
Professor of Physics

Richard J. Cohen, MD, PhD
Whitaker Professor In Biomedical Engineering
Core Faculty, Institute for Medical Engineering and Science

James J. Collins, PhD
Termeer Professor of Medical Engineering and Science
Professor of Biological Engineering
Core Faculty, Institute for Medical Engineering and Science

Elazer R. Edelman, MD, PhD
Thomas D. and Virginia W. Cabot Professor
Core Faculty, Institute for Medical Engineering and Science
Professor of Medicine, HMS

Dennis M. Freeman, PhD
Dean for Undergraduate Education
Professor of Electrical Engineering
Member, Health Sciences and Technology Faculty

John D. E. Gabrieli, PhD
Grover M. Hermann Professor
Professor of Cognitive Neuroscience
Core Faculty, Institute for Medical Engineering and Science

Lee Gehrke, PhD
Hermann L. F. von Helmholtz Professor
Professor of Medical and Electrical Engineering
Member, Health Sciences and Technology Faculty

David E. Housman, PhD
Virginia and Daniel K. Ludwig Professor for Cancer Research
Member, Health Sciences and Technology Faculty

Robert Langer, ScD
David H. Koch (1962) Institute Professor
Professor of Chemical Engineering
Professor of Mechanical Engineering
Professor of Biological Engineering
Member, Health Sciences and Technology Faculty
Roger Greenwood Mark, MD, PhD
Distinguished Professor in Health Sciences and Technology
Core Faculty, Institute for Medical Engineering and Science
Professor of Electrical Engineering and Computer Science

Leonid A. Mirny, PhD
Core Faculty, Institute for Medical Engineering and Science
Professor of Physics

Dava Newman, PhD
Apollo Program Professor
Professor of Aeronautics and Astronautics
Member, Institute for Data, Systems, and Society
Member, Health Sciences and Technology Faculty
(On leave)

David C. Page, MD
Professor of Biology
Member, Health Sciences and Technology Faculty

Phillip A. Sharp, PhD
Institute Professor
Professor of Biology
Member, Health Sciences and Technology Faculty

Collin M. Stultz, MD, PhD
Professor of Electrical Engineering and Computer Science
Core Faculty, Institute for Medical Engineering and Science

Peter Szolovits, PhD
Professor of Computer Science and Engineering
Member, Health Sciences and Technology Faculty

Ioannis V. Yannas, PhD
Professor of Mechanical Engineering and Polymer Science
Professor of Biological Engineering
Member, Health Sciences and Technology Faculty

Alex K. Shalek, PhD
Hermann L. F. von Helmholtz Career Development Professor
Assistant Professor of Chemistry
Core Faculty, Institute for Medical Engineering and Science

Senior Lecturers
Julie E. Greenberg, PhD
Senior Lecturer in Health Sciences and Technology

Instructors
José F. Gómez-Márquez
Instructor of Health Sciences and Technology

Visiting Lecturers
Grace Sock Leng Teo, PhD
Visiting Lecturer in Health Sciences and Technology

HST Affiliated Faculty
R. Rox Anderson, MD
Professor of Dermatology, MGH

Rebecca A. Betensky, PhD
Professor of Biostatistics, HSPH

Joseph V. Bonventre, MD, PhD
Samuel A. Levine Professor
Professor of Medicine, BWH

Brett Bouma, PhD
Professor of Dermatology, MGH

Mary L. Bouxsein, PhD
Associate Professor of Orthopedic Surgery, BIDMC

Thomas N. Byrne, MD
Professor of Neurology and Health Sciences and Technology, MGH

Alexandra V. Chabrerie, MD
Instructor in Medicine, MAH

Elliot L. Chaikof, MD, PhD
Johnson and Johnson Professor
Professor of Surgery, BIDMC

George M. Church, PhD
Robert Winthrop Professor
Professor of Genetics, HMS

Cecil H. Coggins, MD
Associate Professor of Medicine, MGH

David E. Cohen, MD, PhD
Ebert Professor of Medicine and Health Sciences and Technology, HMS

Co-Director, Health Sciences and Technology Program
George Daley, MD, PhD
Professor of Biological Chemistry and Molecular Pharmacology, CHB
Professor of Pediatrics, CHB

Bertrand Delgutte, PhD
Professor of Otolaryngology and Laryngology, MEEI

Jeffrey M. Drazen, MD
Parker B. Francis Distinguished Professor
Professor of Medicine, BWH
Professor in the Department of Environmental Health, HSPH

Stan N. Finkelstein, MD
Associate Professor of Medicine, BIDMC

Bruce R. Fischl, PhD
Professor of Radiology, MGH

Stuart A. Forman, MD, PhD
Associate Professor of Anaesthesia, MGH

Matthew P. Frosch, MD, PhD
Lawrence J. Henderson Associate Professor
Associate Professor of Pathology and Health Sciences and Technology, HMS

Randy L. Gollub, MD, PhD
Associate Professor of Psychiatry, MGH

John J. Guinan Jr, PhD
Professor of Otolaryngology and Laryngology, MEEI

Matti S. Hamalainen, PhD
Associate Professor of Radiology, MGH

Tayyaba Hasan, PhD
Professor of Dermatology, MGH

Miguel Hernan, MD, DrPH
Professor of Epidemiology, HSPH

Robert E. Hillman, PhD
Professor of Surgery, MGH

Paul L. Huang, MD, PhD
Professor of Medicine, MGH

Donald E. Ingber, MD, PhD
Judah Folkman Professor
Professor of Vascular Biology in the Department of Pathology, CHB

Rakesh K. Jain, PhD
A. Werk Cook Professor
Professor of Radiation Oncology (Tumor Biology), MGH

Jeffrey M. Karp, PhD
Associate Professor of Medicine and Health Sciences and Technology, BWH

Alireza Khademhosseini, PhD
Professor of Medicine, BWH

Isaac S. Kohane, MD, PhD
Lawrence J. Henderson Professor
Professor of Pediatrics, CHB

M. Charles Liberman, PhD
Professor of Otolaryngology and Laryngology, MEEI

Daniel M. Merfeld, PhD
Professor of Otolaryngology and Laryngology, MEEI

Richard N. Mitchell, MD, PhD
Lawrence J. Henderson Professor
Professor of Pathology and Health Sciences and Technology, HMS

Robert Padera, MD, PhD
Assistant Professor of Pathology, BWH

Timothy P. Padera, PhD
Assistant Professor of Radiation Oncology, MGH

Shiv S. Pillai, MD, PhD
Professor of Medicine, MGH

Bruce R. Rosen, MD, PhD
Professor of Radiology, MGH

Carl M. Rosow, MD, PhD
Professor of Anaesthesia, MGH

John J. Rosowski, PhD
Professor of Otolaryngology and Laryngology, MEEI

Frederick J. Schoen, MD, PhD
Professor of Pathology, BWH

Shiladitya Sengupta, PhD
Assistant Professor of Medicine, MGH

Jagesh V. Shah, PhD
Associate Professor of Systems Biology and Medicine, BWH

Christopher A. Shera, PhD
Professor of Otolaryngology and Laryngology, MEEI

Harvey B. Simon, MD
Associate Professor of Medicine, MGH

Priscilla J. Slanetz, MD
Associate Professor of Radiology, BIDMC

David Sosnovik, MD
Associate Professor of Medicine, MGH

Myron Spector, PhD
Professor of Orthopedic Surgery (Biomaterials), BWH/VAMC-Boston
Steven M. Stufflebeam, MD
Assistant Professor of Radiology, MGH

Guillermo J. Tearney, MD, PhD
Professor of Pathology, MGH

Mehmet Toner, PhD
Helen Andrus Benedict Professor
Professor of Surgery, MGH

Benjamin Vakoc, PhD
Assistant Professor of Dermatology, MGH

José G. Venegas, PhD
Associate Professor of Anaesthesia, MGH

William Wells, PhD
Professor of Radiology, BWH

Seok-Hyun Yun, PhD
Associate Professor of Dermatology, MGH

Warren M. Zapol, MD
Reginald Jenney Professor
Professor of Anaesthesia, MGH

Professors Emeriti

George B. Benedek, PhD
Alfred H. Caspary Professor Emeritus of Physics
Professor Emeritus of Biological Physics

Ernest G. Cravalho, PhD
Professor Emeritus of Mechanical Engineering
Professor Emeritus of the Practice of Health Sciences and Technology

Nelson Yuan-Sheng Kiang, PhD
Eaton Peabody Professor Emeritus
Professor Emeritus of Health Sciences and Technology
Professor Emeritus of Brain and Cognitive Sciences
Professor Emeritus of Physiology, HMS, MEEI

Irving M. London, PhD
Grover M. Hermann Professor Emeritus
Professor Emeritus of Health Sciences and Technology
Professor Emeritus of Biology and Medicine

William T. Peake, ScD
Professor Emeritus of Electrical and Bioengineering
Professor Emeritus of Health Sciences and Technology

Laurence R. Young, ScD
Apollo Program Professor Emeritus
Professor Emeritus of Aeronautics and Astronautics
Professor Emeritus of Health Sciences and Technology
DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING

Materials science and engineering studies the ways in which atoms and molecules can be built into solid materials and how the structural arrangement of the atoms in a material governs its properties. The department’s research and academic programs address all classes of materials, used in every domain of human endeavor, including energy, sustainability, nanotechnology, healthcare, and all types of manufacturing. The discipline is unique for its balance of basic science (examining the relationships and connections between materials’ processing, structure, and properties) and applied engineering (because all advanced technologies depend on materials). Faculty and student research projects in the Department of Materials Science and Engineering (DMSE) range from the purely scientific to specific applications and goals. The department draws on perspectives from chemistry, physics, biology, electronics, and design.

Recent achievements in materials have depended as much on advances in materials engineering as they have on materials science. When developing engineering processes for preparation and production of materials and when designing materials for specific applications, the materials engineer must understand fundamental concepts such as thermodynamics, heat and mass transfer, and chemical kinetics, and must also have a proper concern for economic, social, and environmental factors. Today's materials scientists and engineers address some of the key challenges facing humanity, including energy generation and storage, the environmental impact of human activities, and advancements in health and medicine.

Materials engineering and materials science are interwoven in the department. There are some areas of study essential for all students of materials: thermodynamics, kinetics, materials structure, electronic and mechanical properties of materials, bio- and polymeric materials, and materials processing. Core subjects in these areas are offered at the undergraduate and graduate levels. In addition, elective subjects covering a wide range of topics are offered. Lectures are complemented by a variety of laboratory experiences. By selecting appropriate subjects, the student can follow many different paths with emphasis on engineering, science, or a mixture of the two. In addition, students may pursue a path in archaeology and archaeological science by selecting subjects that focus on archaeological materials research within the Department of Materials Science and Engineering and the Center for Materials Research in Archaeology and Ethnology. This curriculum is unique within departments of anthropology, archaeology, and engineering.

Materials engineers and materials scientists, whether generalists or specialists in a particular class of material, are in continually high demand by industry and government for jobs in research, development, production, and management. They find challenging opportunities in diverse important positions in companies working on energy and the environment, in the electronics industry, in the aerospace industry, in consumer industries, and in biomaterials and medical industries. A large number of DMSE alumni are faculty of leading universities.

The department has modern undergraduate materials teaching laboratories containing a wide variety of materials processing and characterization equipment. The Undergraduate Teaching Laboratory on the Infinite Corridor includes facilities for biomaterials research, chemical synthesis, and physical and electronic properties measurement. The Laboratory for Advanced Materials contains characterization equipment for scanning acoustical microscopy, near-field and scanning laser confocal microscopes, and low-temperature multiprobe. Other departmental facilities include those for preparation and characterization of thin films, ceramics and glasses, metallic and nonmetallic crystals, biomaterials, and polymers. Equipment is available for the study of mechanical properties in the Nanomechanics Laboratory, and for metal casting and joining in the Foundry. Materials are characterized by optical, electron (TEM, SEM), and scanning probe (AFM, STM) microscopy, and there is equipment for a wide range of electrical optical, magnetic, and mechanical property measurements.

Undergraduate Study

The Department of Materials Science and Engineering (DMSE) offers three undergraduate degree programs:

- Course 3, leading to the Bachelor of Science in Materials Science and Engineering, is taken by the majority of undergraduates in the department and is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org).
- Course 3-A, leading to the Bachelor of Science without specification, provides greater flexibility to the student in designing his or her professional program and is often taken by pre-med, pre-law, or pre-MBA students.
- Course 3-C provides a Bachelor of Science in Archaeology and Materials.

The department also offers research and educational specialization in a large number of industrially and scientifically important areas leading to master’s and doctoral degrees.

Bachelor of Science in Materials Science and Engineering (Course 3)

The undergraduate program (p. 391) serves the needs of students who intend to pursue employment in materials-related industries immediately upon graduation, as well as those who will do graduate work in the engineering or science of materials. The program is designed to be started at the beginning of the sophomore year, although it can be started in the spring term of the sophomore year or in the junior year with some loss of scheduling flexibility.
The first four academic terms of the program contain required core subjects that address the fundamental relations between processing, microstructure, properties, and applications of modern materials. The core subjects are followed by a sequence of restricted electives that provide more specialized coverage of the major classes of modern materials: biomaterials, ceramics, electronic materials, metals, and polymers, as well as cross-cutting topics relevant to all types of materials. Course 3 students write either a senior thesis or an internship report based on a summer industrial internship. This provides an opportunity for original research work beyond that which occurs elsewhere in the program.

The required subjects can be completed in the sophomore and junior years within a schedule that allows students to take a HASS subject each term and a range of elective junior and senior subjects. Departmental advisors work with students to assist in selecting elective subjects suitable to the student's needs and interests. While the program should satisfy the academic needs of most students, petitions for variations or substitutions may be approved by the departmental Undergraduate Committee; students should contact their advisor for guidance in such cases.

Participation in laboratory work by undergraduates is an integral part of the curriculum. The departmental core subjects include extensive laboratory exercises, which investigate materials properties, structure, and processing and are complementary to the lecture subjects. The junior-year core includes a capstone laboratory subject, 3.042 Materials Project Laboratory that emphasizes design, materials processing, teamwork, communication skills, and project management. Undergraduate students also have access to extensive facilities for research in materials as part of Undergraduate Research Opportunities Program (UROP) (http://web.mit.edu/urop) and thesis projects. Engineering design figures prominently in a substantial portion of the laboratory exercises. Students develop oral and written communication skills by reporting data and analysis in a variety of ways.

Students may substitute industrial internship reports (12 units of Industrial Practice, 3.930/3.931 Internship Program) for the senior thesis (3.THU Undergraduate Thesis). Students should select this option during their sophomore year, and take 3.930 in the summer after the sophomore year and 3.931 in the summer following the junior year. This option provides a student with industrial experience concurrently with academic work through cooperative work assignments matched to the student's capabilities and arranged by the department. Together with a company representative, a faculty advisor is assigned to each student to assist as co-supervisor during his or her work assignments. Students earn a salary during their work periods and also receive academic credit.

Bachelor of Science (Course 3-A)
Some students may be attracted to the many opportunities available in the materials discipline, but also have special interests that are not satisfied by the Course 3 program. For instance, some students may wish to take more biology and chemistry subjects in preparation for medical school or more management subjects prior to entering an MBA or law program. In these cases, the 3-A program may be of value as a more flexible curriculum in which a larger number of elective choices is available.

The curriculum requirements (p. 393) for Course 3-A are similar to, but more flexible than, those for Course 3.

A student considering the 3-A program should contact the department Academic Office, who will counsel him or her more fully on the academic considerations involved. The student will prepare a complete plan of study which must be approved by the departmental Undergraduate Committee. This approval must be obtained no later than the beginning of the student's junior year. The student is then expected to adhere to this plan unless circumstances require a change, in which case a petition for a modified program must be submitted to the Undergraduate Committee. The department does not seek ABET accreditation for the 3-A program.

Bachelor of Science in Archaeology and Materials as Recommended by the Department of Materials Science and Engineering (Course 3-C)
Students who have a specific interest in archaeology and archaeological science may choose Course 3-C. The 3-C program (p. 372) is designed to afford students broad exposure to fields that contribute fundamental theoretical and methodological approaches to the study of ancient and historic societies. The primary fields include anthropological archaeology, geology, and materials science and engineering. The program enriches knowledge of past and present-day nonindustrial societies by making the natural and engineering sciences part of the archaeological tool kit.

The program's special focus is on understanding prehistoric culture through study of the structure and properties of materials associated with human activities. Investigating peoples' interactions with materials, the objects that such interactions produced, and the related environmental settings, leads to a fuller analysis of the physical, social, cultural, and ideological world in which people function. These are the goals of anthropological archaeology, goals that are reached, in part, through science and engineering perspectives.

Participation in laboratory work by undergraduates is an integral part of the curriculum. The program requires that all students take a materials laboratory subject. Many of the archaeology subjects are designed with a laboratory component; such subjects meet in the Undergraduate Archaeology and Materials Laboratory. Undergraduate students also have access to the extensive CMRAE facilities for research in archaeological materials as part of UROP and thesis projects. Such projects may include archaeological fieldwork during IAP or the summer months.

The HASS Concentration in Archaeology and Archaeological Science provides concentrators with a basic knowledge of the field of archaeology, the systematic study of the human past. Students
pursuing the SB in 3-C may not also concentrate in this area. The archaeology and archaeological science concentration consists of four subjects:

Required Subjects

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.986</td>
<td>The Human Past: Introduction to Archaeology</td>
<td>12</td>
</tr>
<tr>
<td>3.985[J]</td>
<td>Archaeological Science</td>
<td>9</td>
</tr>
</tbody>
</table>

Select two other HASS electives from among the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.094</td>
<td>Materials in Human Experience</td>
</tr>
<tr>
<td>3.982</td>
<td>The Ancient Andean World</td>
</tr>
<tr>
<td>3.983</td>
<td>Ancient Mesoamerican Civilization</td>
</tr>
<tr>
<td>3.987</td>
<td>Human Evolution: Data from Palaeontology, Archaeology, and Materials Science</td>
</tr>
<tr>
<td>3.993</td>
<td>Archaeology of the Middle East</td>
</tr>
</tbody>
</table>

Total Units 39-42

The department does not seek ABET accreditation for the 3-C program. Students may contact Dr. Kathryn Grossman (kmgrossm@mit.edu) for more information.

Minor in Materials Science and Engineering

The Minor in Materials Science and Engineering consists of six undergraduate subjects totaling at least 72 units from the list of Required Subjects and Restricted Electives in the departmental program, with at least one of these taken from the list of Restricted Electives. (See Course 3 degree chart (p. 391) for a list of subjects.) With the approval of the minor advisor, students may substitute one subject taken outside the department for one of the Course 3 subjects, provided that the coverage of the substituted subject is similar to one of those in the departmental program.

The department’s minor advisor, Professor Geoffrey Beach, will ensure that individual minor programs form a coherent group of subjects. Because of the breadth of the undergraduate program in the department and the variety of possibilities for specialization, the minor program is flexible in its composition. Examples of minor programs in materials science and engineering can be obtained from the department. Other suitable programs may be composed through consultation between the student, the minor advisor, and the Undergraduate Committee.

Minor in Archaeology and Materials

The Minor in Archaeology and Materials (3-C) consists of six undergraduate subjects as described below.

Required Subjects

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.012</td>
<td>Fundamentals of Materials Science and Engineering</td>
<td>15</td>
</tr>
<tr>
<td>3.014</td>
<td>Materials Laboratory</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.022</td>
<td>Microstructural Evolution in Materials</td>
<td>12</td>
</tr>
<tr>
<td>3.985[J]</td>
<td>Archaeological Science (HASS-S)</td>
<td>9</td>
</tr>
<tr>
<td>3.986</td>
<td>The Human Past: Introduction to Archaeology (HASS-S)</td>
<td>12</td>
</tr>
</tbody>
</table>

Elective

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.981</td>
<td>Communities of the Living and the Dead: the Archaeology of Ancient Egypt</td>
</tr>
<tr>
<td>3.982</td>
<td>The Ancient Andean World</td>
</tr>
<tr>
<td>3.983</td>
<td>Ancient Mesoamerican Civilization</td>
</tr>
<tr>
<td>3.987</td>
<td>Human Evolution: Data from Palaeontology, Archaeology, and Materials Science</td>
</tr>
<tr>
<td>3.990</td>
<td>Seminar in Archaeological Method and Theory</td>
</tr>
<tr>
<td>3.993</td>
<td>Archaeology of the Middle East</td>
</tr>
</tbody>
</table>

Total Units 69-72

1. All of these subjects, with the exception of 3.990, provide HASS-S credit.

With the approval of the minor advisor, students may substitute one subject taken outside the Course 3 program, provided the coverage is equivalent. The 3-C minor advisor, Dr. Kathryn Grossman, will ensure that the minor program forms a coherent group of subjects.

A general description of the minor program at MIT may be found under Undergraduate Education (p. 34).

Inquiries

Additional information regarding undergraduate programs may be obtained from the DMSE Academic Office, Room 6-107, 617-258-5816.

Graduate Study

The Department of Materials Science and Engineering (DMSE) offers the degrees of Master of Science, Doctor of Philosophy, and Doctor of Science in Materials Science and Engineering.

Admission Requirements for Graduate Study

General admissions requirements are described under Graduate Education. Programs are arranged on an individual basis depending upon the preparation and interests of the student. Those who have not studied some thermodynamics and kinetics at the undergraduate level are advised to take 3.012 Fundamentals of Materials Science and Engineering and 3.022 Microstructural Evolution in Materials.
Requirements for Completion of Graduate Degrees
The general requirements for completion of graduate degrees are also described under the section on Graduate Education. Students completing a Master of Science degree are required to present a seminar summarizing the thesis. The department requires that candidates for the doctoral degrees go through a qualifying procedure and pass Institute-mandated general written and oral examinations before continuing with their programs of study and research, and that they satisfy a minor requirement. Information on the qualifying procedure and on the subject areas covered by the general examinations is available in the DMSE Academic Office.

Master of Science in Materials Science and Engineering
The department offers a Master of Science degree in materials science and engineering. The general requirements for the master’s degree are described under the section on Graduate Education. The coherent program of subjects (34 units, though not necessarily all Course 3 subjects) must be approved by the Department Committee on Graduate Students in Course 3. Of the 66 total units required for the master’s degree, 42 graduate degree credits are required to be in Course 3 subjects at the graduate level. The thesis must have significant materials research content and an internal departmental thesis reader is required if the student’s advisor is outside Course 3.

The department may also recommend awarding a master’s degree without departmental specification; the general requirements are described under Graduate Education. The thesis must be materials-related, and an internal departmental thesis reader is required if the thesis advisor is outside Course 3.

Simultaneous Award of Two Master of Science Degrees for Students from Other Departments
Graduate students may seek two Master of Science degrees simultaneously or in sequence, one awarded by the student’s home department and the other by the Department of Materials Science and Engineering. The rules governing dual degrees are found in the section detailing degree requirements under Graduate Education. Additional information on requirements that must also be met to obtain the Master of Science degree from the Materials Science and Engineering Department is available from the department.

Doctoral Degree
All doctoral degree programs have the same foundation of required subjects:

<table>
<thead>
<tr>
<th>Doctoral Program Core Requirements</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.20 Materials at Equilibrium</td>
<td>15</td>
</tr>
<tr>
<td>3.21 Kinetic Processes in Materials</td>
<td>15</td>
</tr>
<tr>
<td>3.22 Mechanical Behavior of Materials</td>
<td>12</td>
</tr>
<tr>
<td>3.23 Electrical, Optical, and Magnetic Properties of Materials</td>
<td>12</td>
</tr>
</tbody>
</table>

The general written examination covers material in the doctoral core.
In the thesis area examination (oral presentation and examination), students are expected to learn the fundamentals of their chosen field and to develop a deep understanding of one or more of its significant aspects. Students are required to take three further subjects from an approved restricted electives list. A full range of advanced-level subjects is offered in a variety of topics, and arrangements can be made for individually planned study of any relevant topic. The thesis area examinations for the doctoral degree are designed accordingly. In addition, students are required to take a two- or three-subject minor program.

A large and active research program on the structure and properties, preparation, and processing of materials, with emphasis on ceramics, electronic materials, metals, polymers, and biomaterials, is conducted in the department. Graduate research is considered the central part of the educational process, and emphasis is placed on the research thesis. Students choose research projects from the many opportunities that exist within the department, and work closely with an individual faculty member. The results of the thesis must be of sufficient significance to warrant publication in the scientific literature.

The department maintains a large number of well-equipped research laboratories, and there is significant interaction between them, including the sharing of experimental facilities and equipment. Most department members have access to the Center for Materials Science and Engineering and the Materials Processing Center, both of which provide and maintain excellent central facilities and interdisciplinary research opportunities as described in the section on Research and Study.

Interdisciplinary Programs
Program in Archaeological Materials
The Department of Materials Science and Engineering offers an interdisciplinary doctoral program for individuals who wish to consider the study of archaeology and materials science and pursue research in the field of archaeological materials. Admission to the program is through the department. The program requires four core subjects—half in materials science and engineering, half in archaeology—and six additional subjects. Many of the subject requirements may be met with coursework in the Architecture; Civil and Environmental Engineering; Earth, Atmospheric, and Planetary Sciences; Mechanical Engineering; and Urban Studies and Planning departments; or in the Technology and Policy Program; the Program in Science, Technology, and Society; and the Anthropology Department at Harvard University. Field research opportunities are available, most notably in Mesoamerica and South America.

Polymers and Soft Matter
The Program in Polymers and Soft Matter (PPSM) (http://polymerscience.mit.edu) offers students from participating departments an interdisciplinary core curriculum in polymer science
and engineering, exposure to the broader polymer community through seminars, contact with visitors from industry and academia, and interdepartmental collaboration while working towards a PhD or ScD degree.

Research opportunities include functional polymers, controlled drug delivery, nanostructured polymers, polymers at interfaces, biomaterials, molecular modeling, polymer synthesis, biomimetic materials, polymer mechanics and rheology, self-assembly, and polymers in energy. The program is described in more detail under Interdisciplinary Graduate Programs (p. 358).

Technology and Policy Program
The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description (p. 359) under Interdisciplinary Programs or visit the program website (http://web.mit.edu/tpp).

Financial Support
The Department of Materials Science and Engineering offers assistantships and fellowships for graduate study. Research and teaching assistantships are available in the fields in which the department is active.

Inquiries
Additional information regarding graduate programs, admissions, and financial aid may be obtained by contacting the Academic Office (dmse-admissions@mit.edu), Room 6-107.

Faculty and Teaching Staff

Professors
- Samuel Miller Allen, PhD
 Professor without Tenure (Retired) of Materials Science and Engineering
- Ronald G. Ballinger, ScD
 Professor of Nuclear Science and Engineering
 Professor of Materials Science and Engineering
- Angela M. Belcher, PhD
 Professor of Biological Engineering
 Professor of Materials Science and Engineering
- W. Craig Carter, PhD
 POSCO Professor of Materials Science and Engineering
- Yet-Ming Chiang, PhD
 Kyocera Professor of Ceramics
- Michael J. Cima, PhD
 Professor of Materials Science and Engineering
- David H. Koch Professor in Engineering
 Professor of Materials Science and Engineering
- Joel P. Clark, ScD
 Professor of Materials Science and Engineering
- Thomas W. Eagar, ScD
 Professor of Materials Science and Engineering
- Yoel Fink, PhD
 Professor of Materials Science and Engineering
 Professor of Electrical Engineering and Computer Science
- Eugene A. Fitzgerald, PhD
 Merton C. Flemings (1951) SMA Professor
 Professor of Materials Science and Engineering
- Lorna Gibson, PhD
 Matoula S. Salapatas Professor in Materials Science and Engineering
 Professor of Mechanical Engineering
- Jeffrey C. Grossman, PhD
 Professor of Materials Science and Engineering
 Professor of Mechanical Engineering
- Dorothy Hosler, PhD
 Professor of Archaeology and Ancient Technology
- Darrell J. Irvine, PhD
 Professor of Biological Engineering
 Professor of Materials Science
- Lionel C. Kimerling, PhD
 Thomas Lord Professor in Materials Science and Engineering
- Heather Nan Lechtman, MA
 Professor of Archaeology and Ancient Technology
- Ju Li, PhD
 Battelle Energy Alliance Professor
 Professor of Nuclear Science and Engineering
 Professor of Materials Science and Engineering
- Christine Ortiz, PhD
 Morris Cohen Professor of Materials Science and Engineering
 Dean for Graduate Education
- Caroline A. Ross, PhD
 Toyota Professor in Materials Processing
Michael F. Rubner, PhD
TDK Professor in Materials Science and Engineering

Donald Robert Sadoway, PhD
John F. Elliott Professor in Materials Science and Engineering

Christopher A. Schuh, PhD
Danae and Vasilis (1961) Salapatas Professor in Ferrous Metallurgy
Department Head of Materials Science and Engineering

Yang Shao-Horn, PhD
W. M. Keck Professor of Energy
Professor of Mechanical Engineering
Professor of Materials Science and Engineering

Carl V. Thompson, PhD
Stavros V. Salapatas Professor in Materials Science and Engineering

Harry L. Tuller, PhD
Professor of Materials Science and Engineering

Krystyn J. Van Vliet, PhD
Professor of Biological Engineering
Professor of Materials Science and Engineering

Juejun Hu, PhD
Merton C. Flemings (1951) Career Development Professor
Assistant Professor of Materials Science and Engineering

Rafael Jaramillo, PhD
Toyota Professor in Materials Processing
Assistant Professor of Materials Science and Engineering

Robert Macfarlane, PhD
Assistant Professor of Materials Science and Engineering

Elsa A. Olivetti, PhD
Thomas Lord Professor in Materials Science
Assistant Professor of Materials Science and Engineering

Visiting Professors
Gerbrand Ceder, PhD
Richard P. Simmons (1953) Professor in Metallurgy
Visiting Professor of Materials Science and Engineering

Lecturers
Geetha P. Berera, PhD
Lecturer in Materials Science and Engineering

Kathryn M. Grossman, PhD
Lecturer in Materials Science and Engineering

Kyle Keane, PhD
Lecturer in Materials Science and Engineering

Michael J. Tarkanian, MS
Lecturer in Materials Science and Engineering

Meri Treska, PhD
Lecturer in Materials Science and Engineering

Instructors
Peter B. Houk, MA
Instructor of Materials Science and Engineering

Technical Instructors
Christopher J. Di Perna, MS
Technical Instructor of Materials Science and Engineering

Tara J. Fadenrecht, MFA
Technical Instructor of Materials Science and Engineering

Ike Feitler, BS
Technical Instructor of Materials Science and Engineering

James Hunter, PhD
Technical Instructor of Materials Science and Engineering

Jessica G. Sandland, PhD
Technical Instructor of Materials Science and Engineering
Visiting Lecturers
Arne Hessenbruch, PhD
Visiting Lecturer in Materials Science and Engineering
Andreas Wankerl, PhD
Visiting Lecturer of Materials Science and Engineering

Research Staff

Principal Research Scientists
Ming Dao, PhD
Principal Research Scientist of Materials Science and Engineering

Research Scientists
Mojtaba Azadi Sohi, PhD
Research Scientist of Materials Science and Engineering
David C. Bono, PhD
Research Scientist of Materials Science and Engineering
Anna Jagielska, PhD
Research Scientist of Materials Science and Engineering
Jifa Qi, PhD
Research Scientist of Materials Science and Engineering
Alan F. Schwartzman, MS
Research Scientist of Materials Science and Engineering

Professors Emeriti
Robert W. Balluffi, ScD
Professor Emeritus of Materials Science and Engineering
Harry Constantine Gatos, PhD
Professor Emeritus of Molecular Engineering
Professor Emeritus of Electronic Materials
Linn W. Hobbs, DPhil
Professor Emeritus of Materials Science and Engineering
Professor Emeritus of Nuclear Science and Engineering
Ronald M. Latanision, PhD
Professor Emeritus of Materials Science and Engineering
Professor Emeritus of Nuclear Science and Engineering
Koichi Masubuchi, PhD
Kawasaki Professor Emeritus of Engineering
Professor Emeritus of Mechanical and Ocean Engineering
Professor Emeritus of Materials Science and Engineering
Regis M. N. Pelloux, PhD
Professor Emeritus of Materials Engineering
Robert Michael Rose, ScD
Professor Emeritus of Materials Science and Engineering
David Roylance, PhD
Professor Emeritus of Materials Science and Engineering
Kenneth C. Russell, PhD
Professor Emeritus of Metallurgy
Professor Emeritus of Nuclear Science and Engineering
Subra Suresh, ScD
Vannevar Bush Professor Emeritus of Engineering
Edwin L. Thomas, PhD
Professor Emeritus of Materials Science
John B. Vander Sande, PhD
Professor Emeritus of Materials Science
Bernhardt Wuensch, PhD
Professor Emeritus of Ceramics
Sidney Yip, PhD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Materials Science and Engineering
DEPARTMENT OF MECHANICAL ENGINEERING

Mechanical engineering is concerned with the responsible
development of products, processes, and power, at scales ranging
from molecules to large and complex systems. Mechanical
engineering principles and skills are involved at some stage during
the conception, design, development, and manufacture of every
human-made object with moving parts. Many innovations crucial to
our future will have their roots in the world of mass, motion, forces,
and energy—the world of mechanical engineers.

Mechanical engineering is one of the broadest and most versatile
of the engineering professions. This is reflected in the portfolio
current activities in the Department of Mechanical Engineering
(MechE), one that has widened rapidly in the past decade. Today,
our faculty are involved in projects ranging from, for example,
the use of nanoparticles to tailor the properties of polymers to
the use of nanostructured surfaces for clean water and thermal
management of microelectronics; from the development of efficient
methods for robust design to the building of robotics for land
and underwater exploration; from the creation of optimization
methods that autonomously generate decision-making strategies to
driverless cars; from the invention of cost-effective photovoltaic
cells to the thermal and electrical energy storage systems; from the
use of acoustics to explore the ocean of one of Jupiter's moons to
the biomimetics of swimming fish; from the development of
physiological models for metastatic cancers to the development of
novel medical devices; and from the use of nanoscale antennas for
manipulating large molecules to the fabrication of 3-D printing of
nanostructures and macrostructures.

The department carries out its mission with a focus on the seven
areas of excellence described below. Our education and research
agendas are informed by these areas, and these are the areas in
which we seek to impassion the best undergraduate and graduate
students.

Area 1: Mechanics: Modeling, Experimentation, and Computation
(MMEC). At the heart of mechanical engineering lies the ability to
measure, describe, and model the physical world of materials and
mechanisms. The MMEC area focuses on teaching the fundamental
principles, essential skills, and scientific tools necessary for
predicting thermo-mechanical phenomena and using such
knowledge in rational engineering design. We provide students with
the foundations in experimental, modeling, and computational skills
needed to understand, exploit, and enhance the thermo-physical
behavior of advanced engineering devices and systems, and to make
lifelong creative contributions at the forefront of the mechanical
sciences and beyond. Research in the MMEC area focuses on four
key thrusts:

- Computational mechanics
- Fluid dynamics and transport
- Mechanics of solid materials
- Nonlinear dynamics

The fundamental engineering principles embodied in these topics
can be applied over a vast range of force, time, and length scales,
and applications of interest in the MMEC area span the spectrum
from the nano/micro world to the geophysical domain. A Course 2-A
track is offered in this area.

Area 2: Design, Manufacturing, and Product Development. Design,
manufacturing, and product development is the complete set of
activities needed to bring new devices and technologies to the
marketplace. These activities span the entire product life-cycle,
from the identification of a market opportunity or need, through
design, testing, manufacture and distribution, and end of useful
life. Our work includes everything from understanding the voice
of the customer to finding new ways of processing materials to
improving product performance and tracking product flow through a
distribution network. A central component of this area is the design
and construction of novel equipment, either for consumer products
or for industrial uses. This spans scales from meters to microns,
and involves mechanical, electronic and electromechanical devices.
Many MechE students apply design, manufacturing, and product
development skills and techniques to extracurricular design work
for organizations and student activities such as Design that Matters,
Formula SAE, Satellite Engineering Team, and the Solar Electric
Vehicle Team. Some projects lead to flagship products for new
companies. A Course 2-A track in product development is offered
along with a unique Master of Engineering degree in manufacturing.

Area 3: Controls, Instrumentation, and Robotics. The mission in
this area is to promote research and education for automating,
monitoring, and manipulating systems. The focus is on system-
level behavior that emerges primarily from interactions and cannot
be explained from individual component behavior alone. We seek
to identify fundamental principles and methodologies that enable
systems to exhibit intelligent, goal-oriented behavior, and develop
innovative instruments to monitor, manipulate, and control systems.
The core competencies in which we seek to excel are:

- Methodologies for understanding system behavior through
 physical modeling, identification, and estimation.
- Technologies for sensors and sensor networks; actuators and
 energy transducers; and systems for monitoring, processing,
 and communicating information.
- Fundamental theories and methodologies for analyzing,
synthesizing, and controlling systems; learning and adapting to
 unknown environments; and effectively achieving task goals.

We seek to apply our core competencies to diverse areas of social,
national, and global needs. These include health care, security,
education, medical and security related imaging, space and ocean
exploration, and autonomous systems in air, land, and underwater
environments. We also offer a Course 2-A track in this area.
Area 4: Energy Science and Engineering. Energy is one of the most significant challenges facing humanity and is a central focus of mechanical engineering's contribution to society. Our research focuses on efficient and environmentally friendly energy conversion and utilization from fossil and renewable resources. Programs in the department cover many of the fundamental and technological aspects of energy, with applications to high performance combustion engines, batteries and fuel cells, thermoelectricity and photovoltaics, wind turbines, and efficient buildings. Work in very-low-temperature thermodynamics includes novel sub-Kelvin refrigeration. Efforts in high-temperature thermodynamics and its coupling with transport and chemistry include internal combustion engine analysis, design, and technology; control of combustion dynamics and emissions; thermoelectric energy conversion; low- and high-temperature fuel cells; and novel materials for rechargeable batteries and thermal energy storage. Work in heat and mass transport covers thermal control of electronics from manufacturing to end use; microscale and nanoscale transport phenomena; desalination and water purification; high heat flux engineering; and energy-efficient building technology. Work in renewable energy encompasses the design of offshore and floating wind turbines and tidal wave machines; and analysis and manufacturing of photovoltaic and thermophotovoltaic devices. Energy storage, hybrid systems, fuel synthesis, and integration of energy systems are active research areas in the department. We also offer a Course 2-A track in energy.

Area 5: Ocean Science and Engineering. The oceans cover over 70 percent of the planet’s surface and constitute a critical element in our quality of life, including the climate and the resources and food that we obtain from the sea. This area's objectives are to support the undergraduate and graduate programs in ocean engineering, including the naval construction program, the MIT/Woods Hole Oceanographic Institution Joint Program in Applied Oceanography and the Course 2-OE degree in mechanical and ocean engineering. It also serves as the focus point of ocean-related research and education at MIT. Major current research activities include marine robotics and navigation of underwater vehicles and smart sensors for ocean mapping and exploration; biomimetics to extract new understanding for the development of novel ocean systems studying marine animals; the study of the mechanics and fluid mechanics of systems for ultradepth ocean gas and oil extraction; ocean wave and offshore wind energy extraction; the free surface hydrodynamics of ocean-going vehicles; the development of advanced naval and commercial ships and submersibles, including the all-electric ship; the mechanics and crashworthiness of ocean ships and structures; ocean transportation systems; ocean acoustics for communication, detection, and mapping in the ocean; and adaptive sampling and multidisciplinary forecasting of the ocean behavior. The design of complex ocean systems permeates all these areas and provides the cohesive link for our research and teaching activities.

Area 6: Bioengineering. Engineering analysis, design, and synthesis are needed to understand biological processes and to harness them successfully for human use. Mechanical forces and structures play an essential role in governing the function of cells, tissues, and organs. Our research emphasizes integration of molecular- to-systems–level approaches to probe the behavior of natural biological systems; and to design and build new systems, ranging from analysis of gene regulatory networks to microfluidic assays for drug screening or new technologies for biomedical imaging. Emphasis is also placed on creating new physiological or disease models using the tools of nano- and microfabrication as well as creation of new biomaterials. An active area of research is in the design of medical or biological systems from medical devices to biophotonics. Applications include understanding, diagnosing, and treating diseases such as atherosclerosis, osteoarthritis, spinal cord injury or liver failure; new tools for drug discovery and drug development; and tissue-engineered scaffolds and devices for in vivo regeneration of tissues and organs. Work also includes design and fabrication of new devices and tools for rehabilitation of stroke victims, and for robotic surgery. We offer many elective subjects at the undergraduate and graduate levels, as well as a bioengineering track in Course 2-A.

Area 7: Nano/Micro Science and Technology. The miniaturization of devices and systems of ever-increasing complexity has been a fascinating and productive engineering endeavor during the past few decades. Near and long term, this trend will be amplified as physical understanding of the nano world expands, and widespread commercial demand drives the application of manufacturing to micro- and nanosystems. Micro- and nanotechnology can have tremendous impact on a wide range of mechanical systems. Examples include microelectromechanical system (MEMS) devices and products that are already deployed as automobile airbag sensors, smart phone parts, and for drug delivery; stronger and lighter nanostructured materials now used in airplanes and automobiles; and nanostructured energy conversion devices that significantly improve the efficiency of renewable energy systems. Research in this area cuts across mechanical engineering and other disciplines. Examples include sensors and actuators; micro-fluidics, heat transfer, and energy conversion at the micro- and nanoscales; optical and biological micro- and nano-electromechanical systems (MEMS and NEMS); engineered nanomaterials; atomic scale precision engineering; and the nano-photonics in measurement, sensing, and systems design. Students interested in micro/ nano technology are encouraged to explore the Course 2-A nanotechnology track.

In order to prepare the mechanical engineers of the future, the department has developed undergraduate and graduate educational programs of the depth and breadth necessary to address the diverse and rapidly changing technological challenges that society faces. Our educational programs combine the rigor of academic study with the excitement and creativity inherent to innovation and research.
Undergraduate Study

The Department of Mechanical Engineering (MechE) offers three programs of undergraduate study. The first of these, the traditional program that leads to the bachelor’s degree in mechanical engineering, is a more structured program that prepares students for a broad range of career choices in the field of mechanical engineering. The second program leads to a bachelor’s degree in engineering and is intended for students whose career objectives require greater flexibility. It allows them to combine the essential elements of the traditional mechanical engineering program with study in another, complementary field. The third program, in mechanical and ocean engineering, is also a structured program for students interested in mechanical engineering as it applies to the engineering aspects of ocean science, exploration, and utilization, and of marine transportation.

All of the educational programs in the department prepare students for professional practice in an era of rapidly advancing technology. They combine a strong base in the engineering sciences (mechanics, materials, fluid and thermal sciences, systems and control) with project-based laboratory and design experiences. All strive to develop independence, creative talent, and leadership, as well as the capability for continuing professional growth.

Bachelor of Science in Mechanical Engineering (Course 2)

The program in mechanical engineering provides a broad intellectual foundation in the field of mechanical engineering. The program develops the relevant engineering fundamentals, includes various experiences in their application, and introduces the important methods and techniques of engineering practice.

The educational objectives of the program leading to the degree Bachelor of Science in Mechanical Engineering (p. 396) are that:

Within a few years of graduation, a majority of our graduates will have completed or be progressing through top graduate programs; advancing in leadership tracks in industry, non-profit organizations, or the public sector; or pursuing entrepreneurial ventures. In these roles they will: (1) apply a deep working knowledge or technical fundamentals in areas related to mechanical, electromechanical, and thermal systems to address needs of the customer and society; (2) develop innovative technologies and find solutions to engineering problems; (3) communicate effectively as members of multidisciplinary teams; (4) be sensitive to professional and societal contexts and committed to ethical action; (5) lead in the conception, design, and implementation of new products, processes, services, and systems.

Students are urged to contact the MechE Undergraduate Office as soon as they have decided to enter mechanical engineering so that a faculty advisor may be assigned. Students, together with their faculty advisors, plan a program that best utilizes the departmental electives and the 48 units of unrestricted electives available in the Course 2 degree program.

This program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org) as a mechanical engineering degree.

Bachelor of Science in Engineering as Recommended by the Department of Mechanical Engineering (Course 2-A)

Course 2-A is designed for students whose academic and career goals demand greater breadth and flexibility than are allowed under the mechanical engineering program, Course 2. To a large extent, the 2-A program allows students an opportunity to tailor a curriculum to their own needs, starting from a solid mechanical engineering base. The program combines a rigorous grounding in core mechanical engineering topics with an individualized course of study focused on a second area that the student designs with the help and approval of the 2-A faculty advisor. The program leads to the degree Bachelor of Science in Engineering as Recommended by the Department of Mechanical Engineering.

This program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org) as an engineering degree.

The educational objectives of the program leading to the degree Bachelor of Science in Engineering as recommended by the Department of Mechanical Engineering (p. 390) are that:

Within a few years of graduation, a majority of our graduates will have completed or be progressing through top graduate programs; advancing in leadership tracks in industry, non-profit organizations, or the public sector; or pursuing entrepreneurial ventures. In these roles they will: (1) apply a deep working knowledge or technical fundamentals in areas related to mechanical, electromechanical, and thermal systems to address needs of the customer and society; (2) develop innovative technologies and find solutions to engineering problems; (3) communicate effectively as members of multidisciplinary teams; (4) be sensitive to professional and societal contexts and committed to ethical action; (5) lead in the conception, design, and implementation of new products, processes, services, and systems.

A significant part of the 2-A curriculum consists of electives chosen by the student to provide in-depth study of a field of the student’s choosing. A wide variety of popular concentrations are possible in which well-selected academic subjects complement a foundation in mechanical engineering and general Institute requirements. Some examples of potential concentrations include robotics, engineering management, product development, biomedical engineering and pre-medicine, energy conversion engineering, sustainable development, architecture and building technology, and any of the seven departmental focus areas mentioned above. The MechE faculty have developed specific recommendations in some of these
areas; details are available from the MechE Undergraduate Office and on the departmental website.

Concentrations are not limited to those listed above. Students are encouraged to design and propose technically oriented concentrations that reflect their own needs and those of society.

The student’s overall program must contain a total of at least one and one-half years of engineering content (150 units) appropriate to the student’s field of study. The required core and second-level subjects include approximately 78 units of engineering topics. The self-designed concentration must include at least 72 more units of engineering topics. While engineering topics are usually covered through engineering subjects, subjects outside the School of Engineering may provide material essential to the engineering program of some concentrations. For example, management subjects usually form an essential part of an engineering management concentration. In all cases, the relationship of concentration subjects to the particular theme of the concentration must be obvious.

To pursue the 2-A degree, students must submit the online 2-A enrollment form no later than Add Date of their second term in the program.

Bachelor of Science in Mechanical and Ocean Engineering (Course 2-OE)

This program is intended for students who are interested in combining a firm foundation in mechanical engineering with a specialization in ocean engineering. The program includes engineering aspects of the ocean sciences, ocean exploration, and utilization of the oceans for transportation, defense, and extracting resources. Theory, experiment, and computation of ocean systems and flows are covered in a number of subjects, complementing a rigorous mechanical engineering program; a hands-on capstone design class allows students to master the design of advanced marine systems, including autonomous underwater vehicles and smart sensors.

This program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org) in both mechanical engineering and ocean engineering.

The educational objectives of the program leading to the degree Bachelor of Science in Mechanical and Ocean Engineering (p. 395) are that within a few years of graduation, a majority of our graduates will have completed or be progressing through top graduate programs; advancing in leadership tracks in industry, non-profit organizations, or the public sector; or pursuing entrepreneurial ventures. In these roles they will: (1) apply a deep working knowledge or technical fundamentals in areas related to mechanical, electromechanical, and thermal systems to address needs of the customer and society; (2) develop innovative technologies and find solutions to engineering problems; (3) communicate effectively as members of multidisciplinary teams; (4) be sensitive to professional and societal contexts and committed to ethical action; (5) lead in the conception, design, and implementation of new products, processes, services, and systems.

Graduates have exciting opportunities in offshore industries, naval architecture, the oceanographic industry, the Navy or government, or for further study in graduate school.

Minor in Mechanical Engineering

Students pursuing a minor in the department must complete a total of six 12-unit subjects in the Mechanical Engineering Department program. At least three of the subjects must be selected from among the required subjects for the Course 2 and Course 2-OE degree programs, which are listed below. In addition, two subjects may be selected from restricted electives in those programs.

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.612</td>
<td>Marine Power and Propulsion</td>
<td>12</td>
</tr>
<tr>
<td>2.605</td>
<td>Thermal-Fluids Engineering I</td>
<td>12</td>
</tr>
<tr>
<td>2.606</td>
<td>Thermal-Fluids Engineering II</td>
<td>12</td>
</tr>
<tr>
<td>2.607</td>
<td>Design and Manufacturing I</td>
<td>12</td>
</tr>
<tr>
<td>2.608</td>
<td>Design and Manufacturing II</td>
<td>12</td>
</tr>
<tr>
<td>2.609</td>
<td>The Product Engineering Process</td>
<td>12</td>
</tr>
<tr>
<td>2.617</td>
<td>Design of Electromechanical Robotic Systems</td>
<td>12</td>
</tr>
<tr>
<td>2.619</td>
<td>Design of Ocean Systems</td>
<td>12</td>
</tr>
<tr>
<td>2.086</td>
<td>Numerical Computation for Mechanical Engineers</td>
<td>12</td>
</tr>
<tr>
<td>2.671</td>
<td>Measurement and Instrumentation</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total Units</td>
<td>72</td>
</tr>
</tbody>
</table>

Inquiries

Further information on undergraduate programs may be obtained from the MechE Undergraduate Office (me-undergradoffice@mit.edu), Room 1-110, 617-253-2305, and from the downloadable Guide to the Undergraduate Program in Mechanical Engineering (http://web.mit.edu/me-ugoffice/gamed.pdf).
Graduate Study
The Department of Mechanical Engineering (MechE) provides opportunities for graduate work leading to the following degrees: Master of Science in Mechanical Engineering, Master of Science in Ocean Engineering, Master of Science in Naval Architecture and Marine Engineering, Master of Science in Oceanographic Engineering, Master of Engineering in Manufacturing, degree of Mechanical Engineer, degree of Naval Engineer, and the Doctor of Philosophy (PhD) or Doctor of Science (ScD), which differ in name only.

The Master of Engineering in Manufacturing degree is a 12-month professional degree intended to prepare students for technical leadership in the manufacturing industries.

The Mechanical Engineer’s and Naval Engineer’s degrees offer preparation for a career in advanced engineering practice through a program of advanced coursework that goes well beyond the master’s level. These degrees are not a stepping stone to the PhD.

The Doctor of Philosophy (or Science), the highest academic degree offered, is awarded upon the completion of a program of advanced study and significant original research, design, or development.

Admission Requirements for Graduate Study
Applications to the mechanical engineering graduate program are accepted from persons who have completed, or will have completed by the time they arrive, a bachelor’s degree if they are applying for a master’s degree, or a master’s degree if they are applying for a PhD. Most incoming students have a degree in mechanical engineering or ocean engineering, or some related branch of engineering. The department’s admission criteria are not specific, however, and capable students with backgrounds in different branches of engineering or in science may gain entry. Nevertheless, to qualify for a graduate degree, the candidate is expected to have had at least an undergraduate-level exposure to the core subject areas in mechanical engineering (applied mechanics, dynamics, fluid mechanics, thermodynamics, materials, control systems, and design) and to be familiar with basic electrical circuits and electromagnetic field theory.

Applications for September entry are due on December 15 of the previous year and decisions are reported in March. International students applying from abroad may be admitted, but they will be allowed to register only if they have full financial support for the first year.

All applicants to the graduate program in mechanical engineering must submit the GRE test results. International students whose native language is not English are required to take either the International English Language Testing System (IELTS) exam and receive a minimum score of 7 or the TOEFL exam with a minimum acceptable score of 577 (PBT), 233 (CBT) or 100 (IBT).

Early Admission to Master’s Degree Programs in Mechanical Engineering
At the end of the junior year, extraordinarily qualified students in the Department of Mechanical Engineering will be invited to apply for early admission to the graduate program. Students who are admitted will then be able to enroll in core graduate subjects during the senior year and to find a faculty advisor who is willing to start and supervise research for the master’s thesis while the student is still in the senior year. With the consent of the faculty advisor, the student may also use a portion of the work conducted towards the master’s thesis in the senior undergraduate year to satisfy the requirements of the bachelor’s thesis.

Writing Ability Requirement
The Mechanical Engineering Department requires that all incoming graduate students demonstrate satisfactory English writing ability, or successfully complete appropriate training in writing. This requirement reflects the faculty’s conviction that writing is an essential skill for all engineers. All incoming graduate students, native as well as international, must take the departmental writing ability test, which is administered online in June. Depending on the results, a student will either pass or be required to take a short course during the Independent Activities Period (p. 42) in January.

Master of Science in Mechanical Engineering
To qualify for the Master of Science in Mechanical Engineering, a student must complete at least 72 credits of coursework, not including thesis. Of these, at least 48 must be graduate subjects (refer to the Guide to Graduate Study (http://meche.mit.edu/documents/MechE_Grad_Guide.pdf) on the MechE website). The remainder of the 72 units may include advanced undergraduate subjects that are not requirements in the undergraduate mechanical engineering curriculum.

At least three of the graduate subjects must be taken in mechanical engineering sciences (refer to the Guide to Graduate Study (http://meche.mit.edu/documents/MechE_Grad_Guide.pdf) on the MechE website). Students must take at least one graduate mathematics subject (12 units) offered by the MIT Mathematics Department. For the Master of Science in Oceanographic Engineering, see also the requirements listed in the Joint Program with Woods Hole Oceanographic Institution.

Finally, a thesis is required. The thesis is an original work of research, development, or design, performed under the supervision of a faculty or research staff member, and is a major part of any graduate program in the Mechanical Engineering Department. A master’s student usually spends as much time on thesis work as on coursework. A master’s degree usually takes about one and one-half to two years to complete.
Master of Science in Ocean Engineering/Master of Science in Naval Architecture and Marine Engineering/Master of Science in Oceanographic Engineering

The requirements for each of these three degrees are that the student takes 72 credit units of graduate subjects and complete a thesis.

At least three of the subjects must be chosen from a prescribed list of ocean engineering subjects (refer to the Guide to Graduate Study [http://meche.mit.edu/documents/MechE_Grad_Guide.pdf] on the MechE website). Students must also take at least one graduate mathematics subject (12 units) offered by MIT’s Mathematics Department. For the Master of Science in Oceanographic Engineering, see also the requirements listed under the Joint Program with Woods Hole Oceanographic Institution.

The required thesis is an original work of research, development, or design, conducted under the supervision of a faculty or senior research staff member. The thesis usually takes between one and two years to complete.

Master of Engineering in Manufacturing

The Master of Engineering in Manufacturing (http://web.mit.edu/meng-manufacturing) is a 12-month professional degree in mechanical engineering that is intended to prepare the student to assume a role of technical leadership in the manufacturing industries. The degree is aimed at practitioners who will use this knowledge to become leaders in existing, as well emerging, manufacturing companies. To qualify for this degree, a student must complete a highly integrated set of subjects and projects that cover the process, product, system, and business aspects of manufacturing, totaling 90 units, plus complete a group-based thesis project with a manufacturing industry. While centered in engineering and firmly grounded in the engineering sciences, this degree program considers the entire enterprise of manufacturing. Students will gain both a broad understanding of the many facets of manufacturing and a knowledge of manufacturing fundamentals from which to build new technologies and businesses. The admission process is identical to that of the Master of Science degree, with the exception that two additional essay questions are required.

Mechanical Engineer’s Degree

The Mechanical Engineer’s degree provides an opportunity for further study beyond the master’s level for those who wish to enter engineering practice rather than research. This degree emphasizes breadth of knowledge in mechanical engineering and its economic and social implications, and is quite distinct from the PhD, which emphasizes depth and originality of research.

The engineer’s degree requires a broad program of advanced coursework in mechanical engineering totaling at least 162 credit units (typically about 14 subjects), including those taken during the master’s degree program. The engineer’s degree program is centered around the application of engineering principles to advanced engineering problems and includes a Mechanical Engineering examination and an applications-oriented thesis, which may be an extension of a suitable master’s thesis. An engineer’s degree typically requires at least one year of study beyond the master’s degree.

Naval Engineer’s Degree—Program in Naval Construction and Engineering

The Naval Construction and Engineering (NVE) program provides US Navy and US Coast Guard officers, foreign naval officers, and civilian students interested in ships and ship design a broad graduate-level education for a career as a naval engineer.

The program leads to the Naval Engineer’s degree, which requires a higher level of professional competence and broader range of knowledge than is required for the degree of Master of Science in Naval Architecture and Marine Engineering or Ocean Engineering. Subjects in the areas of economics, industrial management, and public policy and law, and at least 12 units of comprehensive design are required, in addition to an in-depth curriculum that includes naval architecture, hydrodynamics, ship structures, materials science, and power and propulsion. The program is appropriate for naval officers and civilians who plan to participate in the design and construction of naval ships, as well as those interested in commercial ship design.

For students working toward a simultaneous Naval Engineer’s degree and a master’s degree, a single thesis is generally acceptable, provided it is appropriate to the specifications of both degrees, demonstrating an educational maturity expected of the Naval Engineer’s degree.

Doctor of Philosophy and Doctor of Science

The highest academic degree is the Doctor of Science, or Doctor of Philosophy (the two differ only in name). This degree is awarded upon the completion of a program of advanced study, and the performance of significant original research, design, or development. Doctoral degrees are offered in all areas represented by the department’s faculty.

Students become candidates for the doctorate by passing the doctoral qualifying examinations. The doctoral program includes a major program of advanced study in the student’s principal area of interest, and a minor program of study in a different field. The MechE Graduate Office should be consulted about the deadline for passing the qualifying exam.

The principal component of the program is the thesis. The thesis is a major, original work that makes a significant research, development, or design contribution in its field. The thesis and the program of study are done under a faculty supervisor and a doctoral committee selected by the student and his or her supervisor, and perhaps other interested faculty members. The committee makes an annual examination of the candidate’s progress and makes a final
recommendation for a public defense of the work. The doctoral program typically requires three years of work beyond the master’s degree, although this time is strongly topic dependent. In concert with the Center for Computational Engineering (CCE), the department also offers a doctoral program in Computational Science and Engineering (ME-CSE). The program enables students to specialize at the doctoral level in a computation-related field of their choice through focused coursework and a doctoral thesis which makes extensive use of sophisticated computation or develops new computational methods. The ME-CSE PhD degree highlights this specialization by using the thesis field “Mechanical Engineering and Computation.” More information can be found at the CEE website (http://cee.mit.edu).

Interdisciplinary Programs

Graduate students registered in the Department of Mechanical Engineering may elect to participate in interdisciplinary programs of study.

Computation for Design and Optimization

The Computation for Design and Optimization (CDO) (http://computationalengineering.mit.edu/education) program offers a master’s degree to students interested in the analysis and application of computational approaches to designing and operating engineered systems. The curriculum is designed with a common core serving all engineering disciplines and an elective component focusing on specific applications. Current MIT graduate students may pursue a CDO master’s degree in conjunction with a department-based master’s or PhD program. For more information, see the full program description (p. 350) under Interdisciplinary Graduate Programs.

Computational Science and Engineering

The Computational Science and Engineering (CSE) (http://computationalengineering.mit.edu/education) program allows students to specialize at the doctoral level in a computation-related field of their choice through focused coursework and a doctoral thesis through a number of participating host departments. The CSE program is administered jointly by the Center for Computational Engineering (CCE) and the host departments, with the emphasis of thesis research activities being the development of new computational methods and/or the innovative application of computational techniques to important problems in engineering and science. For more information, see the full program description (p. 352) under Interdisciplinary Graduate Programs.

Joint Program with the Woods Hole Oceanographic Institution

The Joint Program with the Woods Hole Oceanographic Institution (WHOI) (http://mit.whoi.edu) is intended for students whose primary career objective is oceanography or oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in their home department. The program is described in more detail under Interdisciplinary Graduate Programs (p. 354).

Leaders for Global Operations

The 24-month Leaders for Global Operations (LGO) (http://lgo.mit.edu) program combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field. During the two-year program, students complete a six-month internship at one of LGO’s partner companies, where they conduct research that forms the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of seven engineering programs, some of which have optional or required LGO tracks. After graduation, alumni take on leadership roles at top global manufacturing and operations companies.

Polymers and Soft Matter

The Program in Polymers and Soft Matter (PPSM) (http://polymerscience.mit.edu) offers students from participating departments an interdisciplinary core curriculum in polymer science and engineering, exposure to the broader polymer community through seminars, contact with visitors from industry and academia, and interdepartmental collaboration while working towards a PhD or ScD degree.

Research opportunities include functional polymers, controlled drug delivery, nanostructured polymers, polymers at interfaces, biomaterials, molecular modeling, polymer synthesis, biomimetic materials, polymer mechanics and rheology, self-assembly, and polymers in energy. The program is described in more detail under Interdisciplinary Graduate Programs (p. 358).

Technology and Policy

The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) (http://web.mit.edu/tpp) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description under the Institute for Data, Systems, and Society (p. 178).

Financial Support

The Department of Mechanical Engineering offers three types of financial assistance to graduate students: research assistantships, teaching assistantships, and fellowships.

The majority of students in the department are supported by research assistantships (RAs), which are appointments to work
on particular research projects with particular faculty members. Faculty members procure research grants for various projects and hire graduate students to carry out the research. The research is almost invariably structured so that it becomes the student's thesis. An RA appointment provides a full-tuition scholarship (i.e., covers all tuition) plus a salary that is adequate for a single person. The financial details are outlined in a separate handout available from the MechE Graduate Office. An RA may register for a maximum of 24 units (about two subjects) of classroom subjects per regular term and 12 units in the summer term, and must do at least the equivalent of 24 units of thesis (i.e., research on the project) per term. (Please note that Master of Engineering in Manufacturing students are not eligible for RA or TA positions since their subject credits exceed these limits.)

Teaching assistants (TAs) are appointed to work on specific subjects of instruction. As the name implies, they usually assist a faculty member in teaching, often grading homework problems and tutoring students. In the Mechanical Engineering Department, TAs are very seldom used for regular full-time classroom teaching. Full-time TAs are limited to 24 units of credit per regular term, including both classroom subjects and thesis. The TA appointment does not usually extend through the summer.

A fellowship provides the student with a direct grant, and leaves the student open to select his or her own research project and supervisor. A limited number of awards and scholarships are available to graduate students directly through the department. A number of students are also supported by fellowships from outside agencies, such as the National Science Foundation, Office of Naval Research, and Department of Defense. Scholarships are awarded each year by the Society of Naval Architects and Marine Engineers. These awards are normally granted to applicants whose interest is focused on naval architecture and marine engineering or on ocean engineering. Applications are made directly to the granting agency, and inquiries for the fall term should be made in the preceding fall term.

Prospective students are invited to communicate with the Department regarding any of these educational and financial opportunities.

Experience has shown that the optimum graduate program consists of about equal measures of coursework and research, consistent with an RA appointment. The main advantage of a fellowship is a greater freedom in choosing a research project and supervisor. A teaching assistantship gives the student teaching experience and can also be extremely valuable for reviewing basic subject material—for example, in preparation for the doctoral qualifying exams. It does not, however, leave much time for thesis research and may extend the time that the student needs to complete his or her degree.

Inquiries
For additional information on mechanical engineering graduate admissions, contact Joan Kravit or Una Sheehan. For general inquiries on the mechanical engineering graduate program, contact Leslie Regan. All can be reached in the MechE Graduate Office (me-gradoffice@mit.edu), Room 1-112, 617-253-2291.

Research Laboratories and Programs
The Mechanical Engineering Department is organized into seven areas that collectively capture the broad range of interests and activities within it. These areas are:

- Mechanics: Modeling, Experimentation, and Computation (MMEC)
- Design, Manufacturing, and Product Development
- Controls, Instrumentation, and Robotics
- Energy Science and Engineering
- Ocean Science and Engineering
- Bioengineering
- Nano/Micro Science and Technology

The educational opportunities offered to students in mechanical engineering are enhanced by the availability of a wide variety of research laboratories and programs, and well-equipped shops and computer facilities.

The department provides many opportunities for undergraduates to establish a close relationship with faculty members and their research groups. Students interested in project work are encouraged to consult their faculty advisor or approach other members of the faculty.

Many members of the Department of Mechanical Engineering participate in interdepartmental or school-wide research activities. These include the Center for Biomedical Engineering, Center for Computational Engineering, Center for Materials Science and Engineering, Computation for Design and Optimization Program, Computational and Systems Biology Program, Computer Science and Artificial Intelligence Laboratory, Institute for Soldier Nanotechnologies, Laboratory for Manufacturing and Productivity, MIT Energy Initiative, Operations Research Center, Program in Polymers and Soft Matter, and Sea Grant College Program. Detailed information about many of these can be found under Research and Interdisciplinary Graduate Programs. The department also hosts a number of industrial consortia, which support some laboratories and research projects. Research in the department is supported, in addition, by a broad range of federal agencies and foundations.

A partial list of departmental laboratories, listed according to the seven core areas of research, follows.
Mechanics: Modeling, Experimentation, and Computation

AMP Mechanical Behavior of Materials Laboratory
Mechanisms of deformation and fracture processes in engineering materials.

Center for Nonlinear Science
Interdisciplinary research into nonlinear phenomena. Incorporates the Nonlinear Dynamical Systems Lab (modeling, simulation, analysis), Nonlinear Dynamics Lab (experiments), and Nonlinear Systems Lab.

Composite Materials and Nondestructive Evaluation Laboratory
Development of quantitative nondestructive evaluation characterizations which are directly correlatable with the mechanical properties of materials and structures.

Finite Element Research Group
Computational procedures for the solution of problems in structural, solid, and fluid mechanics.

Hatsopoulos Microfluids Laboratory
Fundamental research on the behavior of complex fluid systems at microscopic scales, and associated engineering applications.

Design, Manufacturing, and Product Development

Auto-ID Laboratory
Creation of the "Internet of Things" using radio frequency identification and wireless sensor networks, and of a global system for tracking goods using a single numbering system called the Electronic Product Code.

Computer-Aided Design Laboratory
Advancing the state of the art in design methodology and computer-aided design methods.

Laboratory for Manufacturing and Productivity
An interdepartmental laboratory in the School of Engineering. Polymer microfabrication for microfluidic devices, chemical mechanical planarization for the semiconductor industry, precision macro- and micro-scale devices, and novel metrology methods for micro-scale devices. Small-scale fuel cells design, photovoltaic material and process research, and manufacture of photovoltaic panels. Identification technologies such as RFID, wireless sensors, and complex systems. Methods to integrate data and models across global networks. Factory-level manufacturing systems design and control, and supply chain design and management. Environmentally benign manufacturing.

Martin Center for Engineering Design
Design methodology, design of integrated electrical-mechanical systems, prototype development, advanced computer-aided design techniques.

Park Center for Complex Systems
Research to understand complexity, educating students and scholars on complexity, designing complex systems for the benefit of humankind, and disseminating knowledge on complexity to the world at large.

Precision Engineering Laboratory
Fundamental and applied research on all aspects of the design, manufacture, and control of high precision machines ranging from manufacturing machines to precision consumer products.

Precision Systems Design and Manufacturing Laboratory
Modeling, design, and manufacturing methods for nanopositioning equipment, carbon nanotube-based mechanisms and machines, and compliant mechanisms.

Controls, Instrumentation, and Robotics

d'Arbeloff Laboratory for Information Systems and Technology
Research on mechatronics, home and health automation, interface between hardware and software, and development of sensing technologies.

Field and Space Robotics Laboratory
Fundamental physics of robotic systems for unstructured environments. Development, design, and prototyping of control and planning algorithms for robotic applications, including space exploration, rough terrains, sea systems, and medical devices and systems.

Nonlinear Systems Laboratory
Analysis and control of nonlinear physical systems with emphasis on adaptation and learning in robots.

Energy Science and Engineering

Center for Energy and Propulsion Research
Innovative science and technology for a sustainable energy future in a carbon-constrained world. Fundamental and applied research in energy conversion and transportation, with applications to low-carbon efficient energy and propulsion systems. Includes several research groups:

- Electrochemical Energy Laboratory. Engineering of advanced materials for lithium batteries, proton exchange membrane and solid oxide fuel cells, and air battery and fuel cell hybrids.
- Reacting Gas Dynamics Laboratory. Fluid flow, chemical reaction, and combustion phenomena associated with energy
conversion in propulsion systems, power generation, industrial processes, and fires.

- **Sloan Automotive Laboratory.** Processes and technology that control the performance, efficiency, and environmental impact of internal combustion engines, their lubrication, and fuel requirements.

Cryogenic Engineering Laboratory
Application of thermodynamics, heat transfer, and mechanical design to cryogenic processes and instrumentation and the operation of a liquid helium facility.

Rohsenow Kendall Heat Transfer Laboratory
Fundamental research in microscale/nanoscale transport, convection, laser/material interaction, and high heat fluxes; applied research in water purification, thermoelectric devices, energy-efficient buildings, and thermal management of electronics.

Ocean Science and Engineering

Center for Ocean Engineering
Provides an enduring ocean engineering identity, giving visibility to the outside world of MIT’s commitment to the oceans, and serves as the focus point of ocean-related research at the Institute. Supports the research activities of the MIT/WHOI Joint Program in Oceanographic Engineering and the Naval Construction and Engineering Program. Encompasses the activities of the following research groups and laboratories:

- **Autonomous Marine Sensing Lab.** Distributed ocean sensing concepts for oceanographic science, national defense, and coastal management and protection. Oceanographic sensing and modeling, sonar system technology, computational underwater acoustics, and marine robotics and communication networking.
- **Design Lab.** Ship design, offshore structure design, marine robotics, geometric and solid modeling, advanced manufacturing, and shipbuilding. Includes the Center for Environmental Sensing and Modeling.
- **Experimental Hydrodynamics Lab.** Advanced surface ship, offshore platform, and underwater vehicle design. Development of non-invasive flow measurement and visualization methods.
- **Impact and Crashworthiness Laboratory.** Industry-oriented fracture testing and prediction technology of advanced high-strength steel sheets for automotive and shipbuilding applications. Includes both quasi-static and high strain rate response and effect of loading history on fracture.
- **Experimental and Nonlinear Dynamics Lab.** Laboratory experiments to obtain insight into all manner of dynamical phenomena, from micro-scale diffusive processes to global-scale oceanic wave fields. Field studies for ocean-related problems.
- **Laboratory for Ship and Platform Flows.** Modeling of free surface flows past conventional and high-speed vessels and estimation of their resistance and seakeeping in deep and shallow waters. Analytical and computational techniques.
- **Laboratory for Undersea Remote Sensing.** Ocean exploration, underwater remote sensing of marine life and geophysical phenomena, wave propagation and scattering theory in remote sensing, statistical estimation and information theory, acoustics and seismics, Europa exploration.
- **Marine Hydrodynamics Laboratory (Propeller Tunnel).** A variable-pressure recirculating water tunnel capable of speeds up to 10 m/s. Experiments are performed using state-of-the-art measurement techniques and instrumentation.
- **Multidisciplinary Ocean Dynamics and Engineering Laboratory.** Complex physical and interdisciplinary oceanic dynamics and processes. Mathematical model and computation methods for ocean predictions, dynamical diagnostics, and for data assimilation and data-model comparisons.
- **Ocean Engineering Testing Tank.** The tank is 108 feet long, 8.5 feet wide, with an average depth of 4.5 feet. The wave generator can generate harmonic or random waves. The tank also houses several laser flow visualization systems.
- **Vortical Flow Research Laboratory.** Advanced capabilities for simulation of complex vertical flows. Powerful computer workstations and LINUX clusters, computer-video image conversion, and state-of-the-art flow simulation animation technologies.
- **MIT Sea Grant AUV Lab.** Dedicated to autonomous underwater vehicles (AUVs), the lab is a leading developer of advanced unmanned marine robots, with applications in oceanography, environmental monitoring, and underwater resource studies. It engages in instrumentation and algorithm development for underwater vehicles performing navigation- and information-intensive tasks. Various vehicle platforms, and fabrication tools and materials are available.

Bioengineering

Bioinstrumentation Laboratory
Utilization of biology, optics, mechanics, mathematics, electronics, and chemistry to develop innovative instruments for the analysis of biological processes and new devices for the treatment and diagnosis of disease.

Human and Machine Haptics
Interdisciplinary studies aimed at understanding human haptics, developing machine haptics, and enhancing human-machine interactions in virtual reality and teleoperator systems.

Laboratory for Biomechanics of Cells and Biomolecules
Development of new instruments for the measurement of mechanical properties on the scale of a single cell or single molecule to better understand the interactions between biology and mechanics.
Newman Laboratory for Biomechanics and Human Rehabilitation
Research on bioinstrumentation, neuromuscular control, and technology for diagnosis and remediation of disabilities.

Nano/Micro Science and Technology
Pappalardo Laboratory for Micro/Nano Engineering
Creation of new engineering knowledge and products on the nano and micro scale through multidomain, multidisciplinary, and multiscale research.

Faculty and Teaching Staff

Professors
Rohan Abeyaratne, PhD
Quentin Berg (1937) Professor in Mechanical Engineering
Triantaphyllos R. Akylas, PhD
Professor of Mechanical Engineering
Lallit Anand, PhD
Warren and Townley Rohsenow Professor
Professor of Mechanical Engineering
H. Harry Asada, PhD
Ford Foundation Professor of Engineering
Professor of Mechanical Engineering
(On sabbatical, spring)
Arthur B. Baggeroer, ScD
Professor of Mechanical and Ocean Engineering
Professor of Electrical Engineering
George Barbastathis, PhD
Professor of Mechanical Engineering
John G. Brisson II, PhD
Professor of Mechanical Engineering
Gang Chen, PhD
Carl Richard Soderberg Professor in Power Engineering
Head, Department of Mechanical Engineering
Wai K. Cheng, PhD
Professor of Mechanical Engineering
Chryssostomos Chryssostomidis, PhD
Henry L. Doherty Professor in Ocean Science and Engineering
Professor of Mechanical and Ocean Engineering
Jung-Hoon Chun, PhD
Professor of Mechanical Engineering
Martin L. Culpepper, PhD
Professor of Mechanical Engineering
Daniel Frey, PhD
Professor of Mechanical Engineering
(On sabbatical, spring)
Ahmed F. Ghoniem, PhD
Ronald C. Crane (1972) Professor
Professor of Mechanical Engineering
Lorna Gibson, PhD
Matoula S. Salapatas Professor in Materials Science and Engineering
Professor of Mechanical Engineering
Leon R. Glicksman, PhD
Professor of Building Technology
Professor of Mechanical Engineering
Stephen C. Graves, PhD
Abraham J. Siegel Professor of Management
Professor of Operations Management and Leaders for Global Operations
Professor of Mechanical Engineering
Member, Institute for Data, Systems, and Society
Linda G. Griffith, PhD
School of Engineering Professor of Teaching Innovation
Professor of Biological Engineering
Professor of Mechanical Engineering
Alan J. Grodzinsky, ScD
Professor of Biological Engineering
Professor of Electrical Engineering
Professor of Mechanical Engineering
Jeffrey C. Grossman, PhD
Professor of Materials Science and Engineering
Professor of Mechanical Engineering
Timothy G. Gutowski, PhD
Professor of Mechanical Engineering
Nicolas Hadji Constantinou, PhD
Professor of Mechanical Engineering
David E. Hardt, PhD
Ralph E. and Eloise F. Cross Professor in Manufacturing
Professor of Mechanical Engineering
(On sabbatical)
Douglas Hart, PhD
Professor of Mechanical Engineering
John B. Heywood, ScD, PhD
Sun Jae Professor Emeritus of Mechanical Engineering
Professor of Mechanical Engineering
Neville Hogan, PhD
Sun Jae Professor in Mechanical Engineering
Professor of Brain and Cognitive Sciences

Anette E. Hosoi, PhD
Professor of Mechanical Engineering
Professor of Applied Mathematics

Ian Hunter, PhD
George N. Hatsopoulos Professor in Thermodynamics
Professor of Mechanical Engineering

Roger Dale Kamm, PhD
Cecil H. Green Distinguished Professor
Professor of Mechanical Engineering
Professor of Biological Engineering
(On sabbatical)

Sang-Gook Kim, PhD
Professor of Mechanical Engineering
(On sabbatical, fall)

Robert Langer, ScD
David H. Koch (1962) Institute Professor
Professor of Chemical Engineering
Professor of Mechanical Engineering
Professor of Biological Engineering
Member, Health Sciences and Technology Faculty

Steven B. Leeb, PhD
Professor of Electrical Engineering
Professor of Mechanical Engineering

John J. Leonard, PhD
Samuel C. Collins Professor
Professor of Mechanical and Ocean Engineering

John H. Lienhard, PhD
Abdul Latif Jameel Professor of Water and Food
Professor of Mechanical Engineering

Seth Lloyd, PhD
Nam Pyo Suh Professor
Professor of Mechanical Engineering
Professor of Physics

Nicholas Makris, PhD
Professor of Mechanical and Ocean Engineering

Scott R. Manalis, PhD
Andrew (1956) and Erna Viterbi Professor
Professor of Biological Engineering
Professor of Mechanical Engineering

Gareth H. McKinley, PhD
School of Engineering Professor of Teaching Innovation
Professor of Mechanical Engineering

David M. Parks, PhD
Professor of Mechanical Engineering

Anthony T. Patera, PhD
Ford Foundation Professor of Engineering
Professor of Mechanical Engineering

Nicholas M. Patrikalakis, PhD
Kawasaki Professor of Engineering
Professor of Mechanical and Ocean Engineering
(On sabbatical, spring)

Emanuel Michael Sachs, PhD
Professor of Mechanical Engineering

Sanjay E. Sarma, PhD
Fred Fort Flowers (1941) and Daniel Fort (1941) Professor
Professor of Mechanical Engineering
Dean of Digital Learning

Henrik Schmidt, PhD
Professor of Mechanical and Ocean Engineering
(On sabbatical, spring)

Paul D. Sclavounos, PhD
Professor of Mechanical Engineering and Naval Architecture

Warren Seering, PhD
Weber-Shaughness Professor
Professor of Mechanical Engineering
(On sabbatical)

Yang Shao-Horn, PhD
W. M. Keck Professor of Energy
Professor of Mechanical Engineering
Professor of Materials Science and Engineering

Alexander H. Slocum, PhD
Neil and Jane Pappalardo Professor of Mechanical Engineering

Jean-Jacques E. Slotine, PhD
Professor of Mechanical Engineering
Professor of Information Sciences

Peter T. C. So, PhD
Professor of Biological Engineering
Professor of Mechanical Engineering

Michael S. Triantafyllou, ScD
William I. Koch Professor of Marine Technology
Professor of Mechanical and Ocean Engineering

David L. Trumper, PhD
Professor of Mechanical Engineering

J. Kim Vandiver, PhD
Professor of Mechanical and Ocean Engineering
David Robert Wallace, PhD
Professor of Mechanical Engineering

Tomasz Wierzbicki, PhD
Professor of Applied Mathematics

Ioannis V. Yannas, PhD
Professor of Mechanical Engineering
Professor of Polymer Science
Member, Health Sciences and Technology Faculty

Kamal Youcef-Toumi, ScD
Professor of Mechanical Engineering

Dick K. P. Yue, PhD
Philip J. Solondz (1948) Professor
Professor of Mechanical Engineering

Associate Professors

Mark Bathe, PhD
Associate Professor of Biological Engineering
Associate Professor of Mechanical Engineering

Cullen R. Buie, PhD
Esther and Harold E. Edgerton Career Development Professor
Associate Professor of Mechanical Engineering
(On leave, spring)

Tonio Buonassissi, PhD
Associate Professor of Mechanical Engineering and Manufacturing
(On leave, spring)

Domitilla Del Vecchio, PhD
Associate Professor of Mechanical Engineering

Nicholas Xuanlai Fang, PhD
Associate Professor of Mechanical Engineering

A. John Hart, PhD
Mitsui Career Development Professor in Contemporary Technology
Associate Professor of Mechanical Engineering

Joseph Jacobson, PhD
Associate Professor of Media Arts and Sciences
Associate Professor of Mechanical Engineering

Rohit N. Karnik, PhD
Associate Professor of Mechanical Engineering
(On sabbatical, spring)

Sangbae Kim, PhD
Associate Professor of Mechanical Engineering

Pierre F.J. Lermusiaux, PhD
Associate Professor of Mechanical and Ocean Engineering

Thomas Peacock, PhD
Associate Professor of Mechanical Engineering
(On leave, fall)

Pedro M. Reis, PhD
Gilbert Winslow Career Development Professor
Associate Professor of Mechanical Engineering
Associate Professor of Civil and Environmental Engineering

Alexandra H. Techet, PhD
Associate Professor of Mechanical and Ocean Engineering

Russell L. Tedrake, PhD
Associate Professor of Computer Science and Engineering
Associate Professor of Aeronautics and Astronautics
Associate Professor of Mechanical Engineering

Kripa K. Varanasi, PhD
Associate Professor of Mechanical Engineering

Evelyn N. Wang, PhD
Gail E. Kendall (1978) Chair
Associate Professor of Mechanical Engineering
(On leave, spring)

Maria Yang, PhD
Associate Professor of Mechanical Engineering

Xuanhe Zhao, PhD
Robert N. Noyce Career Development Professor
Associate Professor of Civil and Environmental Engineering

Assistant Professors

Ming Guo, PhD
Assistant Professor of Mechanical Engineering

Kenneth N. Kamrin, PhD
Assistant Professor of Mechanical Engineering

Jeehwan Kim, PhD
Assistant Professor of Mechanical Engineering

Mathias Kolle, PhD
Brit (1961) and Alex (1949) d’Arbeloff Career Development Professor
Assistant Professor of Mechanical Engineering

Alexie M. Kolpak, PhD
Rockwell International Career Development Professor
Assistant Professor of Mechanical Engineering

Themistoklis Sapsis, PhD
American Bureau of Shipping Career Development Professor
Assistant Professor of Mechanical Engineering
Konstantin Turitsyn, PhD
Assistant Professor of Mechanical Engineering

Amos Winter, PhD
Assistant Professor of Mechanical Engineering

Promotions of the Practice

Joel P. Harbour, NE
Professor of the Practice of Naval Construction and Engineering

Christopher L. Magee, PhD
Professor of the Practice of Mechanical Engineering
Professor of the Practice Institute for Data, Systems, and Society

Richard M. Wiesman, PhD
Professor of the Practice of Mechanical Engineering

Associate Professors of the Practice

Weston Lowell Gray, NE
Associate Professor of the Practice of Naval Construction and Engineering

Visiting Associate Professors

Ifan Stephens, PhD
Peabody Visiting Associate Professor of Mechanical Engineering

Senior Lecturers

John P. Appleton, PhD
Senior Lecturer in Mechanical Engineering

Daniel Braunstein, PhD
Senior Lecturer in Mechanical Engineering

Ronald B. Campbell, PhD
Senior Lecturer in Mechanical Engineering

Stephen Fantone, PhD
Senior Lecturer in Mechanical Engineering

Franz Hover, PhD
Senior Lecturer in Mechanical Engineering

Dean Kamen, PhD
Senior Lecturer in Mechanical Engineering

Raymond S McCord, MS, Eng
Senior Lecturer in Mechanical Engineering

William Plummer, PhD
Senior Lecturer in Mechanical Engineering

Amy Smith, MS, MEng
Senior Lecturer in Mechanical Engineering

Simona Socrate, PhD, PhD
Senior Lecturer in Mechanical Engineering

Abbott Weiss, PhD
Senior Lecturer in Mechanical Engineering

Dawn Wendell, PhD
Senior Lecturer in Mechanical Engineering

Lecturers

Julio Guerrero, PhD
Lecturer in Mechanical Engineering

Rajiv Gupta, PhD
Lecturer in Mechanical Engineering

Richard W. Kimball, PhD
Lecturer in Mechanical Engineering

Instructors

Harrison Chin, PhD
Instructor of Mechanical Engineering

Barbara Hughey, PhD
Instructor of Mechanical Engineering

Technical Instructors

Stephen G. Banzaert
Technical Instructor of Mechanical Engineering

David A. Dow
Technical Instructor of Mechanical Engineering

Pierce Hayward, MS
Technical Instructor of Mechanical Engineering

David Lemelin
Technical Instructor of Mechanical Engineering

Tasker Smith, BA
Technical Instructor of Mechanical Engineering

Research Staff

Senior Research Scientists

Anuradha M. Annaswamy, PhD
Senior Research Scientist of Mechanical Engineering

Stanley B. Gershwin, PhD
Senior Research Scientist of Mechanical Engineering

Lynette A. Jones, PhD
Senior Research Scientist of Mechanical Engineering

Mandayam A. Srinivasan, PhD
Senior Research Scientist of Mechanical Engineering
Principal Research Engineers
Tian Tian, PhD
Principal Research Engineer of Mechanical Engineering

Principal Research Scientists
Brian Anthony, PhD
Principal Research Scientist of Mechanical Engineering
Karl Iagnemma, PhD
Principal Research Scientist of Mechanical Engineering
H. Igo Krebs, PhD
Principal Research Scientist of Mechanical Engineering
Yuming Liu, PhD
Principal Research Scientist of Mechanical Engineering
Victor W. Wong, PhD
Principal Research Scientist of Mechanical Engineering

Research Engineers
Kelli Hendrickson, ScD
Research Engineer of Mechanical Engineering
Areti Kiara, PhD
Research Engineer of Mechanical Engineering

Research Scientists
Michael Richard Benjamin, PhD
Research Scientist of Mechanical Engineering
Svetlana V. Boriskina, PhD
Research Scientist of Mechanical Engineering
Stefano Brizzolara, ScD
Research Scientist of Mechanical Engineering
Vincent Chan, PhD
Research Scientist of Mechanical Engineering
Xian Du, PhD
Research Scientist of Mechanical Engineering
Patrick Haley, PhD
Research Scientist of Mechanical Engineering
Nevan Clancy Hanumara, PhD
Research Scientist of Mechanical Engineering
Stephen Ho, PhD
Research Scientist of Mechanical Engineering
Nora C. Hogan, PhD
Research Scientist of Mechanical Engineering
Md Nasim Hyder, PhD
Research Scientist of Mechanical Engineering

Carl Justin Kamp, PhD
Research Scientist of Mechanical Engineering
George E. Karniadakis, PhD
Research Scientist of Mechanical Engineering
Min-Cheol Kim, PhD
Research Scientist of Mechanical Engineering
William A Lucas, PhD
Research Scientist of Mechanical Engineering
Seyed Reza Mahmoudi, PhD
Research Scientist of Mechanical Engineering
Shankar Narayanan, PhD
Research Scientist of Mechanical Engineering
Ian Marius Peters, PhD
Research Scientist of Mechanical Engineering
Bhattacharyya Rahul, PhD
Research Scientist of Mechanical Engineering
Giuseppe Romano, PhD
Research Scientist of Mechanical Engineering
Elham Sahraei Esfahani, PhD
Research Scientist of Mechanical Engineering
Santosh Shanbhogue, PhD
Research Scientist of Mechanical Engineering
Mruthunjaya Uddi, PhD
Research Scientist of Mechanical Engineering
Jun Xu, PhD
Research Scientist of Mechanical Engineering

Professors Emeriti
Ali S. Argon, ScD
Quentin Berg Professor Emeritus
Professor Emeritus of Mechanical Engineering
Klaus-Jurgen Bathe, ScD, PhD
Professor Emeritus of Mechanical Engineering
Mary C. Boyce, PhD
Ford Foundation Professor Emerita of Engineering
Professor Emerita of Mechanical Engineering
A. Douglas Carmichael, PhD
Professor Emeritus of Mechanical and Power Engineering
Ernest G. Cravalho, PhD
Professor Emeritus of Mechanical Engineering
Professor Emeritus of the Practice of Health Sciences and Technology
C. Forbes Dewey Jr, PhD
Professor Emeritus of Mechanical Engineering
Professor Emeritus of Biological Engineering

Steven Dubowsky, PhD
Professor Emeritus of Mechanical Engineering
Professor Emeritus of Aeronautics and Astronautics

Ira Dyer, PhD, DBA
Professor Emeritus of Mechanical and Ocean Engineering

Woodie Flowers, PhD
Pappalardo Professor Emeritus of Mechanical Engineering

Ernst G. Frankel, PhD, DBA
Professor Emeritus of Mechanical Engineering and Marine Systems

David C. Gossard, PhD
Professor Emeritus of Mechanical Engineering

Peter Griffith, PhD
Professor Emeritus of Mechanical Engineering

Justin E. Kerwin, PhD
Professor Emeritus of Mechanical Engineering and Naval Architecture

Shih-Ying Lee, ScD
Professor Emeritus of Mechanical Engineering

Richard Harold Lyon, PhD
Professor Emeritus of Mechanical Engineering

Henry S. Marcus, DBA
Professor Emeritus of Marine Systems

Koichi Masubuchi, PhD
Kawasaki Professor Emeritus of Engineering
Professor Emeritus of Mechanical and Ocean Engineering
Professor Emeritus of Materials Science and Engineering

Chiang C. Mei, PhD
Ford Professor Emeritus of Engineering
Professor Emeritus of Civil and Environmental Engineering
Professor Emeritus of Mechanical Engineering

Borivoje Mikic, ScD
Professor Emeritus of Mechanical Engineering

Jerome H. Milgram, PhD
William I. Koch Professor Emeritus of Marine Technology
Professor Emeritus of Mechanical and Ocean Engineering

John Nicholas Newman, ScD
Professor Emeritus of Mechanical Engineering and Naval Architecture

T. Francis Ogilvie, PhD
Professor Emeritus of Mechanical and Ocean Engineering

Carl R. Peterson, ScD
Professor Emeritus of Mechanical Engineering

Ronald F. Probststein, PhD
Professor Emeritus of Mechanical Engineering

Derek Rowell, PhD
Professor Emeritus of Mechanical Engineering

Thomas B. Sheridan, ScD
Professor Emeritus of Engineering and Applied Psychology
Professor Emeritus of Aeronautics and Astronautics

Nam P. Suh, PhD
Ralph E. and Eloise F. Cross Professor Emeritus
Professor Emeritus of Mechanical Engineering

Neil E. Todreas, PhD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Mechanical Engineering

James H. Williams Jr, PhD
Professor Emeritus of Teaching Excellence
Professor Emeritus of Mechanical Engineering
Professor Emeritus of Writing

David Gordon Wilson, PhD
Vannevar Bush Professor Emeritus
Professor Emeritus of Electrical Engineering
Professor Emeritus of Mechanical Engineering

Gerald L. Wilson, PhD
Professor Emeritus of Mechanical Engineering
The Department of Nuclear Science and Engineering (NSE) provides undergraduate and graduate education for students interested in developing new nuclear technologies for the benefit of society and the environment.

This is an exciting time to study nuclear science and engineering. There is an upsurge of innovative activity in the field, as energy resource constraints, security concerns, and the risks of climate change are creating new demands for safe, secure, cost-competitive nuclear energy systems. At the same time, powerful new tools for exploring, measuring, modeling, and controlling complex nuclear and radiation processes are laying the foundations for major advances in the application of nuclear technologies in medicine and industry as well as in fundamental science.

In response to these developments, the department has developed programs of study that prepare students for scientific and engineering leadership roles in energy and non-energy applications of nuclear science and technology. Applications include nuclear fission energy systems, fusion energy systems, and systems for securing nuclear materials against the threats of nuclear proliferation and terrorism. Underlying these applications are core fields of education and research, including low-energy nuclear physics; plasma physics; thermal sciences; radiation sources, detection, and control; the study of materials in harsh chemomechanical, radiation, and thermal environments; and advanced computation and simulation.

Students in nuclear science and engineering study the scientific fundamentals of the field, engineering methods for integrating these fundamentals into practical systems, and the interactions of nuclear systems with society and the environment. Undergraduate and graduate students take core subjects in the field and can then select from a wide variety of application areas through more specialized subjects.

Principal areas of research and education in the department are described below.

Nuclear Fission Energy. Nuclear reactors, using the fissioning of heavy elements such as uranium, supply approximately 13% of the world’s electricity and power ships and submarines. They produce radioisotopes for medical, biological, and industrial uses, and for long-lived onboard power sources for spacecraft. They can also provide energy for chemical and industrial processing and portable fuel production (e.g., synthetic fuels or hydrogen).

Electricity generation is the most familiar application. In some countries, the fraction of electricity obtained from nuclear power exceeds 50%. In the United States, more than 100 nuclear power plants supply 20% of the nation’s electricity. Thirty countries generate nuclear power today, and more than 40 others have recently expressed an interest in developing new nuclear energy programs. Nuclear power is the only low-carbon energy source that is both inherently scalable and already generating a significant share of the world's electricity supplies. Fission technology is entering a new era in which upgraded existing plants, new-generation reactors, and new fuel cycle technologies and strategies will contribute to meeting the rapidly growing global demand for safe and cost-competitive low-carbon electricity supplies.

Fission energy research in the Nuclear Science and Engineering department is focused on developing advanced nuclear reactor designs for electricity, process heat, and fluid fuels production that include passive safety features; developing innovative proliferation-resistant fuel cycles; extending the life of nuclear fuels and structures; and reducing the capital and operating costs of nuclear energy systems. These research goals are pursued via targeted technology options, based on advanced modeling and simulation techniques and state-of-the-art experimental facilities. Progress toward these goals also entails advances in the thermal, materials, nuclear, and computational sciences. The overall objective is to advance the role of nuclear energy as an economical, safe, environmentally benign, and flexible energy source, thereby contributing to energy security, economic growth, and a sustainable global climate.

Plasma Physics and Fusion Technology. A different source of nuclear energy results from the controlled fusion of light elements, notably hydrogen isotopes. Since the basic source of fuel for fusion can be easily and inexpensively extracted from the ocean or from very abundant lithium, the supply is virtually inexhaustible. Fusion reactions can only readily occur in a fully ionized plasma heated to ultra high temperatures (150 million K). Such hot plasmas cannot be contained by material walls and are usually confined instead by strong magnetic fields. An alternative approach entails inertial confinement, usually achieved with very high-power lasers. Recent progress within the international fusion community increases the likelihood that controlled fusion will become a practical source of energy within the next half-century. Attainment of a fusion power plant involves the solution of many intellectually challenging physics and engineering problems. Included among these challenges are a mastery of the sophisticated field of plasma physics; the discovery of improved magnetic geometries to enhance plasma confinement; the development of materials capable of withstanding high stresses and exposure to intense radiation; and the need for great engineering ingenuity in integrating fusion power components into a practical, safe, and economical system. The department has strong programs in plasma fundamentals, materials for intense radiation fields, and engineering of fusion systems.

The fundamentals of plasmas also underlie novel methods for treatment of toxic gases, magnetohydrodynamic energy conversion, and ion propulsion, all topics of interest in the department. Students concentrating on applied plasma physics are trained not only to contribute to the advancement of controlled fusion but also to apply their knowledge in current industrial applications. In these plasma
and physical processes must be followed at multiple scales, from the atomic to the macroscopic, over timescales from less than a nanosecond to many decades, and even, in the case of nuclear waste, thousands of years. Materials research in the department draws on a wide array of new scientific tools, including advanced compact radiation sources, material probes and characterization at the nanoscale, and advanced computational simulations.

Interdisciplinary Research. Students and faculty in the department work closely with colleagues in several other departments, including Physics, Materials Science and Engineering, Mechanical Engineering, Electrical Engineering and Computer Science, and Political Science, and with the Sloan School of Management. The department is an active participant in the MIT Energy Initiative and in MIT’s interdisciplinary programs of instruction and research in the management of complex technological systems and technology and public policy.

Undergraduate Study

Bachelor of Science in Nuclear Science and Engineering (Course 22)
The department’s undergraduate program offers a strong foundation in science-based engineering, providing the skills and knowledge for a broad range of careers. The program develops scientific and engineering fundamentals in the production, interactions, measurement, and control of radiation arising from nuclear processes. In addition, the program introduces students to thermal-fluid engineering, electronics, and computational methods. Building upon these fundamentals, students understand the principles, design, and appropriate application of nuclear-based systems that have broad societal impacts in energy, human health, and security—for example, reactors, imaging systems, detectors, and plasma confinement. In addition, they develop professional skills in quantitative research, written and oral technical communication, team building, and leadership. The program provides excellent preparation for subsequent graduate education and research in a broad range of fields. In the nuclear field, there is high demand for nuclear engineers around the world as the nuclear energy industry continues to expand. Other nuclear and radiation applications are increasingly important in medicine, industry, and government.

A characteristic of the curriculum is the development of practical skills through hands-on education. This is accomplished through a laboratory subject on radiation physics, measurement, and protection (22.09 Principles of Nuclear Radiation Measurement and Protection), and through the laboratory components and exercises of the electronics (22.07[J] Electronics, Signals, and Measurement), imaging, and computational subjects. The concept of hands-on learning is continued with a 12-unit design subject focusing on nuclear systems and a 12-unit undergraduate thesis that is normally organized between the student and a faculty member of the department. Thesis subjects can touch on any area of nuclear
science and engineering, including nuclear energy applications (fission and fusion) and nuclear science and technology (medical, physical, chemical, security, and material applications).

The department offers one undergraduate program leading to a Bachelor of Science in Nuclear Science and Engineering (p. 397), Course 22, which is normally completed in four years. The Bachelor of Science program prepares students for a broad range of careers, from practical engineering work in the nuclear and other energy industries to graduate study in a wide range of technical fields, as well as entrepreneurship, law, medicine, and business.

The Course 22 degree program is accredited by the Engineering Accreditation Commission of ABET (http://www.abet.org).

Additional information may be obtained from the student’s departmental advisor or from the department’s Academic Office (Room 24-102).

Combined Bachelor’s and Master’s Programs
The five-year programs leading to a joint Bachelor of Science in Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Nuclear Science and Engineering, or Physics and a Master of Science in Nuclear Science and Engineering are designed for students who decide relatively early in their undergraduate career that they wish to pursue a graduate degree in nuclear engineering. Students must submit their application for this program during the second term of their junior year and be judged to satisfy the graduate admission requirements of the department. The normal expectations of MIT undergraduates for admission to the five-year program are an overall MIT grade point average of at least 4.3, and a strong mathematics, science, and engineering background with GPA of at least 4.0.

The nuclear science and engineering thesis requirements of the two degrees may be satisfied either by completing both an SB thesis and an SM thesis, or by completing an SM thesis and any 12 units of undergraduate credit.

For further information, interested students should contact either their undergraduate department or the Department of Nuclear Science and Engineering.

Minor in Nuclear Science and Engineering
The Minor in Nuclear Science and Engineering is open to all students who do not major in Course 22. The requirements for this six-subject minor are as follows:

<table>
<thead>
<tr>
<th>Prerequisites to departmental subjects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.03 Physics III</td>
<td>12</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required departmental subjects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>22.01 Introduction to Nuclear Engineering and Ionizing Radiation</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select two of the following:</td>
<td>24</td>
</tr>
<tr>
<td>22.05 Neutron Science and Reactor Physics</td>
<td></td>
</tr>
<tr>
<td>22.06 Engineering of Nuclear Systems</td>
<td></td>
</tr>
<tr>
<td>22.09 Principles of Nuclear Radiation Measurement and Protection</td>
<td></td>
</tr>
</tbody>
</table>

The department's minor advisor will ensure that each minor program forms a coherent group of subjects.

Inquiries
Further information on undergraduate programs, admissions, and financial aid may be obtained from the department's Academic Office (cegan@mit.edu), Room 24-102, 617-258-5682.

Graduate Study
The nuclear science and engineering field is broad and many undergraduate disciplines provide suitable preparation for graduate study.

An undergraduate degree in physics, engineering physics, chemistry, mathematics, materials science, or chemical, civil, electrical, mechanical, or nuclear science and engineering can provide a good foundation for graduate study in the department. Optimal undergraduate preparation would include the following:

Physics—At least three introductory subjects covering classical mechanics, electricity and magnetism, and wave phenomena. An introduction to quantum mechanics is quite helpful, and an advanced subject in electricity and magnetism (including a description of time-dependent fields via Maxwell’s equations) is recommended for those wishing to specialize in fusion.

Mathematics—It is essential that incoming students have a solid understanding of mathematics, including the study and application of ordinary differential equations. It is also highly recommended that students will have studied partial differential equations and linear algebra.

Chemistry—At least one term of general, inorganic, and physical chemistry.

Engineering fundamentals—The graduate curriculum builds on a variety of engineering fundamentals, and incoming students are expected to have had an introduction to thermodynamics, fluid mechanics, heat transfer, electronics and measurement, and computation. A subject covering the mechanics of materials is recommended, particularly for students wishing to specialize in fission.
Laboratory experience—This component is essential. It may have been achieved through an organized subject, and ideally was supplemented with an independent undergraduate research activity or a design project.

Applicants for admissions are required to take the Graduate Record Examination (GRE).

Master of Science in Nuclear Science and Engineering

The object of the master of science program is to give the student a good general knowledge of nuclear science and engineering and to provide a foundation either for productive work in the nuclear field or for more advanced graduate study. The general requirements for the SM degree are listed under Graduate Education. In addition to the general requirements, 22.11 Applied Nuclear Physics and 22.12 Radiation Interactions, Control, and Measurement are required for all master of science degree candidates.

Other subjects may be selected in accordance with the student’s particular field of interest. Master of science candidates may specialize in one of several fields: including nuclear fission technology, applied plasma physics, nuclear materials, nuclear security, and nuclear science and technology. Some students pursue a master of science degree in technology and policy in parallel with the Course 22 master of science program.

Students with adequate undergraduate preparation take approximately 18 months to complete the requirements for the master of science. Actual completion time ranges from one to two years. Additional information concerning the requirements for the Master of Science in Nuclear Science and Engineering, including lists of recommended subjects, may be obtained from the department’s Academic Office, Room 24-102.

Nuclear Engineer

The program of study leading to the nuclear engineer’s degree provides deeper knowledge of nuclear science and engineering than is possible in the master’s program and is intended to train students for creative professional careers in engineering application or design.

The general requirements for this degree, as described under Graduate Education, include 162 units of subject credit plus a thesis. Each student must plan an individually selected program of study, approved in advance by the faculty advisor, and must complete, and orally defend, a substantial project of significant value.

The objectives of the program are to provide the candidate with broad knowledge of the profession and to develop competence in engineering applications or design. The emphasis in the program is more applied and less research-oriented than the doctoral program.

The engineering project required of all candidates for the nuclear engineer’s degree is generally the subject of an engineer’s thesis. A student with full undergraduate preparation normally needs two years to complete the program. Additional information may be obtained from the department.

Doctor of Philosophy and Doctor of Science

The program of study leading to either the doctor of philosophy or the doctor of science degree aims to give comprehensive knowledge of nuclear science and engineering, to develop competence in advanced engineering research, and to develop a sense of perspective in assessing the role of nuclear science and technology in our society.

General requirements for the doctorate are described under Graduate Education in and in the Graduate School Policy and Procedures Manual. The specific requirements of the Department of Nuclear Science and Engineering are the math and physics competency requirement, the engineering requirement, the core requirement, the field of specialization requirement, the oral examination, the advanced subject and minor requirements, and the doctoral thesis.

Upon satisfactory completion of the requirements, the student ordinarily receives a PhD unless he or she requests an ScD. The requirements for both degrees are the same.

Students admitted for the master of science or nuclear engineer’s degree must apply to the Department of Nuclear Science and Engineering’s Admissions Committee for admission to the doctoral program.

Students admitted for a doctoral degree must complete the math and physics competency requirement and the engineering requirement prior to entering the doctoral program.

Candidates for the doctoral degree must demonstrate competence at the graduate level in the core areas of nuclear science and engineering. The NSE core consists of the following six modules:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.11</td>
<td>Applied Nuclear Physics</td>
<td>6</td>
</tr>
<tr>
<td>22.12</td>
<td>Radiation Interactions, Control, and Measurement</td>
<td>6</td>
</tr>
<tr>
<td>22.13</td>
<td>Nuclear Energy Systems</td>
<td>6</td>
</tr>
<tr>
<td>22.14</td>
<td>Materials in Nuclear Engineering</td>
<td>6</td>
</tr>
<tr>
<td>22.15</td>
<td>Essential Numerical Methods</td>
<td>6</td>
</tr>
<tr>
<td>22.16</td>
<td>Nuclear Technology and Society</td>
<td>6</td>
</tr>
</tbody>
</table>

The core requirement must be completed by the end of the fourth graduate term.

Candidates for the doctoral degree are also required to complete three H-level 12-unit (or greater than 12-unit) subjects in their field of specialization with a grade of B or better. All three subjects must be completed by the end of the fourth regular graduate term. The field-of-specialization subjects should together provide a combination of depth and breadth of knowledge. The field-of-specialization plan must be submitted by the beginning of the second graduate term.
Candidates for a doctoral degree are required to demonstrate their readiness to undertake doctoral research by passing an oral examination by the end of their fourth graduate term. Oral exams are held twice a year, at the beginning of February and at the end of May. Students will generally take the oral exam for the first time in February of their second year. Two attempts are allowed at the oral exam. An overall GPA in graduate subjects of 4.0 is required to take the oral.

Students will be permitted to embark on doctoral research only if, by the end of their fourth graduate term, they have demonstrated satisfactory performance in the core requirement, the field of specialization, and the oral examination.

Candidates for the doctoral degree must satisfactorily complete (with an average grade of B or better) an approved program of two advanced subjects (24 units) that are closely related to the student’s doctoral thesis topic. Neither of these subjects may be from the list of three subjects selected to satisfy the field-of-specialization requirement. The advanced subjects should be arranged in consultation with the student’s thesis advisor and the student’s registration officer, and should have the approval of the registration officer. In addition, students must satisfactorily complete at least 24 units of coordinated subjects outside the field of specialization and the area of thesis research (the minor). The minor should be chosen in consultation with and have the approval of the registration officer.

Doctoral research may be undertaken either in the Department of Nuclear Science and Engineering or in a nuclear-related field in another department. Appropriate areas of research are described generally in the introduction to the department, and a detailed list may be obtained from the Department of Nuclear Science and Engineering.

Interdisciplinary Programs

Computational Science and Engineering
The Computational Science and Engineering (CSE) (http://computationalengineering.mit.edu/education) program allows students to specialize at the doctoral level in a computation-related field of their choice through focused coursework and a doctoral thesis through a number of participating host departments. The CSE program is administered jointly by the Center for Computational Engineering (CCE) and the host departments, with the emphasis of thesis research activities being the development of new computational methods and/or the innovative application of computational techniques to important problems in engineering and science. For more information, see the full program description (p. 352) under Interdisciplinary Graduate Programs.

Technology and Policy
The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) (http://web.mit.edu/tpp) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description under the Institute for Data, Systems, and Society (p. 178).

Financial Support
Financial aid for graduate students is available in the form of research and teaching assistantships, department-administered fellowships, and supplemental subsidies from the College Work-Study Program. Assistantships are awarded to students with high quality academic records. The duty of a teaching assistant is to assist a faculty member in the preparation of subject materials and the conduct of classes, while that of a research assistant is to work on a research project under the supervision of one or more faculty members.

Most fellowships are awarded in April for the following academic year. Assistantships are awarded on a semester basis. The assignment of teaching assistants is made before the start of each semester, while research assistants can be assigned at any time. Essentially all students admitted to the doctoral program receive financial aid for the duration of their education.

Application for financial aid should be made to Professor Jacopo Buongiorno, Room 24-206, 617-253-7316.

Inquiries
Additional information on graduate admissions and academic and research programs may be obtained from the department’s Academic Office (cegan@mit.edu), Room 24-102, 617-253-3814.

Research Facilities
The department’s programs are supported by a number of outstanding experimental facilities for advanced research in nuclear science and engineering.

The MIT Research Reactor in the Nuclear Reactor Laboratory operates at a power of 6 MW and is fueled with U-235 in a compact light-water cooled core surrounded by a heavy-water reflector. This reactor provides a wide range of radiation-related research and teaching opportunities for the students and faculty of the department. Major programs to study corrosion in a nuclear environment are currently in place. Details of the laboratory’s research programs and facilities are given in the section on Research and Study (p. 84).

The department utilizes extensive experimental plasma facilities for the production and confinement of large volumes of highly ionized
plasmas and for studies of plasma turbulence, particle motions, and other phenomena.

Most of the departmental research on plasmas and controlled fusion is carried out in the Plasma Science and Fusion Center. The department has played a major role in the design and development of high magnetic-field fusion devices. Currently there are three major plasma experiments at MIT—the Alcator C-Mod Tokamak, the Levitated Dipole Experiment, and the Versatile Toroidal Facility—all located in the Plasma Science and Fusion Center (described in the section on Research and Study (p. 84)). Through its activities in the Plasma Science and Fusion Center, the department is also the national leader in the design of magnets, both copper and superconducting.

The thermal hydraulics and nanofluids laboratory is equipped with state-of-the-art instrumentation for measurement of fluid thermo-physical properties, and flow loops for characterizing convective heat transfer and fluid dynamics behavior. A particularly novel facility uses infrared thermography to study fundamental phenomena of boiling, such as bubble nucleation, growth, and departure from a heated surface.

Research in the laboratory for electrochemical interfaces centers on understanding the response of surface structure and physical chemistry when driven by dynamic environments of chemical reactivity and mechanical stress. The H. H. Uhlig Corrosion Laboratory investigates the causes of failure in materials, with an emphasis on nuclear materials. In the quantum engineering laboratory, the focus is on the engineering of quantum spin-based sensors, actuators, and computers.

In addition to the above facilities, the department has a nuclear instrumentation laboratory and a 14 MeV neutron source. Laboratory space and shop facilities are available for research in all areas of Nuclear Science and Engineering. A state-of-the-art scanning electron microscope that can be used to study irradiated specimens is available. A number of computer workstations dedicated to simulation, modeling, and visualization, as well as MIT’s extensive computer facilities, are used in research and graduate instruction.

Faculty and Teaching Staff

Professors

Ronald G. Ballinger, ScD
Professor of Nuclear Science and Engineering
Professor of Materials Science and Engineering

Jacopo Buongiorno, PhD
Professor of Nuclear Science and Engineering

Michael W. Golay, PhD
Professor of Nuclear Science and Engineering

Ian H. Hutchinson, PhD
Professor of Nuclear Science and Engineering

Alan P. Jasanoff, PhD
Professor of Biological Engineering
Professor of Nuclear Science and Engineering
Professor of Brain and Cognitive Sciences

Richard K. Lester, PhD
Japan Steel Industry Professor
Associate Provost
Head, Department of Nuclear Science and Engineering

Ju Li, PhD
Battelle Energy Alliance Professor
Professor of Nuclear Science and Engineering
Professor of Materials Science and Engineering

Dennis G. Whyte, PhD
Professor of Nuclear Science and Engineering

Associate Professors

Emilio Baglietto, PhD
Associate Professor of Nuclear Science and Engineering

Paola Cappellaro, PhD
Esther and Harold E. Edgerton Career Development Professor
Associate Professor of Nuclear Science and Engineering

Benoit Forget, PhD
Associate Professor of Nuclear Science and Engineering

Anne E. White
Cecil and Ida Green Career Development Professor
Associate Professor of Nuclear Science and Engineering

Bilge Yildiz, PhD
Associate Professor of Nuclear Science and Engineering
Associate Professor of Materials Science and Engineering

Assistant Professors

Areg Danagoulian, PhD
Assistant Professor of Nuclear Science and Engineering

R. Scott Kemp, PhD
Assistant Professor of Nuclear Science and Engineering

Michael P. Short, PhD
Assistant Professor of Nuclear Science and Engineering

Professors of the Practice

Kord Smith, PhD
Korea Electric Power Professor of Nuclear Engineering
Professor of the Practice of Nuclear Science and Engineering
Visiting Professors
David G. Cory, PhD
Visiting Professor of Nuclear Science and Engineering

Research Staff

Senior Research Engineers
Joseph V. Minervini, PhD
Senior Research Engineer of Nuclear Science and Engineering

Senior Research Scientists
Peter J. Catto, PhD
Senior Research Scientist of Nuclear Science and Engineering
Richard C. Lanza, PhD
Senior Research Scientist of Nuclear Science and Engineering

Principal Research Engineers
John A. Bernard Jr, PhD
Principal Research Engineer of Nuclear Science and Engineering

Principal Research Scientists
Charles W. Forsberg, ScD
Principal Research Scientist of Nuclear Science and Engineering

Research Engineers
Peter W. Stahle, BS
Research Engineer of Nuclear Science and Engineering

Research Scientists
Akihiro Kushima, PhD
Research Scientist of Nuclear Science and Engineering
Dario Marrocchelli, PhD
Research Scientist of Nuclear Science and Engineering
Thomas J. McKrell, PhD
Research Scientist of Nuclear Science and Engineering
Bari Osmanov, PhD
Research Scientist of Nuclear Science and Engineering
Edward E. Pilat, PhD
Research Scientist of Nuclear Science and Engineering
Koroush Shirvan, PhD
Research Scientist of Nuclear Science and Engineering

Professors Emeriti
George Apostolakis, PhD
Professor Emeritus of Nuclear Science and Engineering
Michael J. Driscoll, ScD
Professor Emeritus of Nuclear Science and Engineering
Thomas H. Dupree, PhD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Physics
Jeffrey P. Freidberg, PhD
Professor Emeritus of Nuclear Science and Engineering
Kent F. Hansen, PhD
Professor Emeritus of Nuclear Science and Engineering
Otto K. Harling, PhD
Professor Emeritus of Nuclear Science and Engineering
Linn W. Hobbs, DPhil
Professor Emeritus of Materials Science and Engineering
Professor Emeritus of Nuclear Science and Engineering
David D. Lanning, PhD
Professor Emeritus of Nuclear Science and Engineering
Ronald M. Latanision, PhD
Professor Emeritus of Materials Science and Engineering
Professor Emeritus of Nuclear Science and Engineering
Kim Molvig, PhD
Associate Professor Emeritus of Nuclear Science and Engineering
Ronald R. Parker, PhD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Electrical Engineering
Kenneth C. Russell, PhD
Professor Emeritus of Metallurgy
Professor Emeritus of Nuclear Science and Engineering
Neil E. Todreas, PhD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Mechanical Engineering
Sidney Yip, PhD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Materials Science and Engineering
SCHOOL OF HUMANITIES, ARTS, AND SOCIAL SCIENCES

MIT’s mission of meeting the world’s great challenges requires both superb technical and scientific creativity, and a deep understanding of the human complexities—cultural, political, and economic—in which science and engineering issues are embedded.

The disciplines taught in MIT’s School of Humanities, Arts, and Social Sciences (SHASS) empower young students, thinkers, and citizens with historical and cultural perspectives, and with language, critical thinking, and communication skills—capacities that allow MIT students to create innovations and lives that are rich in meaning and wisdom.

The School is made up of the following departments, programs, and sections: Anthropology; Comparative Media Studies/Writing; Economics; Global Studies and Languages; History; Linguistics and Philosophy; Literature; Music and Theater Arts; Political Science; Science, Technology, and Society; and Women’s and Gender Studies.

Each year hundreds of MIT students graduate with majors and minors in over 20 SHASS fields. In addition, the School provides the majority of subjects used to fulfill the Institute’s Humanities, Arts, and Social Sciences Requirement. The object of the requirement, broadly stated, is to ensure that every undergraduate at MIT is exposed to a wide range of interpretive and analytic approaches in the humanities, arts, and social sciences.

Humanities, arts, and social science programs emphasize teaching, research, and performance. Through their publications, lectures, and seminars, the faculty strive to expand the frontiers of human knowledge and awareness. Interdisciplinary collaboration is a hallmark of this activity.

Research and Innovation

SHASS is home to research that has a global impact, and to superb graduate programs, all recognized as among the finest in the world. The School offers five doctoral programs in Economics; History, Anthropology, and Science, Technology and Society (HASTS); Linguistics; Philosophy; and Political Science. These are among the leading graduate programs of their kind in the world. They prepare students primarily for teaching and research careers in universities and colleges, but also for government service, industry, and finance. The School also offers master’s degrees in Comparative Media Studies, Economics, Political Science, and Science Writing.

Interdisciplinarity

In addition to the classical humanities, arts, and social sciences fields of study, the School houses three interdisciplinary programs: Comparative Media Studies/Writing; Science, Technology and Society; and Women’s and Gender Studies. Within the departments, programs, and sections, students may also study several interdisciplinary fields: Ancient and Medieval Studies, Applied International Studies, Public Policy, and five Regional Studies areas (African and African Diaspora Studies, Asian and Asian Diaspora Studies, Latin American and Latino Studies, Middle Eastern Studies, Russian and Eurasian Studies).

The interdepartmental centers, groups, and programs that reside in the School of Humanities, Arts, and Social Sciences include the following:

- Abdul Latif Jameel Poverty Action Laboratory
- Center for International Studies
- Hyperstudio
- Knight Science Journalism Program
- MISTI
- Women's and Gender Studies Program

See the Research and Study (p. 84) section for further information.

Global Citizens

The School has a central role in international education at MIT, and in preparing students to be leaders and good global citizens. The MIT International Science and Technology Initiatives (MISTI) program, located at the Center for International Studies, supports student internships in Belgium, Brazil, Chile, China, France, Germany, India, Israel, Italy, Japan, Korea, Mexico, Netherlands, Portugal, Russia, Singapore, South Africa, Spain, and Switzerland. Through MISTI, the School’s applied international education program, MIT students learn how to work, collaborate, and thrive in cultures around the globe. More locally, the Global Studies and Languages Section offers language and culture programs in Chinese, French, German, Japanese, Portuguese, Russian, and Spanish. The Japanese Language and Cultural Program has built the most technologically advanced Japanese language and culture education curriculum in the world, using online computer networks and interactive videos.

History

MIT’s Course 21 (Humanities) was considered innovative when it was established in the 1950s, although its roots go back to the opening of the Institute in 1865. During the 1960s the School grew rapidly, was reorganized into most of its current departments and sections, and began to grant full-scale degrees. In the 1970s and 1980s, the School continued to define separate programs and rearrange sections. In 1990 the School replaced the generic SB degree in Humanities with SB degrees in specified areas of humanistic study: Anthropology, History, Literature, Foreign Languages and Literatures, Music, and Writing. To reflect the growth and incorporation of the arts at MIT, and in celebration of its 50th...
anniversary in 2000, the School changed its name to the School of Humanities, Arts, and Social Sciences.

Degrees Offered in the School of Humanities, Arts, and Social Sciences

Anthropology (Course 21A)

- **SB** Anthropology

Comparative Media Studies/Writing (Course CMS and Course 21W)

- **SB** Comparative Media Studies
- **SB** Writing
- **SM** Comparative Media Studies
- **SM** Science Writing

Economics (Course 14)

- **SB** Economics
- **SM** Economics
- **PhD** Economics

Global Studies and Languages (Course 21G)

- **SB** Global Studies and Languages

History (Course 21H)

- **SB** History

Humanities (Course 21)

- **SB** Humanities
- **SB** Humanities and Engineering
- **SB** Humanities and Science

1. *Students majoring in one of the designated interdisciplinary major fields within SHASS receive the generic SB degree in Course 21, Humanities.*

Linguistics and Philosophy (Course 24)

- **SB** Linguistics and Philosophy
- **SB** Philosophy
- **PhD** Linguistics
- **PhD** Philosophy

Literature (Course 21L)

- **SB** Literature

Music and Theater Arts (Course 21M)

- **SB** Music
- **SB** Theater Arts

Political Science (Course 17)

- **SB** Political Science

<table>
<thead>
<tr>
<th>SM</th>
<th>Political Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Political Science</td>
</tr>
</tbody>
</table>

Program in Science, Technology, and Society (STS)

<table>
<thead>
<tr>
<th>SB</th>
<th>Science, Technology, and Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>History, Anthropology, and Science, Technology, and Society</td>
</tr>
</tbody>
</table>

Notes

Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.

Admissions

The selection process at MIT is holistic and student centered: each application is evaluated within its unique context. Selection is based on outstanding academic achievement as well as a strong match between the applicant and the Institute.

Undergraduate applicants do not apply to a particular school, department or program and, although the application asks about a preferred field of study, most admitted undergraduates do not declare a major until the second semester of their freshman year. Admissions information for regular, transfer, and non-degree applicants is provided in the section on Undergraduate Education (p. 30).

Applicants for graduate study apply directly to the particular department or program of interest. See the individual department and program descriptions for specific requirements.

Office of the Dean

Melissa Nobles
Kenan Sahin Dean, School of Humanities, Arts, and Social Sciences
Professor of Political Science

Marc B. Jones, BA
Assistant Dean for Finance and Administration

Anne Marie Michel, MA
Assistant Dean for Development

Erminia Piccinonno
Director of Human Resources

Emily Hiestand, MA
Communications Director
ANTHROPOLOGY

Anthropology studies humankind from a comparative perspective that emphasizes the diversity of human behavior and the importance of culture in both describing and explaining that variety. While the discipline encompasses the biological nature of our species and the material aspects of human adaptation, it takes as fundamental the idea that humans respond to nature and natural forces in large part through culture—that is, the system of practices and signs through which people interact and communicate. Anthropology, then, is the study of human beings as cultural animals. Sociocultural anthropology, the focus of the MIT program, draws its data from the direct study of contemporary peoples living in a wide variety of circumstances, from peasant villagers to tropical forest hunters and gatherers to professionals working in technological organizations to urban populations in modern societies.

Anthropology at MIT offers students a broad exposure to scholarship on human culture. The field is more generally distinguished from other humanities and social science disciplines by its insistence that understanding people’s ways of life is often best accomplished by living and working among them—that is, by doing fieldwork. This immersive work—often described as ethnography—reveals the multiple positions and perspectives that constitute social worlds. Ethnographic representations in texts and films can provide excellent contextual resources for work in engineering, science, and other fields in the humanities, social sciences, and management.

Undergraduate Study

MIT’s Anthropology Program provides introductions to intensive studies in such areas as environmentalism; agriculture and food production; the organization and cultures of science, medicine, and technology; religion and symbolism; law and human rights; gender, sex, race, and class; and nationalism and ethnic identity.

Excluding Independent Study, Thesis, and Special Subjects, the Anthropology curriculum is divided into seven topic clusters that provide depth on related topics:

- 21A.00 Introduction to Anthropology: Comparing Human Cultures and 21A.01 How Culture Works are core subjects.
- 21A.100 to 21A.199 address general issues related to culture and identity.
- 21A.200 to 21A.299 concern religion, belief, myth, and magic in different cultures.
- 21A.300 to 21A.399 examine health, disease, medicine, and biology in global and local settings.
- 21A.400 to 21A.499 investigate issues and conflicts related to the environment, law, and human rights.
- 21A.500 to 21A.599 focus on science, technology, and media in various institutional, economic, and political contexts.
- 21A.800 to 21A.899 are methods and theory subjects.

For additional information, visit the anthropology website (http://web.mit.edu/anthropology/undergraduate/subjects.html).

Students taking a concentration in anthropology should enroll in either 21A.00 Introduction to Anthropology: Comparing Human Cultures or 21A.01 How Culture Works, and two other subjects. Anthropology subjects qualify for several interdisciplinary concentrations, including those in Women’s and Gender Studies, Latin American and Latino Studies, and Science, Technology, and Society.

Bachelor of Science in Anthropology (Course 21A)

The undergraduate program leading to the degree of Bachelor of Science in Anthropology (Course 21A) (p. 399) provides a thorough grounding in cultural anthropology.

Majors learn about the concept of culture and the processes by which humans make meaningful transactions, the nature of ethnographic fieldwork, and the connections between anthropology and the other social sciences. Majors study the theories explaining human behavior as well as the range of methods anthropologists use to analyze empirical data. Students can focus on particular geographical areas, such as Latin America, Europe, North America, Africa, or Asia, and on issues like neocolonialism, ethnic conflict, human rights, environmental movements, globalization, or expressive, medical, or scientific cultures.

The anthropology student comes to understand that the hallmark of the discipline is the comparative study of human societies. Emphasis is on understanding diversity and the importance of the concept of culture in explaining that variety, as well as on learning about the universals of behavior that may underlie diversity.

Joint Degree Programs

Joint degree programs are offered in anthropology in combination with a field in engineering or science (21E, 21S). See the joint degree programs listed under Humanities (p. 252).

Either 21A.00 Introduction to Anthropology: Comparing Human Cultures or 21A.01 How Culture Works is strongly recommended as a preliminary subject for all anthropology degree programs.

Minor in Anthropology

The Minor in Anthropology consists of six subjects arranged into three tiers as shown below. Students create individual programs with the help of the minor advisor to ensure that they gain a coherent introduction to the methods, approaches, and some of the results of the discipline.

<table>
<thead>
<tr>
<th>Tier I</th>
<th>Subject</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>21A.00 Introduction to Anthropology: Comparing Human Cultures</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>or 21A.01 How Culture Works</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tier II
Select four subjects with a unifying theme (not to include 21A.00 or 21A.01) 42-48

Tier III
21A.852 Seminar in Anthropological Theory 12
or 21A.802 Seminar in Ethnography and Fieldwork

Total Units 66-72

Graduate Study

HASTS Graduate Program
The Anthropology Program, the History faculty, and the Program in Science, Technology, and Society collaborate in the graduate program History, Anthropology, and Science, Technology, and Society (HASTS) leading to a PhD; see the description under the Program in Science, Technology, and Society (p. 269).

Inquiries
Further information on subjects and programs may be obtained from the Anthropology Office, Room E53-335, 617-452-2837.

Faculty and Teaching Staff

Professors
Michael M. J. Fischer, PhD
Andrew W. Mellon Professor in the Humanities
Professor of Science and Technology Studies
Professor of Anthropology

Stefan Helmreich, PhD
Elting E. Morison Professor in Humanities
Professor of Anthropology
Section Head, Anthropology Program

Heather Anne Paxson, PhD
William R. Kenan, Jr. Professor
Professor of Anthropology

Susan S. Silbey, PhD
Leon and Anne Goldberg Professor of Humanities
Professor of Sociology and Anthropology
Professor of Behavioral and Policy Studies
Member, Institute for Data, Systems, and Society
(On leave)

Associate Professors
Manduhai Buyandelger, PhD
Class of 1956 Career Development Professor
Associate Professor of Anthropology

Erica C. James, PhD
Associate Professor of Anthropology

Graham M. Jones, PhD
Associate Professor of Anthropology
(On leave)

Christine Walley, PhD
Associate Professor of Anthropology

Assistant Professors
Amy Moran-Thomas, PhD
Assistant Professor of Anthropology

Professors Emeriti
James Howe, PhD
Professor Emeritus of Anthropology

Jean E. Jackson, PhD
Professor Emerita of Anthropology

Arthur Steinberg, PhD
Professor Emeritus of Anthropology
COMPARATIVE MEDIA STUDIES/WRITING

Comparative Media Studies/Writing combines the study of contemporary media (film, television, social media, and digital interactive forms) with the study of creative and journalistic practices of producing these and other forms of modern fiction, poetry, film, and non-fiction prose. The section offers two undergraduate majors, one in Comparative Media Studies and another in Writing, as well as two graduate SM degrees in Comparative Media Studies and Science Writing. The curriculum seeks to encourage students to think across various forms of media and to learn about contemporary forms of media through the practices of creating and producing them.

The program in Comparative Media Studies/Writing is home to two centers that serve as key resources to the MIT community. The MIT Writing and Communication Center offers free individual consultation on communication on an appointment or drop-in basis to all members of the MIT community, as well as other services. For more information about the WCC and other academic resources for students, see Academic Resources (p. 27).

The Writing, Rhetoric, and Professional Communication (WRAP) staff helps provide the integration of instruction and feedback in writing and speaking in subjects in all undergraduate departments and programs. For information about all of WRAP’s services, visit the WRAP website (http://cmsw.mit.edu/education/writing-across-the-curriculum).

Undergraduate Study

Bachelor of Science in Comparative Media Studies (CMS)

The program leading to the Bachelor of Science in Comparative Media Studies (p. 400) degree is designed to integrate the study of contemporary media (film, television, digital systems) with a broad historical understanding of older forms of human expression. The program embraces theoretical and interpretive principles drawn from the central humanistic disciplines of literary study, history, anthropology, art history, and film studies, but aims as well for a comparative synthesis that is responsive to the distinctive emerging media culture of the 21st century. Students explore the complexity of the media environment by learning to think across media, to see beyond the boundaries imposed by older medium-specific approaches to the study of audio-visual and literary forms. The undergraduate program serves as preparation for advanced study in a range of scholarly and professional disciplines and also for careers in media or industry.

The comparative and cross-disciplinary nature of both the undergraduate and graduate programs is reflected by the extensive participation of faculty drawn from Art and Architecture; Anthropology; Global Studies and Languages; History; Literature; Music and Theater Arts; Philosophy; Science, Technology, and Society; Media Arts and Sciences; Political Science; and Urban Studies and Planning.

The SB in Comparative Media Studies requires 10 subjects. Majors are required to take 21L.011 The Film Experience, CMS.100 Introduction to Media Studies, one Tier II subject, one Tier III subject, and six electives. A pre-thesis tutorial (CMS.THT) and thesis (CMS.THU) may be substituted for one elective.

Bachelor of Science in Writing (Course 21W)

The writing major offers students the opportunity to study the craft, forms, and traditions of contemporary writing, journalism, and digital media. Some students explore writing as a means of artistic expression. Some learn how to write for a variety of media or to communicate the results of their science and technical work to broad audiences and members of their professions. Others work collaboratively within the evolving framework of digital media to become skillful in interactive and nonlinear forms of communication. All subjects in the major emphasize the development of the foundational skills, creative initiative, and critical sensibility necessary to become a good writer.

Subjects in the program’s three areas of emphasis—creative writing (p. 424) (fiction, nonfiction prose, poetry), science writing (p. 426), and digital media (p. 425)—are taught at both introductory and advanced levels. All subjects require extensive writing and revision. Student work is typically discussed in workshops and receives the written commentary of the instructor.

The writing major is an option for students interested in journalism, longer forms like the science documentary, and communication issues related to the public understanding of science and technology. It is also designed to work as a complementary major for students majoring in science, engineering, or another field of study at MIT. Students also fulfill an internship requirement, which provides in-depth practical experience.

The digital media emphasis offers in-depth study of emerging interactive and nonlinear styles of narrative, as well as individual and collaborative experience in producing digitally mediated forms, both aesthetic and utilitarian. Students may gain extensive experience in using a variety of authoring systems to develop large-scale websites, web-based hypertext products, computer games, interactive fiction and poetry, and digitally mediated visual worlds. Knowledge of programming is often helpful, but not necessary.

Joint Degree Programs in Comparative Media Studies

The joint undergraduate degree program in CMS (21E or 21S) requires eight CMS subjects, plus six subjects in an engineering or science major. Students are required to take 21L.011 The Film Experience or CMS.100 Introduction to Media Studies; one Tier II subject; one Tier III subject; and five CMS electives. A pre-thesis tutorial (CMS.THT) and thesis (CMS.THU) may be substituted for one CMS elective. Students must obtain approval for their
subject selection from an advisor in their engineering or science field, and must also file a petition with the Subcommittee on the Communication Requirement. See joint degree programs under the Department of Humanities section (p. 252).

Joint Degree Programs in Writing
Joint degree programs are offered in writing in combination with a field in engineering or science (the 21E and 21S degrees). See the joint degree programs listed under Humanities (p. 252).

Minor in Comparative Media Studies
The minor requires six subjects that reflect the comparative study of media. It is organized into three tiers, and each student designs his or her own plan of study in consultation with an advisor in the field.

<table>
<thead>
<tr>
<th>Tier I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21L.011 The Film Experience</td>
<td>12</td>
</tr>
<tr>
<td>or CMS.100 Introduction to Media Studies</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>12</td>
</tr>
<tr>
<td>CMS.400 Media Systems and Texts</td>
<td></td>
</tr>
<tr>
<td>CMS.403 Media and Methods: Performing</td>
<td></td>
</tr>
<tr>
<td>CMS.405 Media and Methods: Seeing and Expression</td>
<td></td>
</tr>
<tr>
<td>CMS.407 Media and Methods: Sound</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21L.706 Studies in Film</td>
<td>12</td>
</tr>
<tr>
<td>or CMS.701 Current Debates in Media</td>
<td></td>
</tr>
</tbody>
</table>

Electives: 36

Select three elective subjects

| Total Units | 72 |

Minor in Writing
The minor consists of six subjects that are selected to focus on one of three areas: creative writing, science writing, or digital media. It is arranged in two tiers of study as follows:

<table>
<thead>
<tr>
<th>Tier I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>12</td>
</tr>
<tr>
<td>21W.011 Writing and Rhetoric: Rhetoric and Contemporary Issues</td>
<td></td>
</tr>
<tr>
<td>21W.012 Writing and Rhetoric: Food for Thought</td>
<td></td>
</tr>
<tr>
<td>21W.013 Writing and Rhetoric: Introduction to Contemporary Rhetoric</td>
<td></td>
</tr>
<tr>
<td>21W.014 Writing and Rhetoric: Exploring Visual Media</td>
<td></td>
</tr>
<tr>
<td>21W.015 Writing and Rhetoric: Writing about Sports</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select five subjects from among the writing subjects in the area of focus</td>
<td>60</td>
</tr>
</tbody>
</table>

| Total Units | 72 |

1 See the department's website (http://cmsw.mit.edu/education/subject-lists/writing) for information about available subjects.
Graduate Study

Master of Science in Comparative Media Studies

The graduate program is a two-year course of study leading to a Master of Science in Comparative Media Studies. The program aims to prepare students for careers in fields such as journalism, teaching and research, government or public service, museum work, information science, corporate consulting, media industry marketing and management, and educational technology.

The graduate degree program in Comparative Media Studies places extensive emphasis on student participation in collaborative sponsored research of one or more of its research groups, including the Center for Civic Media; the Open Documentary Lab; the Education Arcade; the MIT Game Lab; the Imagination, Computation, and Expression Laboratory; HyperStudio; the Trope Tank; the Creative Communities Initiative; and the Mobile Experience Laboratory. Typically graduate students spend 15-20 hours per week on funded group-project work during their two-year program, for which they receive funding that supports their graduate study at MIT. For further information on research, visit the CMS website (http://cmsw.mit.edu/research-groups).

CMS graduate students usually take three 12-unit subjects per term, plus a 3-unit colloquium. All students take three introductory seminars (Media Theories and Methods I and II, and Major Media Texts) during their first year, as well as two terms of Workshop, a subject that offers hands-on experience in media. In their final term, they take a 24-unit subject devoted to completing the master’s thesis, plus the 3-unit Colloquium in Comparative Media. Typically, students will graduate with a total of 144 units; however, a minimum of 139 units is required for the master’s degree in order to accommodate some electives that are 9-unit instead of 12-unit subjects.

Students may enter the program with a degree from a wide range of undergraduate majors, including the liberal arts, the social sciences, journalism, computer science, and management.

Required Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS.790</td>
<td>Media Theories and Methods I</td>
</tr>
<tr>
<td>CMS.791</td>
<td>Media Theories and Methods II</td>
</tr>
<tr>
<td>CMS.796</td>
<td>Major Media Texts</td>
</tr>
<tr>
<td>CMS.801</td>
<td>Media in Transition</td>
</tr>
<tr>
<td>CMS.950</td>
<td>Workshop I</td>
</tr>
<tr>
<td>CMS.951</td>
<td>Workshop II</td>
</tr>
<tr>
<td>CMS.990</td>
<td>Colloquium in Comparative Media</td>
</tr>
<tr>
<td>CMS.THG</td>
<td>Master's Thesis</td>
</tr>
</tbody>
</table>

Master of Science in Science Writing

The one-year graduate program in Science Writing leads to a Master of Science in Science Writing, and it is aimed at students who wish to write about science and technology for general readers, in ordinary newsstand magazines and newspapers, in popular and semi-popular books, on the walls of museums, or on television or radio programs. Students may be graduates of undergraduate science, engineering, journalism, or writing programs; experienced journalists and freelance writers; working scientists or engineers; historians of science and technology; or other scholars, including those already holding advanced degrees.

The program is built around an intensive year-long advanced science writing seminar. In addition, students choose one elective each semester, write a substantial thesis, observe in a lab, and complete an internship. Complete information is available on the program’s website (http://sciwrite.mit.edu). The graduate program maintains links to MIT’s Program in Science, Technology, and Society; and to the Knight Science Journalism Program. For more information, see the descriptions of the Science, Technology, and Society Program (p. 268) and Research and Study (p. 84) for more information about the Knight Science Journalism Program.

Inquiries

Further information on subjects and programs may be obtained from the Comparative Media Studies/Writing office (cmsw@mit.edu), Room 14N-338, 617-253-3599.

Faculty and Teaching Staff

Professors

Ian Condry, PhD
Professor of Cultural Studies
Professor of Media

Junot Díaz, MFA
Rudge (1948) and Nancy Allen Professor
Professor of Writing

Heather Hendershot, PhD
Professor of Comparative Media Studies

Helen Elaine Lee, JD
Professor of Fiction Writing

Thomas Levenson, BA
Professor of Science Writing

Kenneth R. Manning, PhD
Thomas Meloy Professor of Rhetoric
Professor of Science, Technology, and Society

James G. Paradis, PhD
On leave, spring
Edward Schiappa Jr, PhD
Professor of Comparative Media Studies/Writing
Head, Comparative Media Studies/Writing Program

T. L. Taylor, PhD
Professor of Comparative Media Studies

William C. Uricchio, PhD
Professor of Comparative Media Studies
Professor of Global Studies and Languages
(On leave, spring)

Jing Wang, PhD
S. C. Fang Professor in Chinese Language and Culture
Professor of Global Studies and Languages
Professor of Comparative Media Studies/Writing
(On leave)

Rosalind H. Williams, PhD
Bern Dibner Professor in the History of Science and Technology
Professor of Comparative Media Studies/Writing

Associate Professors

Vivek Bald, PhD
Associate Professor of Writing and Digital Media

Sasha Costanza-Chock, PhD
Associate Professor of Civic Media

D. Fox Harrell Jr, PhD
Associate Professor of Digital Media

Seth Mnookin, BA
Ford International Career Development Professor
Associate Professor of Science Writing

Nick Montfort, PhD
Associate Professor of Digital Media

Professors of the Practice

Marcia Bartusiak, MS
Professor of the Practice of Science Writing

Alan Paige Lightman, PhD
Professor of the Practice of the Humanities

Associate Professors of the Practice

Federico Casalegno, PhD
Associate Professor of the Practice of Comparative Media Studies/Writing

Visiting Associate Professors

Jesper Juul, PhD
Visiting Associate Professor of Comparative Media Studies/Writing

Visiting Assistant Professors

Zuwena Packer, MFA
Visiting Assistant Professor of Comparative Media Studies/Writing

Senior Lecturers

Edward C. Barrett, PhD
Senior Lecturer in Writing

Suzanne T. Lane, PhD
Senior Lecturer in Rhetoric and Communication

Lecturers

Atissa Banuazizi, MA
Lecturer in Comparative Media Studies/Writing

Jared Berezin, MA
Lecturer in Comparative Media Studies/Writing

Karen Boiko, PhD
Lecturer in Comparative Media Studies/Writing

Harlan Breindel, MA
Lecturer in Comparative Media Studies/Writing

Stephen Brophy, BA
Lecturer in Comparative Media Studies/Writing

Amy Carleton, PhD
Lecturer in Comparative Media Studies/Writing

Susan E. Carlisle, MFA
Lecturer in Comparative Media Studies/Writing

Mary Caulfield, MA
Lecturer in Comparative Media Studies/Writing

B. D. Colen, BA
Lecturer in Comparative Media Studies/Writing

Jane Abbott Connor, MA
Lecturer in Comparative Media Studies/Writing

Jennifer Craig, MA
Lecturer in Comparative Media Studies/Writing

David Custer, BA
Lecturer in Comparative Media Studies/Writing

Nora Delaney, MA
Lecturer in Comparative Media Studies/Writing

Elizabeth Fox, PhD
Lecturer in Comparative Media Studies/Writing

Erica Funkhouser, MA
Lecturer in Comparative Media Studies/Writing
Andrew Haydn Grant, BS, BEng
Lecturer in Comparative Media Studies/Writing

JoAnn Graziano, MLA
Lecturer in Comparative Media Studies/Writing

Louise Harrison Lepera, MA
Lecturer in Comparative Media Studies/Writing

Amelia R. Herb, PhD
Lecturer in Comparative Media Studies/Writing

Robert A. Irwin, PhD
Lecturer in Comparative Media Studies/Writing

Nora A. L. Jackson, MA
Lecturer in Comparative Media Studies/Writing

Andreas Karatsolis, PhD
Lecturer in Comparative Media Studies/Writing

Jane Kokernak, MA
Lecturer in Comparative Media Studies/Writing

Marilyn Levine, MA
Lecturer in Comparative Media Studies/Writing

Shariann Lewitt, MFA
Lecturer in Comparative Media Studies/Writing

Lucy Marx, MA
Lecturer in Comparative Media Studies/Writing

Janis Melvold, PhD
Lecturer in Comparative Media Studies/Writing

Marilee Ogren-Balkema, PhD
Lecturer in Comparative Media Studies/Writing

Karen Pepper, PhD
Lecturer in Comparative Media Studies/Writing

John Picker, PhD
Lecturer in Comparative Media Studies/Writing

Leslie Ann Sulit Roldan, PhD
Lecturer in Comparative Media Studies/Writing

Thalia Rubio, MEd
Lecturer in Comparative Media Studies/Writing

Susan Ruff, BA
Lecturer in Comparative Media Studies/Writing

Juergen Schoenstein, MA
Lecturer in Comparative Media Studies/Writing

Pamela Siska, MA
Lecturer in Comparative Media Studies/Writing

Amanda Sobel, MA
Lecturer in Comparative Media Studies/Writing

Susan Spilecki, MA
Lecturer in Comparative Media Studies/Writing

Jessie M. Stickgold-Sarah, PhD
Lecturer in Comparative Media Studies/Writing

Linda L. Sutliff, MA, MBA
Lecturer in Comparative Media Studies/Writing

Cynthia Taft, PhD
Lecturer in Comparative Media Studies/Writing

Rebecca Thorndike-Breeze, PhD
Lecturer in Comparative Media Studies/Writing

Michael Trice, MA
Lecturer in Comparative Media Studies/Writing

Kimberly J. Vaeth, MA
Lecturer in Comparative Media Studies/Writing

Andrea Walsh, PhD
Lecturer in Comparative Media Studies/Writing

Jeanne Wildman, JD
Lecturer in Comparative Media Studies/Writing

Research Staff

Principal Research Associates
Kurt E. Fendt, PhD
Principal Research Associate of Comparative Media Studies/Writing

Research Scientists
Mikael Jakobsson, PhD
Research Scientist of Comparative Media Studies/Writing

Scot Osterweil, BA
Research Scientist of Comparative Media Studies/Writing

Philip Tan, MS
Research Scientist of Comparative Media Studies/Writing

Professors Emeriti
Anita Desai, BA
John E. Burchard Professor Emerita of Humanities

Joe Haldeman, MFA
Adjunct Professor Emeritus of Fiction

Robert Kanigel, BS
Professor Emeritus of Science Writing
James H. Williams Jr, PhD
Professor Emeritus of Teaching Excellence
Professor Emeritus of Mechanical Engineering
Professor Emeritus of Writing

Cynthia Griffin Wolff, PhD
Class of 1922 Professor Emerita of Literature
DEPARTMENT OF ECONOMICS

Economics is the study of all those aspects of individual and social activities related to the choice, production, distribution, and consumption of goods and services. In relation to these decisions, economics is concerned with the behavior and interaction of individuals, private firms, and other institutions and government agencies. Economics contributes to the understanding of many important social problems: changes in efficiency and productivity, fluctuations in the overall levels of economic activity and employment, inflation, the effects of government deficits, the growth and decline of industries, changes in foreign exchange rates, increases in international indebtedness, and the behavior of the centrally planned and less developed countries.

Subjects are offered in the major areas of economics: theoretical and applied analysis at the levels of the individual consumer, the firm, and the industry, as well as aggregate economic activity, industrial organization and health economics, econometrics, public finance, energy economics, labor economics, game theory, international trade and finance, economic history, economic development, and political economy.

Undergraduate Study

Bachelor of Science in Economics (Course 14)

Course 14, leading to the Bachelor of Science in Economics (p. 401), combines training in technical economics with opportunities for a broad and balanced undergraduate education. Students may choose from a diversified group of undergraduate subjects and are encouraged to engage in independent research.

The aims of the undergraduate degree program are threefold: to give students a firm grounding in modern economic theory and a basic understanding of economic processes; to provide a descriptive knowledge of the US and world economies; and to develop in students the capabilities for quantitative analysis and independent thought. These aims correspond roughly to the requirements in the Course 14 program of theory, electives, statistics and econometrics, and research.

The requirements allow substantial freedom for students in designing individual programs within economics and balancing the programs with subjects in other disciplines. The large amount of unrestricted elective time encourages students to shape programs close to their own needs and interests. Students may select programs that concentrate on economics and other social sciences or may combine economics with other fields. They may emphasize the relation of economics and technology by choosing their free electives in engineering and science, or they may combine their studies in economics with subjects in history and the other humanities.

The successful completion of the degree program prepares students for further study in economics or for careers in business administration and finance, consulting, law and related fields, and public policy.

Although there are several satisfactory alternative subject sequences, students who by the end of their second year have taken 14.01 Principles of Microeconomics and 14.02 Principles of Macroeconomics can follow a program that permits considerable depth in electives in their third and fourth years. With that preparation, students can complete 14.04 Intermediate Microeconomic Theory, 14.05 Intermediate Macroeconomics, 14.30 Introduction to Statistical Methods in Economics, and 14.32 Econometrics in the third year. This program satisfies the prerequisites for all subjects (including 14.33 Research and Communication in Economics: Topics, Methods, and Implementation) and prepares students for research on their thesis and in other elective subjects.

The department specifies one Restricted Electives in Science and Technology (REST) Requirement subject and one laboratory subject, and strongly recommends that students take additional subjects in mathematics if professionally interested in economics.

Minor in Economics

The objective of the minor is to extend the understanding of economic issues beyond the level of the concentration. This is done through specialized analytical subjects and elective subjects that provide an extensive treatment of economic issues in particular areas.

The Minor in Economics consists of six subjects arranged into three levels of study:

<table>
<thead>
<tr>
<th>Tier I</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14.01</td>
<td>Principles of Microeconomics ¹</td>
<td>12</td>
</tr>
<tr>
<td>14.02</td>
<td>Principles of Macroeconomics ¹</td>
<td>12</td>
</tr>
<tr>
<td>14.30</td>
<td>Introduction to Statistical Methods in Economics</td>
<td>12</td>
</tr>
<tr>
<td>or 18.05</td>
<td>Introduction to Probability and Statistics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier II</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14.03</td>
<td>Microeconomic Theory and Public Policy</td>
<td></td>
</tr>
<tr>
<td>14.04</td>
<td>Intermediate Microeconomic Theory</td>
<td></td>
</tr>
<tr>
<td>14.05</td>
<td>Intermediate Macroeconomics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier III</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select two elective subjects in applied economics. ²</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Total Units 72

¹ These courses may be repeated for credit as long as students pass the examination for course 14.02 Principles of Macroeconomics.

² Students may take up to 18 units in subjects at the 18 level.

2015–2016 MIT Bulletin | 241
Under no circumstances may a student complete a minor with fewer than six subjects. Any student who receives permission from the Economics Department to skip 14.01 and/or 14.02 in order to take a higher-level subject must take a replacement subject for each subject that is skipped.

See the department’s website (http://economics.mit.edu/under/minors) for a list of available subjects.

Graduate Study

Admission Requirements for Graduate Study
The Department of Economics specifies the following prerequisites for graduate study in economics: one full year of college mathematics and an appreciable number of professional subjects in economics for those qualified students who have majored in fields other than economics. Applicants for admission who have deficiencies in entrance requirements should consult with the department about programs to remedy such deficits.

Master of Science in Economics
Under special circumstances, admission may be granted to current MIT students seeking the Master of Science degree. The general requirements for the SM are given in the section on Graduate Education (p. 58).

Doctor of Philosophy
A candidate for the doctorate must demonstrate a mastery of economic theory, including both microeconomics and macroeconomics, and four other fields of study; achieve a specified level of competence in econometrics; submit and defend a dissertation that represents a contribution to knowledge; and be in residence for a minimum of two years. Two of the four fields, including economic theory, are covered by the written General Examination. Two minor fields may each be satisfied by one year of coursework. The four major and minor elective fields may be chosen from advanced economic theory, econometrics, economic development, finance, industrial organization, international economics, labor economics, monetary economics, organizational economics, political economy, and public economics.

There is no required minimum number of graduate subjects in the department. However, candidates ordinarily need two full academic years of study to prepare adequately for the General Examinations and to meet the other pre-thesis requirements. The doctoral thesis must be written in residence, which typically requires three years of research.

Financial Support
A limited number of students are supported by scholarship and fellowship grants, as well as by teaching and research assistantships. Typically, the assistantships are available only to students who have passed their general examinations, but in special circumstances research assistantships may be held by second-year students.

Inquiries
For more information regarding admissions or financial aid, contact Eva Konomi (evako@mit.edu), 617-253-8787. For undergraduate admissions and academic programs, contact Gary King (gking@mit.edu), 617-253-0951. For any other information, contact Kara Nemergut (nemergut@mit.edu), 617-253-3807.

Faculty and Teaching Staff

Professors
Daron Acemoglu, PhD
Elizabeth and James Killian (1926) Professor
Professor of Economics
Member, Institute for Data, Systems, and Society

Joshua Angrist, PhD
Ford International Professor
Professor of Economics

Abhijit Banerjee, PhD
Ford International Professor
Professor of Economics

Ricardo J. Caballero, PhD
Ford International Professor
Professor of Economics

Victor V. Chernozhukov, PhD
Professor of Economics
Member, Institute for Data, Systems, and Society

Esther Duflo, PhD
Abdul Latif Jameel Professor in Poverty Alleviation and Development Economics
Member, Institute for Data, Systems, and Society

Amy Finkelstein, PhD
Ford International Professor
Professor of Economics
Robert S. Gibbons, PhD
Sloan Distinguished Professor of Management
Professor of Applied Economics

Jonathan Gruber, PhD
Ford International Professor
Professor of Economics

Jeffrey E. Harris, MD, PhD
Professor of Economics

Jerry A. Hausman, DPhil
John and Jennie S. MacDonald Professor
Professor of Economics

Bengt Holmstrom, PhD
Paul A. Samuelson Professor
Professor of Economics
Professor of Applied Economics

Whitney K. Newey, PhD
Jane Berkowitz Carlton and Dennis William Carlton Professor of
Microeconomics
Head, Department of Economics

Benjamin A. Olken, PhD
Professor of Economics

Parag Pathak, PhD
Professor of Economics

James M. Poterba, PhD
Mitsui Professor in Problems of Contemporary Technology
Professor of Economics

Drazen Prelec, PhD
Digital Equipment Corp. Leaders for Global Operations Professor of
Management
Professor of Marketing and Management Science
Professor of Economics
Professor of Brain and Cognitive Sciences

Nancy L. Rose, PhD
Charles P. Kindleberger Professor of Applied Economics

Stephen A. Ross, PhD
Franco Modigliani Professor of Financial Economics
Professor of Finance

Robert Townsend, PhD
Elizabeth and James Killian (1926) Professor
Professor of Economics

Ivan Werning, PhD
Robert M. Solow Professor
Professor of Economics

Michael Dennis Whinston, PhD
Society of Sloan Fellows Professor of Management
Professor of Economics
Professor of Applied Economics

Muhamet Yildiz, PhD
Professor of Economics

Associate Professors
Mihai Manea, PhD
Associate Professor of Economics

Anna Mikusheva, PhD
Associate Professor of Economics

Alp Simsek, PhD
Rudiger Dornbusch Career Development Professor
Associate Professor of Economics

Juuso Toikka, PhD
Gary W. Loveman (1989) Career Development Professor
Associate Professor of Economics

Assistant Professors
Nikhil Agarwal, PhD
Assistant Professor of Economics

David Atkin, PhD
Assistant Professor of Economics

Frank Schilbach, PhD
Assistant Professor of Economics

Heidi L. Williams, PhD
Class of 1957 Career Development Professor
Assistant Professor of Economics

Alexander Greenberg Wolitzky, PhD
Pentti Kouri Career Development Professor
Assistant Professor of Economics

Visiting Associate Professors
Seema Jayachandran, PhD
Visiting Associate Professor of Economics

Emi Nakamura, PhD
Visiting Associate Professor of Economics

Senior Lecturers
Sara F. Ellison, PhD
Senior Lecturer in Economics

Professors Emeriti
Olivier Jean Blanchard, PhD
Professor Emeritus of Economics
Richard S. Eckaus, PhD
Professor Emeritus of Economics

Stanley Fischer, PhD
Professor Emeritus of Economics

Paul L. Joskow, PhD
Professor Emeritus of Economics

Michael J. Piore, PhD
David W. Skinner Professor Emeritus
Professor Emeritus of Political Economy
Professor Emeritus of Political Science

Richard Schmalensee, PhD
Howard W. Johnson Professor Emeritus
Professor Emeritus of Management
Professor Emeritus of Economics

Robert M. Solow, PhD
Institute Professor Emeritus
Professor Emeritus of Economics

Peter Temin, PhD
Elisha Gray II Professor Emeritus
Professor Emeritus of Economics

Lester C. Thurow, PhD
Jerome and Dorothy Lemelson Professor Emeritus
Professor Emeritus of Management
Professor Emeritus of Economics

William C. Wheaton, PhD
Professor Emeritus of Urban Studies
Professor Emeritus of Economics
GLOBAL STUDIES AND LANGUAGES

The Global Studies and Languages Section offers a variety of programs. There are subject sequences in Chinese, French, German, Japanese, Portuguese, Russian, and Spanish languages and literatures taught in the original; a subject sequence on literature in English translation (SILC); studies in bilingualism; and a comprehensive program in English Language Studies.

The Global Studies and Languages curriculum is arranged in three tiers. Fundamental language subjects familiarize students with the principles of the language in both its spoken and written forms, and introduce them to the culture of the country where the language is spoken. Levels III and IV language subjects provide review and refinement of grammar, study of more difficult reading matter with cultural and literary content, and include compositions and discussions in the target language.

Subjects in language, literature, and culture are conducted in the target language. They introduce students to the form and content of world literatures and of global cultures and societies. These subjects also offer the opportunity to develop more refined communication skills in the language. Advanced subjects, conducted in the target language, encourage students to explore the cultural history of the particular country in which the language is spoken.

Offerings in Studies in International Literatures and Cultures (SILC), taught in English, give students both a specific and comparative focus on global cultures.

Concentrations are available in a given language, literature, or culture in the original language or in English. Concentrations should be arranged on an individual basis in consultation with a designated advisor in each language group.

The Minor Programs in Chinese, French, German, Japanese, and Spanish lead students who have already reached an intermediate level of proficiency into more advanced study of the language, literature, and culture. Note that language levels I and II do not count toward the minor. Also note that, unlike other minor programs in HASS, the minor advisor in each of these languages can, at his or her discretion, approve a minor in which MIT subjects comprise at least one-third of the subjects of the program. However, this exception to the general HASS Minor Requirement is only allowed in those cases in which students have received transfer credits equal to four subjects through study abroad in a country where the language of the minor is the dominant tongue.

Undergraduate Study

Bachelor of Science in Global Studies and Languages (Course 21G)

Program I in French Studies (p. 402), Program II in German Studies (p. 403), and Program III in Spanish Studies (p. 404) are designed to provide competence in reading, writing, and speaking; general knowledge of French, German, or Spanish culture and literature; and advanced subjects in literature, film, and cultural studies.

For each option, the student designs a program in consultation with an advisor in order to meet individual interests, abilities, and goals. However, all majors reflect a balance of historical, geographical, cultural, and linguistic competence.

Other Degree Programs

Joint degree programs are offered in French, German, and Spanish, and include majors in combination with a field in engineering or science (21E, 21S). See the Department of Humanities section (p. 252) for further information.

Minor in Chinese

The Minor in Chinese typically consists of six subjects arranged into three levels of study as follows:

Tier I

Two language subjects at the intermediate level:

Select one of the following options: 21-24

Option 1:

- 21G.103 Chinese III (Regular)
- 21G.104 Chinese IV (Regular)

Option 2:

- 21G.109 Chinese III (Streamlined)
- 21G.110 Chinese IV (Streamlined)

Option 3:

- 21G.142 Intermediate Chinese I: Very Fast Track
- 21G.143 Intermediate Chinese II: Very Fast Track

Tier II

Two language subjects at the advanced level:

Select one of the following options: 24

Option 1 (Regular):

- 21G.105 Chinese V (Regular): Discovering Chinese Cultures and Societies
- 21G.106 Chinese VI (Regular): Discovering Chinese Cultures and Societies

Option 2 (Streamlined):

- 21G.113 Chinese V (Streamlined)

Tier III
Select two of the following subjects in Chinese literature, history, or culture, at least one of which must be a Chinese Language Option subject:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Asian American Studies: Historical and Contemporary Issues</td>
<td>21G.043[J]</td>
<td></td>
</tr>
<tr>
<td>Global Chinese Food</td>
<td>21G.045</td>
<td></td>
</tr>
<tr>
<td>Traditional China: Earliest Times to 1644</td>
<td>21H.151</td>
<td></td>
</tr>
<tr>
<td>Modern China: 1644 to the Present</td>
<td>21H.152</td>
<td></td>
</tr>
<tr>
<td>Shanghai and China’s Modernization</td>
<td>21H.351[J]</td>
<td></td>
</tr>
</tbody>
</table>

Chinese Language Option (CLO) Subjects: 4

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advertising and Media: Comparative Perspectives</td>
<td>21G.190</td>
<td></td>
</tr>
<tr>
<td>Modern Chinese Fiction and Cinema</td>
<td>21G.192</td>
<td></td>
</tr>
<tr>
<td>Introduction to East Asian Cultures: From Zen to K-Pop</td>
<td>21G.193</td>
<td></td>
</tr>
<tr>
<td>China in the News: The Untold Stories</td>
<td>21G.194</td>
<td></td>
</tr>
<tr>
<td>Classics of Chinese Literature in Translation</td>
<td>21G.195</td>
<td></td>
</tr>
<tr>
<td>The Global Chinese: Chinese Migration, 1567-Present</td>
<td>21G.196</td>
<td></td>
</tr>
<tr>
<td>Chinese Youths and Web Culture</td>
<td>21G.199</td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 70-73

1. 21G.173 Chinese III (Regular) - Globalization and 21G.183 Chinese III (Streamlined) - Globalization may be substituted for 21G.103 and 21G.109, respectively.
2. 21G.175 Chinese V (Regular) - Globalization and 21G.185 Chinese V (Streamlined) - Globalization may be substituted for 21G.105 and 21G.113, respectively.
3. Students in the Streamlined track should consult with their minor advisor about the special options available to fulfill the Tier II requirement.
4. The six 13-unit Chinese Language Option subjects—21G.190, 21G.192, 21G.193, 21G.194, 21G.195, and 21G.196—include some assignments that require reading and writing in Chinese, and they meet with the following 12-unit subjects, respectively: 21G.036[J], 21G.046, 21G.030[J], 21G.038, 21G.044[J], and 21G.075[J]. The 12-unit subjects may be substituted for the 13-unit subjects. Students taking the Streamlined track may use 21G.199 instead of the regular Chinese Language Option subjects.

Minor in French

The Minor in French consists of six subjects arranged into three levels of study as follows:

<table>
<thead>
<tr>
<th>Level</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier I</td>
<td>Two subjects or fewer depending on demonstrated level of entering competence: 1</td>
</tr>
<tr>
<td></td>
<td>21G.303 French III</td>
</tr>
<tr>
<td></td>
<td>21G.304 French IV</td>
</tr>
</tbody>
</table>

Minor in German

The Minor in German consists of six subjects arranged into three levels of study as follows:

<table>
<thead>
<tr>
<th>Level</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier I</td>
<td>Two subjects or fewer depending on demonstrated level of entering competence:</td>
</tr>
<tr>
<td></td>
<td>21G.403 French III</td>
</tr>
<tr>
<td></td>
<td>21G.404 French IV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier II</td>
<td>Select two or three of the following subjects in German language, literature, and culture:</td>
</tr>
</tbody>
</table>

Minor in French

Select two or three of the following intermediate subjects in French language, literature, and culture:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writing (Like the) French</td>
<td>21G.308</td>
<td></td>
</tr>
<tr>
<td>French Conversation: Intensive Practice</td>
<td>21G.310</td>
<td></td>
</tr>
<tr>
<td>Introduction to French Culture</td>
<td>21G.311</td>
<td></td>
</tr>
<tr>
<td>Basic Themes in French Literature and Culture</td>
<td>21G.312</td>
<td></td>
</tr>
<tr>
<td>Cross-cultural Perspectives on Contemporary French Society</td>
<td>21G.315</td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 72

1. 21G.373 French III - Globalization and 21G.374 French IV - Globalization may be substituted for 21G.303 and 21G.304, respectively.
Minor in Japanese

The Minor in Japanese consists of six subjects arranged into three levels of study as follows:

<table>
<thead>
<tr>
<th>Tier I</th>
<th>Two language subjects at the intermediate level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.503 Japanese III</td>
<td>12</td>
</tr>
<tr>
<td>21G.504 Japanese IV</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier II</th>
<th>Two language subjects at the advanced level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.505 Japanese V</td>
<td>12</td>
</tr>
<tr>
<td>21G.506 Japanese VI</td>
<td>12</td>
</tr>
</tbody>
</table>

Minor in Spanish

The Minor in Spanish consists of six subjects arranged into three levels of study as follows:

<table>
<thead>
<tr>
<th>Tier I</th>
<th>Two subjects or fewer depending on demonstrated level of entering competence:</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.703 Spanish III</td>
<td>0-24</td>
</tr>
<tr>
<td>21G.704 Spanish IV</td>
<td>0-24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier II</th>
<th>Select three of the following subjects or fewer depending on demonstrated level of entering competence from the Spanish Intermediate Subjects in Language, Literature, and Culture listing:</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.711 Advanced Spanish Conversation and Composition: Perspectives on Technology and Culture</td>
<td>24-36</td>
</tr>
<tr>
<td>21G.712 Spanish Conversation and Composition</td>
<td>24-36</td>
</tr>
<tr>
<td>21G.713 Advanced Communication in Spanish: Topics in Language and Culture</td>
<td>24-36</td>
</tr>
<tr>
<td>21G.714 Spanish Language and Culture: Refining Communication Skills</td>
<td>24-36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier III</th>
<th>Select two of the following subjects in Japanese literature, history, or culture, at least one of which must be a Japanese Language Option subject:</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.433</td>
<td>International Relations of East Asia</td>
</tr>
<tr>
<td>17.53</td>
<td>The Rise of Asia</td>
</tr>
<tr>
<td>17.537</td>
<td>Politics and Policy in Contemporary Japan</td>
</tr>
<tr>
<td>21G.030[J]</td>
<td>Introduction to East Asian Cultures: From Zen to K-Pop</td>
</tr>
</tbody>
</table>
Select two of the following subjects or more depending on demonstrated level of entering competence from the Spanish Advanced Subjects in Literature and Culture listing:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.070</td>
<td>Latin America and the Global Sixties: Counterculture and Revolution</td>
</tr>
<tr>
<td>21G.084[J]</td>
<td>Introduction to Latin American Studies</td>
</tr>
<tr>
<td>21G.716[J]</td>
<td>Introduction to Contemporary Hispanic Literature and Film</td>
</tr>
<tr>
<td>21G.717[J]</td>
<td>Introduction to Spanish Culture</td>
</tr>
<tr>
<td>21G.730</td>
<td>Hispanic America: One Hundred Years of Literature and Film</td>
</tr>
<tr>
<td>21G.735</td>
<td>Advanced Topics in Hispanic Literature and Film</td>
</tr>
<tr>
<td>21G.736</td>
<td>The Short Story in Spain and Hispanic America</td>
</tr>
<tr>
<td>21G.738[J]</td>
<td>Literature and Social Conflict: Perspectives on Modern Spain</td>
</tr>
</tbody>
</table>

Total Units: 72

1. 21G.773 Spanish III - Globalization and 21G.774 Spanish IV - Globalization may be substituted for 21G.703 and 21G.704, respectively.
2. 21G.792 Spanish Conversation and Composition - Globalization may be substituted for 21G.712.

Other Minors

Please also refer to the Minor in Applied International Studies (p. 265) and the HASS Minors in Regional Studies, which include African and African Diaspora Studies (p. 337), Asian and Asian Diaspora Studies (p. 340), Latin American and Latino Studies (p. 344), Middle Eastern Studies (p. 345), and Russian and Eurasian Studies (p. 347).

Inquiries

Further information on subjects and programs may be obtained from the Global Studies and Languages Section Office (http://mitgsl.mit.edu), Room 14N-305, 617-253-4771, or via email (mitgsl@mit.edu).

Faculty and Teaching Staff

Professors

- Ian Condry, PhD
 - Professor of Cultural Studies
 - Professor of Media

- Shigeru Miyagawa, PhD
 - Kochi Prefecture-John Manjiro Professor in Japanese Language and Culture
 - Professor of Linguistics

- Jeffrey S. Ravel, PhD
 - Section Head, History Section
 - Professor of History
 - Professor of Global Studies and Languages

- Emma J. Teng, PhD
 - T. T. and Wei Fong Chao Professor of Asian Civilizations
 - Professor of Chinese Studies and History
 - Head, Global Studies and Languages Section

- William C. Uricchio, PhD
 - Professor of Comparative Media Studies
 - Professor of Global Studies and Languages
 - (On leave, spring)

- Jing Wang, PhD
 - S. C. Fang Professor in Chinese Language and Culture
 - Professor of Global Studies and Languages
 - Professor of Comparative Media Studies/Writing
 - (On leave)

- Elizabeth A. Wood, PhD
 - Professor of History
 - Professor of Global Studies and Languages

Associate Professors

- Bruno Perreau, PhD
 - Class of 1956 Career Development Professor
 - Associate Professor of Global Studies and Languages

Assistant Professors

- Catherine E. Clark, PhD
 - Assistant Professor of French Studies
 - (On leave)

- Paloma Duong, PhD
 - Assistant Professor of Latin American Studies

- Bettina Stoetzer, PhD
 - Assistant Professor of German Studies

Senior Lecturers

- Takako Aikawa, PhD
 - Senior Lecturer in Japanese

- Ellen W. Crocker, MA
 - Senior Lecturer in German

- Jane M. Dunphy, MA
 - Senior Lecturer in English Language Studies
Margarita Ribas Groeger, MA
Senior Lecturer in Spanish

Sabine Levet, MA
Senior Lecturer in French

Haohsiang Liao, PhD
Senior Lecturer in Chinese

Lecturers
Tong Chen, MA
Lecturer in Chinese

Cathy Culot, MA
Lecturer in French

Nilma Dominique, PhD
Lecturer in Portuguese

Eric C. Grunwald, MA
Lecturer in English Language Studies

Dagmar Jaeger, PhD
Lecturer in German

A. C. Kemp, MA
Lecturer in English Language Studies

Maria Khotimsky, PhD
Lecturer in Russian Studies

Masami Ikeda Lamm, MA
Lecturer in Japanese

Min-Min Liang, MA
Lecturer in Chinese

Yoshimi Nagaya, MA
Lecturer in Japanese

Roberto Rey Agudo, PhD
Lecturer in Spanish

Leanna Bridge Rezvani, PhD
Lecturer in French

Mariana San Martín, MA
Lecturer in Spanish

Lissette Soto, MA
Lecturer in Spanish

Peter Weise, PhD
Lecturer in German

Ana Yáñez, PhD
Lecturer in Spanish

Jin Zhang, MA
Lecturer in Chinese

Kang Zhou, MA
Lecturer in Chinese

Professors Emeriti
Catherine Vakar Chvany, PhD
Professor Emerita in Russian Studies

Isabelle de Courtivron, PhD
Professor Emerita of French Studies

Gilberte Furstenberg, Agrégation
Senior Lecturer Emerita of Global Studies and Languages

Elizabeth J. Garrels, PhD
Professor Emerita of Spanish and Latin American Studies

James Wesley Harris, PhD
Professor Emeritus of Linguistics

Professor Emeritus of Spanish

Douglas Morgenstern, MA
Senior Lecturer Emeritus in Spanish

Edward Baron Turk, PhD
John E. Burchard Professor Emeritus

Professor Emeritus of French Studies and Film
HISTORY

History is the study of the recorded past. Since interest in the past is closely linked with a desire to understand the present, the history curriculum at MIT is tailored in part to put the modern world in historical perspective. Subjects explore the social, cultural, economic, and political transformations that shape the present; and efforts are made to suggest where traditional assumptions remain in present-day politics, society, and culture.

The curriculum seeks to encourage both an understanding of the human past and the development of skills necessary to express that knowledge effectively.

Undergraduate Study

Bachelor of Science in History (Course 21H)
The program leading to the degree of Bachelor of Science in History (p. 405) is designed to encourage students to discover and reconstruct the past, to confront and understand the complexity of past human behavior for itself, and to inform their sense of the historical present. The curriculum includes the selection of at least one subject taken from the curriculum’s 21H undergraduate seminars. Students are expected to take seven additional subjects of their own choice, selected in consultation with a major advisor. These must include subjects drawn from at least two geographical areas, as well as one pre-modern (before 1700) and one modern subject.

During the junior year, the history major is required to take subject 21H.390 Seminar in Historical Methods, which is intended to develop skills for independent research and writing, followed in the senior year by 21H.THT History Pre-Thesis Tutorial and 21H.THU History Thesis. Subjects 21H.390 Seminar in Historical Methods and 21H.THT History Thesis satisfy the CI-M component of the Communication Requirement. Supplementing these requirements within the history curriculum is the stipulation of three additional subjects in a second field of humanities, arts, and social sciences that provide the perspectives of another discipline on the history of human thought and behavior. This program is intentionally flexible; the relatively large number of electives and unrestricted time allows for the design of a course of study that meets individual needs and interests.

Joint Degree Programs
Joint degree programs are offered in history in combination with a field in engineering or science (21E, 21S). See the joint degree programs listed under Humanities (p. 252).

Minor in History
The goal of this minor is to lead the student from basic survey subjects into more focused studies of individual countries or periods of time, and to encourage thinking about broader analytical and comparative issues in historical study.

The Minor in History consists of six subjects, which must include:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21H.390 Seminar in Historical Methods</td>
<td>12</td>
</tr>
</tbody>
</table>

Select five subjects as follows:

1. Select at least one 21H seminar, excluding 21H.390

Select four introductory or intermediate subjects from the history curriculum

Total Units: 63-72

1. At least two temporal periods—one pre-modern (before 1700) and one modern—must be covered by these five subjects. For a list of available subjects, consult the History website (http://history.mit.edu/subjects).

2. Select from 21H subjects for which the first digit after the decimal is 3.

Minor in Applied International Studies
A range of subjects in history can fulfill requirements for the interdisciplinary Minor in Applied International Studies (p. 339). For more information, see the program description under Interdisciplinary Programs (p. 328).

Inquiries
Further information on subjects and programs may be obtained from the History Office, Room E51-255, 617-324-5134.

Faculty and Teaching Staff

Professors
Robert M. Fogelson, PhD
Professor of Urban Studies
Professor of History

Philip S. Khoury, PhD
Ford International Professor of History
Associate Provost

Anne E. C. McCants, PhD
Professor of History

Jeffrey S. Ravel, PhD
Section Head, History Section
Professor of History
Professor of Global Studies and Languages

Harriet Ritvo, PhD
Arthur J. Connor Professor
Professor of History
(On leave, fall)
Merritt Roe Smith, PhD
Leverett Howell Cutten '07 and William King Cutten '39 Professor of the History of Technology
Professor of History

Emma J. Teng, PhD
T. T. and Wei Fong Chao Professor of Asian Civilizations
Professor of Chinese Studies and History
Head, Global Studies and Languages Section

Craig Steven Wilder, PhD
Professor of History
(On leave)

Elizabeth A. Wood, PhD
Professor of History
Professor of Global Studies and Languages

Associate Professors

William Broadhead, PhD
Associate Professor of History

Christopher Capozzola, PhD
Associate Professor of History

Lerna Ekmekcioglu, PhD
Genevieve McMillan and Reba Stewart Career Development Professor of the Study of Women in the Developing World
Associate Professor of History

Malick Ghachem, JD, PhD
Associate Professor of History
(On leave, fall)

Eric J. Goldberg, PhD
Associate Professor of History
(On leave)

Christopher R. Leighton, PhD
Class of 1948 Career Development Professor
Associate Professor of History

Hiromu Nagahara, PhD
Cecil and Ida Green Career Development Professor
Associate Professor of History

Tanalís Padilla, PhD
Associate Professor of History
(On leave, fall)

Assistant Professors

Sana Aiyar, PhD
Assistant Professor of History
(On leave)

Caley Horan, PhD
Assistant Professor of History

Lecturers

Joseph Cullon, PhD
Lecturer in History

Abigail Jacobson, PhD
Lecturer in History

Steven E. Ostrow, PhD
Lecturer in History

Professors Emeriti

John W. Dower, PhD
Ford International Professor of History Emeritus

Loren Graham, PhD
Professor Emeritus of the History of Science

Harold John Hanham, PhD
Professor Emeritus of History and Political Science

Arthur Daniel Kaledin, PhD
Professor Emeritus of History and American Studies

Bruce Mazlish, PhD
Professor Emeritus of History

Peter C. Perdue, PhD
Professor Emeritus of History

David B. Ralston, PhD
Professor Emeritus of History

William B. Watson, PhD
Associate Professor Emeritus of History
The Department of Humanities consists of six autonomous sections and programs, each with its own headquarters: Anthropology, Comparative Media Studies/Writing, Global Studies and Languages, History, Literature, Music and Theater Arts. There are also two programs affiliated with the Department: Science, Technology, and Society, and Women’s and Gender Studies.

In addition to the degrees offered in the six sections, other undergraduate degree programs are available, either in combination with a field in engineering or science (the 21E and 21S joint majors) or as interdisciplinary options within the Bachelor of Science in Humanities degree (Course 21), described later in this section. Students interested in any of these degree programs should consult an advisor in the field, as well as the section or program office.

Undergraduate Study

Bachelor of Science in Humanities (Course 21)
The interdisciplinary Bachelor of Science in Humanities (p. 406) degree provides an option for students who wish to pursue their humanistic studies extensively and at an advanced level. All options in this major are by special arrangement, requiring approval by the Dean of the School of Humanities, Arts, and Social Sciences. The available options are as follows:

- American Studies
- Ancient and Medieval Studies
- Asian and Asian Diaspora Studies
- Latin American and Latino Studies
- Russian and Eurasian Studies
- Women’s and Gender Studies

Humanities and Engineering / Science

Bachelor of Science in Humanities and Engineering (Course 21E) / Bachelor of Science in Humanities and Science (Course 21S)
These joint degree programs combine humanities with scientific/engineering studies. Groups of subjects from the humanistic and technical areas are conjoined to yield a basic command of each mode of inquiry. One part is a selection from the undergraduate degree curriculum of a science or engineering department approved by a faculty member in the field. The other part consists of subjects in a humanities field, chosen by the student in consultation with an advisor from the appropriate humanities faculty. In most cases, a senior thesis or sequence of advanced seminars is also required.

This arrangement yields a humanities program of considerable depth while allowing for continued serious commitment to a scientific or engineering interest. Available humanities fields include:

- American Studies
- Ancient and Medieval Studies
- Anthropology
- Comparative Media Studies
- Asian and Asian Diaspora Studies
- Global Studies and Languages (in French, German, or Spanish)
- History
- Latin American and Latino Studies
- Literature
- Music
- Russian and Eurasian Studies
- Science, Technology, and Society
- Theater Arts
- Women’s and Gender Studies
- Writing (Creative, Digital Media, or Science Writing)

Faculty advisors in each discipline help students to arrange programs suited to both their interests and professional objectives. Any one of these fields may be joined with any science or engineering field to form a major. Some combinations naturally lend themselves not only to an understanding of each field but also to an integrative and comparative view of the relationship between the two.

Students may take Course 21E (p. 408) or Course 21S (p. 411) as part of the double major program outlined in the section on Undergraduate Education. However, because 21E and 21S are composite degrees, a second major is not allowed in either field of a student’s chosen program. For example, if a student pursues a 21S degree with the Science portion in Course 8, the student would not be permitted to apply for a second major in Course 8. Similarly, if the Humanities portion of the 21S degree were in Course 21L, the student could not apply for a second major in Course 21L.
LINGUISTICS AND PHILOSOPHY

As its name suggests, the Department of Linguistics and Philosophy houses a linguistics section and a philosophy section. Though they share a number of intellectual interests and a joint undergraduate major, these two sections are administratively autonomous with separate chairpersons, faculties, admissions procedures, curricular and degree requirements, and financial aid programs.

Undergraduate Study

Bachelor of Science in Philosophy (Course 24-1)
This major (p. 418) is designed to provide familiarity with the history and current status of the main problems in epistemology, metaphysics, and ethics; mastery of some of the technical skills requisite for advanced work in philosophy; facility at independent philosophical study; and work at an advanced level in an allied field. A relatively large amount of unrestricted elective time is available so that students can devise programs suited to individual needs and interests.

Bachelor of Science in Linguistics and Philosophy (Course 24-2)
This major, also known as the Program in Language and Mind, aims to provide students with a working knowledge of a variety of issues that currently occupy the intersection of philosophy, linguistics, and cognitive science. Central among these topics are the nature of language, of those mental representations that we call “knowledge” and “belief,” and of the innate basis for the acquisition of certain types of knowledge (especially linguistic knowledge). Students have the option of pursuing either a philosophy track (p. 415) or a linguistics track (p. 414). Both require a core set of subjects drawn from both fields and are designed to teach students the central facts and issues in the study of language and the representation of knowledge. Each track requires, in addition, a set of subjects drawn primarily from its discipline and is designed to prepare students for graduate study either in philosophy/cognitive science or in linguistics. A coherent program of three restricted electives (drawn from one or two of the following three areas: linguistics, philosophy, or a related area) rounds out the major.

Note that students are prohibited from majoring in both 24-1 and 24-2.

Minor in Philosophy
The goal of the Minor in Philosophy is to introduce students to the methods of analytic philosophy and then to have them study a broad range of philosophers and philosophical issues at a more sophisticated level, culminating in an advanced seminar.

The minor consists of six subjects arranged into three levels of study as follows:

<table>
<thead>
<tr>
<th>Tier I</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select any CI-H philosophy subject</td>
<td>12</td>
</tr>
<tr>
<td>Select one of the following logic subjects:</td>
<td>12</td>
</tr>
<tr>
<td>24.118 Paradox and Infinity</td>
<td></td>
</tr>
<tr>
<td>24.241 Logic I</td>
<td></td>
</tr>
<tr>
<td>24.242 Logic II</td>
<td></td>
</tr>
<tr>
<td>24.243 Classical Set Theory</td>
<td></td>
</tr>
<tr>
<td>24.244 Modal Logic</td>
<td></td>
</tr>
<tr>
<td>24.245 Theory of Models</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier II</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select three non-introductory philosophy subjects, approved by the minor advisor</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier III</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.260 Topics in Philosophy</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units 72

Note: Students may take a logic subject offered by another department (e.g., Mathematics) with the permission of the minor advisor.

Minor in Linguistics
The Minor in Linguistics consists of six subjects arranged in three levels of study, intended to provide students with breadth in the field of theoretical linguistics as a whole. The three levels are as follows:

<table>
<thead>
<tr>
<th>Tier I</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.900 Introduction to Linguistics</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier II</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.901 Language and Its Structure I: Phonology</td>
<td>12</td>
</tr>
<tr>
<td>24.902 Language and Its Structure II: Syntax</td>
<td>12</td>
</tr>
<tr>
<td>24.903 Language and Its Structure III: Semantics and Pragmatics</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier III</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select two of the following:</td>
<td>24</td>
</tr>
<tr>
<td>24.904 Language Acquisition</td>
<td></td>
</tr>
<tr>
<td>24.905[J] Laboratory in Psycholinguistics</td>
<td></td>
</tr>
<tr>
<td>24.906[J] The Linguistic Study of Bilingualism</td>
<td></td>
</tr>
<tr>
<td>24.907[J] Abnormal Language</td>
<td></td>
</tr>
<tr>
<td>24.909 Field Methods in Linguistics</td>
<td></td>
</tr>
<tr>
<td>24.910 Advanced Topics in Linguistic Analysis</td>
<td></td>
</tr>
<tr>
<td>24.914 Language Variation and Change</td>
<td></td>
</tr>
<tr>
<td>24.915 Linguistic Phonetics</td>
<td></td>
</tr>
</tbody>
</table>

Total Units 72

1 Students may take a logic subject offered by another department (e.g., Mathematics) with the permission of the minor advisor.
Graduate Study

Master of Science in Linguistics
The Department of Linguistics and Philosophy has an Indigenous Language Initiative program leading to a Master of Science in Linguistics. For more information about this experimental degree, visit the website (http://web.mit.edu/linguistics/www/mitili) or contact the program administrator (mitili@mit.edu).

Doctor of Philosophy in Linguistics
The Linguistics Section offers a demanding program leading to the degree of Doctor of Philosophy in Linguistics. The normal course of study is four or five years, including the writing of the dissertation. The orientation of the program is highly theoretical, its central aim being the development of a general theory that reveals the rules and laws that govern the structure of a given language and the general laws and principles that govern all natural languages. The topics that form the core of this program are the traditional ones of phonology, syntax, and semantics, but the program's interests also extend into questions of the interrelations between linguistics and other disciplines such as philosophy and logic, speech science and technology, computer science and artificial intelligence, and study of the brain and cognition.

Approximately eight students enter the program each year in a highly selective admissions process. The department does not require that applicants have taken any particular set of subjects or that they be trained in any particular discipline. Instead, applicants must present evidence that they are able to engage in serious scholarly inquiry of complex subject matter.

All students in the linguistics program must complete a set of required subjects unless they have acquired adequate preparation elsewhere. Before degree candidates begin their doctoral research, they are required to pass a comprehensive general examination that is composed of two parts. The first part is a written examination consisting of two substantial papers on topics chosen in consultation with members of the faculty. The two papers must present research on two distinct topics in two distinct subdisciplines of linguistics. The subdisciplines include phonetics, phonology, syntax, semantics, pragmatics, language acquisition, language processing, or any other area of linguistics, so long as there is a substantial theoretical-linguistic component to the papers. In conformity with Institute regulations, the second part of the examination is oral. It deals with topics treated in the candidate's written examination, but is not limited to these and probes into the candidate's competence in linguistics in general.

Before students begin their doctoral research, they are required to pass a comprehensive general examination that is composed of two parts. The first part is a written examination consisting of two substantial papers on topics chosen in consultation with members of the faculty. The two papers must present research on two distinct topics in two distinct subdisciplines of linguistics. The subdisciplines include phonetics, phonology, syntax, semantics, pragmatics, language acquisition, language processing, or any other area of linguistics, so long as there is a substantial theoretical-linguistic component to the papers. In conformity with Institute regulations, the second part of the examination is oral. It deals with topics treated in the candidate's written examination, but is not limited to these and probes into the candidate's competence in linguistics in general.

For more information about the PhD program requirements, visit the website (http://web.mit.edu/philosophy/PhDprogram.html).

Doctor of Philosophy in Philosophy
The program of studies leading to the doctorate in philosophy provides subjects and seminars in such traditional areas as logic, ethics, metaphysics, epistemology, philosophy of science, philosophy of language, philosophy of mind, aesthetics, social and political philosophy, and history of philosophy. Interest in philosophical problems arising from other disciplines, such as linguistics, psychology, mathematics, and physics, is also encouraged.

To enter the doctoral program, students must have done well in their previous academic work and must be formally accepted as candidates for the degree by the Department of Linguistics and Philosophy. Although there are no formal course requirements for admission, applicants must satisfy the committee on admissions that their preparation in philosophy and allied disciplines is sufficient for undertaking the study of philosophy at the graduate level.

Before beginning dissertation research, students are required to take two years of coursework, including a proseminar in contemporary philosophy that all students must complete in their first year of graduate study. Students are also required to demonstrate competence in the following areas: value theory, logic, and the history of philosophy.

Interdisciplinary study is encouraged, and candidates for the doctorate may take a minor in a field other than philosophy. Options for minors include linguistics, psychology, and logic. Students who elect one of these options are expected to complete three approved graduate subjects in their minor field. There is no general

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.949[J]</td>
<td>Language Acquisition I</td>
<td>9</td>
</tr>
<tr>
<td>24.991</td>
<td>Workshop in Linguistics (two terms)</td>
<td>12</td>
</tr>
</tbody>
</table>

1 Students take one term as an advanced subject with a research paper requirement in syntax/semantics, and another term as an advanced subject with a research paper requirement in phonology/morphology.
language requirement for the doctorate, except in those cases in which competence in one or more foreign languages is needed to carry on research for the dissertation.

For more information about the PhD program requirements, visit the website (http://web.mit.edu/philosophy/PhDprogram.html).

Inquiries
Information regarding undergraduate or graduate academic programs, research activities, admissions, financial aid, and assistantships may be obtained from the Department of Linguistics and Philosophy, Room 32-D808, 617-253-9372.

Faculty and Teaching Staff

Professors
Alex Byrne, PhD
Professor of Philosophy

Noam Chomsky, PhD
Professor of Linguistics

Michel DeGraff, PhD
Professor of Linguistics
(On leave, fall)

Suzanne Flynn, PhD
Professor of Second Language Acquisition

Daniel Fox, PhD
Distinguished Professor in Health Sciences and Technology
Professor of Linguistics

Caspar Hare, PhD
Professor of Philosophy

Sally Haslanger, PhD
Ford International Professor
Professor of Philosophy

Irene R. Heim, PhD
Professor of Linguistics

Sabine Iatridou, PhD
Professor of Linguistics

Michael John Kenstowicz, PhD
Professor of Linguistics
(On leave)

Vann McGee, PhD
Professor of Philosophy

Shigeru Miyagawa, PhD
Kochi Prefecture-John Manjiro Professor in Japanese Language and Culture
Professor of Linguistics

Wayne O’Neil, PhD
Professor of Linguistics

David Pesetsky, PhD
Ferrari P. Ward Professor of Modern Languages and Linguistics
Head, Department of Linguistics and Philosophy

Agustín Rayo, PhD
Professor of Philosophy

Norvin W. Richards, PhD
Professor of Linguistics

Roger Schwarzschild, PhD
Professor of Linguistics

Kieran Setiya, PhD
Professor of Philosophy

Robert Stalnaker, PhD
Laurence S. Rockefeller Professor in Philosophy

Donca Steriade, PhD
Class of 1941 Professor
Professor of Linguistics

Kai von Fintel, PhD
Andrew E. Mellon Professor in the Humanities
Professor of Linguistics

Kenneth Wexler, PhD
Professor of Psychology
Professor of Linguistics
(On leave)

Stephen Yablo, PhD
David W. Skinner Professor
Professor of Philosophy

Associate Professors
Adam Albright, PhD
Associate Professor of Linguistics

Edward Flemming, PhD
Associate Professor of Linguistics

Martin Hackl, PhD
Associate Professor of Linguistics

Bradford Skow, PhD
Associate Professor of Philosophy
(On leave, fall)
Roger White, PhD
Associate Professor of Philosophy

Assistant Professors
Justin Khoo, PhD
Assistant Professor of Philosophy
(On leave, spring)

John Haven Spencer II, PhD
Assistant Professor of Philosophy

Instructors
Damien Joseph Rochford
Instructor of Linguistics and Philosophy

Technical Instructors
Leo Rosenstein, MA
Technical Instructor of Linguistics and Philosophy

Professors Emeriti
Sylvain Bromberger, PhD
Professor Emeritus of Philosophy

Morris Halle, PhD
Institute Professor Emeritus
Professor Emeritus of Linguistics

James Wesley Harris, PhD
Professor Emeritus of Linguistics
Professor Emeritus of Spanish

Samuel Jay Keyser, PhD
Professor Emeritus of Linguistics

Judith Jarvis Thomson, PhD
Professor Emerita of Philosophy
LITERATURE

The Literature curriculum's mission is to maintain a level of excellence and innovation consistent with the best universities while remaining responsive to MIT's distinctive intellectual environment. The curriculum emphasizes interdisciplinary approaches to literary texts as well as theoretical, generic, and thematic subjects that range across geographical and historical boundaries.

The Literature Section accommodates students with a wide variety of interests and diverse career choices. The major provides a solid grounding in the discipline but remains flexible enough to allow students to explore the particular domains that most interest them. Students graduating from the MIT Literature program have in recent years been admitted into the best doctoral programs in the country and abroad. For those not pursuing literature as a career, the program nonetheless develops transferable skills in writing, comprehension, and analysis relevant to a variety of different professional paths—from journalism, law, and medical school to work in the gourmet food industry or computer game design.

Depending on the depth of one’s engagement, a student may major, minor, or concentrate in Literature. Regardless of the individual choice, our courses will introduce you to the pleasures of reading and interpretation, expose you to different ways of thinking about the world, and lead to a competence in writing and communication that will remain with you the rest of your life.

A supplement to this catalog is available before each semester, either online (http://lit.mit.edu) or from Literature Headquarters, Room 14N-407. It offers detailed descriptions of all subjects being taught that term and includes specific information about subject content and required texts.

Undergraduate Study

The Literature curriculum is arranged in four graduated categories:

- **Introductory** subjects (21L.000[J] to 21L.048[J]) focus on major literary texts grouped in broad historical and generic sequences; all introductory subjects carry HASS and Communication-intensive credit.
- **Samplings** (21L.310[J] to 21L.339[J], 21L.345 to 21L.355) are 6-unit subjects that provide both an alternative route into literary and filmic study and a less intensive means for students to sustain a commitment to reading and textual interpretation. Their focus is on critical exploration, comprehension, and group discussion, with less sustained attention to analytic writing skills. Students can combine most 6-unit Samplings subjects to count as a HASS subject in the Humanities category and the equivalent of a subject in the Intermediate tier. However, no more than four 6-unit subjects may be combined in this manner. See the HASS Requirement website (http://web.mit.edu/hassreq) or contact Literature Headquarters (lit@mit.edu) for details.
- **Intermediate** subjects (21L.430 to 21L.639[J]) explore literary and visual forms as well as critical analysis in greater depth. Some subjects center on historical periods, literary themes, or genres; others focus on media studies, comparative cultural studies, or national literatures.
- **Seminar** subjects (21L.640 to 21L.715) are usually restricted to students who have taken at least two previous subjects in Literature and encourage a greater degree of independent work, such as oral reports and other special projects. Enrollment in seminars is strictly limited to a maximum of 12 students.

The Literature Section also offers subjects in a foreign language (21L.611 to 21L.640[J]) for students with adequate preparation. If appropriate, they may count toward the Literature major and minor requirements after consultation with the major/minor advisor.

In addition, the Literature Section often offers 6-unit special subjects for credit during IAP. Students may also choose to take special subjects (21L.588 to 21L.597) and independent study or research supervised by a faculty member (21L.900 and 21L.901) during the fall and spring terms.

Concentrations in Literature are available in particular genres (e.g., poetry, drama, fiction) and in historical periods (e.g., ancient studies, 19th-century literature, modern and contemporary literature), as well as in media and film studies, world literatures and cultures, popular culture, minority and ethnic studies, literary theory, and a range of national literatures.

Bachelor of Science in Literature (Course 21L)

The program in Literature leading to the degree of Bachelor of Science in Literature (p. 416) is equivalent to the curricula in English (or literary studies) of the major liberal arts universities. The Literature curriculum is notable also for its inclusion, along with traditional literary themes and texts, of materials drawn from film and media, popular culture, and minority and ethnic cultures.

Majors are required to take a minimum of 10 subjects, three of which must be seminars and no more than three of which may be introductory subjects. Students develop an appropriate course of study in consultation with a faculty advisor; majors choose from one of two areas in organizing four of their restricted electives (three for joint majors): historical periods or thematic complexes.

Joint Degree Programs

Joint degree programs are offered in Literature in combination with a field in engineering or science (21E, 21S). See the joint degree programs listed under Humanities (p. 252).

Minor in Literature

The minor aims to lay a foundation for advanced study and to enhance a student's appreciation of major narrative, poetic, and dramatic texts in relation to the cultures that produced them. It
consists of six subjects arranged into three levels of study as described below; at least two subjects must focus primarily on material prior to 1900.

<table>
<thead>
<tr>
<th>Tier I</th>
<th>Introductory Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select at least one and no more than two subjects from the following: 9-24</td>
<td></td>
</tr>
<tr>
<td>21L.000[J]</td>
<td>Writing About Literature</td>
</tr>
<tr>
<td>21L.001</td>
<td>Foundations of Western Literature: Homer to Dante</td>
</tr>
<tr>
<td>21L.002</td>
<td>Foundations of Western Literature: From Shakespeare to the Present</td>
</tr>
<tr>
<td>21L.003</td>
<td>Reading Fiction</td>
</tr>
<tr>
<td>21L.004</td>
<td>Reading Poetry</td>
</tr>
<tr>
<td>21L.005</td>
<td>Introduction to Drama</td>
</tr>
<tr>
<td>21L.006</td>
<td>American Literature</td>
</tr>
<tr>
<td>21L.007</td>
<td>World Literatures</td>
</tr>
<tr>
<td>21L.008[J]</td>
<td>Black Matters: Introduction to Black Studies</td>
</tr>
<tr>
<td>21L.009</td>
<td>Shakespeare</td>
</tr>
<tr>
<td>21L.010[J]</td>
<td>Writing with Shakespeare</td>
</tr>
<tr>
<td>21L.011</td>
<td>The Film Experience</td>
</tr>
<tr>
<td>21L.012</td>
<td>Forms of Western Narrative</td>
</tr>
<tr>
<td>21L.013[J]</td>
<td>The Supernatural in Music, Literature and Culture</td>
</tr>
<tr>
<td>21L.014[J]</td>
<td>Empire: Introduction to Ancient and Medieval Studies</td>
</tr>
<tr>
<td>21L.017</td>
<td>The Art of the Probable</td>
</tr>
<tr>
<td>21L.018</td>
<td>Introduction to English Literature</td>
</tr>
<tr>
<td>21L.019</td>
<td>Introduction to European and Latin American Fiction</td>
</tr>
<tr>
<td>21L.020[J]</td>
<td>Globalization: The Good, the Bad and the In-Between</td>
</tr>
<tr>
<td>21L.021</td>
<td>Comedy</td>
</tr>
<tr>
<td>21L.022[J]</td>
<td>Darwin and Design</td>
</tr>
<tr>
<td>21L.023[J]</td>
<td>Folk Music of the British Isles and North America</td>
</tr>
<tr>
<td>21L.048[J]</td>
<td>International Women’s Voices</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier II</th>
<th>Intermediate Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select two or three subjects from the following: 21-36</td>
<td></td>
</tr>
<tr>
<td>21L.430</td>
<td>Popular Culture and Narrative</td>
</tr>
<tr>
<td>21L.431</td>
<td>Shakespeare on Film and Media</td>
</tr>
<tr>
<td>21L.432</td>
<td>Understanding Television</td>
</tr>
<tr>
<td>21L.433</td>
<td>Film Styles and Genres</td>
</tr>
<tr>
<td>21L.434</td>
<td>Science Fiction and Fantasy</td>
</tr>
<tr>
<td>21L.435</td>
<td>Literature and Film</td>
</tr>
<tr>
<td>21L.449</td>
<td>Literature and the Environment</td>
</tr>
<tr>
<td>21L.450</td>
<td>Leadership, Ethics, and Literature</td>
</tr>
<tr>
<td>21L.451</td>
<td>Literary Theory</td>
</tr>
<tr>
<td>21L.455</td>
<td>Classical Literature</td>
</tr>
<tr>
<td>21L.458</td>
<td>The Bible</td>
</tr>
<tr>
<td>21L.460</td>
<td>Medieval Literature</td>
</tr>
<tr>
<td>21L.471</td>
<td>Major Novels</td>
</tr>
<tr>
<td>21L.473[J]</td>
<td>Jane Austen</td>
</tr>
<tr>
<td>21L.475</td>
<td>Enlightenment and Modernity</td>
</tr>
<tr>
<td>21L.485</td>
<td>Modern Fiction</td>
</tr>
<tr>
<td>21L.486</td>
<td>Modern Drama</td>
</tr>
<tr>
<td>21L.487</td>
<td>Modern Poetry</td>
</tr>
<tr>
<td>21L.488</td>
<td>Contemporary Literature</td>
</tr>
<tr>
<td>21L.489[J]</td>
<td>Interactive Narrative</td>
</tr>
<tr>
<td>21L.501</td>
<td>The American Novel</td>
</tr>
<tr>
<td>21L.504[J]</td>
<td>Race and Identity in American Literature</td>
</tr>
<tr>
<td>21L.512</td>
<td>American Authors</td>
</tr>
<tr>
<td>21L.518</td>
<td>Literature from Anywhere</td>
</tr>
<tr>
<td>21L.616[J]</td>
<td>Introduction to Contemporary Hispanic Literature and Film</td>
</tr>
<tr>
<td>21L.617[J]</td>
<td>Introduction to Spanish Culture</td>
</tr>
<tr>
<td>21L.638[J]</td>
<td>Literature and Social Conflict: Perspectives on Modern Spain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier III</th>
<th>Seminar Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select at least two of the following: 24</td>
<td></td>
</tr>
<tr>
<td>21L.701</td>
<td>Literary Methods</td>
</tr>
<tr>
<td>21L.702</td>
<td>Studies in Fiction</td>
</tr>
<tr>
<td>21L.703</td>
<td>Studies in Drama</td>
</tr>
<tr>
<td>21L.704</td>
<td>Studies in Poetry</td>
</tr>
<tr>
<td>21L.705</td>
<td>Major Authors</td>
</tr>
<tr>
<td>21L.706</td>
<td>Studies in Film</td>
</tr>
<tr>
<td>21L.707</td>
<td>Problems in Cultural Interpretation</td>
</tr>
<tr>
<td>21L.709</td>
<td>Studies in Literary History</td>
</tr>
<tr>
<td>21L.715</td>
<td>Media in Cultural Context</td>
</tr>
</tbody>
</table>

Total Units: 66-72

1. Note: In most cases, two 6-unit Samplings subjects may be combined to substitute for an intermediate level subject.

Inquiries

Further information on subjects and programs may be obtained from Literature Headquarters (lit@mit.edu), Room 14N-407, 617-253-3581.
Faculty and Teaching Staff

Professors
James Buzard, PhD
Professor of Literature

Peter S. Donaldson, PhD
Ford International Professor in the Humanities
Professor of Literature

Mary C. Fuller, PhD
Head, Literature Section
Professor of Literature

Diana Henderson, PhD
Professor of Literature

Alvin C. Kibel, PhD
Professor of Literature

Ruth Perry, PhD
Ann F. Friedlaender Professor
Professor of Literature
(On leave, spring)

Shankar Raman, PhD
Professor of Literature

Stephen James Tapscott, PhD
Professor of Literature
(On leave, fall)

David Thorburn, PhD
Professor of Literature

Assistant Professors
Stephanie Ann Frampton, PhD
Assistant Professor of Literature

Senior Lecturers
Wyn Kelley, PhD
Senior Lecturer in Literature
(On leave)

Lecturers
William Donaldson, PhD
Lecturer in Literature

Anne Fleche, PhD
Lecturer in Literature

Ina Lipkowitz, PhD
Lecturer in Literature

Joaquin Terrones, PhD
Lecturer in Literature

Visiting Lecturers
Michaela Bronstein, PhD
Visiting Lecturer in Literature

Professors Emeriti
Albert Ramsdell Gurney Jr, MFA
Professor Emeritus of Literature

John Hildebidle, PhD
Professor Emeritus of Literature

Louis Kampf, BA
Professor Emeritus of Literature

Irene Tayler, PhD
Professor Emerita of Literature

Associate Professors
Sandy Alexandre, PhD
Associate Professor of Literature
(On leave)

Arthur W. Bahr, PhD
Associate Professor of Literature

Eugenie Alexandra Brinkema, PhD
Associate Professor of Contemporary Literature and Media
(On leave)

Marah Gubar, PhD
Associate Professor of Literature
(On leave, spring)

Noel B. Jackson, PhD
Associate Professor of Literature

Margery Resnick, PhD
Associate Professor of Literature
MUSIC AND THEATER ARTS

Music

The Music Program offers a broad range of opportunities to experience and engage critically with all areas of music. Introductory classes (21M.0XX) assume no previous knowledge of reading or performing music, but all, with the exception of 21M.051 Fundamentals of Music, are appropriate for advanced musicians as well. Most non-introductory subjects are arranged into one of three categories: history/culture (21M.2XX), composition/theory (21M.3XX), and performance (21M.4XX). Subjects in music and technology are distributed throughout the curriculum. Additional subjects in special topics/advanced seminars and graduate-credit classes (including music and media) are offered.

Academic credit is given for classroom subjects, advanced solo and small group performance, and for participation in departmental ensembles including the orchestra, choral groups, wind and jazz ensembles, and world music groups such as Senegalese drumming and Balinese Gamelan. Participation in most of these groups is through auditions held at the beginning of each term. Undergraduate Research Opportunities Program (UROP) (p. 43) projects and independent study in music are also available.

The academic program is guided and taught by a permanent staff of professors and lecturers, often supplemented by guest artists and visiting faculty.

Theater Arts

The Program in Theater Arts invites students to explore theater as an art form and as an artistic, intellectual discipline. We teach theater arts as a mode of inquiry into self and society with the intention that such an inquiry can become the vehicle for transformation of one or both. Theater Arts at MIT is process-oriented. It is committed to diversity of creative forms. The curriculum is designed to help students acquire the necessary artistic, technical, and intellectual skills to create theater of quality and imagination.

Performance is the testing ground for what is learned in the classroom. Performance and design experiences range from student-generated workshops in the studio to fully-realized productions on the stage. These curricular activities are guided by professional faculty and staff, often with enriching participation of guest artists. Students may pursue the concentration, minor or major in Theater Arts.

Undergraduate Study

Bachelor of Science in Music (Course 21M-1)
The undergraduate program leading to the Bachelor of Science in Music (p. 417) degree comprises a grounding in foundational skills in music history and culture, performance, and music theory; a capstone Advanced Seminar; and a coherent program in a musical specialty. Six required subjects (one of which consists of two terms of performance, and two of which satisfy the CI-M requirement) and five restricted electives satisfy these requirements, but should be supplemented by additional electives. The program is analogous to those for music majors at leading liberal arts institutions and prepares a student for graduate study in music. Students should demonstrate proficiency in musical fundamentals and have performance experience before declaring the major and should consult the major advisor in music no later than the first term of their junior year.

Bachelor of Science in Theater Arts (Course 21M-2)
The undergraduate program leading to the Bachelor of Science in Theater Arts (p. 423) degree comprises a broad foundation in theoretical and practical studies, and intensive performance and design practica. To satisfy the requirements, students complete a coherent set of restricted elective subjects (two of which satisfy the CI-M requirement) in addition to a capstone thesis (including a pre-thesis tutorial). With an emphasis on artistic practice, this course of study prepares students who plan either to enter the field or to pursue graduate studies in theater arts. Students should demonstrate proficiency in theater arts fundamentals, should have some performance experience before declaring the major, and should consult the major advisor in Theater Arts no later than the first term of their junior year.

Joint Degree Programs

The undergraduate program leading to the 21E (Humanities and Engineering) or 21S (Humanities and Science) degree with a focus in music, provides an opportunity to study and combine music with a scientific or engineering field. The joint major requires nearly the same foundational and capstone subjects as the full major (five subjects: the additional CI-M in music is not required), six subjects beyond the GIRs in a coherent program in engineering or science (often a subset of a departmental major), and a musical specialty of four subjects. Ideally, some of the subjects in the science or engineering program as well as the musical specialty should complement the forms of learning in the other, adding cohesion to the program. Students should demonstrate proficiency in musical fundamentals and have performance experience before declaring the major and should consult the major advisor in music no later than the first term of their junior year. Additional information can be found under Humanities (p. 252).
Minor in Music

The Minor in Music requires six subjects that will give students experience within the three main branches of music: history/culture, composition/theory, and performance.

Tier I: Introduction
Select one to two of the following:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.011</td>
<td>Introduction to Western Music</td>
</tr>
<tr>
<td>21M.013[J]</td>
<td>The Supernatural in Music, Literature and Culture</td>
</tr>
<tr>
<td>21M.030</td>
<td>Introduction to World Music</td>
</tr>
<tr>
<td>21M.051</td>
<td>Fundamentals of Music</td>
</tr>
<tr>
<td>21M.065</td>
<td>Introduction to Musical Composition</td>
</tr>
</tbody>
</table>

Tier II: Breadth
Select three subjects, one from each of the following categories:

History/Culture:
- 21M.215 Music of the Americas
- 21M.220 Medieval and Renaissance Music
- 21M.223[J] Folk Music of the British Isles and North America
- 21M.226 Jazz
- 21M.235 Monteverdi to Mozart: 1600-1800
- 21M.250 Beethoven to Mahler: 1800-1910
- 21M.260 Stravinsky to the Present
- 21M.269 Studies in Western Music History
- 21M.271 Symphony and Concerto
- 21M.273 Opera
- 21M.283 Musicals of Stage and Screen
- 21M.284 Film Music
- 21M.289 Studies in Western Classical Genres
- 21M.291 Music of India
- 21M.293 Music of Africa
- 21M.294 Popular Musics of the World
- 21M.295 American Popular Music
- 21M.299 Studies in World, Traditional, and Popular Music

Composition/Theory:
- 21M.301 Harmony and Counterpoint I
- 21M.302 Harmony and Counterpoint II
- 21M.303 Writing in Tonal Forms I
- 21M.304 Writing in Tonal Forms II
- 21M.310 Techniques of 20th-Century Composition
- 21M.340 Jazz Harmony and Arranging
- 21M.341 Jazz Composition
- 21M.342 Composing for Jazz Orchestra
- 21M.351 Music Composition
- 21M.355 Musical Improvisation
- 21M.359 Studies in Musical Composition, Theory and Analysis
- 21M.361 Electronic Music Composition I
- 21M.362 Electronic Music Composition II
- 21M.380 Music and Technology

Performance (two terms):
- 21M.401 MIT Concert Choir
- 21M.405 MIT Chamber Choir
- 21M.410 Vocal Repertoire and Performance
- 21M.421 MIT Symphony
- 21M.423 Conducting and Score-Reading
- 21M.426 MIT Wind Ensemble
- 21M.442 MIT Festival Jazz Ensemble

Tier III: Electives
Select one to two subjects from the following:

History/Culture:
- 21M.215 Music of the Americas
- 21M.220 Medieval and Renaissance Music
- 21M.223[J] Folk Music of the British Isles and North America
- 21M.226 Jazz
- 21M.235 Monteverdi to Mozart: 1600-1800
- 21M.250 Beethoven to Mahler: 1800-1910
- 21M.260 Stravinsky to the Present
- 21M.269 Studies in Western Music History
- 21M.271 Symphony and Concerto
- 21M.273 Opera
- 21M.283 Musicals of Stage and Screen
- 21M.284 Film Music
- 21M.289 Studies in Western Classical Genres
- 21M.291 Music of India
- 21M.293 Music of Africa
- 21M.294 Popular Musics of the World
- 21M.295 American Popular Music
- 21M.299 Studies in World, Traditional, and Popular Music

Composition/Theory:
- 21M.301 Harmony and Counterpoint I
- 21M.302 Harmony and Counterpoint II
- 21M.303 Writing in Tonal Forms I
- 21M.304 Writing in Tonal Forms II
- 21M.310 Techniques of 20th-Century Composition
- 21M.340 Jazz Harmony and Arranging
- 21M.341 Jazz Composition
- 21M.342 Composing for Jazz Orchestra
- 21M.351 Music Composition
- 21M.355 Musical Improvisation
- 21M.359 Studies in Musical Composition, Theory and Analysis
- 21M.361 Electronic Music Composition I
- 21M.362 Electronic Music Composition II
- 21M.380 Music and Technology

Performance (four terms):
- 21M.401 MIT Concert Choir
MUSIC AND THEATER ARTS

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.405</td>
<td>MIT Chamber Chorus</td>
</tr>
<tr>
<td>21M.410</td>
<td>Vocal Repertoire and Performance</td>
</tr>
<tr>
<td>21M.411</td>
<td>MIT Symphony</td>
</tr>
<tr>
<td>21M.423</td>
<td>Conducting and Score-Reading</td>
</tr>
<tr>
<td>21M.426</td>
<td>MIT Wind Ensemble</td>
</tr>
<tr>
<td>21M.442</td>
<td>MIT Festival Jazz Ensemble</td>
</tr>
<tr>
<td>21M.445</td>
<td>Chamber Music Society</td>
</tr>
<tr>
<td>21M.450</td>
<td>MIT Balinese Gamelan</td>
</tr>
<tr>
<td>21M.451</td>
<td>Studio Accompanying for Pianists</td>
</tr>
<tr>
<td>21M.460</td>
<td>MIT Senegalese Drum Ensemble</td>
</tr>
<tr>
<td>21M.480</td>
<td>Advanced Music Performance</td>
</tr>
<tr>
<td>21M.490</td>
<td>Emerson Scholar Solo Recital</td>
</tr>
<tr>
<td>21M.500</td>
<td>Advanced Seminar in Music</td>
</tr>
</tbody>
</table>

Total Units 72

A total of three subjects must come from Tiers I and III combined.

Minor in Theater Arts

The Minor in Theater Arts is designed to give students the opportunity to experiment in the making of theater. The flexibility of the minor allows students either to explore the basic principles of several theater disciplines or to concentrate more deeply on one.

The Minor in Theater Arts consists of the equivalent of six subjects arranged in three levels of study as follows:

Tier I: Theoretical Studies

Select one of the following: 9-12

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.611</td>
<td>Foundations of Theater Practice</td>
</tr>
<tr>
<td>21M.703[J]</td>
<td>Media and Methods: Performing</td>
</tr>
<tr>
<td>21M.710</td>
<td>Script Analysis</td>
</tr>
<tr>
<td>21M.711</td>
<td>Production Seminar</td>
</tr>
<tr>
<td>21M.715</td>
<td>Topics in Theater Arts</td>
</tr>
<tr>
<td>21M.800</td>
<td>All the World's a Stage: Socio-Political Perspectives in Global Performance</td>
</tr>
<tr>
<td>21M.846</td>
<td>Topics in Performance Studies</td>
</tr>
<tr>
<td>21M.863</td>
<td>Advanced Topics in Theater Arts</td>
</tr>
</tbody>
</table>

Tier II: Practical Studies

Select four of the following: 36-48

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.600</td>
<td>Introduction to Acting</td>
</tr>
<tr>
<td>21M.603</td>
<td>Introduction to Design for the Theater</td>
</tr>
<tr>
<td>21M.604[J]</td>
<td>Playwriting I</td>
</tr>
<tr>
<td>21M.605</td>
<td>Voice and Speech for the Actor</td>
</tr>
<tr>
<td>21M.606</td>
<td>Introduction to Stagecraft</td>
</tr>
<tr>
<td>21M.624</td>
<td>Acting with the Camera</td>
</tr>
<tr>
<td>21M.645</td>
<td>Motion Theater</td>
</tr>
<tr>
<td>21M.704</td>
<td>Music Theater Workshop</td>
</tr>
<tr>
<td>21M.705</td>
<td>The Actor and the Text</td>
</tr>
<tr>
<td>21M.732</td>
<td>Costume Design</td>
</tr>
<tr>
<td>21M.733</td>
<td>Scenic Design</td>
</tr>
<tr>
<td>21M.734</td>
<td>Lighting Design</td>
</tr>
<tr>
<td>21M.735</td>
<td>Technical Design for Performance</td>
</tr>
<tr>
<td>21M.785[J]</td>
<td>Playwrights' Workshop</td>
</tr>
<tr>
<td>21M.790</td>
<td>Directing</td>
</tr>
<tr>
<td>21M.830</td>
<td>Acting: Techniques and Style</td>
</tr>
<tr>
<td>21M.840</td>
<td>Performance Media</td>
</tr>
</tbody>
</table>

Tier III: Performance and Design

Select one of the following: 12

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.805</td>
<td>Performance and Design Practicum</td>
</tr>
<tr>
<td>21M.815</td>
<td>Studio Performance and Design Practicum</td>
</tr>
<tr>
<td>21M.851</td>
<td>Independent Study in Performance and Design</td>
</tr>
</tbody>
</table>

Total Units 57-72

Inquiries

For further information on subjects and programs, contact the Music and Theater Arts Office, Room 4-246, 617-253-3210.

Faculty and Teaching Staff

Professors

Alan Brody, PhD
Professor of Theater Arts
(On leave)

Peter B. Child, PhD
Class of 1949 Professor
Professor of Music
Head, of Music and Theater Arts

John H. Harbison, MFA
Institute Professor
Professor of Music

Jay R. Scheib, MFA
Professor of Theater Arts

Janet Sonenberg, MFA
Professor of Theater Arts

Marcus Aurelius Thompson, DMA
Institute Professor
Professor of Music
Evan Ziporyn, PhD
Kenan Sahin (1963) Distinguished Professor
Professor of Music

Associate Professors
Michael Scott Cuthbert, PhD
Associate Professor of Music
(On leave)

Keeril Makan, PhD
Associate Professor of Music

Patricia J. Tang, PhD
Associate Professor of Music

Assistant Professors
Charlotte L. Brathwaite, MFA
Assistant Professor of Theater Arts

Emily Richmond Pollock, PhD
Class of 1947 Career Development Professor
Assistant Professor of Music

Leslie Tilley, PhD
Assistant Professor of Music

Visiting Professors
Claire Conceison, PhD
Visiting Professor of Theater Arts

Senior Lecturers
David Deveau, MM
Senior Lecturer in Music

Mark Harvey, PhD
Senior Lecturer in Music

Anna C. Kohler
Senior Lecturer in Theater Arts

Martin Marks, PhD
Senior Lecturer in Music
(On leave, spring)

Charles Shadle, PhD
Senior Lecturer in Music

Lecturers
Adam Boyles, DMA
Lecturer in Music

Sara L. Brown, MFA
Lecturer in Theater Arts

William C. Cutter, DMA
Lecturer in Music

Frederick E. Harris Jr, PhD
Lecturer in Music

Kim Mancuso, MFA
Lecturer in Theater Arts

Teresa Neff, PhD
Lecturer in Music

Jean Rife, BM
Lecturer in Music

Elena Ruehr, PhD
Lecturer in Music

Peter Whincop, MA
Lecturer in Music

Professors Emeriti
Jeanne Shapiro Bamberger, MA
Professor Emerita of Music

Stephen Erdely
Professor Emeritus of Music

Ellen T. Harris, PhD
Professor Emerita of Music

Lowell Edwin Lindgren, PhD
Professor Emeritus of Music

Michael Ouelette, MFA
Senior Lecturer Emeritus in Theater Arts

Barry Lloyd Vercoe, DMA
Professor Emeritus of Media Arts and Sciences
Professor Emeritus of Music
DEPARTMENT OF POLITICAL SCIENCE

Political science is concerned with the systematic study of government and the political process. Within the discipline, scholars analyze the development, distribution, and uses of political power; determinants and consequences of various forms of political behavior and sources of political conflict; ways in which conflicts are both intensified and resolved; and the relationship between the individual and the state. Political science is a discipline of special interest to scientists and engineers who must understand the political system within which they live in order to evaluate their influence upon that system. It is of interest as well to those students who are considering careers in public service or university teaching and research.

The Department of Political Science has a research-oriented faculty that welcomes both undergraduate and graduate students in ongoing research. The department covers the fields of American politics and public policy, comparative politics, international relations and foreign policy, and political philosophy and social theory, with particular emphasis on ethnicity and identity, international security, representation, and the politics of globalization. The Department of Political Science offers degree programs at the bachelor’s, master’s, and doctoral levels.

Undergraduate Study

Bachelor of Science in Political Science (Course 17)
The political science curriculum (p. 420) for undergraduates combines professional social science training with opportunities for a broad liberal arts education. Students may choose subjects from a wide range of both undergraduate and graduate offerings, and are encouraged to engage in independent research projects. In addition, the department sponsors an internship program in which students work in governmental agencies, legislative offices, community associations, international organizations, and advocacy groups at all levels.

The undergraduate program prepares students for study in political science, law, public policy, and related fields, and for careers in government, business, law, research, teaching, or journalism. This program is also designed to give students, whatever their career objectives, an understanding of political institutions and processes. Some students want to focus on political systems themselves; others choose to concentrate on the political aspects of public policy, focusing on such issues as the environment, health, or arms control. Both of these perspectives are found in the program.

Subjects are offered by the department in the following fields: political theory, political economy, American politics, public policy, international relations and security studies, comparative politics, and models and methods. Students may work out individualized programs with the assistance of a faculty advisor.

In the junior year students are introduced to the major theoretical and methodological themes of political science in two subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Course Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.869</td>
<td>Political Science Scope and Methods (typically fall term, junior year)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>17.871</td>
<td>Political Science Laboratory (typically spring term, junior year)</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

The department believes that every political science major should have the experience of conducting and writing at least one substantial research project, a requirement that is fulfilled by the senior thesis. Each undergraduate chooses a thesis advisor and a second thesis reader in his or her area of interest. The student then registers for:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Course Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.THT</td>
<td>Thesis Research Design Seminar (fall term, senior year)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>17.THU</td>
<td>Undergraduate Political Science Thesis (spring term, senior year)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition to the thesis, there are numerous other opportunities for students to pursue research interests. Students are eligible to receive academic credit or limited funding for expenses or wages through the Institute-wide Undergraduate Research Opportunities Program (UROP) (p. 43). Students should consult the department’s UROP coordinator to discuss specific projects.

Minor in Political Science

The objective of the minor is to deepen and expand student knowledge of the discipline of political science. It consists of six subjects divided into two tiers, selected from the discipline’s subfields as listed in the online MIT Subject Listing & Schedule (http://student.mit.edu/catalog). The requirements of the minor are as follows:

Tier I

Select at least one but no more than two introductory classes, which are designated by two-digit numbers. These classes provide broad theoretical and/or empirical overviews of their subject matter. Examples include:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.01[J]</td>
<td>Justice</td>
<td></td>
</tr>
<tr>
<td>17.20</td>
<td>Introduction to the American Political Process</td>
<td></td>
</tr>
<tr>
<td>17.40</td>
<td>American Foreign Policy: Past, Present, and Future</td>
<td></td>
</tr>
<tr>
<td>17.50</td>
<td>Introduction to Comparative Politics</td>
<td></td>
</tr>
</tbody>
</table>

Tier II
Select at least four but no more than five upper-level classes, which are designated by three-digit numbers. These specialized classes provide students with advanced and in-depth examination of their subject matter. Examples include:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.195</td>
<td>Globalization</td>
</tr>
<tr>
<td>17.317</td>
<td>US Social Policy</td>
</tr>
<tr>
<td>17.405</td>
<td>Seminar on Politics and Conflicts in the Middle East</td>
</tr>
<tr>
<td>17.483</td>
<td>US Military Power</td>
</tr>
</tbody>
</table>

Total Units 72

For a listing of available subjects in these areas, consult Tobie Weiner in the Political Science Undergraduate Office, Room E53-484 or the SHASSH Dean’s Office, Room 4-240. Examples of subject selections for this minor are also available on the department’s website (http://web.mit.edu/polisci/undergraduate/minor).

Minor in Applied International Studies

The interdisciplinary HASS Minor in Applied International Studies (p. 339) prepares students for an increasingly global business and research environment by integrating international learning into their course of study. A detailed description of this minor may be found under Interdisciplinary Programs (p. 328).

Minor in Public Policy

The Department of Political Science jointly offers a Minor in Public Policy (p. 346) with the Department of Urban Studies and Planning (Course 11). A detailed description and list of requirements for this minor may be found under Interdisciplinary Programs (p. 328).

Graduate Study

The Department of Political Science offers programs leading to the Master of Science in Political Science and the Doctor of Philosophy.

Admission Requirements for Graduate Study

All applicants must take the GRE general test. Non-native English speakers must take the Test of English as a Foreign Language (TOEFL) or International English Language Testing System (IELTS). Applicants from all disciplines are welcome—an undergraduate degree in political science is not necessary. Applicants are encouraged, however, to complete significant coursework in political science or related subjects such as history, economics, philosophy, psychology, or sociology before applying to one of our graduate programs.

Master of Science in Political Science

The Master of Science in Political Science is a one-year program intended for students who wish to develop skills in applied research in preparation for a career in public policy or with a business or research organization. The master’s program emphasizes intensive preparation in a single field of study. Applicants to the SM program should specify their field of specialization.

The minimum number of subjects required for the SM degree is six graduate subjects, at least four of which must be completed in the Political Science Department at MIT. The remaining two may be taken elsewhere at MIT or through cross-registration at Harvard University. A 3.5 GPA must be maintained. A master’s thesis is required. See the section on Graduate Education (p. 58) for the general requirements for the SM.

Accelerated Master of Science in Political Science

The department offers a five-year program leading to the Bachelor of Science and Master of Science, awarded simultaneously. This program is open to MIT undergraduate Political Science majors only. It allows the student to plan for a single combined SB-SM thesis written during the last three terms at the Institute. Undergraduate Institute requirements may be completed during the fifth year of the program.

Doctor of Philosophy

Doctoral students must complete the following requirements:

- One class for first-year students introducing principles of empirical and theoretical analysis in political science
- One class in statistics
- One class in empirical research methods
- One class in political philosophy
- Reading proficiency in one language other than English (demonstrated by two semesters of intermediate-level college coursework or an exam) or knowledge of advanced statistics (demonstrated by three semesters of course work or an exam)
- A second-year paper and related workshop
- A doctoral thesis

In addition, doctoral students are required to elect two of the following major fields: American politics, comparative politics, international relations, models and methods, political economy, and security studies. In each of the two elected fields, students will take a written general exam followed by a single oral general exam covering both fields. Specific fields may have additional requirements.

Students may take subjects in other MIT departments. Cross-registration arrangements also permit enrollment in subjects taught in the Graduate School of Arts and Sciences at Harvard University and in some of Harvard’s other graduate schools. Students are encouraged to do field research and develop close working ties with faculty members engaged in major research activities.
Inquiries
Additional information regarding graduate programs in the department and admissions may be obtained from the graduate administrator, Susan Twarog, 617-253-8336, Room E53-467.

Faculty and Teaching Staff

Professors
Suzanne Berger, PhD
Raphael Dorman and Helen Starbuck Professor of International Relations
Professor of Political Science

Adam Berinsky, PhD
Professor of Political Science

Andrea Louise Campbell, PhD
Arthur and Ruth Sloan Professor of Political Science
Head, Department of Political Science

Nazli Choucri, PhD
Professor of Political Science

Francis J. Gavin, PhD
Frank Stanton Chair in Nuclear Security Policy Studies
Professor of Political Science

Evan S. Lieberman, PhD
TOTAL Professor on Contemporary Africa
Professor of Political Science
(On leave)

Melissa Nobles, PhD
Kenan Sahin Dean, School of Humanities, Arts, and Social Sciences
Professor of Political Science

Kathleen Thelen, PhD
Ford International Professor
Professor of Political Science

Stephen W. Van Evera, PhD
Ford International Professor
Professor of Political Science

Associate Professors
Fotini Christia, PhD
Associate Professor of Political Science
Member, Institute for Data, Systems, and Society
(On leave)

M. Taylor Fravel, PhD
Associate Professor of Political Science

J. Chappell H. Lawson, PhD
Associate Professor of Political Science
(On leave, fall)

Vipin Narang, PhD
Mitsui Career Development Professor in Contemporary Technology
Associate Professor of Political Science
(On leave)

Kenneth A. Oye, PhD
Associate Professor of Political Science
Member, Institute for Data, Systems, and Society

David Andrew Singer, PhD
Associate Professor of Political Science

Lily L. Tsai, PhD
Associate Professor of Political Science

Assistant Professors
Regina Bateson, PhD
Assistant Professor of Political Science
(On leave)

Devin Caughey, PhD
Assistant Professor of Political Science
(On leave, fall)

Daniel Hidalgo, PhD
Assistant Professor of Political Science

In Song Kim, PhD
Assistant Professor of Political Science

Richard Nielsen, PhD
Assistant Professor of Political Science
(On leave)

Lucas Stansczyk, PhD
Assistant Professor of Political Science
Christopher Warshaw, JD, PhD
Assistant Professor of Political Science
(On leave)

Teppei Yamamoto, PhD
Alfred Henry and Jean Morrison Hayes Professor
Assistant Professor of Political Science
Member, Institute for Data, Systems, and Society

Professors Emeriti

Donald L. M. Blackmer, PhD
Professor Emeritus of Political Science

Joshua Cohen, PhD
Professor Emeritus of Political Science

Willard R. Johnson, PhD
Professor Emeritus of Political Science

Richard M. Locke, PhD
Class of 1922 Professor Emeritus
Professor Emeritus of Management
Professor Emeritus of Political Science

Michael J. Piore, PhD
David W. Skinner Professor Emeritus
Professor Emeritus of Political Economy
Professor Emeritus of Political Science

George W. Rathjens, PhD
Professor Emeritus of Political Science

Harvey M. Sapolsky, PhD
Professor Emeritus of Political Science

Eugene B. Skolnikoff, PhD
Professor Emeritus of Political Science
Professor Emeritus of Science, Technology, and Society
The Program in Science, Technology, and Society (STS) focuses on the ways in which scientific, technological, and social factors interact to shape modern life. The program brings together humanists, social scientists, engineers, and natural scientists, all committed to transcending the boundaries of their disciplines in a joint search for new insights and new ways of reaching science and engineering students. The goal of the program is to set up a forum to explore the relationship between what scientists and engineers do and the constraints, needs, and responses of society.

Located in a major university where most people study science and engineering, STS is dedicated to understanding the context of science and engineering.

Undergraduate Study

MIT students are increasingly seeking to understand the social and historical contexts in which they will work and the social consequences of what they will do in their professional careers. STS subjects help them think realistically and creatively about the intellectual, moral, political, and social issues raised by the rapid growth of science and technology in the 20th century and beyond.

STS contributes to undergraduate education at MIT in several ways. It offers general subjects to introduce students to broad social and intellectual perspectives on science and engineering fields. It also offers more specialized subjects in the history of science and technology and in social and cultural studies of science and technology. Within each of these categories, students can choose both introductory and more advanced subjects.

STS as a Second Major

Students who wish to integrate their professional study of engineering or science with a rigorous treatment of its relation to social and historical forces may pursue STS as a second major (p. 422) in cooperation with the Schools of Engineering and Science. The object of this program is to give those students the full technical and scientific education provided by a science or engineering major, balanced with intensive study of the historical and social contexts of science and technology. Double major applications from students in other Schools (e.g., Architecture and Planning; Management; Humanities, Arts, and Social Sciences) will be considered on a case-by-case basis.

Students in the double major program must complete all the requirements of both majors. The STS requirements include 14 subjects as follows:

- At least one STS Tier I subject (http://web.mit.edu/sts/academic/tier1.html)
- Five other STS subjects
- Four subjects related to the historical and social study of science and technology
- STS.091 Critical Issues in STS
- STS.THT Undergraduate Thesis Tutorial
- STS.THU Undergraduate Thesis

If a student’s other major also requires a thesis, students may coordinate their thesis effort, pending approval of undergraduate officers in both majors. Further details on the requirements of the STS program may be obtained from the STS undergraduate academic officer and the STS academic administrator.

Joint Degree Programs

Students who wish to integrate studies in STS and science or engineering in the context of a single degree should consider this program. It leads to one degree, either a Bachelor of Science in Humanities and Science or a Bachelor of Science in Humanities and Engineering. The STS requirement for either degree is 10 subjects as follows:

- At least one STS Tier I subject (http://web.mit.edu/sts/academic/tiers1.html)
- At least one STS Tier II subject (http://web.mit.edu/sts/academic/tier2.html)
- Five other STS subjects
- STS.091 Critical Issues in STS
- STS.THT Undergraduate Thesis Tutorial
- STS.THU Undergraduate Thesis

Consult the 21E (p. 408) and 21S (p. 411) degree charts for details on the requirements for these joint degrees. Further details may be obtained from the SHASS Dean’s Office (hass-www@mit.edu), Room 4-240, and the STS academic administrator.

Minor in Science, Technology, and Society

The goal of the minor program is to give students a broad social perspective on the fields of engineering and science: how they have evolved and how they fit into the wider context of society, culture, politics, and values.

The Minor in Science, Technology, and Society consists of six STS subjects, including STS.091, at least one subject from the Tier I list, and at least one subject from the Tier II list.

<table>
<thead>
<tr>
<th>STS.091</th>
<th>Critical Issues in STS</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier I</td>
<td>Select at least one subject</td>
<td>12-48</td>
</tr>
<tr>
<td>STS.001</td>
<td>Technology in American History</td>
<td></td>
</tr>
<tr>
<td>STS.002</td>
<td>Finance and Society</td>
<td></td>
</tr>
<tr>
<td>STS.003</td>
<td>The Rise of Modern Science</td>
<td></td>
</tr>
</tbody>
</table>
Graduate Study

In collaboration, STS, the History Faculty, and the Anthropology Program offer a doctoral program in History, Anthropology, and Science, Technology and Society (HASTS).

The objective of the program is to develop advanced competence in the study of science and technology from a historical and social scientific perspective. Students are expected to develop professional mastery of a field of history or one of the social sciences. They must also master the underlying concepts in science and engineering that relate to their special field of interest.

Graduate students are required to take at least 10 subjects and usually complete them within their first two years. Normally, all students take the following required introductory seminars in their first year:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21A.859[J]</td>
<td>Social Theory and Analysis</td>
<td>12</td>
</tr>
<tr>
<td>21H.991</td>
<td>Theories and Methods in the Study of History</td>
<td>12</td>
</tr>
<tr>
<td>STS.260</td>
<td>Introduction to Science, Technology, and Society</td>
<td>12</td>
</tr>
</tbody>
</table>

Students are encouraged to take 21A.809 Designing Empirical Research in the Social Sciences or 21A.819 Qualitative Research Methods at some point in their program. To fulfill the remaining subject requirement, students choose from among several departmental seminars designed to offer more in-depth study of particular topics. They may also take subjects offered by other MIT departments and through cross-registration with Harvard.

Upon the satisfactory completion of general examinations in the third year, students proceed to the writing of a dissertation proposal and dissertation, usually with the assistance of a multidisciplinary advisory committee.

Students from any academic discipline are invited to apply to the doctoral program.

For additional information about the graduate program, visit the HASTS website (http://web.mit.edu/hasts), or contact the STS academic administrator, Room E51-163, 617-253-9759.

Inquiries

Additional information on the Program in Science, Technology, and Society (http://web.mit.edu/sts) may be obtained from the STS academic administrator, Room E51-163, 617-253-9759.

Faculty and Teaching Staff

Professors

Michael M. J. Fischer, PhD
Andrew W. Mellon Professor in the Humanities
Professor of Science and Technology Studies
Professor of Anthropology

Deborah K. Fitzgerald, PhD
Professor of the History of Technology

David I. Kaiser, PhD
Germeshausen Professor of the History of Science
Professor of Physics
Director, Science, Technology, and Society Program

Jennifer S. Light, PhD
Professor of Science, Technology, and Society
Professor of Urban Studies and Planning

Kenneth R. Manning, PhD
Thomas Meloy Professor of Rhetoric
Professor of Science, Technology, and Society

David A. Mindell, PhD
Frances and David Dibner Professor in the History of Engineering and Manufacturing
Professor of Aeronautics and Astronautics

Merritt Roe Smith, PhD
Leverett Howell Cutten ’07 and William King Cutten ’39 Professor of the History of Technology
Professor of History

Sherry R. Turkle, PhD
Abby Rockefeller Mauzé Professor of the Social Studies of Science and Technology

Rosalind H. Williams, PhD
Bern Dibner Professor in the History of Science and Technology
Professor of Comparative Media Studies/Writing

Associate Professors

Clapperton Chakanetsa Mavhunga, PhD
Associate Professor of Science, Technology, and Society
Hanna Rose Shell, PhD
Associate Professor of Science, Technology, and Society

Assistant Professors
William Deringer, PhD
Assistant Professor of Science, Technology, and Society

Robin Scheffler, PhD
Assistant Professor of Science, Technology, and Society

Adjunct Professors
John R. Durant, PhD
Adjunct Professor of Science, Technology, and Society

Professors Emeriti

Louis L. Bucciarelli Jr, PhD
Professor Emeritus of Engineering and Technology Studies

Leo Marx, PhD
William R. Kenan Professor Emeritus
Professor Emeritus of American Cultural History

Theodore A. Postol, PhD
Professor Emeritus of Science, Technology, and National Security Policy

Eugene B. Skolnikoff, PhD
Professor Emeritus of Political Science
Professor Emeritus of Science, Technology, and Society

Leon Trilling, PhD
Professor Emeritus of Aeronautics and Astronautics
Professor Emeritus of Science, Technology, and Society
MIT SLOAN SCHOOL OF MANAGEMENT

The mission of the MIT Sloan School of Management (http://mitsloan.mit.edu) is to develop principled, innovative leaders who improve the world and to generate ideas that advance management practice.

To accomplish this, the School:

- Offers premier programs for shaping leaders who will create, redefine, and build cutting-edge products, services, markets, and organizations
- Collaborates across MIT to capitalize on and contribute to the Institute’s distinctive intellectual excellence and entrepreneurial culture
- Attracts, develops, and retains outstanding faculty and staff who lead the world in management education and research
- Enrolls students with integrity, strong leadership potential, high aspirations, and exceptional intellectual ability
- Fosters a cooperative and adventurous learning community that includes alumni and business partners, works on important problems, and is based on mutual respect, rigorous analysis, and high ethical standards

History

The MIT Sloan School grew out of a curriculum in engineering administration—Course 15—that was first offered to MIT undergraduates in 1914. A program leading to a master’s degree in management was established in 1925. The world’s first university-based executive education program, the Sloan Fellows Program, had its beginnings at MIT in 1931 under the principal sponsorship of Alfred P. Sloan, Jr., the 1895 MIT graduate in electrical engineering who rose to the top of the General Motors Corporation. Sloan endowed the pioneering program in 1938. In 1952, a further grant from the Sloan Foundation made possible the creation of the MIT School of Industrial Management—charged with the education of “the ideal manager.” The School was renamed in honor of Mr. Sloan in 1964.

New Directions

MIT Sloan’s array of top-ranked undergraduate, graduate, and executive programs are well known for drawing on the creative and collaborative approaches common to engineering, behavioral science, economics, and management science to give managers a competitive edge. In our diverse education and research programs, we work with industry to develop the basic knowledge, insights, tools, and techniques that are shaping the future of the practice of management.

Among MIT Sloan’s key strengths are its exceptionally close ties with other world-class departments at MIT, especially in fields crucial to business, including economics, engineering, and science.

One manifestation of this interdisciplinary approach is Leaders for Global Operations (http://lgo.mit.edu), an educational and research collaboration with the School of Engineering and industry partners that is transforming the practice of manufacturing and manufacturing education. Other examples include the medical innovations course, conducted in partnership with MIT Sloan, the School of Engineering, and doctors at Massachusetts General Hospital.

With a focus on the future of management, MIT Sloan has been aggressive in developing leading edge research programs that have an impact on the emerging practice of business. The School has been a leader in developing the concepts of financial engineering that underlie today’s financial markets, for example. The Master of Finance, a 12-month intensive degree program designed to prepare students for careers in the financial industry, has quickly established itself as a premier and in-demand degree program.

In 2010, MIT Sloan launched the MIT Executive MBA. This is a rigorous 20-month executive schedule Master of Business Administration that builds on MIT Sloan’s history of distinguished MBA programs and mid-career education.

Reflecting a world characterized by increasing economic globalization, MIT Sloan is itself an international community. Approximately one-third of the MBA class and close to half of all executive education participants come from outside the United States, and diverse research and educational collaborations have been developed around the world. In addition, the School has a strong network of alumni in more than 100 countries.

As one of the world’s preeminent management schools, MIT Sloan strives to prepare its students to be principled, innovative leaders in a rapidly changing world. In an increasingly competitive environment, MIT Sloan must continually listen to the marketplace, explore new directions, and use this knowledge to develop new products, services, and processes quickly and efficiently. To maintain its leadership, MIT Sloan continues to drive change and innovation in a number of areas:

Action Learning. MIT Sloan’s signature experiential learning model immerses students in the world’s under-resourced locales to translate knowledge into useful solutions. Action Learning builds resilient, thoughtful leaders capable of solving unstructured problems across business functions. Global Entrepreneurship Lab, Sustainable Business Lab, China Lab, and India Lab are just a few of the avenues through which students can apply classroom concepts and theory to real-world business scenarios.

Entrepreneurship. The Martin Trust Center for MIT Entrepreneurship provides the knowledge, support, and network necessary for MIT students to become successful entrepreneurs. The Trust Center has created entrepreneurship-focused courses and extracurricular programs, such as New Enterprises and the Founders’ Skills Accelerator, to provide students the knowledge and skills needed to turn an idea into a successful venture. The center is staffed by
MIT lecturers and experienced practitioners who have conducted rigorous studies on entrepreneurship; students are further supported by a network of industry-leading mentors and provided the workspace and resources necessary for successful venture growth.

Global Initiatives. A top priority for MIT Sloan is to widen the international reach of its educational and research initiatives. MIT Sloan has collaborations with international MBA programs in China’s Fudan, Tsinghua, and Lingnan universities. MIT Sloan also hosts university faculty from China, Turkey, Portugal, and Brazil for training in teaching and course development, and to work on research projects. MIT Sloan has engaged in collaborations with The Lisbon MBA in Portugal, Sabanci University in Turkey, and Vale Institute of Technology in Brazil. The School also works with the Indian School of Business in India, Nanyang Technological University in Singapore, and the Epoch Foundation in Taiwan. Together with Malaysia’s central bank, MIT Sloan recently co-founded the Asia School of Business in Kuala Lumpur.

Research Centers

MIT Sloan faculty actively participate in the following interdisciplinary research centers:

- Center for Collective Intelligence (p. 85)
- Center for Computational Research In Economics and Management Science (p. 86)
- Center for Energy and Environmental Policy Research (p. 86)
- Center for Information Systems Research
- Computer Science and Artificial Intelligence Laboratory (p. 91)
- Initiative on the Digital Economy (p. 93)
- Joint Program on the Science and Policy of Global Change (p. 94)
- Laboratory for Financial Engineering (p. 95)
- Legatum Center for Development and Entrepreneurship (p. 97)
- Martin Trust Center for MIT Entrepreneurship (p. 101)
- MIT Center for Finance and Policy
- MIT Energy Initiative (p. 98)
- MIT Leadership Center
- MIT Sloan Initiative for Health Systems Innovation
- MIT Sloan Sustainability Initiative
- Operations Research Center (p. 104)

Information about these centers is available in the Research and Study section (p. 84) and on the MIT Sloan website (http://mitsloan.mit.edu/faculty/research).

Publications

MIT Sloan produces publications that enjoy robust readership within the MIT community, across the country, and around the world. *MIT Sloan Management Review* leads the discourse among academic researchers, business executives, and other influential thought leaders about advances in management practice that are transforming how people lead and innovate. *MIT SMR* disseminates new management research and innovative ideas so that thoughtful executives can capitalize on the opportunities generated by rapid organizational, technological, and societal change.

The alumni magazine *MIT Sloan* aims to connect alumni to the School and to one another through compelling news features, faculty articles, student and alumni profiles, and class notes.

Degrees Offered in the MIT Sloan School of Management

Management (Course 15)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Management Science</td>
</tr>
<tr>
<td>MBA</td>
<td>Business Administration</td>
</tr>
<tr>
<td>MFin</td>
<td>Finance</td>
</tr>
<tr>
<td>SM</td>
<td>Management</td>
</tr>
<tr>
<td>SM</td>
<td>Management of Technology</td>
</tr>
<tr>
<td>SM</td>
<td>Management Research</td>
</tr>
<tr>
<td>SM</td>
<td>Management Studies</td>
</tr>
<tr>
<td>SM/MBA</td>
<td>Engineering/Management—Leaders for Global Operations</td>
</tr>
<tr>
<td>PhD</td>
<td>Management</td>
</tr>
</tbody>
</table>

Design and Management (Integrated Design and Management & System Design and Management)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Engineering and Management</td>
</tr>
</tbody>
</table>

Operations Research

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Operations Research</td>
</tr>
<tr>
<td>PhD</td>
<td>Operations Research</td>
</tr>
</tbody>
</table>

Notes

Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.

1. See Interdisciplinary Programs (p. 327).

Admissions

The selection process at MIT is holistic and student centered: each application is evaluated within its unique context. Selection is based on outstanding academic achievement as well as a strong match between the applicant and the Institute.

Undergraduate applicants do not apply to a particular school, department or program and, although the application asks about a preferred field of study, most admitted undergraduates do not declare a major until the second semester of their freshman year. Admissions information for regular, transfer, and non-degree
applicants is provided in the section on Undergraduate Education (p. 30).

Applicants for graduate study apply directly to the particular department or program of interest. See the individual department and program descriptions for specific requirements.

Office of the Dean

David C. Schmittlein, PhD
John C Head III Dean, Sloan School of Management
Professor of Marketing

Ezra Zuckerman Sivan, PhD
Alvin J. Siteman (1948) Professor of Entrepreneurship
Professor of Technological Innovation, Entrepreneurship, and Strategic Management
Deputy Dean

Yasheng Huang, PhD
International Program Professor in Chinese Economy and Business
Professor of Global Economics and Management
Associate Dean, International Initiatives and Action Learning

Fiona E. Murray, PhD
Bill Porter (1967) Professor of Entrepreneurship
Professor of Technological Innovation, Entrepreneurship, and Strategic Management
Associate Dean for Innovation

Jacob Cohen, JD
Senior Lecturer in Accounting and Law
Senior Associate Dean, Undergraduate and Master's Programs

Kristina Gulick Schaefer
Senior Associate Dean, External Relations and International Programs

Jesse Souweine
Senior Associate Dean, Administration

Catherine Canney
Associate Dean, Dean's Initiatives and Brand Strategy

MANAGEMENT

Undergraduate Study

Bachelor of Science in Management Science (Course 15)

The MIT Sloan School of Management offers an undergraduate degree program in management science (p. 428). This innovative curriculum is designed to prepare students for top jobs in today’s technologically oriented business world. By combining the General Institute Requirements with subjects in the MIT Sloan School of Management, students learn a unique combination of problem solving and managerial skills, which allows them to excel in high-demand areas such as financial engineering, market analysis, and big data analytics.

In recent years, the field of management science has grown rapidly in conjunction with advances in technology, methods for collecting and structuring large quantities of data, and the building of sophisticated mathematical models. The MIT Sloan School’s undergraduate degree program develops knowledge in probability, statistics, and computer programming, and a strong background in economics, accounting, communication, and managerial psychology. Students learn to apply this knowledge within a variety of managerial functions. Each student completes a concentration in one of four areas: finance, information technologies, marketing science, or business analytics and operations research.

MIT Sloan undergraduates take many management-related electives, alongside MBA and other graduate students. This arrangement provides an excellent opportunity for undergraduates to learn from students with previous business experience. The SB degree in management science exposes students to the complementary learnings of technological and management innovation.

Minor in Management

The Minor in Management provides undergraduates in other majors with an understanding of the business, human, social, and organizational dimensions of scientific and technological enterprise.

The minor consists of six subjects:

<table>
<thead>
<tr>
<th>Required subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.301 Managerial Psychology Laboratory 15</td>
</tr>
<tr>
<td>or 15.668 People and Organizations 12</td>
</tr>
<tr>
<td>15.501 Corporate Financial Accounting 12</td>
</tr>
<tr>
<td>15.812 Marketing Management 9</td>
</tr>
<tr>
<td>Electives</td>
</tr>
</tbody>
</table>

Select any three Course 15 subjects (other than Undergraduate Research Opportunities Program [UROP], Special Studies, Special Seminars, and general-elective transfer credit) that are not designated as restricted to students in other Sloan School programs. (Two six-unit subjects count as a single elective subject.)

<table>
<thead>
<tr>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
</tr>
</tbody>
</table>

1. 14.01 Principles of Microeconomics is also a permissible elective.

Minor in Management Science

The Minor in Management Science introduces undergraduates in other majors to the techniques of quantitative business analysis and their application to practical problems. Its focus reflects the core content of the SB degree program in management science.

The minor consists of six subjects:

<table>
<thead>
<tr>
<th>Required subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.041 Probabilistic Systems Analysis 12</td>
</tr>
<tr>
<td>14.01 Principles of Microeconomics 12</td>
</tr>
<tr>
<td>15.053 Optimization Methods in Management Science 12</td>
</tr>
<tr>
<td>15.075[J] Statistical Thinking and Data Analysis 12</td>
</tr>
<tr>
<td>Electives</td>
</tr>
</tbody>
</table>

Select two Course 15 subjects from a list of restricted electives. (Two six-unit subjects count as a single elective subject.)

<table>
<thead>
<tr>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
</tr>
</tbody>
</table>

Interdepartmental (Non-Sloan) Students

MIT students from other departments are welcome to take unrestricted elective subjects at MIT Sloan if they have taken the listed prerequisites. All students who wish to take Sloan graduate subjects must participate in the MIT Sloan course bidding system. Information about the process is available on the bidding website (https://sloanbid.mit.edu). Bidding occurs at the same time as online WebSIS pre-registration in December and May for the following terms. The MIT Sloan course schedule is available on the bidding website, as are most class syllabi, to assist students in subject selection. Staff in Sloan Educational Services, Room E48-5th floor, 617-253-1510, are always available to assist students and provide information about MIT Sloan classes and the course bidding system.

Inquiries

For additional information about these Sloan undergraduate programs, students may consult the Office of Undergraduate Education, Room E48-541, 617-253-8614, and the MIT Sloan undergraduate website (http://mitsloan.mit.edu/undergrad).
Graduate Study

The MIT Sloan School of Management offers opportunity for graduate study leading to the degrees of Master of Business Administration, Master of Science in Management, Master of Science in Management of Technology, Master of Finance, Master of Science in Management Studies, and Doctor of Philosophy. In addition, there are two dual degree options: an MBA/SM with the MIT School of Engineering, known as the Leaders for Global Operations (LGO) program; and an MBA/MPP or MPA with the Harvard Kennedy School.

Admission Requirements for Graduate Study

Applications are welcome from college graduates in all areas of concentration—the humanities, social sciences, physical sciences, and engineering. Please see the individual program websites for specific entrance requirements and more information.

Master of Business Administration and Master of Science in Management

The MIT Sloan School MBA program (http://mitsloan.mit.edu/mba) offers a course of study in graduate management education, leading to a master’s degree in Business Administration (MBA) or Master of Science in Management (SM). Degree candidates are admitted in spring to a program that begins with a mandatory orientation program in August. The two-year program of study requires candidates to complete a core curriculum plus 144 units of graduate elective subjects. Students also fulfill research and leadership requirements through activities in the mid-term Sloan Innovation Period and through elective coursework. Residency for four academic terms is required. A grade point average (GPA) of 4.0/5.0 (B) is required at the time of graduation.

The MBA curriculum is designed for maximum flexibility, allowing students to create an individual program best suited to their needs and career interests. During the first term, students take a sequence of core subjects with the option of one of four elective subjects.

In the first term, MBA students are assigned to one of 60 teams consisting of six to seven people. These teams are combined into six larger sections, called cohorts or oceans, for the core subjects. Students take all the core subjects in the same assigned section, which facilitates cohort integration and the formation of study groups.

After the first term, students have a wide range of elective subject choices. Students are given a great deal of independence in choosing their subjects, and they may design a program that includes a depth of focus as well as breadth. This includes the option of earning a certificate by enrolling in and completing the elective requirements for a track or certificate program. The MBA Program currently offers five certificates: in finance, enterprise management, entrepreneurship and innovation, healthcare, and sustainability.

The Sloan Innovation Period, offered each term, provides students and faculty with the opportunity to explore jointly, in a nontraditional setting, what makes MIT Sloan unique: exceptional research expertise, leadership acumen, and the hands-on application of knowledge.

Practical exposure to management takes place in the MIT Sloan School through a variety of activities. Students in the MBA program are expected to spend the summer between their first and second years working in an activity or internship that contributes to their understanding of and effectiveness in dealing with management problems.

During the academic year students have additional opportunities both in and outside the classroom to apply their learning. Many Sloan subjects incorporate action learning into their pedagogy and require students to complete projects within companies and organizations as a deliverable for the subject. These subjects may include a 1–3 week international or domestic experience working within a host organization. Corporate leaders are often invited to work with students either through guest lectureships in classes or through interaction with one of the more than 60 student organizations. Some students may also have the opportunity to work as paid teaching and research assistants to the Sloan faculty.

Outside of the classroom, the MBA community’s student organizations and clubs provide students the opportunity to practice leadership through the execution of conferences, international study tours and treks, business plan and case competitions, and other club-related activities.

Master of Finance

The Master of Finance (MFin) (https://mitsloan.mit.edu/mfin) prepares students for a broad range of careers in finance requiring analytical rigor and the ability to innovate around market challenges. The program consists of required fundamental and advanced subjects, restricted and general electives, action learning, ethics modules, and an optional master’s thesis. Practical training is an important component of a student’s preparation. MFin students are expected when possible to take advantage of the January Independent Activities Period (IAP) as an opportunity to gain practical experience in an area of finance. International students must check with the International Students Office to ensure compliance with immigration regulations before participating in practical training.

Required summer-term coursework provides the foundation in finance, accounting, and financial mathematics for continuing with more advanced required and elective subjects in the fall and spring terms. Restricted and general electives ensure appropriate depth as well as opportunities for breadth of study, depending on the student’s interest. Students are required to take either a proseminar
or the Finance Research Practicum™, project-based classes in which students work in teams to address current problems identified by finance professionals. A thesis option is available in lieu of one or more general elective subjects for students who wish to research a topic of particular interest.

Frequent seminars, conferences, and major lectures present students with opportunities to hear from recognized leaders from a variety of industries. MFin students have full access to the extensive resources of the MIT Sloan Career Development Office as well as the MIT Career Development Center. In addition, students participate in a wide array of professional clubs, student government, sports teams, and organizations at the school and campus level.

To graduate, students must attain at least a B (GPA of 4.0/5.0) at the time of graduation. Residency for the academic terms is required. Students may not pursue another degree program while enrolled in the MFin. Except in the case of core requirements, coursework completed at MIT prior to matriculation in the MFin program may not be applied toward the MFin degree without the approval of the MFin faculty director.

In addition to the traditional synergies among finance, economics, and accounting, the program exploits intellectual ties among finance and mathematics, statistics, psychology, management, computer science, and engineering. The program is primarily targeted at recent graduates with zero to four years of experience. Recent graduates of postgraduate programs in mathematics, science, and engineering who wish to enter the finance profession are also encouraged to apply. MFin prepares students for a wide variety of finance roles in the private and public sector as well as doctoral studies.

Typically, applications to the MFin program are due in early January; decisions are usually announced by mid-March. This is subject to change. For exact deadlines, please refer to the Master of Finance website (https://mitsloan.mit.edu/mfin).

Master of Science in Management Studies

The Master of Science in Management Studies (MSMS) (http://mitsloan.mit.edu/msms) program is a customizable advanced master’s degree that complements an overseas management education. Designed for students in non-US business schools who are in the process of completing or have already completed their MBA (or comparable master’s) degree, the MSMS program allows students to pursue their area of interest in management and construct an individualized curriculum of all-elective subjects from the offerings at MIT Sloan, other MIT departments, and Harvard University. Students specialize in a specific area within management by designating a concentration, taking elective subjects, and working with a Sloan faculty member to write a compulsory master’s thesis in their area of study. Applicants from our international partner and cooperating schools are especially encouraged to apply.

The 9-month program, which runs from September to June, requires full-time residence. In addition, MSMS students are required to meet MIT’s requirement of at least 66 units of graduate subjects, and a master’s thesis. To graduate, students must attain a GPA of 4.0/5.0 (B) by the time of graduation. For more information, visit the MSMS website (http://mitsloan.mit.edu/msms).

Doctor of Philosophy

The purpose of the MIT Sloan School’s PhD program (http://mitsloan.mit.edu/phd) is to prepare students for careers in academic research. Students are admitted once a year for September matriculation and take an average of five years to complete the program.

The PhD program provides an opportunity to combine in-depth work in theory with work in broadly defined “applied” areas, with faculty who are experts in their fields. Candidates must master the literature, theory, and application of a major field of concentration as well as a minor field. Successful completion of this requirement is determined by General Examinations. Applicants select from one of the following 10 research concentrations:

- Accounting
- Economic Sociology
- Finance
- Information Technologies
- Marketing
- Operations Management
- Organization Studies
- System Dynamics
- Technological Innovation, Entrepreneurship, and Strategic Management
- Work and Employment Research

PhD candidates enter the program specializing in an appropriate minor field—typically a theoretical discipline that provides a foundation for research in the major field. Major fields, such as accounting or marketing usually have economics as a minor field, while organization studies has behavioral science.

The subject requirements for the major and minor fields are not rigid. There are normal groups of subjects for the standard fields, but substitutions of other subjects and independent study are possible. Regardless of the major and minor fields chosen, a plan of study designed to prepare the student for General Examinations is determined by the student and his or her faculty advisor(s).

The General Examinations are usually taken at the end of the second year or beginning of the third year of study, after completion of major and minor field coursework and a research paper (see below). The exact form of General Exams varies and may involve written examinations, critiques of research papers, or review papers on prescribed topics. In all cases, the last stage is an oral examination.
The MIT Sloan School is committed to research, and the philosophy and structure of the PhD program reflect this professional commitment. There are two separate research requirements: the master's thesis and the PhD dissertation.

A substantial part of the student's work in the latter half of the first year and in the second year is devoted to an independent research project. The topic, design, and execution of the project are left to the student, while advice and criticism are provided by a research advisor and other interested faculty. Upon completion of the project, the student submits a master's thesis and, after fulfilling the Institute requirements for a master's degree, is awarded an SM in Management Research.

The PhD dissertation consists of significant scholarly research in some area of management. Close working relationships with faculty are established early so that the thesis can be defined as a manageable project as early as possible. Candidates typically require two or three years of full-time work to complete their doctoral theses.

A typical funding package covers a period of five years. Students receive full tuition, health insurance, and a fellowship with a teaching assistant or research assistant component, as well as a new laptop computer and travel funds to attend conferences.

Please visit the MIT Sloan PhD program website (http://mitsloan.mit.edu/phd) for more information.

Interdisciplinary Programs

Computation for Design and Optimization
The Computation for Design and Optimization (CDO) (http://computationalengineering.mit.edu/education) program offers a master's degree to students interested in the analysis and application of computational approaches to designing and operating engineered systems. The curriculum is designed with a common core serving all engineering disciplines and an elective component focusing on specific applications. Current MIT graduate students may pursue a CDO master's degree in conjunction with a department-based master's or PhD program. For more information, see the full program description (p. 350) under Interdisciplinary Graduate Programs.

Leaders for Global Operations
The 24-month Leaders for Global Operations (LGO) (http://lgo.mit.edu) program combines graduate degrees in engineering and management for those with previous postgraduate work experience and strong undergraduate degrees in a technical field. During the two-year program, students complete a six-month internship at one of LGO's partner companies, where they conduct research that forms the basis of a dual-degree thesis. Students finish the program with two MIT degrees: an MBA (or SM in management) and an SM from one of seven engineering programs, some of which have optional or required LGO tracks. After graduation, alumni take on leadership roles at top global manufacturing and operations companies.

System Design and Management
The System Design and Management (SDM) (http://sdm.mit.edu) program is a partnership among industry, government, and the university for educating technically grounded leaders of 21st-century enterprises. Jointly sponsored by the School of Engineering and the Sloan School of Management, it is MIT's first degree program to be offered with a distance learning option in addition to a full-time in-residence option.

Master's Degree Programs for Mid-Career Executives

MIT Sloan Fellows Program in Innovation and Global Leadership
This full-time, 12-month (June–June) immersive MBA program is designed for high-performing mid-career professionals. The program typically enrolls about 120 outstanding individuals with 10–20 years of professional experience from more than 30 nations, representing a wide variety of for-profit and nonprofit industries, organizations, and functional areas. Many participants are sponsored by or have the strong support of their employers, but the program also admits independent participants, many with unique entrepreneurial experiences and perspectives.

The program is characterized by a rigorous academic curriculum, frequent interactions with international business and government leaders, and a valuable exchange of global perspectives. The fellows work together in a team environment, tackling practical issues with a spirit of intellectual adventure. After collaborating across disciplines, cultures, and backgrounds in this intense learning environment, they leave the program with a robust alumni network and the skills necessary to create change, build alliances, and drive global ventures.

For more information about the MIT Sloan Fellows Program in Innovation and Global Leadership and how to apply, visit the website (http://mitsloan.mit.edu/fellows) or contact the program office (fellows@sloan.mit.edu), 617-253-8600, fax 617-252-1200.

Executive MBA
The MIT Executive MBA (EMBA) (http://emba.mit.edu) is a rigorous 20-month, executive schedule Master of Business Administration that builds on MIT Sloan's history of distinguished MBA programs and mid-career education. The classroom-based program is designed to develop principled, innovative leaders, usually with a decade or more of work experience, who can transform the world's most important institutions. The MIT Executive MBA is an opportunity to join an elite forum for innovation and leadership in which mid-career executives develop an edge in their general management skills and build a business network that lasts a lifetime.
The program brings together rising executives from diverse industries to collaborate on the complex challenges they face now—and will face in years to come—within their organizations and within the larger international marketplace. Although a large proportion of MIT EMBAs come from careers in life science, engineering, and technology, our ranks also include leaders in government, start-ups, nonprofits, finance, and the military. All are inspired by this rare opportunity to drive positive change, master the science of management, and integrate global leadership and data-driven analytics.

For more information about the MIT Executive MBA and how to apply, visit the EMBA website (http://emba.mit.edu) or contact the program office (executivemba@mit.edu), Room E48-500, 617-253-5033.

Faculty and Teaching Staff

Professors
Deborah L. Ancona, PhD
Seley Distinguished Professor of Management
Professor of Organization Studies

Paul Asquith, PhD
Gordon Y Billard Professor of Finance

Arnold I. Barnett, PhD
George Eastman Professor of Management Science and Statistics

Ernst R. Berndt, PhD
William E. Seley Professor in Applied Economics

Dimitris J. Bertsimas, PhD
Boeing Leaders for Global Operations Professor of Management
Professor of Operations Research

Erik Brynjolfsson, PhD
Schussel Family Professor of Management Science
Professor of Information Technology

John Stephen Carroll, PhD
Gordon Kaufman Professor of Management
Professor of Organization Studies

Emilio J. Castilla, PhD
Nanyang Technological University Professor
Professor of Management

John E. Core, PhD
Nanyang Technological University Professor
Professor of Accounting

John Carrington Cox, PhD
Nomura Professor of Finance

Michael A. Cusumano, PhD
Sloan Management Review Distinguished Professor in Management
Professor of Technological Innovation, Entrepreneurship, and Strategic Management

Joseph J. Doyle, PhD
Erwin H. Schell Professor of Management
Professor of Applied Economics

Steven D. Eppinger, ScD
General Motors Leaders for Global Operations Professor of Management
Professor of Operations Management, Management Science, and Innovation

Roberto Fernandez, PhD
William F. Pounds Professor of Management
Professor of Organization Studies

Charles H. Fine, PhD
Chrysler Leaders for Global Operations Professor of Management
Professor of Operations Management

Kristin J. Forbes, PhD
Jerome and Dorothy Lemelson Professor of Management
Professor of Global Economics and Management

Robert Michael Freund, PhD
Theresa Seley Professor in Management Sciences
Professor of Operations Research

David Gamarnik, PhD
Nanyang Technological University Professor
Professor of Operations Research
Member, Institute for Data, Systems, and Society

Robert S. Gibbons, PhD
Sloan Distinguished Professor of Management
Professor of Applied Economics

Stephen C. Graves, PhD
Abraham J. Siegel Professor of Management
Professor of Operations Management and Leaders for Global Operations
Professor of Mechanical Engineering
Member, Institute for Data, Systems, and Society

Michelle Hanlon, PhD
Howard W. Johnson Professor
Professor of Accounting

John R. Hauser, ScD
Kirin Professor of Marketing
Bengt Holmstrom, PhD
Paul A. Samuelson Professor
Professor of Economics
Professor of Applied Economics

Yasheng Huang, PhD
International Program Professor in Chinese Economy and Business
Professor of Global Economics and Management

Simon Johnson, PhD
Ronald A. Kurtz (1954) Professor of Entrepreneurship
Professor of Global Economics and Management

Katherine C. Kellogg, PhD
Professor of Organization Studies

Erin L. Kelly, PhD
Professor of Work and Organization Studies

Christopher Roland Knittel, PhD
William Barton Rogers Professor in Energy Economics
Professor of Applied Economics

Thomas Anton Kochan, PhD
George Maverick Bunker Professor of Management
Professor of Work and Employment Research
Member, Institute for Data, Systems, and Society

Leonid Kogan, PhD
Nippon Telegraph & Telephone Professor of Management
Professor of Finance

S. P. Kothari, PhD
Gordon Y Billard Professor
Professor of Accounting and Finance

Retsef Levi, PhD
J. Spencer Standish (1945) Professor of Management
Professor of Operations Management

John D. C. Little, PhD
Institute Professor
Professor of Marketing

Andrew W. Lo, PhD
Charles E. and Susan T. Harris Professor
Professor of Finance
Professor of Electrical Engineering and Computer Science
Member, Institute for Data, Systems, and Society

Deborah J. Lucas, PhD
Sloan Distinguished Professor in Management
Professor of Finance

Stuart E. Madnick, PhD
John Norris Maguire (1960) Professor
Professor of Information Technology
Member, Institute for Data, Systems, and Society

Thomas L. Magnanti, PhD
Institute Professor
Professor of Operations Research
Professor of Electrical Engineering
Member, Institute for Data, Systems, and Society

Thomas W. Malone, PhD
Patrick J. McGovern (1959) Professor of Management
Professor of Information Technology

Robert C. Merton, PhD
School of Management Distinguished Professor of Finance

Fiona E. Murray, PhD
Bill Porter (1967) Professor of Entrepreneurship
Professor of Technological Innovation, Entrepreneurship, and Strategic Management

Wanda J. Orlikowski, PhD
Alfred P. Sloan Professor of Management
Professor of Information Technology and Organization Studies

James B. Orlin, PhD
E. Pennell Brooks (1917) Professor in Management
Professor of Operations Research

Paul Osterman, PhD
Nanyang Technological University Professor
Professor of Human Resources and Management

Jun Pan, PhD
School of Management Distinguished Professor
Professor of Finance

Jonathan A. Parker, PhD
International Programs Professor in Management
Professor of Finance

Georgia Perakis, PhD
William F. Pounds Professor of Management
Professor of Operations Research and Operations Management

Robert S. Pindyck, PhD
Bank of Tokyo-Mitsubishi, Ltd. Professor in Finance and Economics
Professor of Applied Economics

Drazen Prelec, PhD
Digital Equipment Corp. Leaders for Global Operations Professor of Management
Professor of Marketing and Management Science
Professor of Economics
Professor of Brain and Cognitive Sciences
Ray Eugene Reagans, PhD
Alfred P. Sloan Professor of Management
Professor of Organization Studies

Nelson Repenning, PhD
School of Management Distinguished Professor
Professor of System Dynamics and Organization Studies

Roberto Rigobon, PhD
Society of Sloan Fellows Professor
Professor of Applied Economics

Edward B. Roberts, PhD
David Sarnoff Professor of Management
Professor of Management of Technology

Stephen A. Ross, PhD
Franco Modigliani Professor of Financial Economics
Professor of Finance

David C. Schmittlein, PhD
John C Head III Dean, Sloan School of Management
Professor of Marketing

Antoinette Schoar, PhD
Michael M. Koerner (1949) Professor of Entrepreneurship
Professor of Finance

Andreas S. Schulz, PhD
Patrick J. McGovern (1959) Professor of Management
Professor of Operations Research

Duncan Simester, PhD
Nanyang Technological University Professor
Professor of Marketing

John Sterman, PhD
Jay W. Forrester Professor in Computer Science
Professor of System Dynamics
Member, Institute for Data, Systems, and Society

Scott Stern, PhD
David Sarnoff Professor of Management of Technology
Professor of Technological Innovation, Entrepreneurship, and Strategic Management

Thomas Martin Stoker, PhD
Gordon Y Billard Professor in Management and Economics
Professor of Applied Economics

Catherine E. Tucker, PhD
Professor of Marketing

James M. Utterback, PhD
David J. McGrath jr. (1959) Professor of Management and Innovation
Professor of Technological Innovation, Entrepreneurship, and Strategic Management

John Van Maanen, PhD
Erwin H. Schell Professor of Management
Professor of Organization Studies

Eric A. von Hippel, PhD
T. Wilson (1953) Professor in Management
Professor of Management of Innovation

Jiang Wang, PhD
Mizuho Financial Group Professor
Professor of Finance

Joseph P. Weber, PhD
George Maverick Bunker Professor of Management
Professor of Accounting

Roy E. Welsch, PhD
Eastman Kodak Leaders for Global Operations Professor of Management
Professor of Statistics
Member, Institute for Data, Systems, and Society

Birger Wernerfelt, DBA
J. C. Penney Professor of Management
Professor of Marketing

Michael Dennis Whinston, PhD
Society of Sloan Fellows Professor of Management
Professor of Economics
Professor of Applied Economics

JoAnne Yates, PhD
Sloan Distinguished Professor of Management
Professor of Managerial Communication, and Work and Organization Studies

Juanjuan Zhang, PhD
Epoch Foundation Professor of International Management
Professor of Marketing

Ezra W. Zuckerman Sivan, PhD
Alvin J. Siteman (1948) Professor of Entrepreneurship
Professor of Technological Innovation, Entrepreneurship, and Strategic Management

Associate Professors

Sinan Aral, PhD
David Austin Professor in Management
Associate Professor of Information Technology and Marketing

Pierre Azoulay, PhD
Sloan Distinguished Professor in Management
Associate Professor of Technological Innovation, Entrepreneurship, and Strategic Management
Nittai Bergman, PhD
Nanyang Technological University Professor
Associate Professor of Finance

Alessandro Bonatti, PhD
Sarofim Family Career Development Professor
Associate Professor of Applied Economics

Alberto F. Cavallo, PhD
Cecil and Ida Green Career Development Professor
Associate Professor of Applied Economics

Hui Chen, PhD
Associate Professor of Finance

Jared R. Curhan, PhD
Sloan Distinguished Professor in Management
Associate Professor of Organization Studies

Vivek F. Farias, PhD
Associate Professor of Operations Management

Xavier Giroud, PhD
Ford International Career Development Professor
Associate Professor of Finance

Rajkamal J. Iyer, PhD
Associate Professor of Finance

Aleksandra Joanna Kacperczyk, PhD
Fred Kayne (1960) Career Development Professor of Entrepreneurship
Associate Professor of Technological Innovation, Entrepreneurship, and Strategic Management

Matthew Amengual, PhD
Assistant Professor of Work and Organization Studies

Evan Paul Apfelbaum, PhD
W. Maurice Young (1961) Career Development Professor
Assistant Professor of Management and Organization Studies

Jean-Noël Barrot, PhD
Hayes Career Development Professor
Assistant Professor of Finance

Christian Catalini, PhD
Fred Kayne (1960) Career Development Professor of Entrepreneurship
Assistant Professor of Technological Innovation, Entrepreneurship, and Strategic Management

Gonzalo Cisternas, PhD
Assistant Professor of Applied Economics

Dean Eckles, PhD
Assistant Professor of Marketing

Renee Richardson Gosline, PhD
Zenon Zannetos (1955) Career Development Professor
Assistant Professor of Marketing

João Granja, PhD
Assistant Professor of Accounting

Erin Metcalf Johnson, PhD
Assistant Professor of Applied Economics

Valerie Karplus, PhD
Class of 1943 Career Development Professor
Assistant Professor of Global Economics and Management

Tony Ke, PhD
Assistant Professor of Marketing

David Keith, PhD
Assistant Professor of System Dynamics

Erik Loualiche, PhD
Assistant Professor of Finance
Elena Manresa, PhD
Assistant Professor of Applied Economics

Rahul Mazumder, PhD
Assistant Professor of Operations Research and Statistics

Reining Petacchi, PhD
Assistant Professor of Accounting

Hazhir Rahmandad, PhD
Assistant Professor of Accounting

Benjamin N. Roin, JD
Assistant Professor of Technological Innovation, Entrepreneurship,
and Strategic Management

Ofer Sharone, JD, PhD
Mitsubishi Career Development Professor in International
Management
Assistant Professor of Work and Organization Studies

Andrew Sutherland, PhD
Assistant Professor of Accounting

Neil Thompson, PhD
Assistant Professor of Technological Innovation, Entrepreneurship,
and Strategic Management

Juan Pablo Vielma, PhD
Richard S. Leghorn (1939) Career Development Professor in
Management of Technological Innovation
Assistant Professor of Operations Research and Statistics

Taufhid R. Zaman, PhD
KDD Career Development Professor in Communications and
Technology
Assistant Professor of Operations Management

Yanchong Karen Zheng, PhD
Sloan School Career Development Professor
Assistant Professor of Operations Management

Haoxiang Zhu, PhD
Assistant Professor of Finance

Juan-Carlos Antonio Ferrer Ortiz, PhD
Visiting Professor of Management

William Fischer, DBA
Visiting Professor of Management

Richard Holden, PhD
Visiting Professor of Management

Nitin Joglekar, PhD
Visiting Professor of Management

Jonathan Lewellen, PhD
Visiting Professor of Management

José Ignacio Pérez Arriaga, PhD
Visiting Professor of Management
Visiting Professor of Data, Systems, and Society

Christopher Polk, PhD
Visiting Professor of Management

Adam Seligman, PhD
Visiting Professor of Management

Visiting Associate Professors

Hua Fang, PhD
Visiting Associate Professor of Finance

Jeff Furman, PhD
Visiting Associate Professor of Management

Joseph Hall, MBA
Visiting Associate Professor of Management

Aurelie Thiele, PhD
Visiting Associate Professor of Management

Visiting Assistant Professors

Mercedes Delgado, PhD
Visiting Assistant Professor of Technological Innovation,
Entrepreneurship, and Strategic Management

Travis L. Johnson, PhD
Visiting Assistant Professor of Management

Petro Lisowsky, PhD
Visiting Assistant Professor of Management

Adjunct Professors

Mary P. Rowe, PhD
Adjunct Professor of Management

Adjunct Associate Professors

Zeynep Ton, DBA
Adjunct Associate Professor of Management
Senior Lecturers
Noubar Afeyan, PhD
Senior Lecturer in Management
Senior Lecturer in Biological Engineering
John L. Akula, JD, PhD
Senior Lecturer in Management
William Aulet, MS
Senior Lecturer in Management
Joseph J. Battat, PhD
Senior Lecturer in Management
Patricia P. Bentley, PhD
Senior Lecturer in Management
Kara Blackburn, MA
Senior Lecturer in Management
David Breashears
Senior Lecturer in Leadership
Lori Breslow, PhD
Senior Lecturer in Management
Philip Budden, PhD
Senior Lecturer in Management
John F. Carrier, ScD
Senior Lecturer in Management
Marsh Carter, MA, MS
Senior Lecturer in Management
Sharmila Chatterjee, PhD
Senior Lecturer in Management
Elaine Chen, MS
Senior Lecturer in Management
Court Chilton, MBA
Senior Lecturer in Management
Zhen Chu, MBA
Senior Lecturer in Management
Randolph B. Cohen, PhD
Senior Lecturer in Management
Phil Cooper, MS
Senior Lecturer in Management
Douglas A. Criscitello, MS
Senior Lecturer in Management
James P. Dougherty, MA
Senior Lecturer in Management
Barbara Dyer, BA
Senior Lecturer in Management
Paul Michael English, MS
Senior Lecturer in Management
Jonathan Fleming, MRP
Senior Lecturer in Management
John C. Grant, SM
Senior Lecturer in Management
Hal Gregersen, PhD
Senior Lecturer in Management
Nathaniel Gregory, PhD
Senior Lecturer in Management
Joseph G. Hadzima Jr, JD
Senior Lecturer in Management
Leigh Hafrey, PhD
Senior Lecturer in Management
Brian Halligan, MBA
Senior Lecturer in Management
Neal Hartman, MEd
Senior Lecturer in Management
Terence Heagney, PhD
Senior Lecturer in Management
Thomas J. Hynes III, BS
Senior Lecturer in Management
William Neal Isaacs, DPhil
Senior Lecturer in Management
Jason Jay, PhD
Senior Lecturer in Management
Charles F. Kane, MBA
Senior Lecturer in Management
Ralph Katz, PhD
Senior Lecturer in Management
Scott Keating, DBA
Senior Lecturer in Management
Christine Kelly, EdD
Senior Lecturer in Management
Donald Kieffer, BA
Senior Lecturer in Management
Janice A. Klein, PhD
Senior Lecturer in Management
Mark P. Kritzman, MBA
Senior Lecturer in Management

Peter S. Kurzina, JD
Senior Lecturer in Management

Joseph Langsam, PhD
Senior Lecturer in Management

Shari Loessberg, JD
Senior Lecturer in Management

Jeffrey A. Meldman, JD, PhD
Senior Lecturer in Management

John Minahan, PhD
Senior Lecturer in Management

Robert Nachtrieb, ScD
Senior Lecturer in Management

Christopher Noe, PhD
Senior Lecturer in Management

Sinead O’Flanagan, MS
Senior Lecturer in Management

Francis Martin O’Sullivan, PhD
Senior Lecturer in Management

John E. Parsons, PhD
Senior Lecturer in Management

Roberta Pittore, MBA
Senior Lecturer in Management

Robert C. Pozen, JSD
Senior Lecturer in Management

Gita R. Rao, MBA, PhD
Senior Lecturer in Management

Douglas Ready, PhD
Senior Lecturer in Management

John M. Reilly, PhD
Senior Lecturer in Management

Thomas A. Roemer, PhD
Senior Lecturer in Management

Donald B. Rosenfield, PhD
Senior Lecturer in Management

Anjali Sastry, PhD
Senior Lecturer in Management

Imran Sayeed, BA
Senior Lecturer in Management

Claus Otto Scharmer, PhD
Senior Lecturer in Management

Peter M. Senge, PhD
Senior Lecturer in Management

Jeffrey L. Shames, SM
Senior Lecturer in Management

Oz Shy, PhD
Senior Lecturer in Management

Steven J. Spear, PhD
Senior Lecturer in Management

Roger Stein, PhD
Senior Lecturer in Management

Donald Sull, PhD
Senior Lecturer in Management

Tara Swart, PhD
Senior Lecturer in Management

Walter N. Torous, PhD
Senior Lecturer of Urban Studies and Planning

Trond Arne Undheim, PhD
Senior Lecturer in Management

Chintan Vaishnav, PhD
Senior Lecturer in Management

Henry Birdseye Weil, SM
Senior Lecturer in Management

Janet M. G. Wilkinson, MEd
Senior Lecturer in Management

Darcy Winslow, MS
Senior Lecturer in Management

Lecturers

Kirk Arnold, BA
Lecturer in Management

Jim Baum, MEng
Lecturer in Management

David Birnbach, MBA
Lecturer in Management

Dania A. Dialdin, PhD
Lecturer in Management

Daena Giardella, MA
Lecturer in Management
Steve Haraguchi, MEdT, MBA
Lecturer in Management

Virginia Healy-Tangney, MA, MS
Lecturer in Management

Nicolene Hengen, MPH
Lecturer in Management

Dennis Hoffman, MBA
Lecturer in Management

Michellana Y. Jester, EdD
Lecturer in Management

Miroslav W. Kazakoff, MBA
Lecturer in Management

Charlie Kiefer, BS
Lecturer in Management

Paul F. Mende, PhD
Lecturer in Management

Allison Kelly O’Hair, PhD
Lecturer in Management

Tage Rai, PhD
Lecturer in Management

Ben Shields, PhD
Lecturer in Management

Norman Louis Shipley, MBA
Lecturer in Management

John Silberholz, PhD
Lecturer in Management

Andy J. Yap, PhD
Lecturer in Management

Andrey Zarur, PhD
Lecturer in Management

Visiting Lecturers
Irving Wladawsky-Berger, PhD
Visiting Lecturer in Management

Research Staff

Senior Research Scientists
Peter D. Weill, PhD
Senior Research Scientist in Management

Principal Research Associates
Mark Klein, PhD
Principal Research Associate of Management

George Roth, PhD
Principal Research Associate of Management

Alexander M. Samarov, PhD
Principal Research Associate of Management

Principal Research Scientists
Andrew Paul McAfee, DBA
Principal Research Scientist of Management

Ngoc Cuong Nguyen, PhD
Principal Research Scientist of Aeronautics and Astronautics
Principal Research Scientist of Management

Jeanne W. Ross, PhD
Principal Research Scientist of Management

Michael D. Siegel, PhD
Principal Research Scientist of Management

George Westerman, PhD
Principal Research Scientist of Management

Barbara Wixom, PhD
Principal Research Scientist of Management

Research Associates
Lauren Fisher, BS
Research Associate of Management

Susan Krusell, MALD, MBA
Research Associate of Management

Robert Laubacher, PhD
Research Associate of Management

Ina Marie Sebastian, PhD
Research Associate of Management

Deborah Soule, MBA
Research Associate of Management

Research Scientists
Dorothy Curtis, PhD
Research Scientist of Management

Peter A Gloor, PhD
Research Scientist of Management

Harvey G. Michaels, MCP
Research Scientist in Management
Anne Sartori, PhD
Research Scientist of Management

Jayakanth Srinivasan, PhD
Research Scientist of Management

Stephanie L. Woerner, PhD
Research Scientist of Management

Professors Emeriti

Thomas J. Allen, PhD
Howard W. Johnson Professor Emeritus of Management
Professor Emeritus of Organization Studies

Lotte Bailyn, PhD
T. Wilson (1953) Professor Emerita of Management

Jay W. Forrester, DEng
Professor Emeritus of Management and System Dynamics

Arnoldo C. Hax, PhD
Alfred P. Sloan Professor Emeritus of Management
Professor Emeritus of Technological Innovation, Entrepreneurship, and Strategic Management

Henry D. Jacoby, PhD
William F. Pounds Professor Emeritus of Management
Professor of Applied Economics

Gordon M. Kaufman, DBA
Morris A. Adelman Professor Emeritus
Professor Emeritus of Management and Statistics

Donald R. Lessard, PhD
Epoch Foundation Professor Emeritus of International Management
Professor Emeritus of Global Economics and Management

Richard M. Locke, PhD
Class of 1922 Professor Emeritus
Professor Emeritus of Management
Professor Emeritus of Political Science

Robert B. McKersie, PhD
Professor Emeritus of Management

Stewart C. Myers, PhD
Robert C. Merton (1970) Professor Emeritus
Professor Emeritus of Financial Economics and Finance

William F. Pounds, PhD
Professor Emeritus of Management

Edgar H. Schein, PhD
Society of Sloan Fellows Professor Emeritus
Professor Emeritus of Management

Richard Schmalensee, PhD
Howard W. Johnson Professor Emeritus
Professor Emeritus of Management
Professor Emeritus of Economics

Michael S. Scott Morton, PhD
Jay W. Forrester Professor Emeritus of Computer Science

Lester C. Thurow, PhD
Jerome and Dorothy Lemelson Professor Emeritus
Professor Emeritus of Management
Professor Emeritus of Economics

Glen L. Urban, PhD
David Austin Professor Emeritus
Professor Emeritus of Marketing

Ross L. Watts, PhD
Erwin H. Schell Professor Emeritus
Professor Emeritus of Management and Accounting

Alan F. White, PhD
Senior Lecturer Emeritus in Management
The School of Science (http://science.mit.edu) is an amazing enterprise: with approximately 300 faculty members, 1,200 graduate students, 800 undergraduate majors, and comparable numbers of postdoctoral researchers and research staff, the School is large enough to carry out research at the frontiers in every field of science. Our faculty members have won 16 Nobel Prizes and our alumni have won another 16, most of which have been awarded in the past 20 years. The six departments in the School are consistently rated among the best in the world.

The School is a prolific generator of new knowledge. Some members of our community study deep philosophical questions: What is the nature of dark matter and dark energy, which make up 95 percent of the content of our universe? How does our brain, a complex system of interconnected neurons, give rise to our mind—our consciousness and ability to learn? Other faculty members study problems that have obvious practical implications: How does global warming increase the intensity of hurricanes? Can we make adult stem cells capable of generating any cells in the body, replacing cells damaged by disease without using embryos?

However, the deep commitment to education found in the School of Science makes MIT unique among the great research universities. MIT provides each of its undergraduates with an understanding of the basic elements of biology, chemistry, mathematics, and physics, and our Science faculty are devoted to doing this well. Some of our most famous faculty members, even a few with Nobel Prizes, are some of the best teachers of our freshman subjects.

Our science majors are provided with the very best introduction to their chosen field and the opportunity to participate in leading-edge research. Whether our undergraduates choose to start careers in the public or private sector or go on to graduate studies in science or a professional school in an area such as medicine, law, business, or engineering, they will be superbly prepared for their careers after MIT.

Many of our graduate students have pursued distinguished careers in research and education; however, others enjoy equally satisfying careers in business, industry, and government. Combining their PhD degrees in science with medical, law, or business degrees, our graduate students are uniquely capable of making creative contributions to the modern world.

History

Science has been at the core of an MIT education since the Institute’s founding in 1861 by the distinguished natural scientist, William Barton Rogers. The earliest offerings in chemistry, geology, and general science were expanded to include physics, mathematics, and biology, and then consolidated as the School of Science under the leadership of Karl Taylor Compton in 1932. During Compton’s tenure and into the postwar years, the Institute saw vast growth in the physical sciences as federal funding for basic research increased. In 1969, the Geology Department became the Department of Earth and Planetary Sciences, and when it merged with the Department of Meteorology and Physical Oceanography in 1983, it evolved into the present-day Department of Earth, Atmospheric and Planetary Sciences.

As the life sciences attained new prominence in the 1970s and 1980s, the Department of Biology grew with the additions of the Center for Cancer Research (now the Koch Institute for Integrative Cancer Research) and the Whitehead Institute for Biomedical Research. In 1994, the Department of Brain and Cognitive Sciences (BCS) moved from the Whitaker College of Health Sciences and Technology to the School of Science. More recently, BCS was expanded by the creation of the McGovern Institute for Brain Research and the Picower Institute for Learning and Memory, broadening the School-wide resources for research in the neurosciences.

Science Laboratories and Centers

Much of our research in science is carried out in large research laboratories and centers like the Whitehead and Picower institutes, where the kinds of facilities necessary for research are available and collaboration among research groups is encouraged. Laboratories and centers with strong participation by members of the School of Science include:

- Broad Institute of MIT and Harvard (p. 85)
- Center for Global Change Science (p. 87)
- Koch Institute for Integrative Cancer Research (p. 95)
- Laboratory for Nuclear Science (p. 97)
- MIT Kavli Institute for Astrophysics and Space Research (p. 99)
- McGovern Institute for Brain Research (p. 102)
- Picower Institute for Learning and Memory (p. 104)
- Research Laboratory for Electronics (p. 105)
- Simons Center for the Social Brain (p. 106)
- Whitehead Institute for Biomedical Research (p. 109)

Interdepartmental Educational Programs

MIT is exceptional among major research institutions for its dedication to undergraduate education. Committed to providing undergraduates with a strong science base for studies in their major, the School and its departments participate in and support a variety of programs designed to create more active, student-centered learning environments inside the classroom. For instance, the Department of Physics participates in both the d’Arbeloff Interactive Mathematics Project and the Technology-Enabled Active Learning program, which integrate technology into coursework to help students engage with concepts. Likewise, the Undergraduate
Research-Inspired Experimental Chemistry Alternatives curriculum integrates cutting-edge research with core chemistry concepts.

Over the past several years, the School of Science has been working to expand educational and training opportunities for graduate students as well, collaborating with the School of Engineering to create innovative graduate programs in fields in which MIT shows great strength. These programs allow MIT to attract the most talented students in their respective fields and to build cross-disciplinary connections among the Institute’s faculty members, departments, and schools.

- **Biophysics.** Students in the Biophysics program are trained to work at the intersection of the physical sciences, engineering, and the biology of molecules, cells, and systems. Students participate in MIT’s biophysics research, spanning from molecular-level spectroscopy and imaging to cell and population-level systems biology.

- **Microbiology.** With access to a vibrant community of over 50 faculty members across several departments and divisions, Microbiology students receive broad training and in-depth research experience in modern microbial research and engineering.

- **Molecular and Cellular Neuroscience (MCN).** MCN students work at the forefront of molecular and cellular neuroscience research, with access to a distinguished research community as it strives to understand the biological basis of brain function and neurological disease.

Degrees Offered in the School of Science

Biology (Course 7)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Biology</td>
</tr>
<tr>
<td>PhD</td>
<td>Biology</td>
</tr>
<tr>
<td>PhD</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>PhD</td>
<td>Biological Oceanography (jointly offered with WHOI)</td>
</tr>
<tr>
<td>PhD</td>
<td>Biophysical Chemistry and Molecular Structure</td>
</tr>
<tr>
<td>PhD</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>PhD</td>
<td>Computational and Systems Biology</td>
</tr>
<tr>
<td>PhD</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>PhD</td>
<td>Genetics</td>
</tr>
<tr>
<td>PhD</td>
<td>Immunology</td>
</tr>
<tr>
<td>PhD</td>
<td>Microbiology</td>
</tr>
<tr>
<td>PhD</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>PhD</td>
<td>Neurobiology</td>
</tr>
</tbody>
</table>

Chemistry (Course 5)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Chemistry</td>
</tr>
<tr>
<td>PhD</td>
<td>Biological Chemistry</td>
</tr>
<tr>
<td>PhD</td>
<td>Inorganic Chemistry</td>
</tr>
<tr>
<td>PhD</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>PhD</td>
<td>Physical Chemistry</td>
</tr>
</tbody>
</table>

Computational and Systems Biology (CSB)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Computational and Systems Biology</td>
</tr>
</tbody>
</table>

Computer Science and Molecular Biology (Course 6-7)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Computer Science and Molecular Biology</td>
</tr>
<tr>
<td>MEng</td>
<td>Computer Science and Molecular Biology</td>
</tr>
</tbody>
</table>

Earth, Atmospheric, and Planetary Sciences (Course 12)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Earth, Atmospheric, and Planetary Sciences</td>
</tr>
<tr>
<td>SM</td>
<td>Atmospheric Science</td>
</tr>
<tr>
<td>SM</td>
<td>Chemical Oceanography (jointly offered with WHOI)</td>
</tr>
<tr>
<td>SM</td>
<td>Climate Physics and Chemistry</td>
</tr>
<tr>
<td>SM</td>
<td>Earth and Planetary Sciences</td>
</tr>
<tr>
<td>SM</td>
<td>Marine Geology and Geophysics (jointly offered with WHOI)</td>
</tr>
<tr>
<td>SM</td>
<td>Physical Oceanography (jointly offered with WHOI)</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Atmospheric Chemistry</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Atmospheric Science</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Chemical Oceanography (jointly offered with WHOI)</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Climate Physics and Chemistry</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Geochemistry</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Geology</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Geophysics</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Marine Geology and Geophysics (jointly offered with WHOI)</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Physical Oceanography (jointly offered with WHOI)</td>
</tr>
<tr>
<td>PhD, ScD</td>
<td>Planetary Sciences</td>
</tr>
</tbody>
</table>

Mathematics (Course 18)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Mathematics</td>
</tr>
<tr>
<td>SB</td>
<td>Mathematics with Computer Science</td>
</tr>
<tr>
<td>PhD</td>
<td>Mathematics</td>
</tr>
</tbody>
</table>

Microbiology

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>Microbiology</td>
</tr>
</tbody>
</table>

Physics (Course 8)

<table>
<thead>
<tr>
<th>Degree</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Physics</td>
</tr>
<tr>
<td>SM</td>
<td>Physics</td>
</tr>
<tr>
<td>PhD</td>
<td>Physics</td>
</tr>
</tbody>
</table>
Notes

Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.

Several departments also offer undesignated degrees, which lead to the Bachelor of Science without departmental designation. The curricula for these programs offer students opportunities to pursue broader programs of study than can be accommodated within a four-year departmental program.

See Interdisciplinary Programs (p. 327).

Admissions

The selection process at MIT is holistic and student centered: each application is evaluated within its unique context. Selection is based on outstanding academic achievement as well as a strong match between the applicant and the Institute.

Undergraduate applicants do not apply to a particular school, department or program and, although the application asks about a preferred field of study, most admitted undergraduates do not declare a major until the second semester of their freshman year. Admissions information for regular, transfer, and non-degree applicants is provided in the section on Undergraduate Education (p. 30).

Applicants for graduate study apply directly to the particular department or program of interest. See the individual department and program descriptions for specific requirements.

Office of the Dean

Michael Sipser, PhD
Barton L. Weller (1940) Professor
Professor of Mathematics
Dean, School of Science

Elizabeth Chadis, BA
Assistant Dean for Development

James White, MS, CPA, CMA
Assistant Dean for Finance

Heather G. Williams, MA, SPHR
Assistant Dean for Administration
DEPARTMENT OF BIOLOGY

The Department of Biology (https://biology.mit.edu) offers undergraduate, graduate, and postdoctoral training in basic biology, and in a variety of biological fields of specialization. The quantitative aspects of biology, including molecular biology, biochemistry, genetics, and cell biology, represent the core of the program. Students in the department are encouraged to acquire a solid background in the physical sciences not only to master the applications of mathematics, physics, and chemistry to biology, but also to develop an integrated scientific perspective. The various programs, which emphasize practical experimentation, combine a minimum of formal laboratory exercises with ample opportunities for research work both in project-oriented laboratory subjects and in the department's research laboratories. Students at all levels are encouraged to acquire familiarity with advanced research techniques and to participate in seminar activities.

Undergraduate Study

Bachelor of Science in Biology (Course 7)
The curriculum leading to the Bachelor of Science in Biology (p. 430) is designed to prepare students for a professional career in the area of the biological sciences. Graduates of this program are well prepared for positions in industrial or research institutes. However, experience has shown that many graduates choose to continue their education at a graduate school in order to obtain a PhD in an area such as biochemistry, microbiology, genetics, biophysics, cell biology, or physiology, followed by research or teaching in one of those areas. The undergraduate curriculum is also excellent preparation for students who wish to continue their education toward an MD, particularly if their career plans include laboratory investigations bearing on human disease.

Bachelor of Science in Biology (Course 7-A)
Course 7-A (p. 432) is designed for students who wish to obtain a background in biology as preparation for careers without laboratory research. Course 7-A has the same core requirements as Course 7, but does not require a 30-unit laboratory subject within its Restricted Electives.

Students are encouraged to use their elective subjects for more advanced subjects in their field and for additional study in basic and advanced subjects offered in various departments.

Bachelor of Science in Computer Science and Molecular Biology (Course 6-7)
The Department of Biology jointly offers a Bachelor of Science in Computer Science and Molecular Biology (p. 328) with the Department of Electrical Engineering and Computer Science. A detailed description of the requirements for this degree program can be found in the section on Interdisciplinary Programs (p. 327).

Minor in Biology
The department offers a Minor in Biology; the requirements are as follows:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12</td>
<td>Organic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>7.03</td>
<td>Genetics</td>
<td>12</td>
</tr>
<tr>
<td>7.05</td>
<td>General Biochemistry</td>
<td>12</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>7.02[J]</td>
<td>Introduction to Experimental Biology and Communication</td>
<td></td>
</tr>
<tr>
<td>or 20.109</td>
<td>Laboratory Fundamentals in Biological Engineering</td>
<td></td>
</tr>
<tr>
<td>7.06</td>
<td>Cell Biology</td>
<td></td>
</tr>
<tr>
<td>7.08[J]</td>
<td>Biological Chemistry II</td>
<td></td>
</tr>
<tr>
<td>7.09</td>
<td>Quantitative and Computational Biology</td>
<td></td>
</tr>
<tr>
<td>7.20[J]</td>
<td>Human Physiology</td>
<td></td>
</tr>
<tr>
<td>7.21</td>
<td>Microbial Physiology</td>
<td></td>
</tr>
<tr>
<td>7.22</td>
<td>Development and Evolution</td>
<td></td>
</tr>
<tr>
<td>7.23</td>
<td>Immunology</td>
<td></td>
</tr>
<tr>
<td>7.26</td>
<td>Molecular Basis of Infectious Disease</td>
<td></td>
</tr>
<tr>
<td>7.27</td>
<td>Principles of Human Disease</td>
<td></td>
</tr>
<tr>
<td>7.28</td>
<td>Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>7.29[J]</td>
<td>Cellular and Molecular Neurobiology</td>
<td></td>
</tr>
<tr>
<td>7.31</td>
<td>Current Topics in Mammalian Biology: Medical Implications</td>
<td></td>
</tr>
<tr>
<td>7.32</td>
<td>Systems Biology</td>
<td></td>
</tr>
<tr>
<td>7.33[I]</td>
<td>Evolutionary Biology: Concepts, Models and Computation</td>
<td></td>
</tr>
<tr>
<td>7.36[I]</td>
<td>Foundations of Computational and Systems Biology</td>
<td></td>
</tr>
<tr>
<td>7.37[I]</td>
<td>Molecular and Engineering Aspects of Biotechnology</td>
<td></td>
</tr>
<tr>
<td>or 7.371</td>
<td>Biological and Engineering Principles Underlying Novel Biotherapeutics</td>
<td></td>
</tr>
<tr>
<td>7.38</td>
<td>Forces in Cell Biology and Development</td>
<td></td>
</tr>
<tr>
<td>7.41</td>
<td>Principles of Chemical Biology</td>
<td></td>
</tr>
<tr>
<td>7.45</td>
<td>The Hallmarks of Cancer</td>
<td></td>
</tr>
<tr>
<td>7.49[I]</td>
<td>Developmental Neurobiology</td>
<td></td>
</tr>
</tbody>
</table>

Total Units 60

For a general description of the minor program, see Undergraduate Education (p. 34).
Inquiries
Additional information regarding undergraduate academic programs and research opportunities may be obtained from the Biology Education Office (undergradbio@mit.edu), Room 68-120, 617-253-4718.

Graduate Study
The Department of Biology offers graduate work leading to the Doctor of Philosophy. Study may be pursued in the following fields of specialization.

Biochemistry is the study of enzyme catalysis, and the chemical properties of proteins, carbohydrates, complex lipids, nucleic acids, and protein-nucleic acid complexes. Methods of analysis include gene cloning, the use of genetic variants, synthetic substrates, and transition state analogs. Specific areas of study include the chemistry of oncogenes, mechanism of RNA splicing, analysis of cytoskeletal proteins, chemistry of blood coagulation, mechanism of ion pumps and photoreceptors, and the role of complex carbohydrates in cell surface function and protein compartmentalization.

Biophysical chemistry and molecular structure focuses on studies of the principles that underlie the folding, stability, molecular design, and assembly of proteins and nucleic acids. Analysis of molecular structure includes X-ray crystallography and nuclear magnetic resonance. Specific areas of concentration include the study of genetic strategies for enhancing the stability, ligand affinity, and catalytic efficiency of proteins and enzymes; pathways of protein folding; protein-nucleic acid recognition; and antigen-antibody interactions. Studies of more complex systems include the control of viral and cytoskeletal assembly.

Cell biology refers to molecular biological, genetic, and cell biological analysis of eukaryotic cells. The specific areas of research include the organization, expression, and regulation of eukaryotic genomes; structure and function of membranes and cytoskeletons; molecular basis of cellular structure, organization, proliferation, and movement; differentiation and functions of specialized cell types; and the molecular basis of various diseases.

Chemistry/Biology interface research area pervades the fields of biomedicine, cell and developmental biology, bioimaging, structural biology, enzymology, and synthetic biology. These areas of investigation are well represented at MIT, where a common theme is the application of rigorous physical and chemical methods to the molecular dissection of biological pathways, reactions, and circuitry. The Chemistry/Biology Interface program at MIT provides a training mechanism that maintains academic depth within the core areas of chemistry, physics, biology, and engineering, but also provides disciplinary breadth. The Chemistry/Biology Interface is designed to bring together faculty and students from the Departments of Chemistry, Biology, and Biological Engineering, spanning the Schools of Science and Engineering.

Computational and systems biology is a recent area of emphasis in the department offered jointly with the Department of Electrical Engineering and Computer Science and the Division of Biological Engineering as part of the Computational and Systems Biology Initiative (CSBi). Computational and systems biology combines biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis of complex biological phenomena. Equal emphasis is placed on computational and experimental research and on molecular and systematic views of biological function. One major role of CSBi research is to develop methods and devices that can measure, in a systematic and precise manner, the biochemical properties of large numbers of biomolecules in cells, tissues, and whole organisms. A second major CSBi goal is to build mathematical models of biological systems that link mechanistic understanding of molecular function to systems-wide knowledge of networks and interactions. Like models in mature engineering disciplines, CSBi models will capture empirical knowledge as it accumulates and will have the ability to predict experimental outcomes.

Developmental biology refers to the cellular, genetic, and molecular mechanisms responsible for generating the diversity of cell types that arise during development, and controlling the ways in which cells interact to produce organ systems and whole organisms. These problems are studied using vertebrates, invertebrates, and plants. Specific topics of interest include the regulation of gene expression, cell interactions, cell lineages, cell migrations, sex determination, stem cells, and cloning.

Genetics/microbiology includes genetic analyses of fundamental problems in bacteria, bacteriophages, viruses, and yeast. Areas of specific interest include protein secretion, DNA transposition, protein turnover, DNA synthesis and repair, mechanisms of genetic recombination, and electron transport in mitochondria. More complex problems under study are cellular responses to stress, plant-bacterial interactions, high resolution structure-function studies of proteins and RNAs, and the control circuits regulating gene expression. A new area of study is the application of high resolution molecular techniques to problems in human genetics.

Immunology is the study of the genetic, cellular, and molecular mechanisms underlying the exquisite sensitivity and specificity of the immune system. The immunology group studies the chemistry of antigen-antibody and antigen-T cell receptor interactions, using the tools of molecular biology as well as classical immunological approaches. Of particular interest is the role of idiotypic and cellular interactions in the regulation of the immune system as studied by organ culture, hybridoma technology, and the behavior of transgenic mice.

Neurobiology is an area of recent emphasis in the department. The subject in general neurobiology is supplemented by a seminar
series and an interlaboratory journal club. Students admitted to the Biology graduate program can join the Molecular and Cellular Neurosciences Program, offering access to participating faculty and neuroscience coursework across campus. The emphasis is on neuronal development, synaptic plasticity, and neurological and psychiatric disease, primarily using cell-biological, electrophysiological, imaging, and genetic approaches. Current areas of research interest include the molecular determinants of neuronal diversity and shape; the formation and function of synapses and neural networks; and the genetic and molecular determinants of memory storage, sensory transduction, and neuropsychiatric disease.

Admission Requirements for Graduate Study

In the Department of Biology, the Master of Science is not a prerequisite for a program of study leading to the doctorate. The department modifies the General Institute Requirements for admission to graduate study as follows: 18.01 Calculus, 18.02 Calculus; one year of college physics; 5.12 Organic Chemistry I; professional subjects including general biochemistry, genetics, and physical chemistry. However, students may make up some deficiencies over the course of their graduate work.

Doctor of Philosophy

The General Degree Requirements for the Doctor of Philosophy are listed under Graduate Education (p. 59). In the departmental program, each graduate student is expected to acquire a solid background in four fundamental areas of biology: biochemistry, genetics, cell biology, and molecular biology. Most students take subjects in these areas during the first year. All students are required to take three subjects:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.50</td>
<td>Method and Logic in Molecular Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.51</td>
<td>Principles of Biochemical Analysis</td>
<td>12</td>
</tr>
<tr>
<td>7.52</td>
<td>Genetics for Graduate Students</td>
<td>12</td>
</tr>
</tbody>
</table>

7.50 is a seminar designed specifically to introduce graduate students to in-depth discussion and analysis of topics in molecular biology.

Students have a choice of several elective subjects, which have been designed for the entering graduate student. One of the elective subjects must focus on computational and quantitative approaches to biology. Typically students choose among the following three subjects:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.57</td>
<td>Quantitative Biology for Graduate Students</td>
<td>12</td>
</tr>
<tr>
<td>7.81[J]</td>
<td>Systems Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.91[J]</td>
<td>Foundations of Computational and Systems Biology</td>
<td>12</td>
</tr>
</tbody>
</table>

In addition to providing a strong formal background in biology, the first-year program serves to familiarize the students with faculty and students in all parts of the department.

Interdisciplinary Programs

Joint Program with the Woods Hole Oceanographic Institution

The Joint Program with the Woods Hole Oceanographic Institution (WHOI) (http://mit.whoi.edu) is intended for students whose primary career objective is oceanography or oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in their home department. The program is described in more detail under Interdisciplinary Graduate Programs (p. 354).

Master of Engineering in Computer Science and Molecular Biology (Course 6–7P)

The Department of Electrical Engineering and Computer Science jointly offers a Master of Engineering in Computer Science and Molecular Biology (p. 353) with the Department of Biology (Course 7). A detailed description of the list of requirements for this degree program may be found under Interdisciplinary Graduate Programs.

Financial Support

Students who are accepted into the graduate program are provided with support from departmental training grants, departmental funds for teaching assistants, and research grants. In addition, some students bring National Science Foundation and other competitive fellowships. Through these sources, full tuition plus a stipend for living expenses are provided.

Students are encouraged to apply for outside fellowships for which they are eligible, such as the NSF Fellowships. Information regarding graduate student fellowships is available at most colleges from the career planning office.

Inquiries

Additional information regarding graduate academic programs, research activities, admissions, financial aid, and assistantships may be obtained from the Biology Education Office (gradbio@mit.edu), Room 68-120, 617-253-3717.
Faculty and Teaching Staff

Professors
Angelika B. Amon, PhD
Kathleen and Curtis (1963) Marble Professor of Cancer Research
Professor of Biology

Tania Baker, PhD
E.C. Whitehead Professor
Professor of Biology

David Bartel, PhD
Professor of Biology

Stephen P. Bell, PhD
Professor of Biology

Christopher B. Burge, PhD
Professor of Biology
Professor of Biological Engineering

Jianzhu Chen, PhD

Ivan R. Cottrell Professor of Immunology
Professor of Biology

Sallie W. Chisholm, PhD
Institute Professor
Professor of Civil and Environmental Engineering
Professor of Biology

Martha Constantine-Paton, PhD
Professor of Neuroscience
Professor of Biology

Catherine L. Drennan, PhD
Professor of Biology
Professor of Chemistry

Gerald R. Fink, PhD
Professor of Biology

David E. Housman, PhD
Virginia and Daniel K. Ludwig Professor for Cancer Research
Member, Health Sciences and Technology Faculty

Richard O. Hynes, PhD
Daniel K. Ludwig Professor for Cancer Research

Barbara Imperiali, PhD
Class of 1922 Professor
Professor of Biology
Professor of Chemistry

Tyler E. Jacks, PhD
David H. Koch Professor
Professor of Biology

Rudolf Jaenisch, MD
Professor of Biology

Chris Kaiser, PhD
Amgen Professor
Professor of Biology

Amy E. Keating, PhD
Professor of Biology
Professor of Biological Engineering

Jonathan Alan King, PhD
Professor of Molecular Biology

Monty Krieger, PhD
Whitehead Professor
Professor of Biology

Eric S. Lander, PhD
Professor of Biology

Douglas A. Lauffenburger, PhD
Ford Foundation Professor of Engineering
Professor of Biological Engineering
Professor of Chemical Engineering
Professor of Biology
Head, Department of Biological Engineering

Jacqueline Lees, PhD
Virginia and Daniel K. Ludwig Professor for Cancer Research
Professor of Biology

Susan Lindquist, PhD
Professor of Biology

J. Troy Littleton, MD, PhD
Professor of Biology
Professor of Brain and Cognitive Sciences

Harvey F. Lodish, PhD
Professor of Biology
Professor of Biological Engineering
Elly Nedivi, PhD
Professor of Neuroscience
Professor of Biology

Terry L. Orr-Weaver, PhD
Professor of Biology

David C. Page, MD
Professor of Biology
Member, Health Sciences and Technology Faculty

Hidde Ploegh, PhD
Professor of Biology

Uttam L. RajBhandary, PhD
Lester Wolfe Professor in Molecular Biology

Aviv Regev, PhD
Professor of Biology

David M. Sabatini, MD, PhD
Professor of Biology

Leona D. Samson, PhD
Uncas (1923) and Helen Whitaker Professor
Professor of Toxicology and Biological Engineering
Professor of Biology

Robert T. Sauer, PhD
Salvador E. Luria Professor
Professor of Biology

Thomas Schwartz, PhD
Professor of Biology

Phillip A. Sharp, PhD
Institute Professor
Professor of Biology
Member, Health Sciences and Technology Faculty

Anthony J. Sinskey, ScD
Professor of Biology

Hazel L. Sive, PhD
Professor of Biology

Frank Solomon, PhD
Professor of Biology

Lisa A. Steiner, MD
Professor of Immunology

JoAnne Stubbe, PhD
Novartis Professor of Chemistry
Professor of Biology

Susumu Tonegawa, PhD
Picower Professor
Professor of Biology
Professor of Neuroscience

Graham C. Walker, PhD
Professor of Biology

Robert A. Weinberg, PhD
Daniel K. Ludwig Professor for Cancer Research

Matthew A. Wilson, PhD
Sherman Fairchild Professor
Professor of Neuroscience
Professor of Biology

Michael B. Yaffe, MD, PhD
David H. Koch Professor in Science
Professor of Biology
Professor of Biological Engineering

Richard A. Young, PhD
Professor of Biology

Associate Professors
Laurie Boyer, PhD
Associate Professor of Biology

Iain Cheeseman, PhD
Associate Professor of Biology

Wendy Gilbert, PhD
Associate Professor of Biology

Michael Hemann, PhD
Associate Professor of Biology

Dennis H. Kim, MD, PhD
Associate Professor of Biology

Michael T. Laub, PhD
Associate Professor of Biology

Peter Reddien, PhD
Associate Professor of Biology

Matthew G. Vander Heiden, MD, PhD
Eisen and Chang Career Development Professor
Associate Professor of Biology

Assistant Professors
Mary Gehring, PhD
Assistant Professor of Biology

Piyush Gupta
Howard S. (1953) and Linda B. Stern Career Development Professor
Assistant Professor of Biology
Gene-Wei Li, PhD
Assistant Professor of Biology

Adam C. Martin, PhD
Assistant Professor of Biology

Jing-Ke Weng, PhD
Thomas D. and Virginia W. Cabot Professor
Assistant Professor of Biology

Omer Yilmaz, PhD
Assistant Professor of Biology

Professors of the Practice
Edward Mark Scolnick, MD
Professor of the Practice of Biology

Visiting Associate Professors
Jacquelyn Taylor
Martin Luther King, Jr. Visiting Associate Professor

Lecturers
Mandana Sassanfar, PhD
Lecturer in Biology
Instructor in Brain and Cognitive Sciences

Instructors
Stuart S. Levine, PhD
Instructor of Biology

Technical Instructors
Vanessa J. Cheung, PhD
Technical Instructor of Biology

Anthony Fuccione, BS
Technical Instructor of Biology

Entela Nako, PhD
Technical Instructor of Biology

Diviya Sinha, PhD
Technical Instructor of Biology

Mary Ellen Wiltrout, PhD
Technical Instructor of Biology

Ayce Yesilaltay, PhD
Technical Instructor of Biology

Research Staff

Research Scientists
Vincent Butty, MD, PhD
Research Scientist of Biology

Angeliki Chalkiadaki, PhD
Research Scientist of Biology

Sanjay Victor D'Souza, PhD
Research Scientist of Biology

Huiming Ding, PhD
Research Scientist of Biology

Raissa Eluere, PhD
Research Scientist of Biology

Daniel Gold, PhD
Research Scientist of Biology

Robert A. Grant, PhD
Research Scientist of Biology

Cameron A. Haase-Pettingell, MS
Research Scientist of Biology

Branwen M. Hall, PhD
Research Scientist of Biology

Noriko Kobayashi, PhD
Research Scientist of Biology

Caroline Koehrer, PhD
Research Scientist of Biology

Vera V. Koledova, PhD
Research Scientist of Biology

Shmulik Motola, PhD
Research Scientist of Biology

Adrián O. Olivares, PhD
Research Scientist of Biology

Nicolas Paquin, PhD
Research Scientist of Biology

Jon Penterman, PhD
Research Scientist of Biology

John Westlake Quimby, PhD
Research Scientist of Biology

Christian Rueckert, PhD
Research Scientist of Biology

T. G. Sambandan, PhD
Research Scientist of Biology

Janet L. Smith, PhD
Research Scientist of Biology

Vidya Subramanian, PhD
Research Scientist of Biology
Mohan Viswanathan, PhD
Research Scientist of Biology

Robert Paul Weinberg, PhD
Research Scientist of Biology

Eric O. Williams, PhD
Research Scientist of Biology

Jie Wu, PhD
Research Scientist of Biology

Professors Emeriti

David Baltimore, PhD
Professor Emeritus of Biology

Gene M. Brown, PhD
Professor Emeritus of Biochemistry

Arnold L. Demain, PhD
Professor Emeritus of Industrial Microbiology

Maurice S. Fox, PhD
Professor Emeritus of Molecular Biology

Malcolm L. Gefter, PhD
Professor Emeritus of Biochemistry

Nancy Haven Hopkins, PhD
Amgen Professor Emerita
Professor Emerita of Biology

Irving M. London, PhD
Grover M. Hermann Professor Emeritus
Professor Emeritus of Health Sciences and Technology
Professor Emeritus of Biology and Medicine

Mary-Lou Pardue, PhD
Boris Magasanik Professor Emerita
Professor Emerita of Biology

Sheldon Penman, PhD
Professor Emeritus of Cell Biology

William G. Quinn, PhD
Professor Emeritus of Neurobiology
Professor Emeritus of Biology

Phillips W. Robbins, PhD
Professor Emeritus of Biochemistry

Robert Daniel Rosenberg, MD, PhD
Professor Emeritus of Biology

Paul R. Schimmel, PhD
John D. MacArthur Professor Emeritus
Professor Emeritus of Biochemistry and Biophysics
DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES

The study of mind, brain, and behavior has grown in recent years with unprecedented speed. New avenues of approach, opened by developments in the biological and computer sciences, raise the hope that human beings, who have achieved considerable mastery over the world around them, may also come closer to an understanding of themselves. The goal of the Department of Brain and Cognitive Sciences is to answer fundamental questions concerning intelligent processes and brain organization. To this end, the department focuses on four themes: molecular and cellular neuroscience, systems neuroscience, cognitive science, and computation. Several members of the department's faculty are affiliated with two major research centers: the Picower Institute for Learning and Memory and the McGovern Institute for Brain Research.

Research in cellular neuroscience deals with the biology of neurons, emphasizing the special properties of these cells as encoders, transmitters, and processors of information. Departmental researchers apply techniques of contemporary molecular and cellular biology to problems of neuronal development, structure, and function, resulting in a new understanding of the underlying basic components of the nervous system and their interactions. These studies have profound clinical implications, in part by generating a framework for the treatment of neurological and psychiatric disorders. Primary areas of interest include the development and plasticity of neuronal morphology and connectivity, the cellular and molecular bases of behavior in simple neuronal circuits, neurochemistry, and cellular physiology.

In the area of systems neuroscience, departmental investigators use a number of new approaches ranging from computation through electrophysiology to biophysics. Of major interest are the visual and motor systems where the scientific goals are to understand transduction and encoding of sensory stimuli into nerve messages, organization and development of sensorimotor systems, processing of sensorimotor information, and the sensorimotor performance of organisms. Also of major interest is neuromodulatory regulation, where the scientific goal is to understand the effects of rewarding or stressful environments on brain circuits.

In computation and cognitive science, particularly strong interactions exist between the Department of Brain and Cognitive Sciences, the Computer Science and Artificial Intelligence Laboratory, and the Center for Biological and Computational Learning, providing new intellectual approaches in areas including vision and motor control, and biological and computer learning. Computational theories are developed and tested within the framework of neurophysiological, psychological, and other experimental approaches. In the study of vision and motor control, complementary experimental work includes single-cell and multiple-cell neurophysiological recording as well as functional brain imaging. In the area of learning, which is seen as central to intelligent behavior, departmental researchers are working to develop theories of vision, motor control, neural circuitry, and language within an experimental framework.

In cognitive science, human experimentation is combined with formal and computational analyses to understand complex intelligent processes such as language, reasoning, memory, and visual information processing. There are applications in the fields of education, artificial intelligence, human-machine interaction, and in the treatment of language, cognitive, and other disorders.

Subfields in cognitive science include psycholinguistics, comprising sentence and word processing, language acquisition, and aphasia; visual cognition, including reading, imagery, attention, and perception of complex patterns such as faces, objects, and scenes; spatial cognition; memory; and the nature and development of concepts. Another key field is the study of perception—developmental and processing approaches focus on human and machine vision, and how visual images are encoded, stored, and retrieved, with current topics that include motion analysis, stereopsis, perceptual organization, and perceptual similarity. Other research includes functional brain imaging in normal subjects as well as studies of neurologically impaired patients in an attempt to understand brain mechanisms underlying normal human sensation, perception, cognition, action, and affect.

Undergraduate Study

Bachelor of Science in Brain and Cognitive Sciences (Course 9)

Brain science and cognitive science are complementary and interactive in their research objectives. Both approaches examine perception, performance, and intervening processes in humans and animals. Central issues in the discipline include the interpretation of sensory experience; the reception, manipulation, storage, and retrieval of information within the nervous system; and the planning and execution of motor activity. Higher level functions include the development of formal and informal reasoning skills; and the structure, acquisition, use, and internal representation of human language.

The Bachelor of Science in Brain and Cognitive Sciences (p. 434) prepares students to pursue advanced degrees or careers in neuroscience, medicine, cognitive science, psychology, linguistics, philosophy, or aspects of artificial intelligence (particularly those aspects concerned with vision) as well as for further work in the area of efficient human-machine interaction.

Methods of inquiry in the brain and cognitive sciences are drawn from molecular, cellular, and systems neuroscience; cognitive and perceptual psychology; computer science and artificial intelligence; linguistics; philosophy of language and mind; and mathematics. The undergraduate program is designed to provide instruction in the relevant aspects of these various disciplines. The program is administered by an Undergraduate Officer and an Undergraduate
Administrator, consulting as necessary with faculty members from these disciplines who also serve as advisors to majors, helping them select a coherent set of subjects from within the requirements, including a research requirement. Members of the faculty are available to guide the research.

The Brain and Cognitive Sciences (BCS) major incorporates programming and computational skills to meet the increasing demands for those skills in both graduate school and the workforce. The major offers a tiered system of subjects with enough flexibility to allow multiple avenues through the Brain and Cognitive Sciences curriculum, meeting the divergent goals of BCS students. Individual guidance regarding career goals is available from faculty and the Global Education and Career Development Office.

Minor in Brain and Cognitive Sciences

The Minor in Brain and Cognitive Sciences consists of six subjects arranged in two levels of study, intended to provide students breadth in the field as a whole and some depth in an area of specialization.

Core Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 Introduction to Psychological Science</td>
<td>12</td>
</tr>
<tr>
<td>9.01 Introduction to Neuroscience</td>
<td>12</td>
</tr>
<tr>
<td>9.40 Introduction to Neural Computation</td>
<td>12</td>
</tr>
</tbody>
</table>

Specialized Subjects

Select any combination of three subjects from Tier 2 and/or Tier 3 of the undergraduate degree program: 36

Tier 2 Subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.04 Sensory Systems</td>
<td></td>
</tr>
<tr>
<td>9.07 Statistics for Brain and Cognitive Science</td>
<td></td>
</tr>
<tr>
<td>9.09[J] Cellular and Molecular Neurobiology</td>
<td></td>
</tr>
<tr>
<td>9.10 Cognitive Neuroscience</td>
<td></td>
</tr>
<tr>
<td>9.14 Brain Structure and its Origins</td>
<td></td>
</tr>
<tr>
<td>9.15 Neural Circuits, Neuromodulatory, and Neuroendocrine Systems</td>
<td></td>
</tr>
<tr>
<td>9.16 Cellular Neurophysiology</td>
<td></td>
</tr>
<tr>
<td>9.18[J] Developmental Neurobiology</td>
<td></td>
</tr>
<tr>
<td>9.20 Animal Behavior</td>
<td></td>
</tr>
<tr>
<td>9.31 Neurophysiology of Learning and Memory</td>
<td></td>
</tr>
<tr>
<td>9.35 Perceptual Systems</td>
<td></td>
</tr>
<tr>
<td>9.54 Computational Aspects of Biological Learning</td>
<td></td>
</tr>
<tr>
<td>9.65 Cognitive Processes</td>
<td></td>
</tr>
<tr>
<td>9.85 Infant and Early Childhood Cognition</td>
<td></td>
</tr>
</tbody>
</table>

Tier 3 Subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.24 Disorders and Diseases of the Nervous System</td>
<td></td>
</tr>
<tr>
<td>9.26[J] Principles and Applications of Genetic Engineering for Biotechnology and Neuroscience</td>
<td></td>
</tr>
<tr>
<td>9.28 Current Topics in Developmental Neurobiology</td>
<td></td>
</tr>
<tr>
<td>9.46 Neuroscience of Morality</td>
<td></td>
</tr>
<tr>
<td>9.56[J] Abnormal Language</td>
<td></td>
</tr>
<tr>
<td>9.71 Functional MRI Investigations of the Human Brain</td>
<td></td>
</tr>
<tr>
<td>9.77 Computational Perception</td>
<td></td>
</tr>
<tr>
<td>24.904 Language Acquisition</td>
<td></td>
</tr>
</tbody>
</table>

Total Units: 72

Graduate Study

The Department of Brain and Cognitive Sciences offers programs of study leading to the doctoral degree in neuroscience or cognitive science. Areas of research specialization include cellular and molecular neuroscience, systems neuroscience, computation, and cognitive science. The graduate programs are designed to prepare participants to teach and do original research.

Doctor of Philosophy

The departmental PhD program can normally be completed with four to six years of full-time work, including summers. Institute requirements for the PhD are given in the section on General Degree Requirements (p. 59). Formal coursework, described below, is intended to prepare the student to pass the general examinations and do original thesis research. The written general examinations will be due in August of the second year.

All students start with a first-term intensive core subject that provides an introduction to brain and behavioral studies from the viewpoint of systems neuroscience. In the fall and/or spring term, students may choose between two core subjects: a two-term core subject covering molecular and cellular neuroscience or a one-term core subject covering cognitive science. Incoming graduate students are encouraged to take all three within the first two years of study. Further coursework will be diversified to give each individual the appropriate background for research in his or her own area.

Coursework in cellular and molecular neuroscience emphasizes the current genetic, molecular, and cellular approaches to biological systems that are necessary to generate advances in neuroscience.

Training in systems neuroscience covers neuroanatomy, neurophysiology, and neurotransmitter chemistry, concentrating on the major sensory and motor systems in the vertebrate brain. Specific ties to molecular neurobiology or computation may be emphasized, depending upon the research interests of the student.
Coursework for students in computation is intended to give both an understanding of empirical approaches to the study of the vertebrate brain and animal behavior and a theoretical background for analyzing computational aspects of biological information processing.

Candidates studying cognitive science take coursework covering such topics as language processing, language acquisition, cognitive development, natural computation, neural networks, connectionist models, and visual information processing. Students also choose seminars and coursework in linguistics, philosophy, logic, mathematics, or computer science, depending on the individual student’s research program.

Graduate students begin a research apprenticeship immediately upon arrival with lab rotations in the first year, after which time advisor assignments are made based upon a match of interests. These assignments may change as a student’s goals become more focused. At the end of the first year, an advisory committee of two to four faculty members is formed. This committee monitors progress and, with membership changing as necessary, evolves into the thesis committee. Thesis research normally requires 24–36 months of full-time activity after the qualifying examinations have been passed. It is expected that the research embodied in the PhD dissertation be original and significant work, publishable in scientific journals.

Financial Support
Financial assistance is provided to qualified applicants in the form of traineeships, research assistantships, teaching assistantships, and a limited number of fellowships, subject to availability of funds. Prospective students are encouraged to apply for individual fellowships such as those sponsored by the National Science Foundation and the National Defense Science and Engineering Graduate Fellowship Program to cover all or part of the cost of their education. The department’s financial resources for non-US citizens are limited; international students are strongly encouraged to seek financial assistance for all or part of the cost of their education from non-MIT sources.

Inquiries
For additional information regarding teaching and research programs, contact the Academic Administrator, Department of Brain and Cognitive Sciences, Room 46-2005, 617-253-5741, or visit the department’s website (http://web.mit.edu/bcs).

Faculty and Teaching Staff

Professors
Edward H. Adelson, PhD
John and Dorothy Wilson Professor of Biochemistry
Professor of Vision Science

Mark Bear, PhD
Picower Professor
Professor of Neuroscience

Robert C. Berwick, PhD
Professor of Computer Science and Engineering
Professor of Computational Linguistics
Member, Institute for Data, Systems, and Society

Emilio Bizzi, MD, PhD
Institute Professor
Professor of Brain and Cognitive Sciences

Emery N. Brown, MD, PhD
Edward Hood Taplin Professor of Medical Engineering
Professor of Computational Neuroscience
Member, Institute for Data, Systems, and Society
Core Faculty, Institute for Medical Engineering and Science

Warren M. Zapol Professor of Anaesthesia, MGH
Co-Director, Health Sciences and Technology Program

Martha Constantine-Paton, PhD
Professor of Neuroscience
Professor of Biology

Robert Desimone, PhD
Doris and Don Berkey Professor
Professor of Neuroscience

James DiCarlo, MD, PhD
Head, Department of Brain and Cognitive Sciences
Professor of Neuroscience

Michale S. Fee, PhD
Glen V. (1946) and Phyllis F. Dorflinger Professor
Professor of Neuroscience

Guoping Feng, PhD
James W. (1963) and Patricia T. Poitras Professor
Professor of Neuroscience

John D. E. Gabrieli, PhD
Grover M. Hermann Professor
Professor of Cognitive Neuroscience
Core Faculty, Institute for Medical Engineering and Science

Edward A. Gibson, PhD
Professor of Cognitive Science

Ann M. Graybiel, PhD
Institute Professor
Professor of Brain and Cognitive Sciences

Susan Hockfield, PhD
President Emerita
Professor of Neuroscience
Neville Hogan, PhD
Sun Jae Professor in Mechanical Engineering
Professor of Brain and Cognitive Sciences

Alan P. Jasanoff, PhD
Professor of Biological Engineering
Professor of Nuclear Science and Engineering
Professor of Brain and Cognitive Sciences

Nancy Kanwisher, PhD
Walter A. Rosenblith Professor
Professor of Cognitive Neuroscience

J. Troy Littleton, MD, PhD
Professor of Biology
Professor of Brain and Cognitive Sciences

Earl K. Miller, PhD
Picower Professor
Professor of Neuroscience

Elly Nedivi, PhD
Professor of Neuroscience
Professor of Biology

Tomaso A. Poggio, ScD
Eugene McDermott Professor in the Brain Sciences and Human Behavior

Drazen Prelec, PhD
Digital Equipment Corp. Leaders for Global Operations Professor of Management
Professor of Marketing and Management Science
Professor of Economics
Professor of Brain and Cognitive Sciences

Rebecca R. Saxe, PhD
Professor of Cognitive Science

Gerald Edward Schneider, PhD
Professor of Neuroscience

Pawan Sinha, PhD
Professor of Vision and Computational Neuroscience

Jean-Jacques E. Slotine, PhD
Professor of Mechanical Engineering
Professor of Information Sciences

Mriganka Sur, PhD
Paul E. (1965) and Lilah Newton Professor
Professor of Neuroscience

Joshua B. Tenenbaum, PhD
Professor of Cognitive Science and Computation

Susumu Tonegawa, PhD
Picower Professor
Professor of Biology
Professor of Neuroscience

Li-Huei Tsai, PhD
Picower Professor
Professor of Neuroscience

Kenneth Wexler, PhD
Professor of Psychology
Professor of Linguistics
(On leave)

Matthew A. Wilson, PhD
Sherman Fairchild Professor
Professor of Neuroscience
Professor of Biology

Associate Professors

Edward S. Boyden III, PhD
Associate Professor of Media Arts and Sciences
Associate Professor of Brain and Cognitive Sciences
Associate Professor of Biological Engineering

Yingxi Lin, PhD
Associate Professor of Neuroscience

Laura E. Schulz, PhD
Associate Professor of Cognitive Science

Assistant Professors

Gloria Choi, PhD
Samuel A. Goldblith Career Development Professor
Assistant Professor of Neuroscience

Kwanghun Chung, PhD
Hermann L. F. von Helmholtz Career Development Professor
Assistant Professor of Chemical Engineering
Assistant Professor of Brain and Cognitive Sciences
Core Faculty, Institute for Medical Engineering and Science

Ki Ann Goosens, PhD
Assistant Professor of Neuroscience

Mark Thomas Harnett, PhD
Assistant Professor of Neuroscience

Myriam Heiman, PhD
Assistant Professor of Neuroscience

Mehrdad Jazayeri, PhD
Robert A. Swanson Career Development Professor
Assistant Professor of Neuroscience

Core Faculty, Institute for Medical Engineering and Science

Ki Ann Goosens, PhD
Assistant Professor of Neuroscience

Mark Thomas Harnett, PhD
Assistant Professor of Neuroscience

Myriam Heiman, PhD
Assistant Professor of Neuroscience

Mehrdad Jazayeri, PhD
Robert A. Swanson Career Development Professor
Assistant Professor of Neuroscience
Josh McDermott, PhD
Frederick A. (1971) and Carole J. Middleton Career Development Professor
Assistant Professor of Cognitive Science

Kay Tye, PhD
Whitehead Career Development Professor
Assistant Professor of Neuroscience

Weifeng Xu, PhD
Assistant Professor of Neuroscience

Feng Zhang, PhD
W. M. Keck Career Development Professor in Biomedical Engineering
Assistant Professor of Brain and Cognitive Sciences

Adjunct Professors
Shimon Ullman, PhD
Adjunct Professor of Brain and Cognitive Sciences

Senior Lecturers
Thomas Byrne, PhD
Senior Lecturer in Brain and Cognitive Sciences

Sonal Jhaveri, PhD
Senior Lecturer in Brain and Cognitive Sciences

Lecturers
Aida Khan, PhD
Lecturer in Brain and Cognitive Sciences

Mary Lambo, PhD
Lecturer in Brain and Cognitive Sciences

Mandana Sassanfar, PhD
Lecturer in Biology
Instructor in Brain and Cognitive Sciences

Technical Instructors
Daniel Zysman, MS
Technical Instructor in Brain and Cognitive Sciences

Research Staff

Senior Research Scientists
Rachael L. Neve, PhD
Senior Research Scientist of Brain and Cognitive Sciences

Principal Research Scientists
Bevil Conway, PhD
Principal Research Scientist of Brain and Cognitive Sciences

Ruth Rosenholtz, PhD
Principal Research Scientist of Brain and Cognitive Sciences

Research Scientists
Amy Ashwin Kalia, PhD
Research Scientist of Brain and Cognitive Sciences
Margaret McCaughin Kjelgaard, PhD
Research Scientist of Brain and Cognitive Sciences
Vikash Kumar Mansinghka, PhD
Research Scientist of Brain and Cognitive Sciences
Lavanya Sharan, PhD
Research Scientist of Brain and Cognitive Sciences
Anne Smith, PhD
Research Scientist of Brain and Cognitive Sciences

Professors Emeriti
Suzanne H. Corkin, PhD
Professor Emerita of Behavioral Neuroscience

Alan V. Hein, PhD
Professor Emeritus of Experimental Psychology

Nelson Yuan-Sheng Kiang, PhD
Eaton Peabody Professor Emeritus
Professor Emeritus of Health Sciences and Technology
Professor Emeritus of Brain and Cognitive Sciences
Professor Emeritus of Physiology, HMS, MEEI

Mary C. Potter, PhD
Professor Emerita of Psychology

William G. Quinn, PhD
Professor Emeritus of Neurobiology
Professor Emeritus of Biology

Whitman A. Richards, PhD
Professor Emeritus of Cognitive Science

Peter H. Schiller, PhD
Dorothy W. Poitras Professor Emeritus
Professor Emeritus of Medical Physiology

Richard J. Wurtman, PhD
Cecil H. Green Distinguished Professor Emeritus
Professor Emeritus of Neuropharmacology
DEPARTMENT OF CHEMISTRY

Chemistry is the study of the nanoworld, the world of atoms and molecules spanning sizes from one to several thousand angstroms. Chemists study the architecture of this miniature universe, explore the changes that occur, discover the principles that govern these chemical changes, and devise ways to create entirely new classes of compounds and materials. Previous triumphs of chemistry include the synthesis of pharmaceuticals and agricultural products, while current challenges include chemical memory, solar cells, superconductors, clean fuels, batteries, and the solution of numerous important problems relating to health and the environment.

The Department of Chemistry (http://chemistry.mit.edu) offers the Bachelor of Science and Doctor of Philosophy degrees. The department’s program of teaching and research spans the breadth of chemistry. General areas covered include biological chemistry, inorganic chemistry, organic chemistry, and physical chemistry. Some of the activities of the department, especially those that involve “translational research” (the application of basic science to practical problems) are carried out in association with interdisciplinary laboratories and centers. These interdepartmental units include the Center for Materials Science and Engineering, Francis Bitter Magnet Laboratory, Center for Ultracold Atoms, Institute for Medical Engineering and Science, Institute for Soldier Nanotechnologies, MIT Energy Initiative, Center for Environmental Health Sciences, Koch Institute for Integrative Cancer Research, and Laser Biomedical Research Facility. See the section on Research and Study (p. 84) for more information.

The undergraduate program aims to provide rigorous education in the fundamental areas of chemical and biochemical knowledge and experimentation. Undergraduate students are encouraged to participate in the Undergraduate Research Opportunities Program (UROP) (p. 43) and to take graduate-level chemistry classes as well as subjects in other departments at the Institute, Harvard University, or Wellesley College.

The Department of Chemistry graduate program admits applicants for the Doctor of Philosophy degree. In addition to formal coursework, each student undertakes a research problem that forms the core of graduate work. Graduate- and postgraduate-level research is often carried out in collaboration with scientists in other facilities and interdisciplinary laboratories.

Undergraduate Study

Bachelor of Science in Chemistry (Course 5)
The Department of Chemistry offers an undergraduate program (p. 436) sufficiently flexible in its electives to provide excellent preparation for careers in many different areas of chemistry. Course 5 is designed to provide an education based on science, both for those who intend to go on to graduate study and those who intend to pursue a professional career immediately in either chemistry or an allied field, such as medicine, in which a sound knowledge of chemistry is important. Students receive thorough instruction in the principles of chemistry, supplemented by a strong foundation in mathematics, physics, biology, and the humanities. A Certification in Biochemistry by the American Chemical Society can be received with a bachelor’s degree for students who have concentrated in this area. The Department of Chemistry also teaches courses jointly with the departments of Biology, Chemical Engineering, Biological Engineering, and Materials Science and Engineering.

Unrestricted electives allow students to extend their knowledge in areas of special interest. Those intending to do graduate work may elect subjects in the department or in other departments that give them more detailed knowledge in the areas in which they plan to specialize. Students who expect to enter industry may elect subjects that offer the fundamentals in a selected field of science, engineering, or the humanities and social sciences. Programs may also be elected that lead to a double major in two fields of specialization.

The student’s faculty advisor can offer suggestions for elective subjects that are of value in preparation for specialization in the various broad areas of chemistry. The proper choice of electives is particularly important for students planning to continue their education in a graduate program.

Students at all levels are encouraged to undertake original research under the supervision of a member of the chemistry faculty, and students carrying out research over at least three semesters have the option of preparing an undergraduate thesis.

Minor in Chemistry

The requirements for a Minor in Chemistry are as follows:

<table>
<thead>
<tr>
<th>Requirements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.03 Principles of Inorganic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>5.12 Organic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>5.30 Laboratory Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>5.60 Thermodynamics and Kinetics</td>
<td>12</td>
</tr>
</tbody>
</table>

Select two of the following: 24

<table>
<thead>
<tr>
<th>Selection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.04 Principles of Inorganic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>5.07 Biological Chemistry I</td>
<td></td>
</tr>
<tr>
<td>5.08 Biological Chemistry II</td>
<td></td>
</tr>
<tr>
<td>5.13 Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>5.36 Biochemistry and Organic Laboratory</td>
<td></td>
</tr>
<tr>
<td>5.36U Biochemistry and Organic Laboratory</td>
<td></td>
</tr>
<tr>
<td>5.37 Organic and Inorganic Laboratory</td>
<td></td>
</tr>
<tr>
<td>5.37U Organic and Inorganic Laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Graduate Study

The Department of Chemistry offers the Doctor of Philosophy degree. The subjects offered aim to develop a sound knowledge of fundamentals and a familiarity with current progress in the most active and important areas of chemistry. In addition to studying formal subjects, each student undertakes a research problem that forms the core of graduate work. Through the experience of conducting an investigation leading to the doctoral thesis, a student learns general methods of approach and acquires training in some of the specialized techniques of research.

The areas of research (http://chemistry.mit.edu/research/overview) in the department include organic, inorganic, physical, and biological chemistry, broadly defined.

Chemical research frequently involves more than one of the four traditional subfields. Some research activities of the department are carried out in association with interdisciplinary laboratories and centers as described in the Overview and in the section on Research and Study. These interdisciplinary research laboratories provide stimulating interaction among the research programs of several MIT departments and give students opportunities to become familiar with research work in disciplines other than chemistry.

The department also participates in the interdisciplinary graduate Program in Polymers and Soft Matter, the Biotechnology Training Program, the Microbiology Program, and the Biophysics Certificate Program.

During the first term of residence, all graduate students are encouraged to select research supervisors who serve as their advisors for the balance of their graduate careers. In particular, the overall program of graduate subjects is established by each student in consultation with the research supervisor. In planning this program and in establishing the thesis problem, careful consideration is given to the candidate's academic record and professional experience, as well as to long-range objectives.

Admission Requirements for Graduate Study

Students intending to do graduate work in the Chemistry Department should have excellent undergraduate preparation in chemistry. The department is flexible with respect to specific course preparation; the essential requirement is demonstration of ability to progress with advanced study and research in some area of special interest. However, mathematics and physics are important prerequisites for graduate work in physical chemistry or chemical physics, whereas less preparation in these areas is required for work in organic chemistry.

Applicants to the Chemistry Department are required to submit scores from the verbal and quantitative sections of the Graduate Record Examination. Scores on the advanced examinations are optional.

Doctor of Philosophy

The Chemistry Department does not have any formal subject requirements for the doctoral degree. Each student, with the advice of a research supervisor, pursues an individual program of study that is pertinent to the student's long-range research interests. All students are required to serve as a teaching assistant for two terms, usually during the first year.

Written qualifying examinations are cumulative. Separate examinations in biological, inorganic, organic, and physical chemistry are offered each month from October through May. The examinations demonstrate an understanding of the important principles of each field. Six cumulative examinations must be passed to complete the written major examination. No fixed time limit is set for completion of this requirement; however, progress is reviewed periodically and the department expects a demonstrated passing performance in cumulative exams before a student takes their second-year oral exam. It is normal to have passed at least four cumulative exams by that time. No other written general examinations are required. In particular, no entrance examinations are given.

A comprehensive oral examination in the candidate's major field of advanced study is held generally in the fourth term of residence. Progress in the student's research is also examined at that time. A final oral presentation on the subject of the doctoral research is scheduled after the thesis has been submitted and evaluated by a committee of examiners.

Interdisciplinary Programs

Polymers and Soft Matter

The Program in Polymers and Soft Matter (PPSM) (http://polymerscience.mit.edu) offers students from participating departments an interdisciplinary core curriculum in polymer science.
and engineering, exposure to the broader polymer community through seminars, contact with visitors from industry and academia, and interdepartmental collaboration while working towards a PhD or ScD degree.

Research opportunities include functional polymers, controlled drug delivery, nanostructured polymers, polymers at interfaces, biomaterials, molecular modeling, polymer synthesis, biomimetic materials, polymer mechanics and rheology, self-assembly, and polymers in energy. The program is described in more detail under Interdisciplinary Graduate Programs (p. 358).

Financial Support
The department usually appoints first-year graduate students as teaching assistants (TAs). TAs are assigned either to laboratory subjects or to discussion sections of lecture subjects. Most students receive appointments to research assistantships after their first year, and departmental fellowships are also available. Financial support after the first academic year is subject to the availability of funds and provided for students who maintain a satisfactory record.

Inquiries
Correspondence about the graduate program or appointments should be addressed to the Chemistry Education Office, Room 6-205, 617-253-1851.

Faculty and Teaching Staff

Professors
Moungi G. Bawendi, PhD
Lester Wolfe Professor
Professor of Chemistry

Stephen Lefler Buchwald, PhD
Camille Dreyfus Professor of Chemistry

Jianshu Cao, PhD
Professor of Chemistry

Sylvia Ceyer, PhD
John C. Sheehan Professor
Professor of Chemistry

Arup K. Chakraborty, PhD
Robert T. Haslam (1921) Professor
Director, Institute for Medical Engineering and Science

Robert T. Haslam Professor of Chemical Engineering
Professor of Biological Engineering
Professor of Chemistry
Professor of Physics

Christopher C. Cummins, PhD
Henry Dreyfus Professor of Energy
Professor of Chemistry

Rick Lane Danheiser, PhD
Arthur C. Cope Professor
Professor of Chemistry

Catherine L. Drennan, PhD
Professor of Biology
Professor of Chemistry

John M. Essigmann, PhD
William R. (1956) and Betsy P. Leitch Professor in Residence
Professor of Toxicology and Biological Engineering
Professor of Chemistry

Robert W. Field, ScD, PhD
Robert T. Haslam and Bradley Dewey Professor of Chemistry

Robert G. Griffin, PhD
Professor of Chemistry

Mei Hong, PhD
Professor of Chemistry

Barbara Imperiali, PhD
Class of 1922 Professor
Professor of Biology
Professor of Chemistry

Timothy F. Jamison, PhD
Head, Department of Chemistry
Professor of Chemistry

Alexander M. Klibanov, PhD
Novartis Professor of Chemistry
Professor of Bioengineering

Stephen J. Lippard, PhD
Arthur Amos Noyes Professor
Professor of Chemistry

Mohammad Movassaghi, PhD
Professor of Chemistry

Keith Adam Nelson, PhD
Robert T. Haslam and Bradley Dewey Professor of Chemistry

Richard Royce Schrock, PhD
Frederick George Keyes Professor
Professor of Chemistry

Susan Solomon, PhD
Ellen Swallow Richards (1873) Professor
Professor of Atmospheric Chemistry and Climate Science
Professor of Chemistry

JoAnne Stubbe, PhD
Novartis Professor of Chemistry
Professor of Biology
Timothy M. Swager, PhD
John D. MacArthur Professor
Professor of Chemistry

Steven R. Tannenbaum, PhD
Underwood-Prescott Professor
Professor of Toxicology and Biological Engineering
Professor of Chemistry

Alice Y. Ting, PhD
Ellen Swallow Richards (1873) Professor
Professor of Chemistry

Troy Van Voorhis, PhD
Robert T. Haslam and Bradley Dewey Professor of Chemistry

Associate Professors
Mircea Dinca, PhD
Associate Professor of Chemistry

Elizabeth M. Nolan, PhD
Associate Professor of Chemistry

Assistant Professors
Jeremiah A. Johnson, PhD
Roger and Georges Firmenich Professor of Natural Product Chemistry
Assistant Professor of Chemistry

Bradley L. Pentelute, PhD
Pfizer-Laubach Career Development Professor
Assistant Professor of Chemistry

Gabriela Schlau-Cohen, PhD
Assistant Professor of Chemistry

Alex K. Shalek, PhD
Hermann L. F. von Helmholtz Career Development Professor
Assistant Professor of Chemistry

Core Faculty, Institute for Medical Engineering and Science

Matthew D. Shoulders, PhD
Assistant Professor of Chemistry

Yogesh Surendranath, PhD
Assistant Professor of Chemistry

Jeff Van Humbeck, PhD
Roger and Georges Firmenich Professor of Natural Product Chemistry
Assistant Professor of Chemistry

Adam P. Willard, PhD
Assistant Professor of Chemistry

Visiting Associate Professors
Malika Jefferies-El, PhD
Visiting Associate Professor of Chemistry

Instructors
Elizabeth Vogel, PhD
Instructor of Chemistry

Technical Instructors
John J. Dolhun, PhD
Technical Instructor of Chemistry

Michael Stopa, PhD
Technical Instructor of Chemistry

Mariusz Twardowski, PhD
Technical Instructor of Chemistry

Research Staff

Principal Research Scientists
Ramachandra Rao Dasari, PhD
Principal Research Scientist of Chemistry

Peter Mueller, PhD
Principal Research Scientist of Chemistry

Research Scientists
Rachel L. Beingessner, PhD
Research Scientist of Chemistry

Oliver Thomas Bruns, PhD
Research Scientist of Chemistry

Ou Chen, PhD
Research Scientist of Chemistry

Jeon Woong Kang, PhD
Research Scientist of Chemistry

Alexei Maznev, PhD
Research Scientist of Chemistry

Christine Nguyen, PhD
Research Scientist of Chemistry

Joseph John Walish, PhD
Research Scientist of Chemistry

Zahid Yaqoob, PhD
Research Scientist of Chemistry

Research Specialists
Li Li, BS
Research Specialist of Chemistry

Gang Liu, PhD
Research Specialist of Chemistry
Technical Associates
Randy Scanga, BS
Technical Associate of Chemistry

Technical Assistants
Catherine Amaya, BS
Technical Assistant of Chemistry

Austin Draycott, BS
Technical Assistant of Chemistry

Brian Pretti
Technical Assistant of Chemistry

Professors Emeriti
Klaus Biemann, PhD
Professor Emeritus of Chemistry

Alan Davison, PhD
Professor Emeritus of Chemistry

John M. Deutch, PhD
Institute Professor Emeritus
Professor Emeritus of Chemistry

Carl W. Garland, PhD
Professor Emeritus of Chemistry

Frederick D. Greene, ScD, PhD
Professor Emeritus of Chemistry

Daniel S. Kemp, PhD
Professor Emeritus of Chemistry

Dietmar Seyferth, PhD
Robert T. Haslam and Bradley Dewey Professor Emeritus
Professor Emeritus of Chemistry

Jeffrey I. Steinfeld, PhD
Professor Emeritus of Chemistry

Gerald N. Wogan, PhD
Professor Emeritus of Biological Engineering
Professor Emeritus of Chemistry
DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES

The Department of Earth, Atmospheric, and Planetary Sciences offers the bachelor's degree in earth, atmospheric, and planetary sciences, and master's and doctoral degrees in earth and planetary sciences, atmospheric sciences, oceanography, and climate physics and chemistry.

Departmental programs apply physics, chemistry, and mathematics to the study of the Earth and planets in order to understand the processes that are active in the Earth's interior, oceans, and atmosphere, as well as the interiors and atmospheres of other planets. The department also uses the basic sciences to understand the past history of the Earth and planets. By combining the past history with models of present physical and chemical processes, faculty and students work to develop an understanding of the dynamics of systems as diverse as the global climate system, regional tectonics and deformation, petroleum and geothermal reservoirs, and the solar system.

Department faculty members teach and carry out research through programs in atmospheres, oceans and climate, geochemistry, geology, geobiology, geophysics, and planetary science. Specific research activities include environmental earth science, global climate change science, planetary missions, and earthquake and exploration geophysics.

Modern problems in these fields are approached by field measurements, laboratory studies, and theory. Experimental facilities for training and research are available not only in departmental laboratories such as the Earth Resources Laboratory, but also in MIT's interdepartmental laboratories such as the Center for Global Change Science, Kavli Institute for Astrophysics and Space Research, Lincoln Laboratory, Haystack Radio Observatory and Millstone Radar facility, and the Wallace Astrophysical and Geophysical Observatories (described in the section on Research and Study (p. 84)), and in cooperating institutions such as the Woods Hole Oceanographic Institution.

Undergraduate Study

Bachelor of Science in Earth, Atmospheric, and Planetary Sciences (Course 12)

The Earth, Atmospheric, and Planetary Sciences Department offers undergraduate preparation for professional careers in a wide range of fields in geoscience (which includes geology, geophysics, and geochemistry), physics of atmospheres and oceans, environmental science, and planetary science and planetary astronomy. Building on a common core, students customize their programs of study with the advice of their advisors.

The curriculum for the Bachelor of Science in Earth, Atmospheric, and Planetary Sciences (p. 437) ensures a fundamental background through departmental core subjects and advanced study in an area chosen by the student. The student and advisor plan an appropriate and relevant selection of electives. Students are also required to take field and/or laboratory subjects, and to complete an independent research project as part of the degree requirements.

Double Major

Studies in physics, chemistry, biology, applied mathematics, and electrical or civil engineering are directly relevant preparation for work in earth, atmospheric, and planetary sciences. Students from these departments can arrange a program of study in Course 12 leading to a second major with subjects that strengthen their undergraduate program.

Five-Year Program

Students with strong academic records from the departments of Earth, Atmospheric, and Planetary Sciences, Chemistry, Physics, Mathematics, Civil and Environmental Engineering, Electrical Engineering and Computer Science, or Chemical Engineering, should be able to complete a Master of Science in Earth and Planetary Sciences, in Atmospheric Sciences, or in Ocean Sciences in one year of additional study, particularly if programs are arranged for this purpose from the beginning of the fourth year.

Applications for graduate enrollment in the department are considered any time after the beginning of the fourth year. Students may receive the Bachelor of Science as soon as the requirements are completed, or may elect to defer the award for simultaneous presentation with the Master of Science.

Minor in Earth, Atmospheric, and Planetary Sciences

The Minor in Earth, Atmospheric, and Planetary Sciences provides an opportunity to complement or expand upon one's major by exploring in depth the natural processes that govern the structure and evolution of the Earth and planets. Areas of study include planetary surfaces, interiors, atmospheres, oceans, and biospheres. The EAPS Minor requires a solid foundation in two core subjects plus electives that create expertise in a particular area. Opportunities for field work, laboratory work, and independent study are an essential component of the minor.

<table>
<thead>
<tr>
<th>Core Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select two of the following:</td>
</tr>
<tr>
<td>12.001</td>
</tr>
<tr>
<td>12.002</td>
</tr>
<tr>
<td>12.003</td>
</tr>
<tr>
<td>12.009[J]</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>5.60</td>
</tr>
</tbody>
</table>

2015–2016 MIT Bulletin | 307
18.03 Differential Equations

Restricted Electives
Select at least 24 units in Course 12 subjects, approved by the minor advisor, to provide a depth of understanding and expertise in an EAPS discipline.

Select an option from either the Laboratory or Independent Study group:

Laboratory:
- 12.115 Field Geology II
- 12.119 Analytical Techniques for Studying Environmental and Geologic Samples
- 12.221 Field Geophysics & 12.222 Field Geophysics Analysis
- 12.307 Weather and Climate Laboratory
- 12.335 Experimental Atmospheric Chemistry
- 12.410[J] Observational Techniques of Optical Astronomy

Independent Study:
- 12.IND Independent Study
- 12.UR Undergraduate Research

Total Units 72-75

1 18.034 Differential Equations is also an acceptable option.

Minor in Astronomy
The Earth, Atmospheric, and Planetary Sciences Department jointly offers a Minor in Astronomy (p. 341) with the Department of Physics (Course 8). A detailed description and list of requirements for this minor is available under Interdisciplinary Programs (p. 327).

Minor in Atmospheric Chemistry
The department also offers an interdisciplinary Minor in Atmospheric Chemistry (p. 342) with the Departments of Chemistry and Civil and Environmental Engineering. For a description of the minor, see Interdisciplinary Programs (p. 327).

Inquiries
Additional information may be obtained from the department’s Education Office, Room 54-912, 617-253-3381.

Graduate Study
The Department of Earth, Atmospheric, and Planetary Sciences offers opportunities for graduate study and research in a wide range of fields:

- Atmospheric chemistry
- Atmospheric dynamics
- Biogeochemistry
- Climate chemistry
- Climate dynamics
- Palaeoclimate
- Geology
- Geobiology
- Geochemistry
- Geophysics
- Planetary sciences

Study in chemical oceanography, physical oceanography, and marine geology and geophysics is offered in cooperation with the Joint Program with Woods Hole Oceanographic Institution (http://mit.whoi.edu).

Coursework during the first two years is the usual prelude to a thesis demonstrating that the student is capable of independent and creative research. The Department offers the following degrees: a Master of Science, a Doctor of Philosophy, or a Doctor of Science in the field of specialization.

A graduate thesis may have either a theoretical, experimental, or observational focus. Modern laboratory facilities, computers, instrumentation, and extensive collections of specimens and data are available to students. Field study is an essential part of the graduate curriculum in geology, geophysics, and geochemistry, and special arrangements may be made for summer employment and field research on departmental projects and with industrial organizations and government agencies. In atmospheric science and climate studies graduate study includes a mixture of theoretical and experimental studies sharing a common appreciation of the dynamics of the underlying processes.

Admission Requirements for Graduate Study
In addition to the general institute requirements for admission listed in the section on Graduate Education (p. 58), the department requires preparation equivalent to the curriculum for the Bachelor of Science in Earth, Atmospheric, and Planetary Sciences at MIT for graduate studies in that field. For atmospheric sciences, climate studies, meteorology, and oceanography, the most essential element is a sound preparation in mathematics and physics, supplemented if possible by some chemistry. Students taking their undergraduate work at other institutions are advised to include in their programs the equivalent of the mathematics and physics contained in the MIT undergraduate curricula. If students are not fully prepared in certain of the fields or required subjects, they usually are asked to extend their studies in these areas while pursuing advanced work. The doctoral program can be entered without a Master of Science as a prerequisite.

Master of Science in Earth and Planetary Sciences, in Atmospheric Science, or in Climate Physics and Chemistry
The General Degree Requirements for the degree of Master of Science in Earth and Planetary Science, in Atmospheric Science, or in Climate Physics and Chemistry are described under Graduate...
Education (p. 58). An individual program of study and research is arranged to suit the special background, needs, and goals of each student. The program is worked out in detail by the student with his or her personal faculty advisor and a departmental committee. There are no foreign language requirements for the degree.

Doctor of Philosophy and Doctor of Science
A specialized program of study and research is tailored to each student's background, needs, and goals by the student in consultation with a faculty advisor and a departmental committee. A doctoral candidate's program should be broad and may include formal study in other departments in addition to the specialized subjects that prepare the candidate for thesis research. There is no foreign language requirement for the degree. Thesis research normally begins immediately after successful completion of the general examination by the end of the second year. The general examination is intended to test the candidate's aptitude and preparation for independent research.

Thesis research is closely supervised by one or more faculty members interested in and knowledgeable about the research topic, who are chosen by the student and may be members of other departments. The thesis is expected to meet high professional standards, and to be a significant original contribution to the scientific field.

Interdisciplinary Programs

Joint Program with the Woods Hole Oceanographic Institution
The Joint Program with the Woods Hole Oceanographic Institution (WHOI) (http://mit.whoi.edu) is intended for students whose primary career objective is oceanography or oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in their home department. The program is described in more detail under Interdisciplinary Graduate Programs (p. 354).

Financial Support
The department offers a considerable number of research and teaching assistantships each year. Research assistants work on one of the many research projects in the department, often related to the student's thesis research. Teaching assistants assist in laboratory instruction or in the preparation of teaching materials and the grading of papers.

The department also offers several fellowships beyond normal teaching and research assistantships. Selection of individuals is based on the excellence of the applicant's record.

Inquiries
Additional information regarding academic and current research programs in the department, admission requirements, assistantship appointments, and financial aid may be obtained by writing to the department's Education Office, Room 54-912, 617-253-3381.

Research Laboratories and Programs
The department's faculty, staff, and students are engaged in a wide variety of research projects in the laboratories of individual faculty members and in the departmental laboratories described below. Many also participate in the activities of interdisciplinary laboratories such as the Center for the Global Change Science and the Joint Program on the Science and Policy of Global Change, described in the section on Research and Study (p. 84).

Earth Resources Laboratory
The Earth Resources Laboratory (ERL) (http://erl.mit.edu) is MIT's primary home for research and education focused on sub-surface energy resources. Through integration across disciplines, departments, and school boundaries, and with support from federal agencies and a consortium of energy companies, ERL addresses questions concerning hydrocarbon exploration and production, geothermal energy, CO₂ sequestration, and near-surface environments.

ERL's faculty, research staff, and students work with a variety of methodologies (including geophysical imaging, rock physics and chemistry, multiphase flow, geomechanics, microseismic, and remote sensing) to obtain a holistic understanding of sub-surface reservoirs—their structure, the geological materials of which they are made, the fluids that flow through them, and changes that occur in response to production.

Building on a rich tradition, ERL aims to produce tomorrow's industry leaders through rigorous disciplinary education and broad exposure to the earth sciences, mathematics, and engineering.

Professor Bradford H. Hager is the current director of ERL. For further information, please visit ERL website (http://erl.mit.edu).

George R. Wallace, Jr., Astrophysical Observatory
The George R. Wallace, Jr., Astrophysical Observatory (http://web.mit.edu/wallace) is a versatile facility for research and teaching optical astronomy. The observatory located in Westford, MA, has two optical telescopes with 16-inch and 24-inch diameters and unique electronic instrumentation. The telescopes are used in formal instruction for student research projects, and as testbeds for instrumentation to be used with larger telescopes. Further information on the Wallace Observatory may be obtained by contacting Dr. Michael Person (mperson@mit.edu), 54-418, 617-452-2304.
George R. Wallace, Jr., Geophysical Observatory
The George R. Wallace, Jr., Geophysical Observatory is a unique research facility designed to monitor ground motions and to aid in the development and testing of new seismic and other geophysical instrumentation. It is also a key component of MIT’s five-station seismic network in New England.

Located 35 miles north of Boston in Westford, MA, the observatory has a large, multi-room underground vault and a surface control room. The vault has a controlled temperature environment and instrument piers resting directly on the basement granite. The observatory contains sensitive seismometers and instruments for monitoring ground tilts and the earth’s tidal motions. The surface building houses a work area and control and recording instruments. Data from the observatory are telemetered directly to the Earth Resources Laboratory of the Department of Earth, Atmospheric, and Planetary Sciences. The data from the observatory and the New England Seismic Network are recorded, displayed, and analyzed by three dedicated COMPAQ computers, which are also connected to workstations to facilitate data sharing and transfers. Data from the observatory along with the numerous resources of the department provide a unique facility for undergraduates, graduate students, and staff to pursue research concerning the interior of the earth.

Further information may be obtained by contacting EAPS Headquarters, 54-918, 617-253-2127.

Faculty and Teaching Staff

Professors
Richard P. Binzel, PhD
Professor of Planetary Sciences
Professor of Aeronautics and Astronautics

Samuel A. Bowring, PhD
Robert R. Shrock Professor of Geology

Edward A. Boyle, PhD
Professor of Ocean Geochemistry

Kerry Andrew Emanuel, PhD
Cecil and Ida Green Professor of Atmospheric Science

Dara Entekhabi, PhD
Bacardi and Stockholm Water Foundation Professor
Professor of Civil and Environmental Engineering
Professor of Earth, Atmospheric and Planetary Sciences

J. Brian Evans, PhD
Professor of Geophysics

Raffaele Ferrari, PhD, PhD
Breene M. Kerr (1951) Professor
Professor of Dynamical Oceanography

Glenn Richard Flierl, PhD
Professor of Oceanography

Timothy L. Grove, PhD
Cecil and Ida Green Professor of Geology

Bradford H. Hager, PhD
Cecil and Ida Green Professor in Earth and Planetary Sciences

Thomas A. Herring, PhD
Professor of Geophysics

John C. Marshall, PhD
Cecil and Ida Green Professor of Oceanography

Frank Dale Morgan, PhD
Professor of Geophysics

Raymond Alan Plumb, PhD
Professor of Meteorology

Ronald G. Prinn, PhD
TEPCO Professor
Professor of Atmospheric Chemistry

Paola M. Rizzoli, PhD, PhD
Professor of Physical Oceanography

Daniel H. Rothman, PhD
Professor of Geophysics

Leigh H. Royden, PhD
Professor of Geology and Geophysics

Sara Seager, PhD
Class of 1941 Professor
Professor of Earth, Atmospheric and Planetary Sciences
Professor of Physics

Susan Solomon, PhD
Ellen Swallow Richards (1873) Professor
Professor of Atmospheric Chemistry and Climate Science
Professor of Chemistry

Roger Everett Summons, PhD
Professor of Geobiology

Robert D. van der Hilst, PhD
Schlumberger Professor of Geosciences
Head, Department of Earth, Atmospheric and Planetary Sciences

Benjamin P. Weiss, PhD
Professor of Planetary Sciences

Jack Wisdom, PhD
Professor of Planetary Sciences
Maria Zuber, PhD
Earle A. Griswold Professor
Professor of Geophysics and Planetary Science
Vice President for Research

Associate Professors
Tanja Bosak, PhD
Associate Professor of Geobiology

Daniel James Cziczo, ScD
Victor P. Starr Career Development Professor
Associate Professor of Atmospheric Chemistry
Associate Professor of Civil and Environmental Engineering

Michael J. Follows, PhD
Associate Professor of Oceanography
Associate Professor of Civil and Environmental Engineering

Colette L. Heald, PhD
Mitsui Career Development Professor in Contemporary Technology
Associate Professor of Civil and Environmental Engineering
Associate Professor of Earth, Atmospheric, and Planetary Sciences

Oliver E. Jagoutz, PhD
Associate Professor of Geology

Paul O’Gorman, PhD
Associate Professor of Atmospheric Science

Shuhei Ono, PhD
Associate Professor of Geochemistry

J. Taylor Perron, PhD
Associate Professor of Geology

Noelle Eckley Selin, PhD
Esther and Harold E. Edgerton Career Development Professor
Associate Professor of Data, Systems, and Society
Associate Professor of Earth, Atmospheric, and Planetary Sciences

Assistant Professors
Kristin Bergmann, PhD
Assistant Professor of Geology and Geochemistry

Kerri Cahoy, PhD
Assistant Professor of Aeronautics and Astronautics
Assistant Professor of Earth, Atmospheric, and Planetary Sciences

Gregory P. Fournier, PhD
Assistant Professor of Geobiology

David McGee, PhD
Kerr-McGee Career Development Professor
Assistant Professor of Paleoclimate

German Prieto, PhD
Cecil and Ida Green Career Development Professor
Assistant Professor of Geophysics

Hilke Schlichting, PhD
Assistant Professor of Planetary Sciences
Assistant Professor of Physics

Visiting Associate Professors
Yuri Shprits, PhD
Visiting Associate Professor of Earth, Atmospheric, and Planetary Sciences

Senior Lecturers
Lodovica C. Illari, PhD
Senior Lecturer in Earth, Atmospheric, and Planetary Sciences

Lecturers
Amanda S. Bosh, PhD
Lecturer in Earth, Atmospheric, and Planetary Sciences

Research Staff

Senior Research Scientists
William B. Durham, PhD
Senior Research Scientist of Earth, Atmospheric, and Planetary Sciences

Michael Fehler, PhD
Senior Research Scientist of Earth, Atmospheric, and Planetary Sciences

Patrick Heimbach, PhD
Senior Research Scientist of Earth, Atmospheric, and Planetary Sciences

Principal Research Scientists
Eduardo Andrade Lima, PhD
Principal Research Scientist of Earth, Atmospheric, and Planetary Sciences

Nilanjan Chatterjee, PhD
Principal Research Scientist of Earth, Atmospheric, and Planetary Sciences

Christopher N. Hill, BS
Principal Research Scientist of Earth, Atmospheric, and Planetary Sciences

Robert W. King, PhD
Principal Research Scientist of Earth, Atmospheric, and Planetary Sciences
Srinivas (Sai) Ravela, PhD
Principal Research Scientist of Earth, Atmospheric and Planetary Sciences

Robert Eric Reilinger, PhD
Principal Research Scientist of Earth, Atmospheric and Planetary Sciences

William L. Rodi, PhD
Principal Research Scientist of Earth, Atmospheric and Planetary Sciences

Research Scientists

Noah Bechor Ben Dov, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Yves Bernabé, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Stephen Brown, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Thomas Burbine, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Kevin Charles Burke
Research Scientist of Earth, Atmospheric and Planetary Sciences

Daniel R. Burns, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Jean-Michel Campin, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Christopher E. Carr, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Ming Fang, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Hans Ulrich Faul, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Mike Floyd, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Gael Forget, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Ben Hardt, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Helen Louise Hill, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Oliver Jahn, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Ulrich Mok, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

An T. Nguyen, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Anne Willem Omta, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Michael J. Person, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Oleg V. Poliannikov, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Jahandar Ramezani, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Anna C. Shaughnessy
Research Scientist of Earth, Atmospheric and Planetary Sciences

David Edmund Smith, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Jason Soderblom, PhD
Research Scientist of Earth, Atmospheric and Planetary Sciences

Research Specialists

Carolyn Coloner, BS
Research Specialist of Earth, Atmospheric and Planetary Sciences

Richard Kayser, MS
Research Specialist of Earth, Atmospheric and Planetary Sciences

Charmaine King, BS
Research Specialist of Earth, Atmospheric and Planetary Sciences

Linda Meinke, BS
Research Specialist of Earth, Atmospheric and Planetary Sciences

William Olszewski, PhD
Research Specialist of Earth, Atmospheric and Planetary Sciences

Diana Spiegel, MS
Research Specialist of Earth, Atmospheric and Planetary Sciences

Professors Emeriti

B. Clark Burchfiel, PhD
Schlumberger Professor Emeritus in Earth Sciences

Charles C. Counselman III, PhD
Professor Emeritus of Geology

Frederick August Frey, PhD
Professor Emeritus of Geochemistry
Richard Siegmund Lindzen, PhD
Professor Emeritus of Meteorology

Gordon H. Pettengill, PhD
Professor Emeritus of Planetary Physics

M. Gene Simmons, PhD
Professor Emeritus of Geophysics

John B. Southard, PhD
Professor Emeritus of Geology

Peter H. Stone, PhD
Professor Emeritus of Climate Dynamics

M. Nafi Toksöz, PhD
Professor Emeritus of Geophysics

Carl Wunsch, PhD
Cecil and Ida Green Professor Emeritus
Professor Emeritus of Physical Oceanography
DEPARTMENT OF MATHEMATICS

The Department of Mathematics (http://math.mit.edu) offers training at the undergraduate, graduate, and postgraduate levels. Its expertise covers a broad spectrum of fields ranging from the traditional areas of "pure" mathematics, such as analysis, algebra, geometry, and topology, to applied mathematics areas such as combinatorics, computational biology, fluid dynamics, theoretical computer science, and theoretical physics.

Course 18 includes two undergraduate degrees: a Bachelor of Science in Mathematics and a Bachelor of Science in Mathematics with Computer Science. Undergraduate students may choose one of three options leading to the Bachelor of Science in Mathematics: applied mathematics, theoretical mathematics, or general mathematics. The general mathematics option provides a great deal of flexibility and allows students to design their own programs in conjunction with their advisors. The Mathematics with Computer Science degree is offered for students who want to pursue interests in mathematics and theoretical computer science within a single undergraduate program.

At the graduate level, the Mathematics Department offers the PhD in Mathematics, which culminates in the exposition of original research in a dissertation. Graduate students also receive training and gain experience in the teaching of mathematics.

The CLE Moore instructorships and Applied Mathematics instructorships bring mathematicians at the postdoctoral level to MIT and provide them with training in research and teaching.

Undergraduate Study

An undergraduate degree in mathematics provides an excellent basis for graduate work in mathematics or computer science, or for employment in such fields as finance, business, or consulting. Students' programs are arranged through consultation with their faculty advisors.

Undergraduates in mathematics are encouraged to elect an undergraduate seminar during their junior or senior year. The experience gained from active participation in a seminar conducted by a research mathematician has proven to be valuable for students planning to pursue graduate work as well as for those going on to other careers. These seminars also provide training in the verbal and written communication of mathematics and may be used to fulfill the Communication Requirement.

Many mathematics majors take 18.821 Project Laboratory in Mathematics, which fulfills the Institute's Laboratory Requirement and counts toward the Communication Requirement.

Bachelor of Science in Mathematics (Course 18)

General Mathematics Option

In addition to the General Institute Requirements, the requirements consist of Differential Equations, and eight 12-unit subjects in Course 18 of essentially different content, including at least six advanced subjects (first decimal digit one or higher). One of these eight subjects must be Linear Algebra. This leaves available 84 units of unrestricted electives. The requirements are flexible in order to accommodate students who pursue programs that combine mathematics with a related field (such as physics, economics, or management) as well as students who are interested in both theoretical and applied mathematics. More details can be found on the degree chart (p. 439).

Applied Mathematics Option

Applied mathematics focuses on the mathematical concepts and techniques applied in science, engineering, and computer science. Particular attention is given to the following principles and their mathematical formulations: propagation, equilibrium, stability, optimization, computation, statistics, and random processes.

Sophomores interested in applied mathematics typically enroll in 18.200 Principles of Discrete Applied Mathematics and 18.300 Principles of Continuum Applied Mathematics. Subject 18.200 is devoted to the discrete aspects of applied mathematics and may be taken concurrently with 18.03 Differential Equations. Subject 18.300, offered in the spring term, is devoted to continuous aspects and makes considerable use of differential equations.

The subjects in Group I of the program correspond roughly to those areas of applied mathematics that make heavy use of discrete mathematics, while Group II emphasizes those subjects that deal mainly with continuous processes. Some subjects, such as probability or numerical analysis, have both discrete and continuous aspects.

Students planning to go on to graduate work in applied mathematics should also take some basic subjects in analysis and algebra.

More detail on the Applied Mathematics option can be found on the degree chart (p. 440).

Theoretical Mathematics Option

Theoretical (or "pure") mathematics is the study of the basic concepts and structure of mathematics. Its goal is to arrive at a deeper understanding and an expanded knowledge of mathematics itself.

Traditionally, pure mathematics has been classified into three general fields: analysis, which deals with continuous aspects of mathematics; algebra, which deals with discrete aspects; and geometry. The undergraduate program is designed so that students become familiar with each of these areas. Students also may wish to
explore other topics such as logic, number theory, complex analysis, and subjects within applied mathematics.

The subjects 18.701 Algebra I and 18.901 Introduction to Topology are more advanced and should not be elected until a student has had experience with proofs, as in Real Analysis (18.100A, 18.100B, or 18.100C) or 18.700 Linear Algebra.

For more details, see the degree chart (p. 442).

Bachelor of Science in Mathematics with Computer Science (Course 18-C)

Mathematics and computer science are closely related fields. Problems in computer science are often formalized and solved with mathematical methods. It is likely that many important problems currently facing computer scientists will be solved by researchers skilled in algebra, analysis, combinatorics, logic and/or probability theory, as well as computer science.

The purpose of this program is to allow students to study a combination of these mathematical areas and potential areas of application in computer science. Required subjects include linear algebra (18.06 or 18.700) because it is so broadly used; discrete mathematics (18.062[J] or 18.200) to give experience with proofs and the necessary tools for analyzing algorithms; and software construction (6.005 or 6.033), where mathematical issues may arise. The required subjects covering complexity (18.404 Theory of Computation or 18.400[J] Automata, Computability, and Complexity) and algorithms (18.410[J] Design and Analysis of Algorithms) provide an introduction to the most theoretical aspects of computer science. More details can be found on the degree chart (p. 444).

Some flexibility is allowed in this program. In particular, students may substitute the more advanced subject 18.701 Algebra I for 18.06 Linear Algebra, and, if they already have strong theorem-proving skills, may substitute 18.211 Combinatorial Analysis for 18.062[J] Mathematics for Computer Science or 18.200 Principles of Discrete Applied Mathematics.

Minor in Mathematics

The requirements for a Minor in Mathematics are as follows: six 12-unit subjects in mathematics, beyond the Institute’s Mathematics Requirement, of essentially different content, including at least four advanced subjects (first decimal digit one or higher).

See the Undergraduate Section for a general description of the minor program (p. 34).

Inquiries

For further information, see the department’s website (http://math.mit.edu/academics/undergrad) or contact Math Academic Services, 617-253-2416.

Graduate Study

The Mathematics Department offers programs covering a broad range of topics leading to the Doctor of Philosophy or Doctor of Science degree. Candidates are admitted to either the Pure or Applied Mathematics programs but are free to pursue interests in both groups. Of the roughly 115-120 doctoral students, about two thirds are in Pure Mathematics, one third in Applied Mathematics.

The programs in Pure and Applied Mathematics offer basic and advanced classes in analysis, algebra, geometry, Lie theory, logic, number theory, probability, statistics, topology, astrophysics, combinatorics, fluid dynamics, numerical analysis, theoretical physics, and the theory of computation. In addition, many mathematically oriented subjects are offered by other departments. Students in Applied Mathematics are especially encouraged to take subjects in engineering and scientific subjects related to their research.

All students pursue research under the supervision of the faculty and are encouraged to take advantage of the many seminars and colloquia at MIT and in the Boston area.

Doctor of Philosophy or Doctor of Science

The requirements for these degrees are described on the department’s website (http://math.mit.edu/academics/grad/timeline). In outline, they consist of a language requirement, an oral qualifying examination, a thesis proposal, completion of a minimum of 132 units (11 graduate subjects), and a thesis containing original research in mathematics.

Financial Support

Financial support is guaranteed for up to five years to students making satisfactory academic progress. Financial aid after the first year is usually in the form of a teaching or research assistantship.

Inquiries

For further information, see the department’s website (http://math.mit.edu/academics/grad) or contact Math Academic Services, 617-253-2416.

Faculty and Teaching Staff

Professors

Michael Artin, PhD
Professor of Mathematics

Martin Z. Bazant, PhD
Professor of Chemical Engineering
Professor of Mathematics
Bonnie Berger, PhD
Professor of Applied Mathematics
Professor of Computer Science
Member, Health Sciences and Technology Faculty

Roman Bezrukavnikov, PhD
Professor of Mathematics

Alexei Borodin, PhD
Professor of Mathematics

John W. M. Bush, PhD
Professor of Mathematics

Hung Cheng, PhD
Professor of Mathematics

Tobias Colding, PhD
Cecil and Ida Green Distinguished Professor
Professor of Mathematics

Alan Edelman, PhD
Professor of Mathematics

Pavel I. Etingof, PhD
Professor of Mathematics

Victor W. Guillemin, PhD
Professor of Mathematics

George Lusztig, PhD
Edward A. Abdun-Nur (1924) Professor
Professor of Mathematics

Arthur P. Mattuck, PhD
Professor of Mathematics

Davesh Maulik, PhD
Professor of Mathematics

Richard B. Melrose, PhD
Simons Professor in Mathematics

Haynes R. Miller, PhD
Professor of Mathematics

William Minicozzi, PhD
Professor of Mathematics

Tomasz S. Mrowka, PhD
Singer Professor of Mathematics
Head, Department of Mathematics

Bjorn Poonen, PhD
Claude E. Shannon (1940) Professor of Mathematics

Alexander Postnikov, PhD
Professor of Mathematics

Rodolfo R. Rosales, PhD
Professor of Mathematics

Paul Seidel, PhD
Levinson Professor in Mathematics

Scott Roger Sheffield, PhD
Professor of Mathematics
Member, Institute for Data, Systems, and Society

Peter W. Shor, PhD
Henry Adams Morss and Henry Adams Morss, Jr. (1934) Professor
Professor of Mathematics

Michael Sipser, PhD
Barton L. Weller (1940) Professor
Professor of Mathematics
Dean, School of Science

Richard P. Stanley, PhD
MathWorks Professor of Mathematics

Gilbert Strang, PhD
MathWorks Professor of Mathematics

David A. Vogan, PhD
Norbert Wiener Professor of Mathematics
Associate Professors
Clark Edward Barwick, PhD
Cecil and Ida Green Career Development Professor
Associate Professor of Mathematics
Laurent Demanet, PhD
Class of 1954 Career Development Professor
Associate Professor of Mathematics
Jonathan Adam Kelner, PhD
Mark Hyman, Jr. Career Development Professor
Associate Professor of Mathematics

Assistant Professors
Joern Dunkel, PhD
Assistant Professor of Mathematics
Semyon Dyatlov, PhD
Assistant Professor of Mathematics
Vadim Gorin, PhD
Assistant Professor of Mathematics
Ankur Moitra, PhD
Assistant Professor of Mathematics
Emmy Murphy, PhD
Assistant Professor of Mathematics
Andrei Negut, PhD
Assistant Professor of Mathematics
Aaron Pixton, PhD
Assistant Professor of Mathematics
Philippe Rigollet, PhD
Assistant Professor of Mathematics
Member, Institute for Data, Systems, and Society
Jared R. Speck, PhD
Cecil and Ida Green Career Development Professor
Assistant Professor of Mathematics
Gonçalo Jorge Trigo Neri Tabuada, PhD
Assistant Professor of Mathematics

Visiting Professors
Andre Nachbin, PhD
Visiting Professor of Mathematics

Visiting Associate Professors
Naoki Imai, PhD
Visiting Associate Professor of Mathematics
Syu Kato, PhD
Visiting Associate Professor of Mathematics
Jiyou Li, PhD
Visiting Associate Professor of Mathematics
Taizo Sadahiro, EdD
Visiting Associate Professor of Mathematics
Yukinobu Toda, PhD
Visiting Associate Professor of Mathematics

Visiting Assistant Professors
Kei Funano, ScD
Visiting Assistant Professor of Mathematics
Chelsea Walton, PhD
Visiting Assistant Professor of Mathematics

Adjunct Professors
Henry Cohn, PhD
Adjunct Professor of Mathematics

Lecturers
Joel Benjamin Geiger, PhD
Lecturer in Mathematics
Slava Gerovitch, PhD, PhD
Lecturer in Mathematics
Peter J. Kempthorne, PhD
Lecturer in Mathematics
Tanya Khovanova, PhD
Lecturer in Mathematics

CLE Moore Instructors
Thomas David Beck, PhD
CLE Moore Instructor of Mathematics
Tristan L. Bozec, PhD
CLE Moore Instructor of Mathematics
Alexey Bufetov, PhD
CLE Moore Instructor of Mathematics
Roger Casals, PhD
CLE Moore Instructor of Mathematics
Emanuele Dotto, PhD
CLE Moore Instructor of Mathematics
Marc Hoyois, PhD
CLE Moore Instructor of Mathematics
Spencer T. Hughes
CLE Moore Instructor of Mathematics
Philip Isett, PhD
CLE Moore Instructor of Mathematics
Heather R. Macbeth, PhD
CLE Moore Instructor of Mathematics

Michael McBreen, PhD
CLE Moore Instructor of Mathematics

Georg Oberdieck, PhD
CLE Moore Instructor of Mathematics

Sam Raskin, PhD
CLE Moore Instructor of Mathematics

Simon Schieder, PhD
CLE Moore Instructor of Mathematics

Sobhan Seyfaddini, PhD
CLE Moore Instructor of Mathematics

Cheng-Chiang Tsai, PhD
CLE Moore Instructor of Mathematics

Thomas Walpuski, PhD
CLE Moore Instructor of Mathematics

Bobby L. E. Wilson, PhD
CLE Moore Instructor of Mathematics

Xin Zhou, PhD
CLE Moore Instructor of Mathematics

Instructors of Applied Mathematics
Pierre-Thomas Brun, PhD
Instructor of Applied Mathematics

Victor-Emmanuel Brunel, PhD
Instructor of Applied Mathematics

Peter Csikvári, PhD
Instructor of Applied Mathematics

Luiz Maltez Faria, PhD
Instructor of Applied Mathematics

Thomas McConville, PhD
Instructor of Applied Mathematics

Mustazee Rahman, PhD
Instructor of Applied Mathematics

Homer Reid, PhD
Instructor of Applied Mathematics

Pedro Sáenz Hervás, PhD
Instructor of Applied Mathematics

Wonseok Shin, PhD
Instructor of Applied Mathematics

Afonso Sousa Bandeira, PhD
Instructor of Applied Mathematics

Norbert Stoop, PhD
Instructor of Applied Mathematics

Alex Townsend, PhD
Instructor of Applied Mathematics

Vladislav Voroninski, PhD
Instructor of Applied Mathematics

Yuan Zhou, PhD
Instructor of Applied Mathematics

Instructors of Pure Mathematics
Vincent Genest, PhD
Instructor of Pure Mathematics

Boris Hanin, PhD
Instructor of Pure Mathematics

Joseph Hirsh, PhD
Instructor of Pure Mathematics

Holly Krieger, PhD
Instructor of Pure Mathematics

Laura Rider, PhD
Instructor of Pure Mathematics

Joshua Zahl, PhD
Instructor of Pure Mathematics

Bohua Zhan, PhD
Instructor of Pure Mathematics

Research Staff

Principal Research Scientists
Andrew Victor Sutherland II, PhD
Principal Research Scientist of Mathematics

Research Scientists
David I. Spivak, PhD
Research Scientist of Mathematics

Professors Emeriti
David J. Benney, PhD
Professor Emeritus of Mathematics

Daniel Z. Freedman, PhD
Professor Emeritus of Mathematics
Professor Emeritus of Physics
Sigurdur Helgason, PhD
Professor Emeritus of Mathematics

Steven L. Kleiman, PhD
Professor Emeritus of Mathematics

Daniel J. Kleitman, PhD
Professor Emeritus of Mathematics

James R. Munkres, PhD
Professor Emeritus of Mathematics

Gerald E. Sacks, PhD
Professor Emeritus of Mathematics

Isadore Manuel Singer, PhD
Institute Professor Emeritus
Professor Emeritus of Mathematics

Daniel W. Stroock, PhD
Professor Emeritus of Mathematics

Alar Toomre, PhD
Professor Emeritus of Mathematics
DEPARTMENT OF PHYSICS

The Department of Physics offers undergraduate, graduate, and postgraduate training, with a wide range of options for specialization.

The emphasis of both the undergraduate curriculum and the graduate program is on understanding the fundamental principles that appear to govern the behavior of the physical world, including space and time and matter and energy in all its forms, from the subatomic to the cosmological and from the elementary to the complex.

The Department of Physics strives to be at the forefront of many areas where new physics can be found. Consequently, the department works on problems where extreme conditions may reveal new behavior: from clusters of galaxies or the entire universe to elementary particles or the strings that may be the substructure of these particles; from collisions of nuclei at relativistic velocities that make droplets of matter hotter than anything since the Big Bang to laser-cooled atoms so cold that their wave functions overlap, resulting in a macroscopic collective state, the Bose-Einstein condensate; and from individual atoms to unusual materials, such as high-temperature superconductors and those that are important in biology. Pushing the limits provides the opportunity to observe new general principles and test theories of the structure and behavior of matter and energy.

Undergraduate Study

Bachelor of Science in Physics (Course 8)

An undergraduate degree in physics provides an excellent basis not only for graduate study in physics and related fields, but also for professional work in such fields as astrophysics, biophysics, engineering and applied physics, geophysics, management, law, or medicine. The undergraduate curriculum offers students the opportunity to acquire a deep conceptual understanding of fundamental physics. The core departmental requirements begin this process. The student then chooses one of two options to complete the degree: the focused option (p. 446) is designed for students who plan to pursue physics as a career; the flexible option (p. 447) accommodates those who want to tailor their physics program in a way that reflects broader interests, as well as those who are interested in other, perhaps nontraditional, career paths. Either option provides a considerable amount of time for exploration through electives. Students proceed at the pace and degree of specialization best suited to their individual capacities. Both options lead to the same degree: the Bachelor of Science in Physics.

Physics: Focused Option

This option—which includes three terms of quantum mechanics, 36 units of laboratory experience, and a thesis—is ideal preparation for a career in physics.

In the second year, students take:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.03</td>
<td>Physics III</td>
<td>12</td>
</tr>
<tr>
<td>8.033</td>
<td>Relativity</td>
<td>12</td>
</tr>
<tr>
<td>8.04</td>
<td>Quantum Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.044</td>
<td>Statistical Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.223</td>
<td>Classical Mechanics II</td>
<td>6</td>
</tr>
</tbody>
</table>

Important skills for experimentation in physics may be acquired by starting an Undergraduate Research Opportunities Program (UROP) (p. 43) project.

In the third year, students normally take laboratory subjects:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.13 & 8.14</td>
<td>Experimental Physics I and Experimental Physics II</td>
<td>36</td>
</tr>
<tr>
<td>8.05 & 8.06</td>
<td>Quantum Physics II and Quantum Physics III</td>
<td>24</td>
</tr>
</tbody>
</table>

Students should also begin to take the restricted elective subjects, one in mathematics and at least two in physics. The mathematics subjects 18.04 Complex Variables with Applications, 18.075 Methods for Scientists and Engineers, and 18.06 Linear Algebra are particularly popular with physics majors. Topical elective subjects in astrophysics, biological physics, condensed matter, plasma, and nuclear and particle physics allow students to gain an appreciation of the forefronts of modern physics. Students intending to go on to graduate school in physics are encouraged to take the theoretical physics sequence:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.07</td>
<td>Electromagnetism II</td>
<td>12</td>
</tr>
<tr>
<td>8.08</td>
<td>Statistical Physics II</td>
<td>12</td>
</tr>
<tr>
<td>8.09</td>
<td>Classical Mechanics III</td>
<td>12</td>
</tr>
</tbody>
</table>

An important component of this option is the thesis, which is a physics research project carried out under the guidance of a faculty member. Many thesis projects grow naturally out of UROP projects. Students should have some idea of a thesis topic by the middle of the junior year. A thesis proposal must be submitted before registering for thesis units and no later than Add Date of the fall term of the senior year.

A relatively large amount of elective time usually becomes available during the fourth year and can be used either to deepen one’s background in physics or to explore other disciplines.
Physics: Flexible Option

This option is designed for students who wish to develop a strong background in the fundamentals of physics and then build on this foundation as they prepare for career paths that may not involve a graduate degree in physics. Many students find an understanding of the basic concepts of physics and an appreciation of the physicist’s approach to problem solving an excellent preparation for the growing spectrum of nontraditional, technology-related career opportunities, as well as for careers in business, law, medicine, or engineering. Additionally, the flexible option makes it more possible for students with diverse intellectual interests to pursue a second major in another department.

The option begins with the core subjects:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.01</td>
<td>Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.02</td>
<td>Physics II</td>
<td>12</td>
</tr>
<tr>
<td>8.03</td>
<td>Physics III</td>
<td>12</td>
</tr>
<tr>
<td>8.04</td>
<td>Quantum Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.044</td>
<td>Statistical Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.21</td>
<td>Physics of Energy</td>
<td>12</td>
</tr>
<tr>
<td>or 8.223</td>
<td>Classical Mechanics II</td>
<td>12</td>
</tr>
</tbody>
</table>

Students round out their foundation material with either an additional quantum mechanics subject (8.05 Quantum Physics II) or a subject in relativity (8.20 Introduction to Special Relativity or 8.033 Relativity). There is an experimental requirement of 8.13 Experimental Physics I or, with the approval of the department, a laboratory subject of similar intensity in another department, an experimental research project or senior thesis, or an experimentally oriented summer externship. An exploration requirement consists of one elective subject in physics. Students can satisfy the departmental portion of the Communication Requirement by taking two of the following subjects:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.06</td>
<td>Quantum Physics III</td>
<td>12</td>
</tr>
<tr>
<td>8.13</td>
<td>Experimental Physics I</td>
<td>18</td>
</tr>
<tr>
<td>8.225[J]</td>
<td>Einstein, Oppenheimer, Feynman: Physics in the 20th Century</td>
<td>12</td>
</tr>
<tr>
<td>8.226</td>
<td>Forty-three Orders of Magnitude</td>
<td>12</td>
</tr>
<tr>
<td>8.287[J]</td>
<td>Observational Techniques of Optical Astronomy</td>
<td>15</td>
</tr>
</tbody>
</table>

The department and the Subcommittee on the Communication Requirement may accept substitution of one of the department’s two required CI-M subjects with a CI-M subject in another department if it forms a natural part of the student’s physics program.

Students following this option must also complete a focus requirement—three subjects forming one intellectually coherent unit in some area (not necessarily physics), subject to the approval of the department and separate from those used by the student to satisfy the HASS requirement. Areas of focus chosen by students have included astronomy, biology, computational physics, theoretical physics, nanotechnology, history of science, science and technology policy, philosophy, and science teaching. Some students may choose to satisfy their experimental and exploration requirements in the same area as their focus; others may opt for greater breadth by choosing other fields to fulfill these requirements.

Although students may choose this option at any time in their undergraduate career, many decide on the flexible major during their sophomore year in order to have enough time to craft a program that best suits their individual needs. Specific subject choices for the experimental and focus requirements require the written approval of the Flexible Program coordinator, Dr. Sean P. Robinson.

Minor in Physics

The Minor in Physics provides a solid foundation for the pursuit of a broad range of professional activities in science and engineering. The requirements for a Minor in Physics are as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03</td>
<td>Differential Equations 1</td>
<td>12</td>
</tr>
</tbody>
</table>

Select five Course 8 subjects beyond the General Institute Requirements 57-60

Total Units 69-72

1 18.034 Differential Equations is also acceptable.

Students should submit a completed Minor Application Form to Physics Academic Programs, Room 4-315. The Physics Department’s minor coordinator is Catherine Modica. See Undergraduate Education for more information on minor programs (p. 34).

Minor in Astronomy

The Minor in Astronomy (p. 341), offered jointly with the Department of Earth, Atmospheric, and Planetary Sciences, covers the observational and theoretical foundations of astronomy. For a description of the minor, see Interdisciplinary Programs (p. 328).

Other Undergraduate Opportunities

Cambridge–MIT Exchange

The Physics Department participates in the junior-year exchange program with Cambridge University, in the United Kingdom, through the Cambridge–MIT Exchange (CME). Students with broad interests and a desire to experience a different educational environment are encouraged to explore this unique opportunity. Interested students should consult the section on Study at Other Universities (p. 45), then contact the department’s CME coordinator, Professor Thomas Greytak.

Inquiries

Additional information concerning degree programs and research activities may be obtained by contacting the department office (physics-undergrad@mit.edu), Room 4-315, 617-253-4841.
Graduate Study

The Physics Department offers programs leading to the degrees of Master of Science in Physics, Doctor of Philosophy, and Doctor of Science.

Admission Requirements for Graduate Study

Students intending to pursue graduate work in physics should have as a background the equivalent of the requirements for the Bachelor of Science in Physics from MIT. However, students may make up some deficiencies over the course of their graduate work.

Master of Science in Physics

The normal degree program in the department leads to a PhD in Physics. Admission to a master’s degree program in Physics is available only in special cases (e.g., US military officers). The requirements for the Master of Science in Physics are the same as the General Degree Requirements (p. 59) listed under Graduate Education. A master’s thesis must represent a piece of independent research work in any of the fields described below, and must be carried out under the supervision of a department faculty member. No fixed time is set for the completion of a master’s program; two years of work is a rough guideline. There is no language requirement for this degree.

Doctor of Philosophy and Doctor of Science

Candidates for the Doctor of Philosophy or Doctor of Science are expected to enroll in those basic graduate subjects that prepare them for the general examination, which must be passed no later than in the seventh term after initial enrollment. No specific subjects of study are prescribed, except for the requirement of two subjects in the candidate’s doctoral research area and two subjects outside the candidate’s field of specialization (breadth requirement). Half of the breadth requirement may be satisfied through a departmentally approved industrial internship. The doctoral thesis must represent a substantial piece of original research, carried out under the supervision of a department faculty member.

The Physics Department faculty members offer subjects of instruction and are engaged in research in a variety of fields in experimental and theoretical physics. This broad spectrum of activities is organized in the divisional structure of the department, presented below. Graduate students are encouraged to contact faculty members in the division of their choice to inquire about opportunities for research, and to pass through an apprenticeship (by signing up for Pre-Thesis Research) as a first step toward an engagement in independent research for a doctoral thesis.

Research Divisions

Faculty and students in the Department of Physics are generally affiliated with one of several research divisions:

- Astrophysics
- Experimental Nuclear and Particle Physics
- Atomic Physics, Biophysics, Condensed Matter Physics, and Plasma Physics
- Theoretical Nuclear and Particle Physics

Much of the research in the department is carried out as part of the work of various interdisciplinary laboratories and centers, including the Center for Materials Science and Engineering, Francis Bitter Magnet Laboratory, Haystack Observatory, Laboratory for Nuclear Science, Microsystems Technology Laboratories, MIT Kavli Institute for Astrophysics and Space Research, Plasma Science and Fusion Center, Research Laboratory of Electronics, and Spectroscopy Laboratory. Additional information can be found under Research and Study (p. 84). These facilities provide close relationships among the research activities of a number of MIT departments and give students opportunities for contact with research carried out in disciplines other than physics.

Inquiries

Additional information on degree programs, research activities, admissions, financial aid, teaching and research assistantships may be obtained by contacting the department office (physics-grad@mit.edu), Room 4-315, 617-253-4851.

Faculty and Teaching Staff

Professors

Raymond Ashoori, PhD
Professor of Physics

John Winston Belcher, PhD
Class of 1922 Professor
Professor of Physics

Edmund Bertschinger, PhD
Institute Community and Equity Officer
Professor of Physics

Wit Busza, PhD
Professor of Physics

Claude R. Canizares, PhD
Bruno B. Rossi Distinguished Professor in Experimental Physics
Professor of Physics

Deepto Chakrabarty, PhD
Professor of Physics

Arup K. Chakraborty, PhD
Robert T. Haslam (1911) Professor
Director, Institute for Medical Engineering and Science
Professor of Chemical Engineering
Professor of Biological Engineering
Professor of Chemistry
Professor of Physics
Min Chen, PhD
Professor of Physics

Isaac L. Chuang, PhD
Professor of Electrical Engineering
Professor of Physics

Janet Conrad, PhD
Professor of Physics

Bruno Coppi, PhD
Professor of Physics

Edward Farhi, PhD
Cecil and Ida Green Professor in Physics

Peter H. Fisher, PhD
Head, Department of Physics
Professor of Physics

Alan Guth, PhD
Victor F. Weisskopf Professor in Physics

Jacqueline N. Hewitt, PhD
Professor of Physics

Scott A. Hughes, PhD
Professor of Physics

Robert L. Jaffe, PhD
Otto (1939) and Jane Morningstar Professor of Science
Professor of Physics

John D. Joannopoulos, PhD
Francis Wright Davis Professor
Professor of Physics

David I. Kaiser, PhD
Germeshausen Professor of the History of Science
Professor of Physics
Director, Science, Technology, and Society Program

Mehran Kardar, PhD
Francis L. Friedman Professor of Physics

Marc A. Kastner, PhD
Donner Professor of Science
Professor of Physics
(On leave)

Wolfgang Ketterle, PhD
John D. MacArthur Professor
Professor of Physics

Patrick A. Lee, PhD
William and Emma Rogers Professor
Professor of Physics
(On leave, spring)

Young S. Lee, PhD
Professor of Physics
(On leave)

Leonid Levitov, PhD
Professor of Physics
(On leave, fall)

Hong Liu, PhD
Professor of Physics

Seth Lloyd, PhD
Nam Pyo Suh Professor
Professor of Mechanical Engineering
Professor of Physics

Nergis Mavalvala, PhD
Curtis (1963) and Kathleen Marble Professor
Professor of Physics

Richard G. Milner, PhD
Professor of Physics

Leonid A. Mirny, PhD
Core Faculty, Institute for Medical Engineering and Science
Professor of Physics

Christoph M. E. Paus, PhD
Professor of Physics

Miklos Porkolab, PhD
Professor of Physics

David E. Pritchard, PhD
Cecil and Ida Green Professor of Physics

Krishna Rajagopal, PhD
Professor of Physics

Robert P. Redwine, PhD
Professor of Physics

Gunther M. Roland, PhD
Professor of Physics

Paul L. Schechter, PhD
William A. M. Burden Professor in Astrophysics

Sara Seager, PhD
Class of 1941 Professor
Professor of Earth, Atmospheric and Planetary Sciences
Professor of Physics

Marin Soljacic, PhD
Professor of Physics

Iain Stewart, PhD
Professor of Physics
Washington Taylor IV, PhD
Professor of Physics
Max Erik Tegmark, PhD
Professor of Physics
Samuel C. C. Ting, PhD
Thomas D. Cabot Institute Professor
Professor of Physics
Senthil Todadri, PhD
Professor of Physics
Vladan Vuletic, PhD
Lester Wolfe Professor
Professor of Physics
Xiao-Gang Wen, PhD
Cecil and Ida Green Professor in Physics
(On leave)
Frank Wilczek, PhD
Herman Feshbach (1942) Professor of Physics
Boleslaw Wyslouch, PhD
Professor of Physics
Barton Zwiebach, PhD
Professor of Physics
Martin Wolfram Zwierlein, PhD
Professor of Physics

Associate Professors
Allan Adams III, PhD
Associate Professor of Physics
(On leave, fall)
Joseph A. Formaggio, PhD
Associate Professor of Physics
Nuh Gedik, PhD
Associate Professor of Physics
Jeff Gore, PhD
Latham Family Career Development Professor
Associate Professor of Physics
Pablo Jarillo-Herrero, PhD
Associate Professor of Physics
Markus Klute, PhD
Associate Professor of Physics
Robert A. Simcoe, PhD
Francis L. Friedman Professor of Physics
Associate Professor of Physics
Jesse Thaler, PhD
Class of 1943 Career Development Professor
Associate Professor of Physics
(On leave, fall)
Joshua Nathan Winn, PhD
Associate Professor of Physics

Assistant Professors
Joseph George Checkelsky, PhD
Assistant Professor of Physics
Ibrahim I. Cisse, PhD
Assistant Professor of Physics
William Detmold, PhD
Assistant Professor of Physics
(On leave, spring)
Jeremy L. England, PhD
Thomas D. and Virginia W. Cabot Professor
Assistant Professor of Physics
Matthew J. Evans, PhD
Assistant Professor of Physics
Nikta Fakhri, PhD
Assistant Professor of Physics
Anna L. Frebel, PhD
Silverman (1968) Family Career Development Professor
Assistant Professor of Physics
Liang Fu, PhD
Assistant Professor of Physics
Aram W. Harrow, PhD
Assistant Professor of Physics
Yen-Jie Lee, PhD
Assistant Professor of Physics
(On leave, fall)
Michael McDonald, PhD
Assistant Professor of Physics
Hilke Schlichting, PhD
Assistant Professor of Planetary Sciences
Assistant Professor of Physics
Tracy Robyn Slatyer, PhD
Assistant Professor of Physics
Mark Vogelsberger, PhD
Assistant Professor of Physics
Nevin N. Weinberg, PhD
Assistant Professor of Physics
Michael Williams, PhD
Assistant Professor of Physics
(On leave, spring)

Lindley Winslow, PhD
Assistant Professor of Physics

Paolo Zuccon, PhD
Assistant Professor of Physics

Visiting Associate Professors
Hakeem Oluseyi, PhD
Visiting Associate Professor of Physics

Adjunct Professors
William A. Barletta, PhD
Adjunct Professor of Physics

Senior Lecturers
Peter Dourmashkin, PhD
Senior Lecturer in Physics

George S. F. Stephans, PhD
Senior Lecturer in Physics

Lecturers
Jolyon Bloomfield, PhD
Lecturer in Physics

Saif Rayyan, PhD
Lecturer in Physics

Sean P. Robinson, PhD
Lecturer in Physics

Technical Instructors
Andrew Birkel, BS
Technical Instructor of Physics

Charles I. Bosse, MEd
Technical Instructor of Physics

Colin Marcus, BS
Technical Instructor of Physics

Andy Neely, BS
Technical Instructor of Physics

Beth Roberts, BS
Technical Instructor of Physics

Research Staff

Senior Research Scientists
Thomas William Donnelly, PhD
Senior Research Scientist of Physics

Earl S. Marmar, PhD
Senior Research Scientist of Physics

Jagadeesh Moodera, PhD
Senior Research Scientist of Physics

Richard J. Temkin, PhD
Senior Research Scientist of Physics

Professors Emeriti
Michel Baranger, PhD
Professor Emeritus of Physics

Ulrich J. Becker, ScD
Professor Emeritus of Physics

George B. Benedek, PhD
Alfred H. Caspary Professor Emeritus of Physics
Professor Emeritus of Biological Physics

Ahmet Nihat Berker, PhD
Professor Emeritus of Physics

Aron M. Bernstein, PhD
Professor Emeritus of Physics

William Bertozzi, PhD
Professor Emeritus of Physics

Robert J. Birgeneau, PhD
Professor Emeritus of Physics

Hale V. Bradt, PhD
Professor Emeritus of Physics

Bernard F. Burke, PhD
Professor Emeritus of Physics

George W. Clark, PhD
Professor Emeritus of Physics

Eric R. Cosman, PhD
Professor Emeritus of Physics

Mildred Dresselhaus, PhD
Institute Professor
Professor of Electrical Engineering
Professor of Physics

Thomas H. Dupree, PhD
Professor Emeritus of Nuclear Science and Engineering
Professor Emeritus of Physics

Daniel Z. Freedman, PhD
Professor Emeritus of Mathematics
Professor Emeritus of Physics
Anthony P. French, PhD
Professor Emeritus of Physics

Jerome I. Friedman, PhD
Professor Emeritus of Physics
Institute Professor Emeritus

Jeffrey Goldstone, PhD
Professor Emeritus of Physics

Thomas J. Greytak, PhD
Professor Emeritus of Physics

Lee Grodzins, PhD
Professor Emeritus of Physics

Kerson Huang, PhD
Professor Emeritus of Physics

Erich P. Ippen, PhD
Elihu Thomson Professor Emeritus
Professor Emeritus of Physics
Professor Emeritus of Electrical Engineering

Roman Wladimir Jackiw, PhD
Jerrold Zacharias Professor Emeritus of Physics
Professor Emeritus of Physics

Ali Javan, PhD
Professor Emeritus of Physics

Paul Christopher Joss, PhD
Professor Emeritus of Physics

Arthur Kent Kerman, PhD
Professor Emeritus of Physics

Vera Kistiakowsky, PhD
Professor Emerita of Physics

Daniel Kleppner, PhD
Lester Wolfe Professor Emeritus
Professor Emeritus of Physics

Stanley B. Kowalski, PhD
Professor Emeritus of Physics

J. David Litster, PhD
Professor Emeritus of Physics

Earle L. Lomon, PhD
Professor Emeritus of Physics

June Lorraine Matthews, PhD
Professor Emerita of Physics

Ernest J. Moniz, PhD
Cecil and Ida Green Distinguished Professor Emeritus
Professor Emeritus of Physics

John W. Negele, PhD
William A. Coolidge Professor Emeritus
Professor Emeritus of Physics

Stanislaw Olbert, PhD
Professor Emeritus of Physics

Irwin A. Pless, PhD
Professor Emeritus of Physics

Saul A. Rappaport, PhD
Professor Emeritus of Physics

Lawrence Rosenson, PhD
Professor Emeritus of Physics

Malcom W. P. Strandberg, PhD
Professor Emeritus of Physics

Rainer Weiss, PhD
Professor Emeritus of Physics

James E. Young, PhD
Professor Emeritus of Physics
INTERDISCIPLINARY PROGRAMS

Undergraduate Programs

Undergraduate Degrees

- Computer Science and Molecular Biology (p. 328)
- Humanities (p. 328)
- Humanities and Engineering (p. 336)
- Humanities and Science (p. 336)

Undergraduate Minors

- Ancient and Medieval Studies (p. 338)
- Applied International Studies (p. 339)
- Astronomy (p. 341)
- Atmospheric Chemistry (p. 342)
- Biomedical Engineering (p. 342)
- Energy Studies (p. 343)
- Public Policy (p. 346)
- Women’s and Gender Studies (p. 347)

MIT also offers several minors that focus on specific regions of the world, all of which combine language study with coursework in the humanities, arts, and social sciences.

- African and African Diaspora Studies (p. 337)
- Asian and Asian Diaspora Studies (p. 340)
- Latin American and Latino Studies (p. 344)
- Middle Eastern Studies (p. 345)
- Russian and Eurasian Studies (p. 347)

Graduate Programs

- Computation for Design and Optimization (p. 350)
- Computational and Systems Biology (p. 350)
- Computer Science and Molecular Biology (p. 353)
- Harvard-MIT Health Sciences and Technology Program (p. 354)
- Joint Program with Woods Hole Oceanographic Institution (p. 354)
- Leaders for Global Operations (p. 355)
- Microbiology (p. 356)
- Operations Research (p. 357)
- Polymers and Soft Matter (p. 358)
- Supply Chain Management (p. 358)
- Design and Management (Integrated Design and Management & System Design and Management) (p. 352)
- Technology and Policy (p. 359)
- Transportation (p. 359)
INTERDISCIPLINARY UNDERGRADUATE DEGREES

MIT offers four interdisciplinary undergraduate degrees:

- **Computer Science and Molecular Biology** (p. 449), a joint program offered by the Department of Electrical Engineering and Computer Science (School of Engineering) and the Department of Biology (School of Science).
- **Humanities** (p. 406), a program offered by the Department of Humanities that encompasses six fields of interdisciplinary study.
- **Humanities and Engineering** (p. 408), a joint program in which a student combines coursework from a degree program in the School of Engineering and one of 15 programs in the School of Humanities, Arts, and Social Sciences.
- **Humanities and Science** (p. 411), a joint program in which a student combines coursework from a degree program in the School of Science and one of 15 programs in the School of Humanities, Arts, and Social Sciences.

COMPUTER SCIENCE AND MOLECULAR BIOLOGY

Bachelor of Science in Computer Science and Molecular Biology (Course 6-7)

The Department of Biology (p. 290) and the Department of Electrical Engineering and Computer Science (EECS) (p. 184) offer a joint curriculum leading to a Bachelor of Science in Computer Science and Molecular Biology (p. 449) that focuses on the emerging field of computational and molecular biology. The curriculum provides strong foundations in both biology and computer science and features innovative, integrative, capstone, and elective subjects. The goal is to produce an entirely new cadre of graduates who are uniquely qualified to address the challenges and opportunities at the interface of computational and molecular biology. Students in the program are full members of both departments and of two schools, Science and Engineering, with one academic advisor from each department.

The Bachelor of Science in Computer Science and Molecular Biology prepares students for careers that leverage computational biology (e.g., pharmaceuticals, bioinformatics, medicine, etc.) as well as further graduate study in biology, in computer science, and in emerging programs at the interface. Students in this program who have a strong academic record will be offered an opportunity to continue through the five-year master’s program, leading to the Master of Engineering in Computer Science and Molecular Biology (p. 353).

Inquiries

Information about these programs is available from the EECS Undergraduate Office (http://www.eecs.mit.edu), Room 38-476, 617-253-4654, and the Biology Undergraduate Office (https://biology.mit.edu), Room 68-120, 617-253-4718.

HUMANITIES

The Bachelor of Science in Humanities (Course 21) (p. 406) offers students six interdisciplinary areas of study from which to choose:

- American Studies
- Ancient and Medieval Studies
- Asian and Asian Diaspora Studies
- Latin American and Latino Studies
- Russian and Eurasian Studies
- Women's and Gender Studies

All options for this major are by special arrangement and must be approved by the Dean of the School of Humanities, Arts, and Social Sciences. Students must file a proposal that identifies all the subjects to be taken in the chosen program. Contact information for each program is included in its description.

American Studies

American Studies at MIT offers students the opportunity to organize subjects from various fields (e.g., history, anthropology, literature, political science, music, art, architecture, and urban planning) into personally constructed interdisciplinary programs as a way of gaining an integrated understanding of American society and culture. Students can focus on any of several areas of interest, such as American literature; folklore and popular culture; black history and culture; women’s studies; American history, politics, or law; the history of science and technology; and American art, architecture, or music. Thus, a program in American Studies is ideal for preparing students for further work not only in the various humanistic fields, but also in law, urban planning, management, architecture, engineering, medicine, teaching, and the media.

The program has three primary objectives:

- To understand the underlying system of beliefs that informs every aspect of American culture—its myths, institutions, politics and literature, its characteristic dreams and rituals.
- To understand the uses and limits of different methods and intellectual disciplines as tools for exploring the complexities of a culture.
- To understand the American present in relation to the American past.
As noted in the degree chart (p. 406), the program includes a pre-thesis tutorial (21.THT), a thesis (21.THU), and a minimum of nine restricted electives (108 units) selected from at least two of the following three disciplinary areas:

- Area I: Humanities and the Arts
- Area II: Social Sciences; Science, Technology, and Society
- Area III: Historical Studies

Up to six subjects (72 units) may be used for both the major and the GIRs, but the units from those subjects may not count toward the 180 units required beyond the GIRs. No more than one subject that counts toward the distribution component of the HASS Requirement may also be counted toward American Studies requirements. In addition, at least eight of the subjects required for the program cannot count toward any other major or minor.

The list of restrictive electives below is not exhaustive. Additional information can be obtained from the American Studies advisor, Professor Merritt Roe Smith (roesmith@mit.edu), E51-194B, 617-253-4008, or from the History Office, E51-255, 617-324-5134.

Restricted Electives

Select 9-12 subjects from at least two of the following areas

Area I: Humanities and the Arts

- 21L.006 American Literature
- 21L.011 The Film Experience
- 21L.432 Understanding Television
- 21L.487 Modern Poetry
- 21L.501 The American Novel
- 21L.504[J] Race and Identity in American Literature
- 21L.512 American Authors
- 21M.215 Music of the Americas
- 21M.226 Jazz
- 21M.283 Musicals of Stage and Screen
- 21M.284 Film Music
- 21M.295 American Popular Music
- 21W.742[J] Writing about Race

Area II: Social Sciences; Science, Technology, and Society

- 17.20 Introduction to the American Political Process
- 17.251 Congress and the American Political System I
- 17.261 Congress and the American Political System II

- 17.263 Electoral Politics, Public Opinion, and Democracy
- 17.265 Public Opinion and American Democracy
- 17.317 US Social Policy
- 17.40 American Foreign Policy: Past, Present, and Future
- 17.483 US Military Power
- 21A.120 American Dream: Exploring Class in the US

Area III: Historical Studies

- 11.014[J] American Urban History II
- 21G.043[J] Introduction to Asian American Studies: Historical and Contemporary Issues
- 21H.102 American History since 1865
- 21H.201 The American Revolution
- 21H.209 America in Depression and War
- 21H.211 The United States in the Nuclear Age: Politics, Culture, and Society Since 1941
- 21H.214 War and American Society
- 21H.226[J] Riots, Strikes, and Conspiracies in American History
- 21H.227 Constitutional Law in US History
- 21H.228 American Classics
- 21H.229 The Black Radical Tradition in America
- 21H.310[J] Migration and Immigration in US History
- 21H.315 American Consumer Culture
- 21H.319 Race, Crime, and Citizenship in American Law
- 21H.320[J] Gender and the Law in US History
Ancient and Medieval Studies

Through a wide variety of subjects drawn from a number of disciplines, this program provides a curricular framework for exploring topics in ancient and medieval studies which range from the history of ideas and institutions to that of material artifacts, literature and certain of the original languages. The chronological span of the program includes some 6,500 years between 5000 B.C. and 1500 A.D.

The goal of this program is to develop knowledge and understanding of the more distant past both for itself, in its uniqueness, and as an object of specifically modern questions and methods of inquiry. We are interested in the structure of institutions and social systems, and in relationships between the social order and learned traditions, values, ideologies and ideas. Ancient and medieval studies derive a special claim to our interest from the fact that the record is so full and multiform and that much of it is of exceptionally high quality at once in substance and form.

The program in Ancient and Medieval Studies is designed for students who are seeking a fuller understanding of the forces which shaped the ancient and medieval world. The geographical and chronological scope of the program is broadly conceived and is intended to be comparative. Subjects range in content from Classical Greece and Rome, and the ancient societies of Asia and South America, to medieval Europe and Japan. Students will be required to demonstrate intermediate level language proficiency in either Greek, Latin or a medieval vernacular, but they need not concentrate their other subjects on the area associated with that language. Students are also expected to have some distribution across the ancient and medieval time periods. We expect that students will consult closely with the program advisor in order to devise a coherent program of study.

As noted in the degree chart (p. 406), the program includes a minimum of nine subjects (108 units) beyond the pre-thesis tutorial (21.THT) and thesis (21.THU). The nine subjects must include two language subjects in Area I (or equivalent proficiency); the seven remaining subjects must be selected from at least two of the three other disciplinary areas (Areas II–IV).

- Area I: Language
- Area II: Humanities and the Arts
- Area III: Social Sciences
- Area IV: Historical Studies

One subject from a fifth area of study—Methodology—may be included in the program with the permission of the student’s advisor.

Up to six subjects (72 units) may be used for both the major and the GIRs, but the units from those subjects may not count toward the 180 units required beyond the GIRs. No more than one subject that counts toward the distribution component of the HASS Requirement may also be counted toward the requirements of the Ancient and Medieval Studies program. In addition, at least eight of the subjects required for the program cannot count toward any other major or minor.

The list of restricted electives below is not exhaustive. Additional information can be obtained from the advisor for the program, Professor Anne McCants (amccants@mit.edu), E51-263, 617-258-6669, or from the History Office, E51-255, 617-324-5134.

Restricted Electives

Area I: Language

<table>
<thead>
<tr>
<th>Select one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.303 French III & 21G.304 French IV</td>
</tr>
<tr>
<td>21G.403 German III & 21G.404 German IV</td>
</tr>
<tr>
<td>21G.703 Spanish III & 21G.704 Spanish IV</td>
</tr>
<tr>
<td>Two intermediate-level subjects in Greek, Latin, Italian, Norse, or Arabic</td>
</tr>
</tbody>
</table>

Area II: Humanities and Arts

| 4.605 A Global History of Architecture |
| 4.614 Architecture in the Islamic World |
| 4.635 Early Modern Architecture and Art |
| 21L.001 Foundations of Western Literature: Homer to Dante |
| 21L.455 Classical Literature |
| 21L.458 The Bible |
| 21L.460 Medieval Literature |
| 21L.611 Latin I (6-unit subject) |
| 21L.612 Latin II (6-unit subject) |
| 21M.220 Medieval and Renaissance Music |

Area III: Social Sciences and Material Sciences

| 3.981 Communities of the Living and the Dead: the Archaeology of Ancient Egypt |
| 3.982 The Ancient Andean World |
| 3.983 Ancient Mesoamerican Civilization |
| 3.993 Archaeology of the Middle East |

Area IV: Historical Studies
Asian and Asian Diaspora Studies

This program is designed for students interested in serious intensive research on the languages, history, politics, and cultures of Asia and/or the Asian diasporas. The geographic region of Asia includes countries such as Bangladesh, China, India, Japan, Korea, Mongolia, Pakistan, the Philippines, Taiwan, and Vietnam. In consultation with the program advisor, students may focus their coursework on a sub-region of Asia, on one of the Asian diasporas, or design their program to offer a comparative study across different regions and/or cultural groups. The goal of the program is to provide balanced coverage of language, humanistic and social science offerings on the region and to expose students to some comparative perspectives within the region. The MIT Departments of Global Studies and Languages, History, and Political Science offer a substantial number of subjects related to Asia and the Asian diasporas.

As noted in the degree chart (p. 406), the program includes a minimum of nine subjects (108 units) beyond the pre-thesis tutorial (21.THT) and thesis (21.THU). The nine subjects must include two language subjects in Area I (or equivalent proficiency); the seven remaining subjects must be selected from at least two of the three other disciplinary areas (Areas II–IV).

- Area I: Language
- Area II: Humanities and the Arts
- Area III: Social Sciences
- Area IV: Historical Studies

For the thesis requirement, students choose a topic in consultation with an MIT faculty member whose specialty falls within Asian Studies; the thesis research may include knowledge of an Asian language.

Up to six subjects (72 units) may be used for both the major and the GIRs, but the units from those subjects may not count toward the 180 units required beyond the GIRs. No more than one subject that counts toward the distribution component of the HASS Requirement may also be counted toward the requirements of the Asian and Asian Diaspora Studies program. In addition, at least eight of the subjects required for the program cannot count toward any other major or minor.

The language requirement can be satisfied by taking two intermediate (Levels III and IV) subjects in an Asian language. Students with proficiency at this level in the spoken and written language can either take two more advanced language subjects (highly recommended), or two more courses from Areas II, III and IV. Chinese and Japanese are taught at MIT. Subjects about Asia and the Asian diaspora, as well as subjects in Asian languages, are also available from Harvard University and Wellesley College through cross-registration. Students must receive permission from the advisor prior to registering for a class at another institution.

The list of restricted electives below is not exhaustive. Additional information can be obtained from the advisor for the program, Professor Ian Condry (condry@mit.edu), 14N-303, 617-452-2709, or from the Global Studies and Languages Office, 14N-305, 617-253-4771.

Restricted Electives

Area I: Language

Select two subjects in the same language from among the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.103</td>
<td>Chinese III (Regular)</td>
</tr>
<tr>
<td>21G.104</td>
<td>Chinese IV (Regular)</td>
</tr>
</tbody>
</table>
Area I: Language Requirement

The language requirement can be satisfied by taking two intermediate (Levels III and IV, or Very Fast Track equivalent) subjects in an Asian language. Students with proficiency at this level are encouraged to take two more advanced language subjects, such as 21G.105 Chinese V (Regular): Discovering Chinese Cultures and Societies and 21G.106 Chinese VI (Regular): Discovering Chinese Cultures and Societies or 21G.505 Japanese V and 21G.506 Japanese VI. Alternatively, they may take two more subjects from Areas II, III, and IV. In cases where the student is specializing in an Asian country where English is one of the official languages, in an English-speaking region of the diaspora, or is a native speaker of an Asian language, the Area I component would be replaced by other subjects in consultation with the program advisor.

1. 21G.173 Chinese III (Regular) - Globalization may be substituted for 21G.109.
2. 21G.103.
3. 21G.503 Japanese III - Globalization may be substituted for 21G.504.
4. Other languages may be taken at Harvard or Wellesley through cross-registration, with the permission of the advisor, or at other institutions during IAP or the summer, with permission from the relevant transfer credit examiner.
5. Students who are not required to take Area I subjects (see footnote 1 above) must take all subjects from Areas II, III, and IV, with at least one subject from each area.

Area II: Humanities and the Arts

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.011</td>
<td>Topics in Indian Popular Culture</td>
</tr>
<tr>
<td>21G.027[J]</td>
<td>Visualizing Japan in the Modern World</td>
</tr>
<tr>
<td>21G.030[J]</td>
<td>Introduction to East Asian Cultures: From Zen to K-Pop</td>
</tr>
<tr>
<td>21G.036[J]</td>
<td>Advertising and Media: Comparative Perspectives</td>
</tr>
<tr>
<td>21G.038</td>
<td>China in the News: The Untold Stories</td>
</tr>
<tr>
<td>21G.039[J]</td>
<td>Gender and Japanese Popular Culture</td>
</tr>
<tr>
<td>21G.040</td>
<td>A Passage to India: Introduction to Modern Indian Culture and Society</td>
</tr>
<tr>
<td>21G.046</td>
<td>Modern Chinese Fiction and Cinema</td>
</tr>
<tr>
<td>21G.063</td>
<td>Anime: Transnational Media and Culture</td>
</tr>
<tr>
<td>21G.064</td>
<td>Introduction to Japanese Culture</td>
</tr>
<tr>
<td>21G.065</td>
<td>Japanese Literature and Cinema</td>
</tr>
<tr>
<td>21G.199</td>
<td>Chinese Youths and Web Culture</td>
</tr>
<tr>
<td>21M.291</td>
<td>Music of India</td>
</tr>
<tr>
<td>21W.788[J]</td>
<td>South Asian America: Transnational Media, Culture, and History</td>
</tr>
<tr>
<td>WGS.226[J]</td>
<td>Science, Caste and Gender in India</td>
</tr>
</tbody>
</table>

Area III: Social Sciences

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.407</td>
<td>Chinese Foreign Policy</td>
</tr>
<tr>
<td>17.433</td>
<td>International Relations of East Asia</td>
</tr>
<tr>
<td>17.486</td>
<td>Japan and East Asian Security</td>
</tr>
<tr>
<td>17.53</td>
<td>The Rise of Asia</td>
</tr>
<tr>
<td>17.537</td>
<td>Politics and Policy in Contemporary Japan</td>
</tr>
<tr>
<td>21A.140[J]</td>
<td>Cultures of East Asia</td>
</tr>
<tr>
<td>21A.141[J]</td>
<td>Images of Asian Women: Dragon Ladies and Lotus Blossoms</td>
</tr>
</tbody>
</table>

Area IV: Historical Studies

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.043[J]</td>
<td>Introduction to Asian American Studies: Historical and Contemporary Issues</td>
</tr>
<tr>
<td>21G.045</td>
<td>Global Chinese Food</td>
</tr>
<tr>
<td>21H.151</td>
<td>Traditional China: Earliest Times to 1644</td>
</tr>
<tr>
<td>21H.152</td>
<td>Modern China: 1644 to the Present</td>
</tr>
<tr>
<td>21H.154</td>
<td>Pre-modern Japan: Earliest Times to 1868</td>
</tr>
<tr>
<td>21H.155</td>
<td>Modern Japan: 1868 to Present</td>
</tr>
<tr>
<td>21H.157</td>
<td>The Making of Modern South Asia</td>
</tr>
<tr>
<td>21H.352[J]</td>
<td>Shanghai and China’s Modernization</td>
</tr>
<tr>
<td>21H.354</td>
<td>World War II in Asia</td>
</tr>
<tr>
<td>21H.357</td>
<td>South Asian Migrations</td>
</tr>
<tr>
<td>21H.358</td>
<td>Colonialism in South Asia and Africa</td>
</tr>
</tbody>
</table>

The language requirement can be satisfied by taking two intermediate (Levels III and IV, or Very Fast Track equivalent) subjects in an Asian language. Students with proficiency at this level are encouraged to take two more advanced language subjects, such as 21G.105 Chinese V (Regular): Discovering Chinese Cultures and Societies and 21G.106 Chinese VI (Regular): Discovering Chinese Cultures and Societies or 21G.505 Japanese V and 21G.506 Japanese VI. Alternatively, they may take two more subjects from Areas II, III, and IV. In cases where the student is specializing in an Asian country where English is one of the official languages, in an English-speaking region of the diaspora, or is a native speaker of an Asian language, the Area I component would be replaced by other subjects in consultation with the program advisor.
21G.590, 21G.591, 21G.592, 21G.593, and 21G.596 are acceptable alternatives for 21G.027[J], 21G.039[J], 21G.064, 21G.065, and 21G.063, respectively. 21G.190, 21G.192, 21G.193, 21G.194, and 21G.195 are acceptable alternatives for 21G.036[J], 21G.046, 21G.030[J], 21G.038, and 21G.044[J], respectively. These 13-unit alternatives include a research project that is conducted in the language of study.

Latin American and Latino Studies

This program is designed for students interested in the language, history, politics, and culture of Latin America and of Hispanics living in the US. Students are encouraged to develop a program that is both international and comparative in perspective and that takes into account the heterogeneous cultural experiences of people living in the vast territory encompassed by the term Latin America, as well as of those people living in the United States who identify themselves as Latino.

As noted in the degree chart (p. 406), the program includes a minimum of eight subjects (96 units) beyond the introductory course (17.55[J] Introduction to Latin American Studies), the pre-thesis tutorial (21.THT), and thesis (21.THU). The eight subjects must include two language subjects in Area I (or equivalent proficiency); the six remaining subjects must be selected from at least two of the three other disciplinary areas (Areas II–IV).

- Area I: Language
- Area II: Humanities and the Arts
- Area III: Social Sciences
- Area IV: Historical Studies

Up to six subjects (72 units) may be used for both the major and the GIRs, but the units from those subjects may not count toward the 180 units required beyond the GIRs. No more than one subject that counts toward the distribution component of the HASS Requirement may also be counted toward the requirements of the Latin American and Latino Studies program. In addition, at least eight of the subjects required for the program cannot count toward any other major or minor.

Subjects in Latin American and Latino Studies are also available from Harvard University and Wellesley College through cross-registration. Students must receive permission from the program advisor prior to registering for a class at another institution.

The list of restricted electives below is not exhaustive. Additional information may be obtained from the advisor for the program, Professor Paloma Duong (pduong@mit.edu), 14N-238, 617-324-5075, or from the Global Studies and Languages Office, 14N-305, 617-253-4771.

Restricted Electives

Area I: Language

Select two subjects in the same language from among the following:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.703</td>
<td>Spanish III</td>
</tr>
<tr>
<td>21G.704</td>
<td>Spanish IV</td>
</tr>
<tr>
<td>21G.711</td>
<td>Advanced Spanish Conversation and Composition: Perspectives on Technology and Culture</td>
</tr>
<tr>
<td>21G.712</td>
<td>Spanish Conversation and Composition</td>
</tr>
<tr>
<td>21G.713</td>
<td>Advanced Communication in Spanish: Topics in Language and Culture</td>
</tr>
<tr>
<td>21G.714</td>
<td>Spanish Language and Culture: Refining Communication Skills</td>
</tr>
<tr>
<td>21G.803</td>
<td>Portuguese III</td>
</tr>
<tr>
<td>21G.804</td>
<td>Portuguese IV</td>
</tr>
</tbody>
</table>

Select seven subjects, including 17.55[J], from at least two of the following disciplinary areas:

Area II: Humanities and the Arts

Subjects taught in English:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.070</td>
<td>Latin America and the Global Sixties: Counterculture and Revolution</td>
</tr>
<tr>
<td>21G.074</td>
<td>Topics in Portuguese Popular Culture</td>
</tr>
<tr>
<td>21L.019</td>
<td>Introduction to European and Latin American Fiction</td>
</tr>
</tbody>
</table>

Subjects taught in Spanish:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.735</td>
<td>Advanced Topics in Hispanic Literature and Film</td>
</tr>
<tr>
<td>21L.616[J]</td>
<td>Introduction to Contemporary Hispanic Literature and Film</td>
</tr>
<tr>
<td>21L.638[J]</td>
<td>Literature and Social Conflict: Perspectives on Modern Spain</td>
</tr>
</tbody>
</table>

Subject taught in Portuguese:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.820</td>
<td>Topics in Modern Portuguese Literature and Culture</td>
</tr>
</tbody>
</table>

Area III: Social Studies

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.55[J]</td>
<td>Introduction to Latin American Studies (Required)</td>
</tr>
</tbody>
</table>

Additional options:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.982</td>
<td>The Ancient Andean World</td>
</tr>
<tr>
<td>3.983</td>
<td>Ancient Mesoamerican Civilization</td>
</tr>
<tr>
<td>17.145</td>
<td>Political Economy of Technology and Development in Latin America</td>
</tr>
<tr>
<td>21A.506</td>
<td>The Business of Politics: A View of Latin America</td>
</tr>
</tbody>
</table>

Area IV: Historical Studies
Latin America: Revolution, Dictatorship, and Democracy, 1850 to Present

Appropriate subjects offered at Harvard or Wellesley

Two language subjects beginning at Levels III and IV, either in Spanish or Portuguese, satisfy the Area I language requirement. MIT offers Levels III and IV of Spanish every semester and offers Level III of Portuguese during IAP and Level IV every spring semester. Students who demonstrate competence beyond Level IV may either take two advanced language subjects (highly recommended) or two more subjects from Areas II, III, and IV.

Two intermediate (Levels III and IV) subjects in the Russian language are required to satisfy Area I. Students with the equivalent proficiency, but who are not native speakers, can either take two advanced language subjects beyond Level IV (highly recommended) or two additional subjects from Areas II, III, or IV. Native speakers may substitute other subjects, with the permission of the program advisor.

Students who are not required to take Area I subjects must take all subjects from Areas II, III, and IV, with at least one subject from each area.

Restricted Electives

Area I: Language

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.613</td>
<td>Russian III (Regular)</td>
</tr>
<tr>
<td>21G.617</td>
<td>Streamlined Russian for Scientists and Engineers</td>
</tr>
<tr>
<td>21G.614</td>
<td>Russian IV (Regular)</td>
</tr>
</tbody>
</table>

Select seven subjects from at least two of the following areas:

Area II: Humanities and the Arts

Appropriate subjects offered at Harvard or Wellesley

Area III: Social Sciences

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.569</td>
<td>Russia’s Foreign Policy: Toward the Post-Soviet States and Beyond</td>
</tr>
</tbody>
</table>

Area IV: Historical Studies

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21H.244</td>
<td>Imperial and Revolutionary Russia: Culture and Politics, 1700-1917</td>
</tr>
</tbody>
</table>

Russian and Eurasian Studies

This program is intended for students seeking an interdisciplinary program of study centered on Russia and Eurasia. The program is regional in spirit, meaning that students can take courses in a wide range of countries of East/Central Europe, the Slavic states, and Central Asia.

As noted in the degree chart (p. 406), the program includes a minimum of nine subjects (108 units) beyond the pre-thesis tutorial (21.THT) and thesis (21.THU). The nine subjects must include two language subjects in Area I (or equivalent proficiency); the seven remaining subjects must be selected from at least two of the three other disciplinary areas (Areas II–IV). At least six subjects must be MIT subjects or subjects taken at Harvard or Wellesley under cross-registration. (Students must receive permission from the program advisor prior to registering for a class at another institution.) The program includes four areas of study:

- Area I: Language
- Area II: Humanities and the Arts
- Area III: Social Sciences
- Area IV: Historical Studies

Up to six subjects (72 units) may be used for both the major and the GIRs, but the units from those subjects may not count toward the 180 units required beyond the GIRs. No more than one subject that counts toward the distribution component of the HASS Requirement may also be counted toward the requirements of the Russian and Eurasian Studies program. In addition, at least eight of the subjects required for the program cannot count toward any other major or minor.

The list of restricted electives below is not exhaustive. Additional information may be obtained from the advisor for the program, Professor Elizabeth Wood (elizwood@mit.edu), E51-282, 617-253-3255, or from the History Office, E51-255, 617-324-5134.

Restricted Electives

Area I: Language

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.613</td>
<td>Russian III (Regular)</td>
</tr>
<tr>
<td>or 21G.617</td>
<td>Streamlined Russian for Scientists and Engineers</td>
</tr>
<tr>
<td>21G.614</td>
<td>Russian IV (Regular)</td>
</tr>
</tbody>
</table>

Select seven subjects from at least two of the following areas:

Area II: Humanities and the Arts

Appropriate subjects offered at Harvard or Wellesley

Area III: Social Sciences

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.569</td>
<td>Russia’s Foreign Policy: Toward the Post-Soviet States and Beyond</td>
</tr>
</tbody>
</table>

Area IV: Historical Studies

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21H.244</td>
<td>Imperial and Revolutionary Russia: Culture and Politics, 1700-1917</td>
</tr>
</tbody>
</table>

1. Two intermediate (Levels III and IV) subjects in the Russian language are required to satisfy Area I. Students with the equivalent proficiency, but who are not native speakers, can either take two advanced language subjects beyond Level IV (highly recommended) or two additional subjects from Areas II, III, or IV. Native speakers may substitute other subjects, with the permission of the program advisor.

2. Students who are not required to take Area I subjects must take all subjects from Areas II, III, and IV, with at least one subject from each area.

3. No subjects in this area are currently offered at MIT.
Women's and Gender Studies

This program offers students an academic framework for the study of women, gender, and sexuality using the analytical tools and methodologies of a variety of disciplines in the humanities, arts, and social sciences. It includes a minimum of seven subjects (84 units) beyond WGS.101 Introduction to Women's and Gender Studies, WGS.301[J] Feminist Thought, the pre-thesis tutorial (21.THT), and thesis (21.THT). However, students may request a two-class substitution for the pre-thesis/thesis requirement.

Up to six subjects (72 units) may be used for both the major and the GIRs, but the units from those subjects may not count toward the 180 units required beyond the GIRs. No more than one subject that counts toward the distribution component of the HASS Requirement may also be counted toward the requirements of the Women's and Gender Studies program. In addition, at least eight of the subjects required for the program cannot count toward any other major or minor.

The list of restricted electives below is not exhaustive. Students interested in this interdisciplinary program should consult with the Women's and Gender Studies program manager, Emily Neill (wgs@mit.edu), Room 14E-316, 617-253-2642, and then arrange a meeting with the current director, Emma Teng.

Restricted Electives

Tier I

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS.101</td>
<td>Introduction to Women's and Gender Studies (Required)</td>
</tr>
</tbody>
</table>

Tier II

Select seven subjects, including at least one from each category below:

Humanities (HASS-H) and Arts (HASS-A) subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS.109</td>
<td>Women and Global Activism in Media and Politics</td>
</tr>
<tr>
<td>WGS.110</td>
<td>Sexual and Gender Identities</td>
</tr>
<tr>
<td>WGS.111[J]</td>
<td>Gender and Media Studies</td>
</tr>
<tr>
<td>WGS.115</td>
<td>Gender and Technology</td>
</tr>
<tr>
<td>WGS.140[J]</td>
<td>Race and Identity in American Literature</td>
</tr>
</tbody>
</table>

One of the Tier II subjects may be taken at Harvard, Wellesley, or Cambridge with the permission of the director.

Social Science (HASS-S) subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS.125[J]</td>
<td>Games and Culture</td>
</tr>
<tr>
<td>WGS.150</td>
<td>Gender, Power, Leadership, and the Workplace</td>
</tr>
<tr>
<td>WGS.151</td>
<td>Gender, Health, and Society</td>
</tr>
<tr>
<td>WGS.170[J]</td>
<td>Identity and Difference</td>
</tr>
<tr>
<td>WGS.172[J]</td>
<td>For Love and Money: Rethinking the Family</td>
</tr>
<tr>
<td>WGS.175[J]</td>
<td>Reproductive Politics and Technologies</td>
</tr>
</tbody>
</table>

One of the Tier II subjects may be taken for credit as a Women's and Gender Studies subject when their content meets WGS criteria. For more information, consult the program office (wgs@mit.edu).

Tier III

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS.301[J]</td>
<td>Feminist Thought (Required)</td>
</tr>
</tbody>
</table>

With the permission of the director, an advanced Women's and Gender Studies subject may be substituted for WGS.301[J].
HUMANITIES AND ENGINEERING

Bachelor of Science in Humanities and Engineering (Course 21E)

This joint degree program (p. 408) draws from both humanistic and engineering studies, providing students with a basic command of each mode of inquiry. One component is selected from the undergraduate degree curriculum of an engineering department (p. 136), which is approved by a faculty member in the field. The other component consists of subjects in a humanities field, chosen by the student in consultation with an advisor from the appropriate humanities faculty. This unique arrangement yields a humanities program of considerable depth while allowing for continued serious commitment to an engineering interest. In most cases, a senior thesis or sequence of advanced seminars is also required.

Available humanities fields include:

• American Studies
• Ancient and Medieval Studies
• Anthropology
• Comparative Media Studies
• Asian and Asian Diaspora Studies
• Global Studies and Languages (in French, German, or Spanish)
• History
• Latin American and Latino Studies
• Literature
• Music
• Russian and Eurasian Studies
• Science, Technology, and Society
• Theater Arts
• Women's and Gender Studies
• Writing (Creative, Digital Media, or Science Writing)

For more information about this degree, contact Liz Friedman (lizf@mit.edu), academic administrator, School of Humanities, Arts, and Social Sciences.

HUMANITIES AND SCIENCE

Bachelor of Science in Humanities and Science (Course 21S)

This joint degree program (p. 411) draws from both humanistic and scientific studies, providing students with a basic command of each mode of inquiry. One component is selected from the undergraduate degree curriculum of a science department (p. 287), which is approved by a faculty member in the field. The other component consists of subjects in a humanities field, chosen by the student in consultation with an advisor from the appropriate humanities faculty. This arrangement yields a humanities program of considerable depth while allowing for continued serious commitment to a scientific interest. In most cases, a senior thesis or sequence of advanced seminars is also required.

Available humanities fields include:

• American Studies
• Ancient and Medieval Studies
• Anthropology
• Comparative Media Studies
• Asian and Asian Diaspora Studies
• Global Studies and Languages (in French, German, or Spanish)
• History
• Latin American and Latino Studies
• Literature
• Music
• Russian and Eurasian Studies
• Science, Technology, and Society
• Theater Arts
• Women's and Gender Studies
• Writing (Creative, Digital Media, or Science Writing)

For more information about this program, contact Liz Friedman (lizf@mit.edu), academic administrator, School of Arts, Humanities, and Social Sciences.

MINORS

The objective of any minor is to provide a depth of understanding and expertise in an area outside of, or complementary to, a student’s major. This depth and expertise must be sufficient to enable the student to: appreciate the complexities and issues that are central to the minor area; and to perform at a minimal working level in the minor area, e.g., sufficient to solve realistic problems and/or to make contributions to the field.

In order to be designated as an interdisciplinary minor at MIT, the content and working skills associated with the program must, in addition, be sufficiently broadly based that they cannot be reasonably addressed by a minor within a single department. Thus, interdisciplinary minors at MIT represent collaborative efforts among distinct academic units, a characteristic that distinguishes them from departmental minors. Interdisciplinary minors may be organized among departments within a School or among departments in different Schools. The interdisciplinary minors offered at MIT are as follows:

• African and African Diaspora Studies (p. 337)
• Ancient and Medieval Studies (p. 338)
MINOR IN AFRICAN AND AFRICAN DIASPORA STUDIES

The Minor in African and African Diaspora Studies is designed for students interested in the cultures and experiences of the peoples of African descent on the continent and elsewhere. The goal of the minor program is to emphasize the importance of Africa and people of African descent in world cultural, economic, and social developments, and to provide a balance between language, humanistic, historical, and contemporary study. The minor includes study of economic and political systems as they reflect the African continent and areas of the African diaspora, and the histories, languages, and literatures of Africans and peoples of African descent elsewhere.

All of Africa falls within the geographical scope of the minor. A student may concentrate on a particular region or on any of the broad groupings of African cultures, such as Arabic-speaking, Anglophone, Francophone, or Lusophone Africa. Equally, a student choosing to focus on the African diaspora may concentrate on any group of African-descended populations in the Americas. Students focusing on either principal area (Africa or the African diaspora) must also take at least one subject which deals with the other area or with interactions between them.

The minor consists of six subjects (at least three of which must be MIT subjects), arranged in four areas of study:

- Area I: Language
- Area II: Humanities and the Arts
- Area III: Social Sciences
- Area IV: Historical Studies

Subjects about Africa and the African diaspora, as well as subjects in indigenous African languages, are also available from Harvard University and Wellesley College through cross-registration. Students must receive permission from the minor advisor prior to registering for a class at another institution.

Five of the six subjects taken for the minor may be counted toward the eight-subject HASS Requirement. Of these five, at most one may count toward the distribution component of the HASS Requirement. Of the six subjects required for the minor, at least four cannot be counted toward a major or another minor.

Area I: Language
Select one of the following:
- 21G.303 French III
- 21G.304 French IV
- 21G.703 Spanish III
- 21G.704 Spanish IV
- 21G.803 Portuguese III
- 21G.804 Portuguese IV

Two intermediate-level subjects in an indigenous African language, or other official language of the region of study.

Select four subjects from at least two of the following areas

Area II: Humanities and the Arts
Select from among the following:
- 21L.007 World Literatures
- 21L.504 Race and Identity in American Literature
- 21M.030 Introduction to World Music
- 21M.226 Jazz
- 21M.293 Music of Africa
- 21W.742 Writing about Race
- 24.912 Black Matters: Introduction to Black Studies
- WGS.142 Narrative and Identity: Writing and Film by Contemporary Women of Color

Area III: Social Sciences
Select from among the following:
- 17.523 Ethnic Conflict in World Politics
- 17.571 African Politics
- 24.908 Creole Languages and Caribbean Identities
- WGS.150 Gender, Power, Leadership, and the Workplace
- WGS.225 The Science of Race, Sex, and Gender

Area IV: Historical Studies
Select from among the following:
- 21H.229 The Black Radical Tradition in America
- 21H.358 Colonialism in South Asia and Africa
24.912(J) Black Matters: Introduction to Black Studies
STS.048 African Americans in Science, Technology, and Medicine
STS.089 Technology and Innovation in Africa

Total Units 72

Students are expected to have two intermediate (Levels III and IV) subjects in either the official language of the region of study or in an indigenous African language. In cases where the student is specializing in Anglophone Africa or an English-speaking region of the diaspora, and does not undertake study of an indigenous language, or is a native speaker of the official language(s) of a country or region of emphasis, this component would be replaced by literature or other humanities subjects.

For students who are not required to take Area I subjects (see footnote 1 above), all six subjects for the minor must be taken from Areas II, III, and IV, with at least one subject from each area.

The subject list above is not exhaustive. Additional information can be obtained from the minor advisor, Professor Sandy Alexandre (alexandy@mit.edu), Room 14N-422, 617-253-4450, or from the Literature Office, 14N-407, 617-253-3581.

MINOR IN ANCIENT AND MEDIEVAL STUDIES

Through a wide variety of subjects drawn from a number of disciplines, this program provides a curricular framework for exploring topics in ancient and medieval studies which range from the history of ideas and institutions to that of material artifacts, literature and certain of the original languages. The chronological span of the program includes some 6,500 years between 5000 B.C. and 1500 A.D.

The goal of this program is to develop knowledge and understanding of the more distant past both for itself, in its uniqueness, and as an object of specifically modern questions and methods of inquiry. The program has an interest in the structure of institutions and social systems, and in relationships between the social order and learned traditions, values, ideologies and ideas. Ancient and medieval studies derive a special claim to our interest from the fact that the record is so full and multiform and that much of it is of exceptionally high quality at once in substance and form.

The minor is designed for students who, in addition to the focus of their major program of study, are seeking a fuller understanding of the forces which shaped the ancient and medieval world. The geographical and chronological scope of the Minor program is broadly conceived and is intended to be comparative. Subjects range in content from Classical Greece and Rome, and the ancient societies of Asia and South America, to medieval Europe and Japan. Students will be required to demonstrate intermediate level language proficiency in either Greek, Latin, or a medieval vernacular, but they need not concentrate their other subjects on the area associated with that language. Students are also expected to have some distribution across the ancient and medieval time periods. We expect that students will consult closely with the minor advisor in order to devise a coherent program of study.

The minor consists of six subjects (at least three of which must be MIT subjects), arranged in four primary areas of study:

- Area I: Language
- Area II: Humanities and the Arts
- Area III: Social Sciences and Materials Sciences
- Area IV: Historical Studies

One subject from a fifth area of study—Methodology—may be included in the minor with the permission of the minor advisor.

Subjects in Ancient and Medieval Studies are also available from Harvard University and Wellesley College through cross-registration. Students must receive permission from the minor advisor prior to registering for a class at another institution.

Five of the six minor subjects may be counted toward the eight-subject Institute HASS Requirement. Of these five, at most one shall count toward satisfaction of the HASS Distribution Requirement. Of the six subjects required for the minor, at least four cannot be counted toward a major or another minor.

Area I: Language

Select one of the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.303</td>
<td>French III</td>
</tr>
<tr>
<td>21G.304</td>
<td>French IV</td>
</tr>
<tr>
<td>21G.403</td>
<td>German III</td>
</tr>
<tr>
<td>21G.404</td>
<td>German IV</td>
</tr>
<tr>
<td>21G.703</td>
<td>Spanish III</td>
</tr>
<tr>
<td>21G.704</td>
<td>Spanish IV</td>
</tr>
</tbody>
</table>

Two intermediate-level subjects in Greek, Latin, Italian, Norse, or Arabic

Select four subjects from at least two of the following areas:

Area II: Humanities and Arts

Select from among the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.605</td>
<td>A Global History of Architecture</td>
</tr>
<tr>
<td>4.614</td>
<td>Architecture in the Islamic World</td>
</tr>
<tr>
<td>4.635</td>
<td>Early Modern Architecture and Art</td>
</tr>
<tr>
<td>21L.001</td>
<td>Foundations of Western Literature: Homer to Dante</td>
</tr>
<tr>
<td>21L.455</td>
<td>Classical Literature</td>
</tr>
<tr>
<td>21L.458</td>
<td>The Bible</td>
</tr>
<tr>
<td>21L.460</td>
<td>Medieval Literature</td>
</tr>
<tr>
<td>21L.611</td>
<td>Latin I (6-unit subject)</td>
</tr>
<tr>
<td>21L.612</td>
<td>Latin II (6-unit subject)</td>
</tr>
<tr>
<td>21M.220</td>
<td>Medieval and Renaissance Music</td>
</tr>
</tbody>
</table>

Area III: Social Sciences and Materials Sciences
The subject list above is not exhaustive. Additional information can be obtained from the minor advisor, Professor Anne McCants (amccants@mit.edu, E51-263, 617-258-6669, or from the History Office, E51-255, 617-253-4965.

MINOR IN APPLIED INTERNATIONAL STUDIES

The Minor in Applied International Studies is designed to help students integrate a practical, applied international experience into a coherent course of study. The minor is built around four key principles:

- Local understanding with a global perspective
- Theory combined with in-the-field experience
- Applied cross-cultural communication skills
- Independent research skills

The result is a comprehensive plan of study that allows students to gain the skills necessary for a productive, sustainable career in the global economy.

The Minor in Applied International Studies consists of six subjects from any program in the School of Humanities, Art, and Social Sciences, including:

- At least two subjects focused on one area of the world, including at least one in the social sciences. Qualifying subjects will be determined with the help of the minor advisor.
- The equivalent of four semesters of college language training related to the student’s geographical specialization. Upper-level language subjects (beyond first-year subjects) may count toward the six-subject total.
- An intensive international experience (MISTI, D-Lab, or other experience for at least two to three months).
- A research seminar in international studies and social science, 17.591 Research Seminar in Applied International Studies. In consultation with the instructor, students pick a topic for extensive independent research and, over the course of the semester, complete a lengthy term paper. Normally students will take this seminar after completing some coursework and their international experience.

Students seeking additional information or wishing to plan their minor should contact Tobie Weiner (iguanatw@mit.edu), E53-483, 617-253-3649, or Professor Ben Schneider (brs@mit.edu), E53-423, 617-253-7207.

Students are required to take two intermediate (Levels III and IV) subjects. Students with the equivalent proficiency, but who are not native speakers, may either take two advanced language subjects or two more subjects from Areas II, III, and IV.

Arabic is required for students proposing a specialty in the medieval Islamic world.

For students who are not required to take Area I subjects (see footnote 1 above), all subjects for the minor must be taken from Areas II, III, and IV, with at least one subject from each area.

With the permission of the minor advisor, one subject may be taken from this area.
MINOR IN ASIAN AND ASIAN DIASPORA STUDIES

The Minor in Asian and Asian Diaspora Studies is designed for students interested in the language, history, politics, and culture of Asia and/or the Asian diasporas. In consultation with the minor advisor, students may focus their coursework on a subregion of Asia, on one of the Asian diasporas, or design their program to offer a comparative study across different regions and/or cultural groups. The goal of the minor program is to provide balanced coverage of language, humanistic and social science offerings on the region, and to expose students to comparative perspectives.

The minor consists of six subjects (at least three of which must be MIT subjects), arranged in four areas of study:

- **Area I: Language**
- **Area II: Humanities and the Arts**
- **Area III: Social Sciences**
- **Area IV: Historical Studies**

Subjects about Asia and the Asian diaspora, as well as subjects in Asian languages, are also available from Harvard University and Wellesley College through cross-registration. Students must receive permission from the minor advisor prior to registering for a class at another institution.

Five of the six subjects taken for the minor may be counted toward the eight-subject HASS Requirement. Of these five, at most one may count toward the distribution component of the HASS Requirement. Of the six subjects required for the minor, at least four cannot be counted toward a major or another minor.

Area I: Language

Select from among the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.103</td>
<td>Chinese III (Regular)</td>
</tr>
<tr>
<td>21G.104</td>
<td>Chinese IV (Regular)</td>
</tr>
<tr>
<td>21G.105</td>
<td>Chinese V (Regular): Discovering Chinese Cultures and Societies</td>
</tr>
<tr>
<td>21G.106</td>
<td>Chinese VI (Regular): Discovering Chinese Cultures and Societies</td>
</tr>
<tr>
<td>21G.109</td>
<td>Chinese III (Streamlined)</td>
</tr>
<tr>
<td>21G.110</td>
<td>Chinese IV (Streamlined)</td>
</tr>
<tr>
<td>21G.113</td>
<td>Chinese V (Streamlined)</td>
</tr>
<tr>
<td>21G.142</td>
<td>Intermediate Chinese I: Very Fast Track (9 units)</td>
</tr>
<tr>
<td>21G.143</td>
<td>Intermediate Chinese II: Very Fast Track</td>
</tr>
<tr>
<td>21G.503</td>
<td>Japanese III</td>
</tr>
<tr>
<td>21G.504</td>
<td>Japanese IV</td>
</tr>
<tr>
<td>21G.505</td>
<td>Japanese V</td>
</tr>
<tr>
<td>21G.506</td>
<td>Japanese VI</td>
</tr>
</tbody>
</table>

Area II: Humanities and the Arts

Select from among the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.011</td>
<td>Topics in Indian Popular Culture</td>
</tr>
<tr>
<td>21G.027(J)</td>
<td>Visualizing Japan in the Modern World</td>
</tr>
<tr>
<td>21G.030(J)</td>
<td>Introduction to East Asian Cultures: From Zen to K-Pop</td>
</tr>
<tr>
<td>21G.036(J)</td>
<td>Advertising and Media: Comparative Perspectives</td>
</tr>
<tr>
<td>21G.038</td>
<td>China in the News: The Untold Stories</td>
</tr>
<tr>
<td>21G.039(J)</td>
<td>Gender and Japanese Popular Culture</td>
</tr>
<tr>
<td>21G.040</td>
<td>A Passage to India: Introduction to Modern Indian Culture and Society</td>
</tr>
<tr>
<td>21G.044(J)</td>
<td>Classics of Chinese Literature in Translation</td>
</tr>
<tr>
<td>21G.046</td>
<td>Modern Chinese Fiction and Cinema</td>
</tr>
<tr>
<td>21G.063</td>
<td>Anime: Transnational Media and Culture</td>
</tr>
<tr>
<td>21G.064</td>
<td>Introduction to Japanese Culture</td>
</tr>
<tr>
<td>21G.065</td>
<td>Japanese Literature and Cinema</td>
</tr>
<tr>
<td>21G.199</td>
<td>Chinese Youths and Web Culture</td>
</tr>
<tr>
<td>21M.291</td>
<td>Music of India</td>
</tr>
<tr>
<td>21W.788(J)</td>
<td>South Asian America: Transnational Media, Culture, and History</td>
</tr>
<tr>
<td>WGS.226(J)</td>
<td>Science, Caste and Gender in India</td>
</tr>
</tbody>
</table>

Area III: Social Sciences

Select from among the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.407</td>
<td>Chinese Foreign Policy</td>
</tr>
<tr>
<td>17.433</td>
<td>International Relations of East Asia</td>
</tr>
<tr>
<td>17.486</td>
<td>Japan and East Asian Security</td>
</tr>
<tr>
<td>17.53</td>
<td>The Rise of Asia</td>
</tr>
<tr>
<td>17.537</td>
<td>Politics and Policy in Contemporary Japan</td>
</tr>
<tr>
<td>21A.140(J)</td>
<td>Cultures of East Asia</td>
</tr>
<tr>
<td>21A.141(J)</td>
<td>Images of Asian Women: Dragon Ladies and Lotus Blossoms</td>
</tr>
</tbody>
</table>

Area IV: Historical Studies

Select from among the following:
MINOR IN ASIAN AMERICAN STUDIES

The language requirement can be satisfied by taking two intermediate (Levels III and IV, or Very Fast Track equivalent) subjects in an Asian language. Students with proficiency at this level are encouraged to take two more advanced language subjects, such as 21G.105 Chinese V (Regular): Discovering Chinese Cultures and Societies and 21G.106 Chinese VI (Regular): Discovering Chinese Cultures and Societies or 21G.505 Japanese V and 21G.506 Japanese VI. Alternatively, they may take two more subjects from Areas II, III, and IV. In cases where the student is specializing in an Asian country where English is one of the official languages, in an English-speaking region of the diaspora, or is a native speaker of an Asian language, the Area I component would be replaced by other subjects in consultation with the minor advisor.

21G.043[J] Introduction to Asian American Studies: Historical and Contemporary Issues
21G.045 Global Chinese Food
21H.151 Traditional China: Earliest Times to 1644
21H.152 Modern China: 1644 to the Present
21H.154 Pre-modern Japan: Earliest Times to 1868
21H.155 Modern Japan: 1868 to Present
21H.157 The Making of Modern South Asia
21H.351[J] Shanghai and China’s Modernization
21H.354 World War II in Asia
21H.357 South Asian Migrations
21H.358 Colonialism in South Asia and Africa

Total Units: 69-72

MINOR IN ASTRONOMY

The Minor in Astronomy, offered jointly by the Department of Earth, Atmospheric, and Planetary Sciences (p. 307) and the Department of Physics (p. 320), covers the observational and theoretical foundations of astronomy. The minor requires seven subjects as follows:

Astronomy, Mathematics, and Physics
8.03 Physics III 12
8.282[J] Introduction to Astronomy 9
18.03 Differential Equations 1 12

Astrophysics
8.284 Modern Astrophysics 12
or 8.286 The Early Universe

Planetary Astronomy
Select one of the following: 12
12.008 Classical Mechanics: A Computational Approach
12.400 The Solar System
12.420 Physics and Chemistry of the Solar System

Instrumentation and Observations
Select one of the following: 12-18
12.410[J] Observational Techniques of Optical Astronomy
12.431[J] Space Systems Development

Independent Project in Astronomy
Select one of the following: 9-12
8.UR Undergraduate Research
or 12.UR Undergraduate Research
8.THU Undergraduate Physics Thesis
or 12.THU Undergraduate Thesis
12.411 Astronomy Field Camp

Total Units: 78-87

1 18.034 Differential Equations is also an acceptable alternative.

A minimum of four subjects taken for the astronomy minor cannot also count toward a major or another minor. Further information on the minor may be obtained from Professor Paul Schechter (schech@mit.edu), 37-664G, 617-253-0690.

The subject list above is not exhaustive. Additional information can be obtained from the minor advisor, Professor Emma Teng (eteng@mit.edu), 14N-421, 617-253-4536, or from the Global Studies and Languages Office (https://mitgsl.mit.edu), 14N-305, 617-253-4771.
MINOR IN ATMOSPHERIC CHEMISTRY

Atmospheric Chemistry is an interdisciplinary field that blends fundamental science with engineering and policy. It is a domain that is growing in scope, complexity, and demand as society grapples with burgeoning global, regional, and local challenges, including those in energy and public health. The minor is offered by the Departments of Earth, Atmospheric, and Planetary Sciences (p. 307), Civil and Environmental Engineering (p. 170), Chemistry (p. 302), and Aeronautics and Astronautics (p. 141), and the Institute for Data, Systems, and Society (p. 178). The minor requires five subjects. The core of the minor consists of three required subjects spanning thermodynamics and kinetics, atmospheric and ocean dynamics, air pollution, and atmospheric physics and chemistry, complemented by (at least) one subject in observations/applications, and one subject in the links of atmospheric chemistry to policy.

Chemistry, Dynamics, and the Atmosphere

Required Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.085[J]</td>
<td>Air Pollution</td>
<td>12</td>
</tr>
<tr>
<td>or 12.306</td>
<td>Atmospheric Physics and Chemistry</td>
<td></td>
</tr>
<tr>
<td>5.60</td>
<td>Thermodynamics and Kinetics</td>
<td>12</td>
</tr>
<tr>
<td>12.003</td>
<td>Introduction to Atmosphere, Ocean, and Climate Dynamics</td>
<td>12</td>
</tr>
</tbody>
</table>

Observations/Applications

Select one of the following: 12

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.080A & 1.080B</td>
<td>Environmental Chemistry I and Environmental Chemistry II</td>
<td>12</td>
</tr>
<tr>
<td>12.310 & 12.IND</td>
<td>An Introduction to Weather and Independent Study</td>
<td>12</td>
</tr>
<tr>
<td>12.335</td>
<td>Experimental Atmospheric Chemistry</td>
<td></td>
</tr>
<tr>
<td>12.338</td>
<td>Aerosol and Cloud Microphysics and Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

Linkages of Atmospheric Chemistry to Policy

Select one of the following: 9-12

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.340</td>
<td>Global Warming Science</td>
<td>12</td>
</tr>
<tr>
<td>12.346[J]</td>
<td>Global Environmental Science and Negotiations</td>
<td></td>
</tr>
<tr>
<td>12.385</td>
<td>Science, Politics, and Environmental Policy</td>
<td></td>
</tr>
</tbody>
</table>

Total Units 57-60

A minimum of four subjects taken for the atmospheric chemistry minor cannot also count toward a major or another minor.

Further information on the minor may be obtained from Professor Susan Solomon (solas@mit.edu), or from Dr. Vicki McKenna (vsm@mit.edu), EAPS education director, 54-910, 617-253-3380.

MINOR IN BIOMEDICAL ENGINEERING

The Biomedical Engineering Minor (BME) Program is open to all students who are not majoring in Course 20, Biological Engineering. This program requires a total of eight subjects selected from a series of categories as outlined below.

Mathematics / Statistics / Probability Core

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.016</td>
<td>Mathematical Methods for Materials Scientists and Engineers</td>
<td>12</td>
</tr>
<tr>
<td>or 18.03</td>
<td>Differential Equations</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following: 12

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.010</td>
<td>Uncertainty in Engineering</td>
<td></td>
</tr>
<tr>
<td>2.086</td>
<td>Numerical Computation for Mechanical Engineers</td>
<td></td>
</tr>
<tr>
<td>6.041</td>
<td>Probabilistic Systems Analysis</td>
<td></td>
</tr>
<tr>
<td>18.05</td>
<td>Introduction to Probability and Statistics</td>
<td></td>
</tr>
</tbody>
</table>

Science Core

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.07[J]</td>
<td>Biological Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>or 7.05</td>
<td>General Biochemistry</td>
<td></td>
</tr>
</tbody>
</table>

Biology and Engineering Baseline

Select one subject from each of the following areas:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.02[J]</td>
<td>Introduction to Experimental Biology and Communication (18 units)</td>
<td>12</td>
</tr>
<tr>
<td>7.03</td>
<td>Genetics</td>
<td></td>
</tr>
<tr>
<td>7.06</td>
<td>Cell Biology</td>
<td></td>
</tr>
</tbody>
</table>

Engineering

Select one introductory-level engineering-focused class from Courses 1, 2, 3, 6, 10, 16, or 22

Biomedical Engineering and Applications

Select one of the following options: 36

Option 1 - Select one subject from each of the following three areas:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.110[J]</td>
<td>Thermodynamics of Biomolecular Systems</td>
<td></td>
</tr>
<tr>
<td>or 20.111[J]</td>
<td>Physical Chemistry of Biomolecular Systems</td>
<td></td>
</tr>
<tr>
<td>Principles of Biomedical Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.310[J]</td>
<td>Molecular, Cellular, and Tissue Biomechanics</td>
<td></td>
</tr>
<tr>
<td>20.320</td>
<td>Analysis of Biomolecular and Cellular Systems</td>
<td></td>
</tr>
<tr>
<td>Biomedical Engineering Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.371[J]</td>
<td>Quantitative Systems Physiology</td>
<td></td>
</tr>
</tbody>
</table>
MINOR IN ENERGY STUDIES

Energy is a fundamentally multidisciplinary topic. Transforming the world’s energy systems requires combining expertise from numerous fields in engineering and technology, natural and social science, and policy. A diversity of disciplinary perspectives is necessary to equip students to work in this complex, evolving field.

The Energy Studies Minor for undergraduates is an Institute-wide program that complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges. The minor curriculum integrates these three domains in a thoroughly multidisciplinary program. A faculty oversight committee including representatives from all five Schools oversees the Energy Studies Minor program.

The Energy Studies curriculum has two components. The first is a core that provides an integrated perspective on energy and associated environmental challenges in three domains, each with a primary focus: Science Foundations (fundamental laws and principles that govern energy sources, conversion, and uses), Social Science Foundations (social scientific perspectives and tools that explain human behavior in the energy context), and Technology/Engineering in Context (the application of laws and principles to a specific energy context). The second component is a customized program of electives that is selected by each student in close consultation with his or her Energy Studies Minor faculty advisor.

CORE CURRICULUM

Science Foundations

<table>
<thead>
<tr>
<th>Option 1</th>
<th>12-24</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.21</td>
<td>Physics of Energy</td>
</tr>
</tbody>
</table>

Option 2 - Select two subjects from one of the following groups:

Group A

- 6.007 Electromagnetic Energy: From Motors to Solar Cells
- 2.005 Thermal-Fluids Engineering I
- or 3.012 Fundamentals of Materials Science and Engineering

Group B

- 12.021 Earth Science, Energy, and the Environment
- or 12.340 Global Warming Science

Social Science Foundations

<table>
<thead>
<tr>
<th>24-36</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.01</td>
</tr>
<tr>
<td>15.0111</td>
</tr>
</tbody>
</table>

Select one of the following options:

Option 1

Option 2 - Select one subject from each of the following groups:

Group A

- 14.42 Environmental Policy and Economics

Group B

- 1.801[J] Environmental Law, Policy, and Economics: Pollution Prevention and Control
- 11.162 Politics of Energy and the Environment
- 22.04[J] Social Problems of Nuclear Energy

Technology/Engineering in Context

<table>
<thead>
<tr>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.60[J]</td>
</tr>
<tr>
<td>22.081[J]</td>
</tr>
</tbody>
</table>

ELECTIVES

| 24 |
Select 24 units from the following: ¹,²

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.071[J]</td>
<td>Global Change Science</td>
</tr>
<tr>
<td>2.006</td>
<td>Thermal-Fluids Engineering II</td>
</tr>
<tr>
<td>2.612</td>
<td>Marine Power and Propulsion</td>
</tr>
<tr>
<td>2.627</td>
<td>Fundamentals of Photovoltaics</td>
</tr>
<tr>
<td>2.813</td>
<td>Energy, Materials, and Manufacturing</td>
</tr>
<tr>
<td>3.003</td>
<td>Principles of Engineering Practice (9 units)</td>
</tr>
<tr>
<td>3.004</td>
<td>Principles of Engineering Practice</td>
</tr>
<tr>
<td>3.18</td>
<td>Materials Science and Engineering of Clean Energy</td>
</tr>
<tr>
<td>4.401</td>
<td>Environmental Technologies in Buildings</td>
</tr>
<tr>
<td>6.061</td>
<td>Introduction to Electric Power Systems</td>
</tr>
<tr>
<td>6.131</td>
<td>Power Electronics Laboratory</td>
</tr>
<tr>
<td>6.701</td>
<td>Introduction to Nanoelectronics</td>
</tr>
<tr>
<td>8.044</td>
<td>Statistical Physics I</td>
</tr>
<tr>
<td>10.04[J]</td>
<td>A Philosophical History of Energy</td>
</tr>
<tr>
<td>10.213</td>
<td>Chemical and Biological Engineering Thermodynamics</td>
</tr>
<tr>
<td>10.27</td>
<td>Energy Engineering Projects Laboratory (15 units)</td>
</tr>
<tr>
<td>10.426</td>
<td>Electrochemical Energy Systems</td>
</tr>
<tr>
<td>11.142</td>
<td>Geography of the Global Economy</td>
</tr>
<tr>
<td>11.165</td>
<td>Energy and Infrastructure Technologies</td>
</tr>
<tr>
<td>12.213</td>
<td>Alternate Energy Sources (6 units)</td>
</tr>
<tr>
<td>12.346[J]</td>
<td>Global Environmental Science and Negotiations</td>
</tr>
<tr>
<td>22.033</td>
<td>Nuclear Systems Design Project</td>
</tr>
<tr>
<td>22.06</td>
<td>Engineering of Nuclear Systems</td>
</tr>
<tr>
<td>EC.711[J]</td>
<td>D-Lab: Energy</td>
</tr>
<tr>
<td>STS.032</td>
<td>Energy, Environment, and Society</td>
</tr>
</tbody>
</table>

Total Units 72-96

¹ See the Energy Studies Minor website (http://mitei.mit.edu/education/energy-minor) for potential elective and core subject substitutions or additions.

² All subjects are 12-unit subjects unless otherwise noted.

Students who take more than the required subjects from any of the core curriculum subject lists may count the additional coursework toward the elective requirement. Contact Ann Greaney-Williams (agreaney@mit.edu), academic coordinator, MIT Energy Initiative Education Office, Room E19-370D, 617-324-7236, or visit the Energy Studies Minor website (http://mitei.mit.edu/education/energy-minor) for more information.

MINOR IN LATIN AMERICAN AND LATINO STUDIES

The Minor in Latin American and Latino Studies is designed for students interested in the languages, history, politics, and cultures of Latin America and in its presence in the United States. Students are encouraged to develop a program that is both international and comparative in perspective, and that takes into account the heterogeneous cultural experiences of people living in the vast territory encompassed by the term Latin America, as well as of those living in the United States who identify themselves as Latino.

The minor consists of six subjects (at least three of which must be MIT subjects, including required subject 17.55[J] Introduction to Latin American Studies), arranged in four areas of study:

- **Area I: Language**
- **Area II: Humanities and the Arts**
- **Area III: Social Sciences**
- **Area IV: Historical Studies**

Subjects in Latin American and Latino Studies are also available from Harvard University and Wellesley College through cross-registration. Students must receive permission from the minor advisor prior to registering for a class at another institution.

Five of the six subjects taken for the minor may be counted toward the eight-subject HASS Requirement. Of these five, at most one may count toward the distribution component of the HASS Requirement. Of the six subjects required for the minor, at least four cannot be counted toward a major or another minor.

Area I: Language¹

Select from among the following: ²

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.703</td>
<td>Spanish III ²</td>
</tr>
<tr>
<td>21G.704</td>
<td>Spanish IV ³</td>
</tr>
<tr>
<td>21G.711</td>
<td>Advanced Spanish Conversation and Composition: Perspectives on Technology and Culture</td>
</tr>
<tr>
<td>21G.712</td>
<td>Spanish Conversation and Composition ⁴</td>
</tr>
<tr>
<td>21G.713</td>
<td>Advanced Communication in Spanish: Topics in Language and Culture</td>
</tr>
<tr>
<td>21G.714</td>
<td>Spanish Language and Culture: Refining Communication Skills</td>
</tr>
<tr>
<td>21G.803</td>
<td>Portuguese III</td>
</tr>
<tr>
<td>21G.804</td>
<td>Portuguese IV</td>
</tr>
</tbody>
</table>

Select four subjects, including 17.55[J], from at least two of the following areas: ⁵,⁶

² See the Energy Studies Minor website (http://mitei.mit.edu/education/energy-minor) for potential elective and core subject substitutions or additions.

³ All subjects are 12-unit subjects unless otherwise noted.
Area II: Humanities and the Arts

Subjects taught in English:

- 21G.070 Latin America and the Global Sixties: Counterculture and Revolution
- 21G.074 Topics in Portuguese Popular Culture
- 21L.019 Introduction to European and Latin American Fiction

Subjects taught in Spanish:

- 21G.735 Advanced Topics in Hispanic Literature and Film
- 21L.616 Introduction to European and Latin American Fiction
- 21L.638 Literature and Social Conflict: Perspectives on Modern Spain
- 21L.639 Globalization and Discontents: Spanish-speaking Nations
- 21L.640 The New Spain: 1977-Present

Subjects taught in Portuguese:

- 21G.820 Topics in Modern Portuguese Literature and Culture

Area III: Social Studies

- 17.55 Introduction to Latin American Studies (Required)

Additional options:

- 3.982 The Ancient Andean World
- 3.983 Ancient Mesoamerican Civilization
- 17.145 Political Economy of Technology and Development in Latin America
- 21A.506 The Business of Politics: A View of Latin America

Area IV: Historical Studies

Select from among the following:

- 21H.171 Latin America: Revolution, Dictatorship, and Democracy, 1850 to Present

Appropriate subjects offered at Harvard or Wellesley

Total Units 72

2 Two language subjects beginning at Levels III and IV, either in Spanish or Portuguese, satisfy the Area I language requirement. MIT offers Levels III and IV of Spanish every semester and offers Level III of Portuguese during IAP and Level IV every spring semester. Students who demonstrate competence beyond Level IV may either take two advanced language subjects (highly recommended) or two more subjects from Areas II, III, and IV.

3 21G.773 Spanish III - Globalization may be substituted for 216.703.

4 21G.774 Spanish IV - Globalization may be substituted for 216.704.

5 For students who are not required to take Area I subjects and opt not to take advanced language subjects (see footnote 1 above), all six subjects for the minor must be taken from Areas II, III, and IV, with at least one subject from each area.

6 Students may not take more than one subject focused on the Iberian Peninsula.

The subject list above is not exhaustive. Additional information can be obtained from the minor advisor, Paloma Duong (gsl-www@mit.edu), 14N-238, 617-253-4771, or from the Global Studies and Languages Office (https://mitgsl.mit.edu), 14N-305, 617-253-4771.

MINOR IN MIDDLE EASTERN STUDIES

Middle Eastern Studies at MIT offers students the opportunity to explore the connections among culture, society, politics, economics, technology, and environment in the Middle East, including North Africa. MIT offers a number of subjects open to undergraduates that provide a variety of perspectives on the ancient, Islamic, and modern Middle East. The goal of the HASS Minor Program in Middle Eastern Studies is to lead the student from the basic language into survey subjects and then into more focused studies of individual countries or specific historical periods, and to encourage analysis of the main methodological and conceptual issues in Middle Eastern Studies.

The minor consists of six subjects (at least three of which must be MIT subjects), arranged in four areas of study:

- Area I: Language
- Area II: Humanities and the Arts
- Area III: Social Sciences
- Area IV: Historical Studies

Subjects in Middle Eastern Studies are also available from Harvard University and Wellesley College through cross-registration. Students must receive permission from the minor advisor prior to registering for a class at another institution.

Five of the six subjects taken for the minor may be counted toward the eight-subject HASS Requirement. Of these five, at most one may count toward the distribution component of the HASS Requirement. Of the six subjects required for the minor, at least four cannot be counted toward a major or another minor.

Area I: Language

Two intermediate (Levels III and IV) subjects in one of the following Middle Eastern languages are required:

Arabic, Hebrew, Persian, Turkish.

Select four subjects from at least two of the following areas:

Area II: Humanities and the Arts

Select from among the following:
MINOR IN PUBLIC POLICY

Some of the most far-reaching decisions about science, technology, and enterprise are made in the public policy arena. The interdisciplinary Public Policy Minor enables students from across MIT to develop their understanding of public problems and how governments attempt to address them, with emphasis on the process and outcomes of policymaking.

Because the Bachelor of Science in Planning has a strong public policy element and several subjects in the Minor in Public Policy are redundant for Course 11 majors, those students are not eligible for this minor.

The six-subject minor is a three-tiered program. The first tier is a foundation built on the study of the institutions in which public policy decisions are made and implemented. All students take two subjects that introduce them to justifications for government action—justifications that form the fundamental basis for making public policy. The second tier is the study of the methods for assessing the impacts of policy change on policy outcomes. The purpose is to provide students with a basic understanding of the range of approaches professionals use to evaluate public policies. The third tier is an in-depth study of policymaking in one substantive field. All minors specialize in an area of public policy, such as science and technology policy, and take three subjects within that specialty. Students may also do an internship to fulfill one part of the three-subject requirement.

<table>
<thead>
<tr>
<th>Tier I</th>
<th>Introduction to Markets, Politics, and Public Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required subjects:</td>
<td></td>
</tr>
<tr>
<td>14.01</td>
<td>Principles of Microeconomics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier II</th>
<th>Policy Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required subject:</td>
<td></td>
</tr>
<tr>
<td>11.003[J]</td>
<td>Methods of Policy Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier III</th>
<th>Policy Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select three subjects in one of the following tracks:</td>
<td>36</td>
</tr>
<tr>
<td>Social and Educational Policy</td>
<td></td>
</tr>
<tr>
<td>Environmental Policy</td>
<td></td>
</tr>
<tr>
<td>Infrastructure Policy</td>
<td></td>
</tr>
<tr>
<td>Science and Technology Policy</td>
<td></td>
</tr>
<tr>
<td>Labor and Industrial Policy</td>
<td></td>
</tr>
<tr>
<td>International Development Policy</td>
<td></td>
</tr>
<tr>
<td>Security and Defense Policy</td>
<td></td>
</tr>
<tr>
<td>Urban and Regional Policy</td>
<td></td>
</tr>
</tbody>
</table>

Total Units 72

The subject list above is not exhaustive. Additional information can be obtained from the minor advisor, Professor Philip S. Khoury (khoury@mit.edu), Room 10-280, 617-253-0887, or from the History Office, E51-255, 617-253-4965.

MINOR IN PUBLIC POLICY

4.610	Civic Architecture in Islamic History
4.614	Architecture in the Islamic World
4.619	Historiography of Islamic Architecture
4.621	Orientalism and Representation
4.617	Issues in Islamic Urbanism

Area III: Humanities and the Arts

Select from among the following:

3.993	Archaeology of the Middle East
17.405	Seminar on Politics and Conflicts in the Middle East
17.565	Israel: History, Politics, Culture, and Identity
21H.260	Cities in the Middle East: History, Politics and Society
WGS.221	Women in the Developing World

Area IV: Historical Studies

Select from among the following:

21H.160	Islam, the Middle East, and the West
21H.161	The Middle East in the Twentieth Century
21H.262	Palestine and the Arab-Israeli Conflict
21H.365	Co-Existence and Conflict in the Middle East
WGS.220	Women and Gender in the Middle East and North Africa

Total Units 72

2 The advisor may also approve other Middle Eastern languages, such as Armenian, Greek, or Kurdish. Because MIT does not offer instruction in these languages, students may satisfy the Area I language requirement at Harvard University or Wellesley College. They may also satisfy the language requirement at other institutions, provided they receive permission in advance from the minor advisor. Students who can demonstrate competence beyond the intermediate level may either take two more advanced language subjects (highly recommended) or two more subjects from Areas II, III, and IV.

For students who are not required to take Area I subjects and opt not to take advanced language subjects (see footnote 1 above), all six subjects for the minor must be taken from Areas II, III, and IV, with at least one subject from each area.

The subject list above is not exhaustive. Additional information can be obtained from the minor advisor, Professor Philip S. Khoury (khoury@mit.edu), Room 10-280, 617-253-0887, or from the History Office, E51-255, 617-253-4965.
MINOR IN RUSSIAN AND EURASIAN STUDIES

The Minor in Russian and Eurasian Studies is intended for students seeking an interdisciplinary program of study centered on Russia and Eurasia. The program is regional in spirit, meaning that students can take subjects about a wide range of countries of Eastern/Central Europe, the Slavic states, and Central Asia.

The minor consists of six subjects (at least three of which must be MIT subjects or subjects taken at Harvard University or Wellesley College through cross-registration), arranged in four areas of study:

- Area I: Language
- Area II: Humanities and the Arts
- Area III: Social Sciences
- Area IV: Historical Studies

Students must receive permission from the minor advisor prior to registering for a class at another institution.

Five of the six subjects taken for the minor may be counted toward the eight-subject HASS Requirement. Of these five, at most one may count toward the distribution component of the HASS Requirement. Of the six subjects required for the minor, at least four cannot be counted toward a major or another minor.

Area I: Language

Select from among the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.613</td>
<td>Russian III (Regular)</td>
</tr>
<tr>
<td>21G.617</td>
<td>Streamlined Russian for Scientists and Engineers</td>
</tr>
<tr>
<td>21G.614</td>
<td>Russian IV (Regular)</td>
</tr>
</tbody>
</table>

Select four subjects from at least two of the following areas:

Area II: Humanities and the Arts

Appropriate subjects offered at Harvard or Wellesley

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS.101</td>
<td>Introduction to Women’s and Gender Studies</td>
</tr>
</tbody>
</table>

Area III: Social Sciences

Select from among the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.569</td>
<td>Russia’s Foreign Policy: Toward the Post-Soviet States and Beyond</td>
</tr>
</tbody>
</table>

Area IV: Historical Studies

Select from among the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21H.244</td>
<td>Imperial and Revolutionary Russia: Culture and Politics, 1700-1917</td>
</tr>
</tbody>
</table>

Total Units: 72

MINOR IN WOMEN’S AND GENDER STUDIES

The interdisciplinary Women’s and Gender Studies Minor offers students an academic framework for the study of women, gender, and sexuality using the analytical tools and methodologies of a variety of disciplines in the humanities, arts, and social sciences. The minor program consists of six Women’s and Gender Studies subjects, arranged into three levels of study as follows:

Tier I

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS.101</td>
<td>Introduction to Women’s and Gender Studies</td>
</tr>
</tbody>
</table>

Tier II

Select four subjects, including at least one from each category below:

Humanities (HASS-H) and Arts (HASS-A) subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS.109</td>
<td>Women and Global Activism in Media and Politics</td>
</tr>
<tr>
<td>WGS.110</td>
<td>Sexual and Gender Identities</td>
</tr>
<tr>
<td>WGS.111[J]</td>
<td>Gender and Media Studies</td>
</tr>
<tr>
<td>WGS.115</td>
<td>Gender and Technology</td>
</tr>
<tr>
<td>WGS.140[J]</td>
<td>Race and Identity in American Literature</td>
</tr>
</tbody>
</table>

Tier III

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS.101</td>
<td>Introduction to Women’s and Gender Studies</td>
</tr>
</tbody>
</table>

Total Units: 48

1. Two intermediate (Levels III and IV) subjects in the Russian language are required to satisfy Area I. Students with the equivalent proficiency, but who are not native speakers, can take two advanced language subjects beyond Level IV (highly recommended) or two additional subjects from Areas II, III, or IV. Native speakers may substitute other subjects, with the permission of the minor advisor.

2. Students who are not required to take Area I subjects must take all six subjects for the minor from Areas II, III, and IV, with at least one subject from each area.

3. No subjects in this area are currently offered at MIT.
MINOR IN WOMEN’S AND GENDER STUDIES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS.141[J]</td>
<td>International Women's Voices</td>
</tr>
<tr>
<td>WGS.142</td>
<td>Narrative and Identity: Writing and Film by Contemporary Women of Color</td>
</tr>
<tr>
<td>WGS.154[J]</td>
<td>Gender and Japanese Popular Culture</td>
</tr>
<tr>
<td>WGS.161[J]</td>
<td>Gender and the Law in US History</td>
</tr>
<tr>
<td>WGS.190[J]</td>
<td>Black Matters: Introduction to Black Studies</td>
</tr>
<tr>
<td>WGS.220</td>
<td>Women and Gender in the Middle East and North Africa</td>
</tr>
<tr>
<td>WGS.226[J]</td>
<td>Science, Caste and Gender in India</td>
</tr>
<tr>
<td>WGS.231[J]</td>
<td>Writing about Race</td>
</tr>
<tr>
<td>WGS.233[J]</td>
<td>New Culture of Gender: Queer France</td>
</tr>
<tr>
<td>WGS.234[J]</td>
<td>The Invention of French Theory: A History of Transatlantic Intellectual Life since 1945</td>
</tr>
<tr>
<td>WGS.235[J]</td>
<td>Classics of Chinese Literature in Translation</td>
</tr>
<tr>
<td>WGS.236[J]</td>
<td>Introduction to East Asian Cultures: From Zen to K-Pop</td>
</tr>
<tr>
<td>WGS.240[J]</td>
<td>Jane Austen</td>
</tr>
</tbody>
</table>

Social Science (HASS-S) subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS.125[J]</td>
<td>Games and Culture</td>
</tr>
<tr>
<td>WGS.150</td>
<td>Gender, Power, Leadership, and the Workplace</td>
</tr>
<tr>
<td>WGS.151</td>
<td>Gender, Health, and Society</td>
</tr>
<tr>
<td>WGS.170[J]</td>
<td>Identity and Difference</td>
</tr>
<tr>
<td>WGS.172[J]</td>
<td>For Love and Money: Rethinking the Family</td>
</tr>
<tr>
<td>WGS.175[J]</td>
<td>Reproductive Politics and Technologies</td>
</tr>
<tr>
<td>WGS.221</td>
<td>Women in the Developing World</td>
</tr>
<tr>
<td>WGS.222[J]</td>
<td>Women and War</td>
</tr>
<tr>
<td>WGS.225[J]</td>
<td>The Science of Race, Sex, and Gender</td>
</tr>
<tr>
<td>WGS.228</td>
<td>Psychology of Gender and Race</td>
</tr>
<tr>
<td>WGS.270[J]</td>
<td>Violence, Human Rights, and Justice</td>
</tr>
<tr>
<td>WGS.271[J]</td>
<td>Dilemmas in Biomedical Ethics: Playing God or Doing Good?</td>
</tr>
<tr>
<td>WGS.272[J]</td>
<td>Slavery and Human Trafficking in the 21st Century</td>
</tr>
<tr>
<td>WGS.274[J]</td>
<td>Images of Asian Women: Dragon Ladies and Lotus Blossoms</td>
</tr>
<tr>
<td>WGS.276[J]</td>
<td>Cultures of Computing</td>
</tr>
</tbody>
</table>

Tier III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS.301[J]</td>
<td>Feminist Thought</td>
</tr>
</tbody>
</table>

Total Units: 72

1. One of the Tier II subjects may be taken at Harvard, Wellesley, or Cambridge with the permission of the director.
2. Subjects 21L.430, 21L.460, 21L.512, 21L.701, 21L.702, 21L.704, 21L.705, 21L.707, 21L.715, and 21W.745 may be taken for credit as a Women’s and Gender Studies subject when their content meets WGS criteria. For more information, consult the program office (wgs@mit.edu).
3. With the permission of the director, an advanced Women’s and Gender Studies subject may be substituted for WGS.301[J].

For more information, contact the program manager, Emily Neill (wgs@mit.edu), Women’s and Gender Studies, Room 14E-316, 617-253-2642, or visit the WGS website (https://wgs.mit.edu).
INTERDISCIPLINARY GRADUATE PROGRAMS

At MIT, students and faculty from different fields work together in a variety of collaborative programs that extend beyond departmental or school boundaries. The programs listed in this section offer a number of interdisciplinary graduate degrees.

- Computation for Design and Optimization (p. 350)
- Computational and Systems Biology (p. 350)
- Computational Science and Engineering (p. 352)
- Computer Science and Molecular Biology (p. 353)
- Harvard-MIT Health Sciences and Technology (p. 354)
- Integrated Design and Management (p. 352)
- Joint Program with Woods Hole Oceanographic Institution (p. 354)
- Leaders for Global Operations (p. 355)
- Microbiology (p. 356)
- Operations Research (p. 357)
- Polymers and Soft Matter (p. 358)
- Supply Chain Management (p. 358)
- System Design and Management (p. 352)
- Technology and Policy (p. 359)
- Transportation (p. 359)

Interdisciplinary Graduate Degrees

Computation for Design and Optimization
- **SM** Computation for Design and Optimization

Computational and Systems Biology (CSB)
- **PhD** Computational and Systems Biology

Computational Science and Engineering
- **PhD** Computational Science and Engineering

Computer Science and Molecular Biology (Course 6-7)
- **MEng** Computer Science and Molecular Biology

Design and Management (Integrated Design and Management & System Design and Management)
- **SM** Engineering and Management

Health Sciences and Technology (HST)
- **SM** Health Sciences and Technology
- **MD** Medical Sciences (degree from Harvard Medical School)
- **ScD, PhD** Health Sciences and Technology
- **ScD, PhD** Health Sciences and Technology—Bioastronautics

Oceanography and Applied Ocean Science and Engineering
- **SM** Oceanographic Engineering
- **ScD, PhD** Applied Ocean Science and Engineering
- **ScD, PhD** Biological Oceanography
- **ScD, PhD** Chemical Oceanography
- **ScD, PhD** Marine Geology and Geophysics
- **ScD, PhD** Physical Oceanography

Leaders for Global Operations
- **SM/MBA** Engineering/Management

Microbiology
- **PhD** Microbiology

Operations Research
- **SM** Operations Research
- **PhD** Operations Research

Polymers and Soft Matter
- **PhD** Polymers and Soft Matter

Supply Chain Management
- **MEng** Logistics

Technology and Policy
- **SM** Technology and Policy

Transportation
- **SM** Transportation
- **PhD** Transportation

1 See Interdisciplinary Programs (p. 327).
2 Some departments make it possible for a doctoral student to pursue a simultaneous master’s degree.
3 With the exception of engineering, the SM is only available as an interim degree for doctoral candidates or for those who leave the program before the completion of the doctoral degree.
COMPUTATION FOR DESIGN AND OPTIMIZATION

Computation for Design and Optimization (CDO) is an interdisciplinary master’s degree program that provides students with a strong foundation in computational methods for the study, design, and operation of complex engineered and scientific systems. The CDO program is administered by the Center for Computational Engineering (p. 86).

The CDO program educates students in the formulation, analysis, implementation, and application of computational approaches for applications in science and engineering. The curriculum’s common core serves all science and engineering disciplines, while an elective component focuses on particular applications. The program emphasizes:

• Breadth through introductory courses in numerical analysis and simulation, and optimization
• Depth in optimization methods and numerical methods for partial differential equations
• Multidisciplinary aspects of computation
• Hands-on experience through projects, assignments, and a master’s thesis

Participating faculty come from the Schools of Engineering, Science, and Management, including the Departments of Aeronautics and Astronautics, Biological Engineering, Chemical Engineering, Civil and Environmental Engineering, Electrical Engineering and Computer Science, Mathematics, Mechanical Engineering, and Nuclear Science and Engineering.

The research interests of CDO faculty cover a great variety of computationally intensive areas in engineering, science, and mathematics. Recent research has included such far-ranging topics as micromachined devices, guidance/control systems, imaging systems, distribution networks, telecommunications systems, and transportation systems. CDO faculty research encompasses applications in areas such as aircraft design, materials design, manufacturing operations scheduling, and applied optimization in operations and industrial engineering.

Inquiries

For more information about the CDO program, contact Kate Nelson (cdo_info@mit.edu), Room 35-329, 617-253-3725; or visit the website (http://computationalengineering.mit.edu/education).

COMPUTATIONAL AND SYSTEMS BIOLOGY

The field of computational and systems biology represents a synthesis of ideas and approaches from the life sciences, physical sciences, computer science, and engineering. Recent advances in biology, including the human genome project and massively parallel approaches to probing biological samples, have created new opportunities to understand biological problems from a systems perspective. Systems modeling and design are well established in engineering disciplines but are newer in biology. Advances in computational and systems biology require multidisciplinary teams with skill in applying principles and tools from engineering and computer science to solve problems in biology and medicine. To provide education in this emerging field, the Computational and Systems Biology (CSB) program integrates MIT’s world-renowned disciplines in biology, engineering, mathematics, and computer science. Graduates of the program are uniquely prepared to make novel discoveries, develop new methods, and establish new paradigms. They are also well-positioned to assume critical leadership roles in both academia and industry, where this field is becoming increasingly important.

Computational and systems biology, as practiced at MIT, is organized around “the 3 Ds” of description, distillation, and design. In many research programs, systematic data collection is used to create detailed molecular- or cellular-level descriptions of a system in one or more defined states. Given the complexity of biological systems and the number of interacting components and parameters, system modeling is often conducted with the aim of distilling the essential or most important subsystems, components, and parameters, and of obtaining simplified models that retain the ability to accurately predict system behavior under a wide range of conditions. Distillation of the system can increase the interpretability of the models in relation to evolutionary and engineering principles such as robustness, modularity, and evolvability. The resulting models may also serve to facilitate rational design of perturbations to test understanding of the system or to change system behavior (e.g., for therapeutic intervention), as well as efforts to design related systems or systems composed of similar biological components.

More than 70 faculty members at the Institute participate in MIT’s Computational and Systems Biology Initiative (CSBi). These investigators span nearly all departments in the School of Science and the School of Engineering, providing CSB students the opportunity to pursue thesis research in a wide variety of different laboratories. It is also possible for students to arrange collaborative thesis projects with joint supervision by faculty members with different areas of expertise. Areas of active research include computational biology and bioinformatics, gene and protein networks, regulatory genomics, molecular biophysics, instrumentation engineering, cell and tissue engineering, predictive toxicology and metabolic engineering, imaging and image informatics, nanobiology and microsystems, biological design and synthetic biology, neurosystems biology, and cancer biology.

The CSB PhD program is an Institute-wide program that has been jointly developed by the Departments of Biology, Biological Engineering, and Electrical Engineering and Computer Science. The program integrates biology, engineering, and computation to
address complex problems in biological systems, and CSB PhD students have the opportunity to work with CSBi faculty from across the Institute. The curriculum has a strong emphasis on foundational material to encourage students to become creators of future tools and technologies, rather than merely practitioners of current approaches. Applicants must have an undergraduate degree in biology (or a related field), bioinformatics, chemistry, computer science, mathematics, statistics, physics, or an engineering discipline, with dual-emphasis degrees encouraged.

All students pursue a core curriculum that includes classes in biology and computational biology, along with a class in computational and systems biology based on the scientific literature. Advanced electives in science and engineering enhance both the breadth and depth of each student’s education. During their first year, in addition to coursework, students carry out rotations in multiple research groups to gain a broader exposure to work at the frontier of this field, and to identify a suitable laboratory in which to conduct thesis research. CSB students also serve as teaching assistants during one semester in the second year to further develop their teaching and communication skills and facilitate their interactions across disciplines. Students also participate in training in the responsible conduct of research to prepare them for the complexities and demands of modern scientific research. The total length of the program, including coursework, qualifying examinations, thesis research, and preparation of the thesis is roughly five years.

Curriculum

The CSB curriculum has two components. The first is a core that provides foundational knowledge of both biology and computational biology. The second is a customized program of electives that is selected by each student in consultation with members of the CSB graduate committee. The goal is to allow students broad latitude in defining their individual area of interest, while at the same time providing oversight and guidance to ensure that training is rigorous and thorough.

Core Curriculum

The core curriculum consists of three classroom subjects plus a set of three research rotations in different research groups. The classroom subjects fall into three areas described below.

Modern Biology (One Subject). A term of modern biology at MIT strengthens the biology base of all students in the program. Subjects in biochemistry, genetics, cell biology, molecular biology, or neurobiology fulfill this requirement. The particular course taken by each student will depend on their background and will be determined in consultation with graduate committee members.

Computational Biology (One Subject). A term of computational biology provides students with a background in the application of computation to biology, including analysis and modeling of sequence, structural, and systems data. This requirement can be fulfilled by 7.91[J]/20.490[J] Foundations of Computational and Systems Biology or 6.878[J] Advanced Computational Biology: Genomes, Networks, Evolution.

Topics in Computational and Systems Biology (One Subject). All first-year students in the program participate in CSB.100[J]/7.89[J] Topics in Computational and Systems Biology, an exploration of problems and approaches in the field of computational and systems biology through in-depth discussion and critical analysis of selected primary research papers. This subject is restricted to first-year PhD students in CSB or related fields in order to build a strong community among the class. It is the only subject in the program with such a limitation.

Research Group Rotations (Three Rotations). To assist students with lab selection and provide a range of research activities in computational and systems biology, students participate in three research rotations of one to two months’ duration during their first year. Students are encouraged to gain experience in experimental and computational approaches taken across different disciplines at MIT.

Advanced Electives

The requirement of four advanced electives is designed to develop both breadth and depth. The electives add to the base of the diversified core and contribute strength in areas related to student interest and research direction. To develop depth, two of the four advanced electives must be in the same research area or department. To develop breadth, at least one of the electives must be in engineering and at least one in science. Each student designs a program of advanced electives that satisfies the distribution and area requirements in close consultation with members of the graduate committee.

Additional Subjects. As is typical for students in other doctoral programs at MIT, CSB PhD students may take classes beyond the required diversified core and advanced electives described above. These additional subjects can be used to add breadth or depth to the proposed curriculum, and might be useful to explore advanced topics relevant to the student’s thesis research in later years. The CSB Graduate Committee works with each graduate student to develop a path through the curriculum appropriate for his or her background and research interests.

Training in the Responsible Conduct of Research. Throughout the program, students will be expected to attend workshops and other activities that provide training in the ethical conduct of research. This is particularly important in interdisciplinary fields such as computational and systems biology, where different disciplines often have very different philosophies and conventions. By the end of the fourth year, students will have had about 16 hours of training in the responsible conduct of research.

Qualifying Exams. In addition to coursework and a research thesis, each student must pass a written and an oral qualifying examination.
at the end of the second year or the beginning of the third year. The written examination involves preparing a research proposal based on the student’s thesis research, and presenting the proposal to the examination committee. This process provides a strong foundation for the thesis research, incorporating new research ideas and refinement of the scope of the research project. The oral examination is based on the coursework taken and on related published literature. The qualifying exams are designed to develop and demonstrate depth in a selected area (the area of the thesis research) as well as breadth of knowledge across the field of computational and systems biology.

Thesis Research. Research will be performed under the supervision of a CSBi faculty member, culminating in the submission of a written thesis and its oral defense before the community and thesis defense committee. By the second year, a student will have formed a thesis advisory committee that they will meet with on an annual basis.

COMPUTATIONAL SCIENCE AND ENGINEERING

Computational Science and Engineering (CSE) (https://computationalengineering.mit.edu/cse) allows students to specialize at the doctoral level in a computation-related field of their choice via focused coursework and a doctoral thesis through a number of participating host departments, including Civil and Environmental Engineering, Mechanical Engineering, Chemical Engineering, Aeronautics and Astronautics, and Nuclear Science and Engineering. The emphasis of thesis research activities is the development of new computational methods and/or the innovative application of computational techniques to important problems in engineering and science.

The CSE program is administered jointly by the Center for Computational Engineering (CCE) and the host departments. Admission can be gained by electronic application (https://gradapply.mit.edu/cse/apply/login/?next=/cse) to the CSE PhD program. During the application process, applicants are required to indicate in which host department they would like to reside. To gain admission to the CSE program applicants must receive approval from both the host department graduate admission committee and the CCE graduate admission committee. See the website (http://computationalengineering.mit.edu/cseadmission) for more information about the application process, requirements and relevant deadlines.

Once enrolled, students are expected to complete the host department’s degree requirements (including qualifying exam), except those relating to coursework in the major field of study, thesis committee composition and thesis submission, which are specific to the CSE program and are discussed in more detail below.

Major Field of Study. The major program of study consists of at least five graduate subjects in computational science and engineering. A list of suitable subjects is available online (http://computationalengineering.mit.edu/sites/default/files/documents/CSE%20Approved%20Subject%20List.pdf). Subjects taken as part of an MIT SM degree can be counted toward this requirement. Doctoral candidates are normally expected to take their major subjects at the Institute. The specific subjects will depend on the student’s thesis topic and background, and will be approved by their thesis committee.

Thesis Committee Composition. The rules on the composition of the student’s thesis committee vary depending on the student’s host department. See the website (http://computationalengineering.mit.edu/cse) for more information.

Thesis Submission. In addition to the approval required by the student’s host department, the complete thesis needs to be approved (signed) by the CSE program director. Original copies must be filed both with the host department and the CCE administration.

Title of Thesis Field. The title of the PhD degree awarded will vary depending on the student’s host department. See the website (http://computationalengineering.mit.edu/cse) for more information.

Inquiries

For more information about the CSE program, contact Kate Nelson (cse_info@mit.edu), Room 35-329, 617-253-3725, or visit the program website (http://computationalengineering.mit.edu/education).

DESIGN AND MANAGEMENT

Integrated Design and Management

The Integrated Design and Management (IDM) (https://idm.mit.edu) Program, leading to a master’s of science degree in engineering and management, is dedicated to enabling the learning and development of extraordinary, innovative leaders who will bring new levels of creativity, vision, and integrity to business and society. The curriculum combines the inspired, intuitive methods taught in the world’s best design schools with the systematic, analytical methods of the world’s best engineering and business schools.

To achieve balance, the backgrounds of IDM’s student body and faculty are composed of equal parts engineering, business, and design. Through exposure and interaction of these different backgrounds, students learn to appreciate and integrate the value of the other disciplines in their activities. This balanced, integrated approach has been demonstrated time and again to produce new business paradigms, great products, and the creative courage to solve complex, hard-to-define problems.

IDM’s core curriculum is taught in the Integrated Design Lab (IDLab), a design studio environment, where interdisciplinary teams
will have dedicated team space to practice the human-centered design process, complete with state-of-the-art tools ranging from 3D printers to robotic arms. In this action-based environment, empathy is generated, trial and error is encouraged, failure is celebrated, and the potential for success is realized.

IDM is a track within the System Design and Management Program.

System Design and Management

MIT's System Design and Management (SDM) (http://sdm.mit.edu) program, offered jointly by the MIT Sloan School of Management and School of Engineering, is a master's program for experienced engineers and product development professionals who seek to build upon their technical background and advance to positions of leadership in their careers. Program applicants have significant engineering and/or managerial experience, in addition to a scientific or engineering education. On average, SDM student-fellows have about 10 years of work experience. The program participants come from both private and government institutions, either as company sponsored, or as self-sponsored students. A majority of SDM students have advanced degrees in other fields, and over half come from countries other than the United States.

The SDM program offers the degree of Master of Science in Engineering and Management. The program focuses on developing competencies in the areas of systems thinking, management skills, leadership, and an end-to-end understanding of systems development. Students take subjects drawn from three areas: systems (systems engineering, architecture, and optimization), management, and a technical area of the student's choosing.

SDM provides both on-campus instruction for resident degree students and distance learning instruction for technical professionals who are continuing in their positions at remote locations while enrolled in the program. The 12-month full-time program requires three core courses, 24 units of foundation courses, 30 units of electives covering management and engineering content equally, and a thesis. The commuter and distance learning program options require 21 months to complete, with three semesters of core classes (offered at a distance, for those in that option) in the first year; distance students must return to campus in fall, IAP (January), and spring for one-week seminars associated with the core and spend one semester in residence at MIT in their second year, taking the required foundation and elective units; the total course requirements for both 21-month options, including thesis, are the same as for the full-time, 12-month program. All program options begin on-campus, two weeks before the start of the fall term, in late August.

Core subjects

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD.411</td>
<td>Foundations of System Design and Management</td>
<td>16</td>
</tr>
</tbody>
</table>

Application deadlines are in early January, late February, and mid-April. Applicants will receive a decision within four to six weeks after the deadline in which the complete application was received. For additional information, contact the SDM Program Office (sdm@mit.edu), Room E40-315, 617-452-2432.

COMPUTER SCIENCE AND MOLECULAR BIOLOGY

Master of Engineering in Computer Science and Molecular Biology (Course 6-7P)

The Department of Biology (p. 290) and the Department of Electrical Engineering and Computer Science (EECS) (p. 184) offer a joint curriculum that focuses on the emerging field of computational and molecular biology. The curriculum provides strong foundations in both biology and computer science and features innovative, integrative, capstone, and elective subjects. The goal is to produce an entirely new cadre of graduates who are uniquely qualified to address the challenges and opportunities at the interface of computational and molecular biology. Students in the program are full members of both departments and of two schools, Science and Engineering, with one academic advisor from each department.

The Master of Engineering in Computer Science and Molecular Biology (p. 452) program builds on the Bachelor of Science in Computer Science and Molecular Biology (p. 328) program (Course 6-7), which prepares students for careers that leverage computational biology (e.g., pharmaceuticals, bioinformatics, medicine, etc.) as well as further graduate study in biology, in computer science, and in emerging programs at the interface of these fields. The master's program provides additional depth in computational and/or molecular biology through coursework and a substantial thesis. The student selects (with departmental review and approval) 42 units of advanced graduate subjects, which include two concentration subjects in biology and/or computational biology plus a third subject in electrical engineering and computer science and/or biology. A further 24 units of electives are chosen from a restricted departmental list of math electives.

The Master of Engineering degree also requires 24 units of thesis credit. While a student may register for more than this number of thesis units, only 24 units count toward the degree requirement.

Recipients of a Master of Engineering degree normally receive a Bachelor of Science degree simultaneously. No thesis is explicitly required for the Bachelor of Science degree. However, every program must include a major project experience at an advanced level, culminating in written and oral reports. Normally, the thesis for
the Master of Engineering degree will provide this experience for students receiving both degrees simultaneously.

Programs leading to the five-year Master of Engineering degree or to the four-year Bachelor of Science degree can be arranged to be identical through the junior year. At the end of the junior year, students with a strong academic record will be offered the opportunity to continue through the five-year master’s program. A student in the Master of Engineering program must be registered as a graduate student for at least one regular (non-summer) term. To remain in the program and to receive the Master of Engineering degree, students will be expected to maintain a strong academic record. Admission to the Master of Engineering program is open only to undergraduate students who have completed their junior year in the Course 6-7 Bachelor of Science program.

The fifth year of study toward the Master of Engineering degree can be supported by a combination of personal funds, an award such as a National Science Foundation Fellowship, a fellowship, or a graduate assistantship. Assistantships require participation in research or teaching in the department or in one of the associated laboratories. Full-time assistants may register for no more than two scheduled classroom or laboratory subjects during the term, but may receive academic credit for their participation in the teaching or research program. Support through an assistantship may extend the period required to complete the Master of Engineering program by an additional term or two. Support is granted competitively to graduate students and will not be available for all of those admitted to the Master of Engineering program. If provided, department support for Master of Engineering candidates is normally limited to the first three terms as a graduate student, unless the Master of Engineering thesis has been completed or the student has served as a teaching assistant or has been admitted to the doctoral program, in which cases a fourth term of support may be permitted.

Inquiries

Information about these programs is available from the EECS Undergraduate Office (http://www.eecs.mit.edu), Room 38-476, 617-253-4654, and the Biology Undergraduate Office (https://biology.mit.edu), Room 68-120, 617-253-4718.

HARVARD-MIT HEALTH SCIENCES AND TECHNOLOGY PROGRAM

The Harvard-MIT Health Sciences and Technology (HST) Program’s unique interdisciplinary educational program brings engineering as well as the physical and biological sciences from the scientist’s bench to the patient’s bedside. Conversely, it brings clinical insight from the patient’s bedside to the laboratory bench. In this way, HST students are trained to have deep understanding of engineering, physical sciences, and the biological sciences, complemented with hands-on experience in the clinic or in industry, and they become conversant with the underlying quantitative and molecular aspects of medicine and biomedical science.

HST’s academic programs are described in the Harvard-MIT Health Sciences and Technology Program (p. 195) section.

JOINT PROGRAM WITH WOODS HOLE OCEANOGRAPHIC INSTITUTION

MIT and the Woods Hole Oceanographic Institution (WHOI) on Cape Cod offer joint doctoral degrees in oceanography and doctoral, professional, and master’s degrees in oceanographic engineering.

Graduate study in oceanography encompasses virtually all of the basic sciences as they apply to the marine environment: physics, chemistry, geology, geophysics, and biology. Applied ocean science and engineering allows for concentration in the major engineering fields of civil and environmental, mechanical, and electrical engineering.

The graduate programs administered by joint MIT/WHOI committees draw from the faculty and staff of both institutions. Students accepted to the Joint Program have access to the extensive intellectual and physical resources available for advanced study at both Woods Hole and MIT.

The Joint Program involves several departments at MIT—Biological and Earth, Atmospheric, and Planetary Sciences in the School of Science; and Civil and Environmental Engineering, Electrical Engineering and Computer Science, and Mechanical Engineering in the School of Engineering.

Financial aid, offered as research assistantships or fellowships to most entering graduate students, is sufficient to cover tuition and fees and provide a stipend. Upon admission, students register in the appropriate MIT department and at WHOI simultaneously, and are assigned academic advisors at each institution.

Research at WHOI is devoted to using the basic sciences and engineering to gain a better understanding of the marine environment. Some 200 scientists and engineers and a support staff of about 600 work in laboratories located in the village of Woods Hole and on the nearby Quisset Campus. Another 75 people operate three research vessels (ranging from 177 to 279 feet in length), the deep-diving submersible ALVIN, and smaller coastal vessels. WHOI also has remotely-operated research vehicles and autonomous underwater vehicles. Computer services provided within WHOI include links to other institutions and to national networks.

A videoconferencing system between MIT and Woods Hole provides interactive transmission for classes, meetings, and other joint events. Specialized research facilities include the National Ocean Sciences Accelerator Mass Spectrometry Facility and the North-East Regional Ion Microprobe Facility. The library facilities shared with the Marine Biological Laboratory are supplemented by collections
of the Northeast Fisheries Center of the National Marine Fisheries Service and the US Geological Survey’s Office of Marine Resources Branch of Atlantic Geology, all located in Woods Hole. The village is situated on the southwest corner of Cape Cod, about 80 miles from Boston.

Subjects, seminars, and opportunities for research participation are offered at both MIT and WHOI. Place of residence is determined by the student’s selected program of study and research interests, and transportation is provided between institutions. Students have the opportunity to participate in oceanographic cruises during graduate study.

The faculty of MIT, together with the WHOI scientific staff, offer a wide variety of formal and informal subjects in various aspects of oceanography and areas directly applicable to ocean science and engineering; both faculties are equally involved in all levels of instruction. The subjects are supplemented by numerous seminars, directed studies, and cross-registration privileges with Harvard, Brown, and the Boston University Marine Program. Complete listings can be found in the subject descriptions of each individual department.

Physical Oceanography

Physical oceanography is the study of the physics of the ocean. Its central goal is to describe and explain the complex motions of the ocean. Principal research areas include general circulation, air-sea interaction, shelf dynamics, mesoscale processes, and small-scale processes. The Department of Earth, Atmospheric, and Planetary Sciences offers programs in physical oceanography with WHOI, which lead to the Doctor of Science or Doctor of Philosophy degree.

Chemical Oceanography

Chemical oceanographers study the chemical composition of the marine environment and the processes that have produced the present composition of sea water and sediments. Principal research areas include water column geochemistry, sedimentary geochemistry, seawater-basalt interactions, and atmospheric chemistry. The Departments of Earth, Atmospheric, and Planetary Sciences and Civil and Environmental Engineering offer programs with WHOI in chemical oceanography and marine geochemistry. These programs lead to the Doctor of Science or Doctor of Philosophy.

Biological Oceanography

Biological oceanography seeks to describe and understand the biological processes which are active in the marine and bordering environments. The research of biological oceanographers is diverse, including ecology, toxicology, biochemistry, animal behavior and physiology, and molecular biology. The programs in biological oceanography are coordinated by the Department of Biology and WHOI, and may involve research in other MIT departments such as the Department of Civil and Environmental Engineering. The programs lead to the Doctor of Science or Doctor of Philosophy.

Applied Ocean Science and Engineering

Applied ocean science and engineering involves the application of physics and the engineering sciences to the study of oceanic processes and the design of instruments, systems, and structures required to observe, measure, and work in the ocean. The Departments of Civil and Environmental Engineering, Electrical Engineering and Computer Science, and Mechanical Engineering offer joint programs with WHOI in oceanographic engineering. The programs lead to the master’s degree, engineer’s degree, Doctor of Science, or Doctor of Philosophy.

Inquiries

Application for admission to the Joint Program in Oceanography and Applied Ocean Science and Engineering with the Woods Hole Oceanographic Institution (WHOI) should be made using the graduate application (https://gradapply.mit.edu/whoi). Requests for further information may be addressed to the MIT/WHOI Joint Program, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, 508-289-2219, or to the MIT Joint Program Office, Room 54-820, 617-253-7544. More information is available on the website (http://mit.whoi.edu).

LEADERS FOR GLOBAL OPERATIONS

The Leaders for Global Operations (LGO) (http://lgo.mit.edu) program is an educational and research partnership among global operations companies, MIT’s School of Engineering, and the MIT Sloan School of Management. The 24-month program combines graduate education in engineering and management for those with previous postgraduate work experience. Students complete a six-month internship at one of LGO’s partner companies, where they conduct research that forms the basis of a dual-degree thesis. Graduates complete the program with two MIT degrees: an MBA (or SM in management) and an SM from one of seven engineering programs. Graduates take on leadership
responsibilities at top global manufacturing and operations
companies. LGO coordinates with the following departments in the
School of Engineering: Aeronautics and Astronautics, Biological
Engineering, Chemical Engineering, Civil and Environmental
Engineering, Electrical Engineering and Computer Science,
and Mechanical Engineering.

Visit the LGO website (http://lgo.mit.edu) for more information on
each engineering program’s curriculum.

MICROBIOLOGY GRADUATE PROGRAM

Doctoral Program in Microbial Science and Engineering

The Microbiology Graduate Program (http://microbiology.mit.edu)—
an interdepartmental and interdisciplinary initiative at MIT
—integrates educational resources across the participating
departments to build connections among faculty with shared
interests and to build an educational community for training
students in the study of microbial systems.

The study of microbes has been critical in our current understanding
of basic biological processes, evolution, and the functions of the
biosphere, and has contributed to numerous fields of engineering.
Microbes have the amazing ability to grow in extreme conditions,
to grow slowly or rapidly, and to readily exchange DNA. They are
essential for life as we know it, but can also be agents of disease.
They are instrumental in shaping the environment, in evolution,
and in modern biotechnology. Microbes are amenable to virtually
all modern approaches in science and engineering. As such,
they provide natural engineering laboratories for creating new
capabilities for industry (e.g., pharmaceuticals, chemicals, energy)
and are the foundation of pioneering efforts in synthetic biology,
i.e., building life from its component parts. Effective study of
microbes and their applications demands multiple interdisciplinary
approaches that cross all scales of biological organization, from
molecules to vast ecosystems.

Research in microbiology is going on throughout MIT and involves
more than 50 faculty. These faculty are from several departments
in both the Schools of Science and Engineering, including Biology;
Biological Engineering; Chemical Engineering; Chemistry; Civil
and Environmental Engineering; Earth, Atmospheric and Planetary
Sciences; Electrical Engineering and Computer Science; Materials
Sciences and Engineering; and Physics. Many labs take multiple
approaches to studying and manipulating microbial systems and
the expertise and research covers a wide range of areas, including
biochemistry, biofuels, biotechnology, cell and molecular biology,
chemical and biological engineering, computational biology,
ecology, environmental biology, evolutionary biology, genetics,
genomics, geobiology, immunology, pathogenesis, structural
biology, synthetic biology, systems biology, and virology.

Interdisciplinary training in microbiology is in increasing demand
in both public and private sectors. This program provides a broad
exposure to underlying elements of modern microbiological research
and engineering as well as in-depth research experience in specific
areas of microbiology. Program graduates will be prepared to
work in a range of fields in microbial science and engineering,
and will have excellent career options in academia, industry, and
government.

Curriculum

The major components of the training program are required
coursework, elective coursework, rotations and thesis research,
teaching, training in the ethical conduct of research, and qualifying
exams.

Required Subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.492[J]</td>
<td>Methods and Problems in Microbiology</td>
<td>12</td>
</tr>
<tr>
<td>7.493[J]</td>
<td>Microbial Genetics and Evolution</td>
<td>12</td>
</tr>
<tr>
<td>7.499</td>
<td>Research Rotations in Microbiology</td>
<td></td>
</tr>
<tr>
<td>7-57</td>
<td>Quantitative Biology for Graduate Students</td>
<td>12</td>
</tr>
<tr>
<td>7.51</td>
<td>Principles of Biochemical Analysis</td>
<td>12</td>
</tr>
<tr>
<td>or 7.80</td>
<td>Biological Chemistry II</td>
<td></td>
</tr>
</tbody>
</table>

Elective Subjects

Students must take three elective subjects, totaling 36 units, from
the following list. Electives can be chosen to provide depth in a
specific area of interest or additional breadth in training. Subjects
from some other areas may also fulfill the requirement, with the
approval of the Graduate Education committee.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.89</td>
<td>Environmental Microbiology</td>
<td>12</td>
</tr>
<tr>
<td>5.062</td>
<td>Principles of Bioinorganic Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>5-52</td>
<td>Advanced Biological Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>5.64</td>
<td>Biophysical Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>5.78</td>
<td>Biophysical Chemistry Techniques</td>
<td>6</td>
</tr>
<tr>
<td>6.874[J]</td>
<td>Computational Systems Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.26</td>
<td>Molecular Basis of Infectious Disease</td>
<td>12</td>
</tr>
<tr>
<td>or 7.66</td>
<td>Molecular Basis of Infectious Disease</td>
<td></td>
</tr>
<tr>
<td>7.58</td>
<td>Molecular Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.62</td>
<td>Microbial Physiology</td>
<td>12</td>
</tr>
<tr>
<td>7.63</td>
<td>Immunology</td>
<td>12</td>
</tr>
<tr>
<td>7.70</td>
<td>Regulation of Gene Expression</td>
<td>12</td>
</tr>
</tbody>
</table>
Rotations and Thesis Research
During the first year, students will rotate through three labs of MIT faculty that participate in the Microbiology Graduate Program. These rotations will help provide students broad exposure to microbiology research and will be used to select a lab for their thesis research by the end of the first year. Given the interdisciplinary nature of the program and many research programs, students may be able to work jointly with more than one research supervisor.

Teaching Experience
Learning to effectively communicate scientific ideas is an important skill. Students in the Microbiology program will have an opportunity to improve their communication skills through teaching. Each student will serve as a teaching assistant for one term in an undergraduate or graduate subject related to microbiology. This will typically take place in the second year.

Training in the Ethical Conduct of Research
All students will participate in a course on the ethical conduct of research. This will typically take place during the first and third years.

Qualifying Exams
Students will proceed to PhD candidacy after successful completion of a qualifying exam, typically during the second year. Students will submit a written research proposal in the style of a grant or fellowship application based on their planned thesis project. Students will then present and discuss the research proposal with a small committee of faculty.

Student Advising
In the first year, students will be advised by members of the graduate committee. Once students join a thesis lab, the research mentor will be the primary advisor. Early in the second year, students will form a thesis committee and meet at least annually. The committee will consist of faculty with expertise in the student’s area of research and collectively provide the breadth expected by the program. The thesis committee will primarily provide advice on research. In addition, in the student’s early years the thesis committee will also provide advice on coursework to ensure that students have the appropriate breadth and depth for their educational program. In later years, the graduate and thesis committees will also provide students with advice on career options.

Financial Support and Fellowships
Students in the program will be financially supported throughout their training. This support includes tuition, stipend, and health insurance. All students in the program will receive a stipend that is sufficient to support living in the Cambridge/Boston area. The stipend will be approximately the same as for graduate students in other MIT departments.

During the first year, students are supported by the Microbiology program. In subsequent years, students will be supported as research assistants in their thesis lab.

Although students will be supported, they are strongly encouraged to apply for fellowships.

Inquiries
For further information about the Graduate Program in Microbiology (http://web.mit.edu/microbiology), contact BL Whang (microbiology@mit.edu), Room 68-139.

Operations Research
Operations research (OR) is the discipline of applying advanced analytical methods to help make better decisions. It uses mathematical modeling, analysis, and optimization in a holistic approach to improving our knowledge of systems and designing useful, efficient systems. Its applications range from engineering to management, and from industry to the public sector.

Operations research has helped advance the mathematics of optimization, applied probability, and statistics. OR researchers, collaborating with colleagues in related fields, have created innovative methods for pricing goods and services, and for marketing them. They have contributed to improving transportation, developing new financial instruments and auctions, and analyzing biological and medical information, as well as many more areas. In
today’s complex and interconnected world, the rigorous techniques and methodologies of operations research have become especially important aids to informed decision making.

The Operations Research Center (ORC) (p. 104) coordinates an SM program and a PhD program, providing a strong background in OR theory as well as the practical techniques used in building models for a wide variety of applications.

Founded as an interdepartmental program, the Operations Research Center has maintained its interdisciplinary roots. Its faculty comes from nine different departments at MIT, including the Sloan School of Management, five of the engineering departments, the Department of Mathematics, the Department of Economics, and the Department of Urban Studies and Planning.

Information about the Operations Research Center and its degree programs is available on the ORC website (http://web.mit.edu/orc/www). For further information, contact Laura Rose (lrose@mit.edu), Room E40-107, 617-253-9303.

PROGRAM IN POLYMERS AND SOFT MATTER

The Schools of Engineering and Science have established a graduate-level Program in Polymers and Soft Matter (PPSM). It is open to qualified students admitted to the graduate program(s) of one of the following five MIT departments: Biological Engineering, Chemical Engineering, Chemistry, Materials Science and Engineering, and/or Mechanical Engineering.

PPSM consists of an initial academic phase in which all students participate (regardless of previous background and research interest); followed by research in a selected area of specialization. The program leads to the doctoral degree; if desired, a master’s degree can be obtained through the student’s home department.

The core curriculum, taken by all students, provides a common base in the field of polymers. It is broad, rigorous, and covers both elementary and advanced subjects spanning the entire range from the molecular level to the continuum. This curriculum takes up the first two terms in the graduate program.

The transition from the academic phase to research is marked by the qualifying exam, which consists of both oral and written sections. The exams are offered at the end of each spring term and are based on the PPSM core curriculum. Successful completion of the exam leads to selection of a research project and the preparation and defense of a thesis proposal.

Any participating faculty member at MIT can act as a research supervisor. The thesis supervisor(s) advises the graduate student on a continuing basis throughout the time of the research project. Completion and successful defense of the thesis before PPSM and departmental faculty fulfill the requirements for the doctoral degree.

For more information, including admission and financial aid procedures, contact the director, Professor Darrell J. Irvine, Room 76-261C, 617-452-4174, or visit the website (http://polymerscience.mit.edu).

SUPPLY CHAIN MANAGEMENT PROGRAM

The Supply Chain Management Program (SCM) (http://scm.mit.edu) is designed to supply the global logistics industry with a new type of supply chain professional who is highly trained in both analytical problem solving and change management leadership. This one-of-a-kind professional degree program offered through MIT’s Center for Transportation & Logistics (CTL) prepares graduates for logistics and supply chain management careers in manufacturing, distribution, retail, transportation, logistics, consulting, and software development organizations.

The MIT SCM Program leads to a Master of Engineering in Logistics (MLOG) (p. 453) degree, which is completed in 10 months (August through May) on the MIT campus in Cambridge. During that time, students take specialized classes taught by leading logistics and supply chain professionals in areas such as logistics systems, supply chain design, inventory planning, and transportation management. Students also take courses in leadership, business writing, public speaking, and strategy. Students participate on teams with their peers from CTL’s sister centers in Spain, Malaysia, and Latin America. Each student writes a master’s thesis based on a real project sponsored by one of CTL’s corporate members and travels to the international trade hubs in Panama for a supply chain education that spans the globe.

The MIT Supply Chain Management Program requires 90 MIT credit units: 12 required subjects and the completion of a thesis project. Students can also take from three to 30 credit units of electives. Students who have already taken one of the required subjects at a graduate level elsewhere can petition to replace that subject with another elective.

The program is primarily for students with industry experience but is open to anyone who can meet the entrance requirements (http://scm.mit.edu/admissions). Applicants should have a background in college level calculus, economics, probability, and statistics. All applicants for the MLOG degree must take the GRE General Test or GMAT. Applicants whose first language is not English must take the IELTS exam or the TOEFL exam.

The MIT Supply Chain Management Program curriculum begins in September, with a required Orientation period in mid-August. There are three admission rounds. The round 1 deadline is November 15; the round 2 deadline is February 1; and the round 3 deadline is April 1. Applications and requests for additional information should be directed to the MIT Supply Chain Management Program Admissions Office (scm@mit.edu), Room E40-359, 617-324-6564.
TECHNOLOGY AND POLICY PROGRAM

The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy formulation, analysis, and evaluation. The Technology and Policy Program (TPP) (http://web.mit.edu/tpp) curriculum provides a solid grounding in technology and policy by combining advanced subjects in a student’s chosen technical field with courses in economics, politics, and law, and by requiring completion of a research thesis. To prepare participants for effective professional practice, TPP stresses effective leadership and communication. It also encourages students to participate in TPP’s summer internship program, which places students in government and industry in the United States and around the world.

Many students combine the TPP curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning.

For additional information, see the program description under the Institute for Data, Systems, and Society (p. 178).

GRADUATE PROGRAMS IN TRANSPORTATION

MIT provides students with a broad range of opportunities for transportation-related education. Courses and classes span the School of Engineering, the Sloan School of Management, and the School of Architecture and Planning, with many activities covering interdisciplinary topics that prepare students for future industry, government, or academic careers.

A variety of graduate degrees are available to students interested in transportation studies and research, including a master’s program and a doctoral program in transportation, described below, and a Master of Engineering in Logistics, described under Supply Chain Management (p. 358).

Opportunities are also available for students to obtain dual master’s degrees. Students who wish to pursue this option must follow the regular admissions procedure to be admitted to each degree program. Common dual degree pairings include the Master of Science in Transportation with:

- Master in City Planning
- Master of Science in Electrical Engineering and Computer Science
- Master of Science in Operations Research
- Master of Science in Technology and Policy

Information on requirements for dual degrees can be found in the section on General Degree Requirements for graduate education.

Master of Science in Transportation

The Master of Science in Transportation (MST) (p. 454) program is based on the premise that a common set of analytical approaches and methodologies can be applied to solve a range of transportation problems. The MST provides a common basis for addressing a wide range of problems while allowing enough flexibility to accommodate students with diverse backgrounds and interests.

Students must complete a program of coursework, plus a research-based master’s thesis on a topic of their choosing approved by their thesis supervisor. Coursework includes two required core subjects, at least three additional transportation or related subjects comprising an individually designed program, one policy/technology subject, and a computer programming subject.

Generally, the three subjects chosen for the individually designed program relate to an area of specialization, although this is not required. Common areas of specialization include air transportation, data sciences for transportation, urban transportation, planning methods, logistics, and policy. Some students use the individually designed program to deepen their understanding of a selected area of interest, while others may choose to emphasize breadth rather than depth in their studies. At least one of the selected subjects should address policy or technology. At least two of the designated subjects should be clearly focused on transportation, while the third can be in a field that supports transportation, for example, a subject covering methods used in transportation drawn from fields such as economics, computer science, operations research, political science, or management.

The MST degree usually takes up to two years to complete.

For more information, see the full Master of Science in Transportation program description (http://cee.mit.edu/graduate/mst).

Admission

An undergraduate degree in engineering is not necessary for admission to the Master of Science in Transportation program, but applicants are expected to have an aptitude for analytical thinking. Backgrounds in the physical or social sciences, urban planning, management, and many other disciplines are equally appropriate foundations for the program.

The only specific subjects required for admission are two subjects in calculus, one in economics, and one in probability. One or more of these subjects may be completed simultaneously with application to the program, and acceptance is then conditional on satisfactory completion of these prerequisites. Applicants should have roughly the equivalent of the following MIT subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Equivalent MIT Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.01 Calculus</td>
<td>12</td>
</tr>
<tr>
<td>18.02 Calculus</td>
<td>12</td>
</tr>
</tbody>
</table>
14.01 Principles of Microeconomics 12
6.041 Probabilistic Systems Analysis 12
or 1.010 Uncertainty in Engineering

Students without an equivalent Microeconomics course can be admitted, but will have to complete 14.01, preferably during their first year in the degree.

All applicants are required to submit Graduate Record Examination (GRE) scores; applicants whose native language is not English are required to submit an English Language Exam. Two exams are accepted: the Test of English as a Foreign Language (TOEFL) and the International English Language Testing System (IELTS). Applicants to the Master of Science in Transportation degree program should achieve a score of at least 100 on the TOEFL iBT or 7.5 on the IELTS.

Financial Support
Funding for MST students is usually offered to about 80 percent of each incoming class. A limited number of fellowships are offered each year, but more often funding takes the form of a research assistantship (RA). A student with RA funding typically works with a faculty member on a research project for 15-30 hours per week. The research that is conducted on that project generally becomes the topic of the student's thesis.

To learn more about current transportation research at MIT, visit Transportation@MIT (http://transportation.mit.edu/research/people) to peruse the websites of the faculty involved.

RAs are awarded as either a half or full appointment. An award of a full RA (about 30 hours of work per week) covers the student's tuition for the academic year and provides a monthly stipend to cover living expenses. A half RA (approximately 15 hours of work per week) covers half of the student's tuition for the academic year and provides half of the regular monthly stipend.

Students who are not awarded financial aid at the time of admission may seek funding through other sources.

Doctor of Philosophy in Transportation
The interdisciplinary doctoral program in transportation provides a structured and direct follow-on doctoral program for students enrolled in the Master of Science in Transportation or other transportation-related master's degree programs offered at MIT or elsewhere. Outstanding applicants without a master's degree can also be considered for admission to the doctoral program. The interdisciplinary structure allows students great flexibility in developing individual programs of study that cross both disciplinary and departmental lines. The program is administered by a faculty committee responsible for admissions, establishment and oversight of program requirements, and conduct of the general examination and dissertation defense.

The interdisciplinary doctoral program in transportation requires completion of at least 120 units of coursework in a program of study proposed by the student, the successful completion of a general examination consisting of both written and oral components, and the submission and defense of an acceptable dissertation.

The doctoral program offers five core areas of study. Students must choose the Transportation Systems Analysis core area and at least one of the Demand and Economics or Performance and Optimization core areas to build a doctoral core program of six subjects.

<table>
<thead>
<tr>
<th>Transportation Systems Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.200[J] Transportation Systems Analysis: Performance and Optimization 12</td>
</tr>
<tr>
<td>1.201[J] Transportation Systems Analysis: Demand and Economics 12</td>
</tr>
<tr>
<td>Demand and Economics</td>
</tr>
<tr>
<td>1.202[J] Demand Modeling 12</td>
</tr>
<tr>
<td>14.381 Statistical Method in Economics 12</td>
</tr>
<tr>
<td>Performance and Optimization</td>
</tr>
<tr>
<td>1.203[J] Logistical and Transportation Planning Methods 12</td>
</tr>
<tr>
<td>15.093[J] Optimization Methods 12</td>
</tr>
<tr>
<td>or 15.058 Optimization Methods in Operations Research</td>
</tr>
<tr>
<td>Planning and Policy</td>
</tr>
<tr>
<td>1.251[J] & 1.252[J] Comparative Land Use and Transportation Planning and Urban Transportation Planning 12</td>
</tr>
<tr>
<td>11.478 Behavior and Policy: Connections in Transportation 12</td>
</tr>
<tr>
<td>Mobility Models and Knowledge Discovery</td>
</tr>
<tr>
<td>1.204 Computer Modeling: From Human Mobility to Transportation Networks 12</td>
</tr>
<tr>
<td>15.077[J] Statistical Learning and Data Mining 12</td>
</tr>
</tbody>
</table>

Graduates of the interdisciplinary doctoral program receive a PhD in Transportation, although students may petition for other MIT graduate fields of study as their degree designation, subject to approval by the Transportation Graduate Program Committee.

Inquiries
Questions about and applications to graduate programs in transportation should be directed to the Transportation Education Committee (transpo-admissions@mit.edu), Department of Civil and Environmental Engineering.
UNDERGRADUATE DEGREE CHARTS

General Bachelor of Science Degree Requirements (p. 35)

School of Architecture and Planning
Architecture (Course 4) (p. 364)
Architecture Studies (Course 4-B) (p. 366)
Planning (Course 11) (p. 367)

School of Engineering
Aerospace Engineering (Course 16) (p. 370)
Archaeology and Materials as Recommended by the Department of Materials Science and Engineering (Course 3-C) (p. 372)
Biological Engineering (Course 20) (p. 373)
Chemical-Biological Engineering (Course 10-B) (p. 374)
Chemical Engineering (Course 10) (p. 375)
Chemical Engineering (Course 10-C) (p. 377)
Computer Science and Engineering (Course 6-3) (p. 378)
Electrical Engineering and Computer Science (Course 6-2) (p. 380)
Electrical Science and Engineering (Course 6-1) (p. 383)
Engineering as Recommended by the Department of Aeronautics and Astronautics (Course 16-ENG) (p. 385)
Engineering as Recommended by the Department of Chemical Engineering (Course 10-ENG) (p. 386)
Engineering as Recommended by the Department of Civil and Environmental Engineering (Course 1-ENG) (p. 388)
Engineering as Recommended by the Department of Mechanical Engineering (Course 2-A) (p. 390)
Materials Science and Engineering (Course 3) (p. 391)
Materials Science and Engineering (Course 3-A) (p. 393)
Mechanical and Ocean Engineering (Course 2-OE) (p. 395)
Mechanical Engineering (Course 2) (p. 396)
Nuclear Science and Engineering (Course 22) (p. 397)

School of Humanities, Arts, and Social Sciences
Anthropology (Course 21A) (p. 399)
Comparative Media Studies (CMS) (p. 400)

Economics (Course 14) (p. 401)
Global Studies and Languages (Course 21G) (p. 402)
History (Course 21H) (p. 405)
Humanities (Course 21) (p. 406)
Humanities and Engineering (Course 21E) (p. 408)
Humanities and Science (Course 21S) (p. 411)
Linguistics and Philosophy (Course 24-2) (p. 414)
Literature (Course 21L) (p. 416)
Music (Course 21M-1) (p. 417)
Philosophy (Course 24-1) (p. 418)
Political Science (Course 17) (p. 420)
Science, Technology, and Society/Second Major (STS) (p. 422)
Theater Arts (Course 21M-2) (p. 423)
Writing (Course 21W) (p. 424)

Sloan School of Management
Management Science (Course 15) (p. 428)

School of Science
Biology (Course 7) (p. 430)
Biology (Course 7-A) (p. 432)
Brain and Cognitive Sciences (Course 9) (p. 434)
Chemistry (Course 5) (p. 436)
Earth, Atmospheric, and Planetary Sciences (Course 12) (p. 437)
Mathematics (Course 18) (p. 439)
Mathematics with Computer Science (Course 18-C) (p. 444)
Physics (Course 8) (p. 446)

Interdisciplinary Programs
Computer Science and Molecular Biology (Course 6-7) (p. 449)

GRADUATE DEGREE CHARTS
Degree charts are provided only for the Master’s programs listed below. Consult the Graduate Education Section (p. 59) for general degree requirements.
School of Engineering
Electrical Engineering and Computer Science (Course 6-P) (p. 382)

Interdisciplinary Programs
Computer Science and Molecular Biology (Course 6-7P) (p. 452)
Supply Chain Management (p. 453)
Transportation (p. 454)
ARCHITECTURE (COURSE 4)

Department of Architecture (p. 115)

Bachelor of Science in Architecture

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree: 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.021</td>
<td>Introduction to Architecture Design</td>
</tr>
<tr>
<td>or 4.02A</td>
<td>Introduction to Architecture Design Intensive</td>
</tr>
<tr>
<td>4.022</td>
<td>Architecture Design Foundations</td>
</tr>
<tr>
<td>4.023</td>
<td>Architecture Design Studio I (CI-M)</td>
</tr>
<tr>
<td>4.024</td>
<td>Architecture Design Studio II</td>
</tr>
<tr>
<td>4.302</td>
<td>Foundations in Art, Design, and Spatial Practices (CI-M)</td>
</tr>
<tr>
<td>4.401</td>
<td>Environmental Technologies in Buildings</td>
</tr>
<tr>
<td>4.440(J)</td>
<td>Building Structural Systems I</td>
</tr>
<tr>
<td>4.500</td>
<td>Introduction to Geometric Modeling</td>
</tr>
<tr>
<td>4.501</td>
<td>Creative Design Prototyping</td>
</tr>
<tr>
<td>or 4.502</td>
<td>Advanced Visualization: Architecture in Motion Graphics</td>
</tr>
<tr>
<td>4.603</td>
<td>Understanding Modern Architecture</td>
</tr>
</tbody>
</table>

Select one of the following: 12

- 4.605 A Global History of Architecture
- 4.614 Architecture in the Islamic World
- 4.635 Early Modern Architecture and Art

Restricted Electives

Select one of the following: 24

- 4.025 Architecture Design Studio III

Two subjects from the Restricted Electives list 1

Unrestricted Electives

Select 48-51 units 48-51

Total Units: 228

Departmental Program Units That Also Satisfy the GIRs: (36)

Total Units Beyond the GIRs Required for SB Degree: 192

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 The list of Restricted Electives includes subjects that are also listed under Required Subjects. However, in situations where students choose only one subject in a designated group as a Required Subject, it is acceptable to use the subjects not chosen as Restricted Electives.

Required Subjects

- **Art, Culture and Technology**
 - 4.307 Art, Architecture, and Urbanism in Dialogue 12
 - 4.322 Introduction to Three-Dimensional Art Work 12
 - 4.341 Introduction to Photography and Related Media 12
 - 4.354 Introduction to Video and Related Media 12
 - 4.368 Studio Seminar in Public Art/Public Sphere 12

- **Building Technology**
 - 4.411(J) D-Lab Schools: Building Technology Laboratory 12
 - 4.421(J) Fundamentals of Energy in Buildings 12
 - 4.432 Modeling Urban Energy Flows for Sustainable Cities and Neighborhoods 12
 - 4.444 Analysis of Historic Structures 12

364 | 2015–2016 MIT Bulletin
Computation

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.501</td>
<td>Creative Design Prototyping *</td>
<td>12</td>
</tr>
<tr>
<td>4.502</td>
<td>Advanced Visualization: Architecture in Motion Graphics</td>
<td>12</td>
</tr>
<tr>
<td>4.504</td>
<td>Design Scripting</td>
<td>12</td>
</tr>
<tr>
<td>4.520</td>
<td>Visual Computing I</td>
<td>12</td>
</tr>
<tr>
<td>4.522</td>
<td>Visual Computing II</td>
<td>12</td>
</tr>
</tbody>
</table>

History, Theory and Criticism of Architecture and Art

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.601</td>
<td>Introduction to Art History</td>
<td>12</td>
</tr>
<tr>
<td>4.602</td>
<td>Modern Art and Mass Culture</td>
<td>12</td>
</tr>
<tr>
<td>4.605</td>
<td>A Global History of Architecture *</td>
<td>12</td>
</tr>
<tr>
<td>4.614</td>
<td>Architecture in the Islamic World *</td>
<td>12</td>
</tr>
<tr>
<td>4.635</td>
<td>Early Modern Architecture and Art *</td>
<td>12</td>
</tr>
<tr>
<td>4.651</td>
<td>Art Since 1940</td>
<td>12</td>
</tr>
</tbody>
</table>

* Denotes a subject that is also listed under Required Subjects. In situations where students choose only one subject in a designated group as a Required Subject, it is acceptable to use the subjects not chosen as Restricted Electives.
ARCHITECTURE STUDIES (COURSE 4-B)

Department of (p. 115) Architecture (p. 115)

Bachelor of Science in Architecture Studies

Students interested in this program must initially register as a Course 4 major and take the required foundation subjects. By the end of the sophomore year, the student is expected to submit a proposal that includes a statement of educational goals, a list of subjects to be taken to fulfill them, and a timetable of when the subjects will be taken. No more than three subjects in the departmental program may also satisfy General Institute Requirements.

General Institute Requirements (GiRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [one subject can be satisfied by a subject in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [one subject can be satisfied by 4.440[J] or 4.42[J], options within the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 4.411[J], an option within the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.021 or 4.02A</td>
<td>Introduction to Architecture Design 9-12</td>
</tr>
<tr>
<td>4.022</td>
<td>Architecture Design Foundations 12</td>
</tr>
<tr>
<td>4.302</td>
<td>Foundations in Art, Design, and Spatial Practices (CI-M) 12</td>
</tr>
<tr>
<td>4.401</td>
<td>Environmental Technologies in Buildings 12</td>
</tr>
<tr>
<td>4.500</td>
<td>Introduction to Geometric Modeling 12</td>
</tr>
</tbody>
</table>

4.THU Undergraduate Thesis 12

Select one of the following:

4.605 A Global History of Architecture 12

4.614 Architecture in the Islamic World 12

4.635 Early Modern Architecture and Art 12

Restricted Electives 84

Select 84 units based on a proposal of interdisciplinary study approved by the department.

Unrestricted Electives 48

Total Units 225

Departmental Program Units That Also Satisfy the GiRs (36)

Total Units Beyond the GiRs Required for SB Degree 192

No subject can be counted both as part of the 17-subject GiRs and as part of the 180–198 units required beyond the GiRs. Every subject in the student’s departmental program will count toward one or the other, but not both.
PLANNING (COURSE 11)

Department of Urban Studies and Planning (p. 126)

Bachelor of Science in Planning

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [four subjects can be satisfied by subjects in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 11.188 in the Departmental Program]</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.001[J]</td>
<td>12</td>
</tr>
<tr>
<td>Introduction to Urban Design and Development</td>
<td></td>
</tr>
<tr>
<td>11.002[J]</td>
<td>12</td>
</tr>
<tr>
<td>Making Public Policy</td>
<td></td>
</tr>
<tr>
<td>11.011</td>
<td>12</td>
</tr>
<tr>
<td>The Art and Science of Negotiation</td>
<td></td>
</tr>
<tr>
<td>11.123</td>
<td>9</td>
</tr>
<tr>
<td>Big Plans and Mega-Urban Landscapes</td>
<td></td>
</tr>
<tr>
<td>14.01</td>
<td>12</td>
</tr>
<tr>
<td>Principles of Microeconomics</td>
<td></td>
</tr>
<tr>
<td>11.188</td>
<td>12</td>
</tr>
<tr>
<td>Urban Planning and Social Science Laboratory (CI-M)</td>
<td></td>
</tr>
</tbody>
</table>

Planned Electives

Course 11 majors are required to formulate or select one stream of coursework for concentration. They can select from the following recommended options or create their own stream tailored to a particular set of urban, policy, or planning concerns. See Concentrations.

Urban Field Experience

Declared majors are encouraged to take the optional urban field experience subject.

| 11.027 | City to City: Comparing, Researching and Writing about Cities (CI-M) | 12 |

Thesis

Majors are required to write a senior thesis or complete a senior project. The thesis/project writing process is accompanied by a required undergraduate thesis preparation seminar, which meets in the fall

| 11.THU | Undergraduate Thesis | 12 |

Unrestricted Electives

Select 75-84 units

Total Units 240

Departmental Program Units That Also Satisfy the GIRs (60)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 11.027 City to City: Comparing, Researching and Writing about Cities is taught in the spring and includes a trip during spring break. This course may be taken multiple times, as the content differs each year, but may only be counted once as a planned elective.

Concentrations

Environmental Policy

11.003[J]	Methods of Policy Analysis	12
11.016[J]	The Once and Future City	12
11.021[J]	Environmental Law, Policy, and Economics: Pollution Prevention and Control	12
11.022[J]	Regulation of Chemicals, Radiation, and Biotechnology	12
11.162	Politics of Energy and the Environment	12
11.165	Energy and Infrastructure Technologies	12

Urban History and Society

<p>| 11.013[J] | American Urban History I | 9 |
| 11.014[J] | American Urban History II | 9 |
| 11.015[J] | Riots, Strikes, and Conspiracies in American History | 12 |</p>
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.019[J]</td>
<td>Migration and Immigration in US History</td>
<td>12</td>
</tr>
<tr>
<td>11.026[J]</td>
<td>Downtown</td>
<td>9</td>
</tr>
<tr>
<td>11.150[J]</td>
<td>Metropolis: A Comparative History of New York City</td>
<td>12</td>
</tr>
<tr>
<td>11.152[J]</td>
<td>The Ghetto: From Venice to Harlem</td>
<td>12</td>
</tr>
</tbody>
</table>

International Development

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.005</td>
<td>Introduction to International Development</td>
<td>12</td>
</tr>
<tr>
<td>11.025[J]</td>
<td>D-Lab: Development</td>
<td>12</td>
</tr>
<tr>
<td>11.140</td>
<td>Urbanization and Development</td>
<td>12</td>
</tr>
<tr>
<td>11.144</td>
<td>Project Appraisal in Developing Countries</td>
<td>12</td>
</tr>
<tr>
<td>11.147</td>
<td>Innovative Budgeting and Finance for the Public Sector</td>
<td>12</td>
</tr>
<tr>
<td>11.164[J]</td>
<td>Human Rights at Home and Abroad</td>
<td>12</td>
</tr>
<tr>
<td>11.165</td>
<td>Energy and Infrastructure Technologies</td>
<td>12</td>
</tr>
<tr>
<td>11.166</td>
<td>Law, Social Movements, and Public Policy: Comparative and International Experience</td>
<td>12</td>
</tr>
</tbody>
</table>
AEROSPACE ENGINEERING (COURSE 16)

Department of Aeronautics and Astronautics (p. 143)

Bachelor of Science in Aerospace Engineering

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>(can be satisfied from among 6.0001/6.0002, 6.041, 16.001, and 18.03 in the Departmental Program)</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>[can be satisfied by 16.622, 16.821, or 16.831[J] in the Departmental Program]</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Departmental Core

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0001 Introduction to Computer Science Programming in Python</td>
</tr>
<tr>
<td>6.0002 Introduction to Computational Thinking and Data Science</td>
</tr>
<tr>
<td>16.001 Unified Engineering I</td>
</tr>
<tr>
<td>16.002 Unified Engineering II</td>
</tr>
<tr>
<td>16.003 Unified Engineering III</td>
</tr>
<tr>
<td>16.004 Unified Engineering IV</td>
</tr>
<tr>
<td>16.06 Principles of Automatic Control</td>
</tr>
<tr>
<td>16.07 Dynamics</td>
</tr>
<tr>
<td>16.09 Statistics and Probability</td>
</tr>
<tr>
<td>or 6.041 Probabilistic Systems Analysis</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
</tr>
</tbody>
</table>

Professional Area Subjects

Select four subjects from at least three professional areas. ²

<table>
<thead>
<tr>
<th>Subjects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>16.100 Aerodynamics</td>
<td></td>
</tr>
<tr>
<td>Materials and Structures</td>
<td></td>
</tr>
<tr>
<td>16.20 Structural Mechanics</td>
<td></td>
</tr>
<tr>
<td>Propulsion</td>
<td></td>
</tr>
<tr>
<td>16.50 Aerospace Propulsion</td>
<td></td>
</tr>
<tr>
<td>Computational Tools</td>
<td></td>
</tr>
<tr>
<td>16.90 Computational Methods in Aerospace Engineering</td>
<td></td>
</tr>
<tr>
<td>Estimation and Control</td>
<td></td>
</tr>
<tr>
<td>16.30 Feedback Control Systems</td>
<td></td>
</tr>
<tr>
<td>Computer Systems</td>
<td></td>
</tr>
<tr>
<td>6.111 Introductory Digital Systems Laboratory</td>
<td></td>
</tr>
<tr>
<td>16.35 Real-Time Systems and Software Communications Systems</td>
<td></td>
</tr>
<tr>
<td>16.36 Communication Systems and Networks</td>
<td></td>
</tr>
<tr>
<td>Humans and Automation</td>
<td></td>
</tr>
<tr>
<td>16.400 Human Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>16.410 Principles of Autonomy and Decision Making</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory and Capstone Subjects

Select one of the following: 12
16.82 Flight Vehicle Engineering (CI-M)
16.83[J] Space Systems Engineering (CI-M)
Select one of the following three sequences: 18
Experimental Projects:
16.621 Experimental Projects I
16.622 Experimental Projects II (CI-M)
Flight Vehicle Development:
16.821 Flight Vehicle Development (CI-M)
Space Systems Development:
16.831[J] Space Systems Development (CI-M)

Unrestricted Electives

Select 48 units

Total Units

Departmental Program Units That Also Satisfy the GIRs (36)

Total Units Beyond the GIRs Required for SB Degree (198)

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

² 18.034 Differential Equations is also an acceptable option.
For students who wish to complete an option in aerospace information technology, 36 of the 48 units must come from subjects other than 16.100, 16.20, 16.50, or 16.90.
ARCHAEOLGY AND MATERIALS (COURSE 3-C)

Department of Materials Science and Engineering (p. 201)

Bachelor of Science in Archaeology and Materials as Recommended by the Department of Materials Science and Engineering

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

- 2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
- 2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.012 Fundamentals of Materials Science and Engineering</td>
<td>15</td>
</tr>
<tr>
<td>3.014 Materials Laboratory (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>3.016 Mathematical Methods for Materials Scientists and Engineers</td>
<td>12</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>3.022 Microstructural Evolution in Materials</td>
<td>12</td>
</tr>
<tr>
<td>3.032 Mechanical Behavior of Materials</td>
<td>12</td>
</tr>
<tr>
<td>or 3.044 Materials Processing</td>
<td></td>
</tr>
<tr>
<td>3.985[J] Archaeological Science</td>
<td>9</td>
</tr>
</tbody>
</table>

Unrestricted Electives

Select 69-81 units

Total Units 264

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student's departmental program will count toward one or the other, but not both.

1. 18.034 Differential Equations is also an acceptable option.
2. Students may elect up to 9–12 units.
3. Substitution of similar subjects may be permitted by petition.
BIOLOGICAL ENGINEERING (COURSE 20)

Department of Biological Engineering (p. 154)

Bachelor of Science in Biological Engineering

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 5.12 and 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 20.109]</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Core Subjects</th>
<th>Units</th>
</tr>
</thead>
</table>

Tier I

<table>
<thead>
<tr>
<th>5.12</th>
<th>Organic Chemistry I</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0001</td>
<td>Introduction to Computer Science Programming in Python</td>
<td>6</td>
</tr>
<tr>
<td>6.0002</td>
<td>Introduction to Computational Thinking and Data Science</td>
<td>6</td>
</tr>
<tr>
<td>7.03</td>
<td>Genetics</td>
<td>12</td>
</tr>
<tr>
<td>18.03</td>
<td>Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>20.110[J]</td>
<td>Thermodynamics of Biomolecular Systems</td>
<td>12</td>
</tr>
<tr>
<td>or 20.111[J]</td>
<td>Physical Chemistry of Biomolecular Systems</td>
<td></td>
</tr>
</tbody>
</table>

Tier II

5.07[J]	Biological Chemistry I	12
or 7.05	General Biochemistry	
7.06	Cell Biology	12
20.109	Laboratory Fundamentals in Biological Engineering (CI-M)	15

20.310[J] Molecular, Cellular, and Tissue Biomechanics 12

20.320 Analysis of Biomolecular and Cellular Systems 12

Tier III

20.309[J] Instrumentation and Measurement for Biological Systems 12

20.380 Biological Engineering Design (CI-M) 12

Restricted Electives

Tracks TBD 21-24

Unrestricted Electives

Select 48 units 48

Total Units 228-231

Departmental Program Units That Also Satisfy the GIRs (36)

Total Units Beyond the GIRs Required for SB Degree 192-195

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.
CHEMICAL-BIOLOGICAL ENGINEERING (COURSE 10-B)

Bachelor of Science in Chemical-Biological Engineering

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS)</td>
<td>8</td>
</tr>
<tr>
<td>Requirement</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST)</td>
<td>2</td>
</tr>
<tr>
<td>Requirement [can be satisfied from among 5.07[J] or 7.05, 5.12, 5.60, 7.03, 10.301, and 18.03 in the Departmental Program]</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 10.702[J]]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12 Organic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>5.60 Thermodynamics and Kinetics</td>
<td>12</td>
</tr>
<tr>
<td>7.03 Genetics</td>
<td>12</td>
</tr>
<tr>
<td>10.10 Introduction to Chemical Engineering</td>
<td>12</td>
</tr>
<tr>
<td>10.702[J] Introduction to Experimental Biology and Communication (CI-M)</td>
<td>18</td>
</tr>
<tr>
<td>18.03 Differential Equations ¹</td>
<td>12</td>
</tr>
</tbody>
</table>

Intermediate Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.05 General Biochemistry</td>
<td>12</td>
</tr>
<tr>
<td>or 5.07[J] Biological Chemistry I</td>
<td></td>
</tr>
<tr>
<td>7.06 Cell Biology</td>
<td>12</td>
</tr>
<tr>
<td>10.213 Chemical and Biological Engineering</td>
<td>12</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>10.301 Fluid Mechanics</td>
<td>12</td>
</tr>
</tbody>
</table>

Advanced Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.37 Chemical Kinetics and Reactor Design</td>
<td>9</td>
</tr>
<tr>
<td>10.490 Integrated Chemical Engineering I</td>
<td>8</td>
</tr>
<tr>
<td>10.491 Integrated Chemical Engineering II</td>
<td>8</td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>8</td>
</tr>
<tr>
<td>10.492 Integrated Chemical Engineering Topics I</td>
<td></td>
</tr>
<tr>
<td>10.493 Integrated Chemical Engineering Topics II</td>
<td></td>
</tr>
<tr>
<td>10.494 Integrated Chemical Engineering Topics III</td>
<td></td>
</tr>
</tbody>
</table>

Unrestricted Electives

Select 48 units

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.302 Transport Processes</td>
<td>12</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>15</td>
</tr>
<tr>
<td>10.27 Energy Engineering Projects Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>10.28 Chemical-Biological Engineering Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>10.29 Biological Engineering Projects Laboratory (CI-M)</td>
<td></td>
</tr>
</tbody>
</table>

Total Units

234

Departmental Program Units That Also Satisfy the GIRs (36)

Total Units Beyond the GIRs Required for SB Degree 198

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

¹ 18.034 Differential Equations is also an acceptable option.
CHEMICAL ENGINEERING (COURSE 10)

Department of Chemical Engineering (p. 161)

Bachelor of Science in Chemical Engineering

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied from among 5.12, 5.07[J] or 7.05, 5.60, 10.301, and 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 5.310]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundational Subjects</td>
<td></td>
</tr>
<tr>
<td>5.12 Organic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>5.310 Laboratory Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>5.60 Thermodynamics and Kinetics</td>
<td>12</td>
</tr>
<tr>
<td>10.10 Introduction to Chemical Engineering</td>
<td>12</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>Intermediate Subjects</td>
<td></td>
</tr>
<tr>
<td>5.07[J] Biological Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>or 7.05 General Biochemistry</td>
<td></td>
</tr>
<tr>
<td>10.213 Chemical and Biological Engineering Thermodynamics</td>
<td>12</td>
</tr>
<tr>
<td>10.301 Fluid Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>10.302 Transport Processes</td>
<td>12</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>15</td>
</tr>
<tr>
<td>10.26 Chemical Engineering Projects Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>Advanced Subjects</td>
<td></td>
</tr>
<tr>
<td>10.27 Energy Engineering Projects Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>10.28 Chemical-Biological Engineering Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>10.29 Biological Engineering Projects Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives</td>
<td></td>
</tr>
<tr>
<td>Select two of the following:</td>
<td>8</td>
</tr>
<tr>
<td>10.492 Integrated Chemical Engineering Topics I</td>
<td></td>
</tr>
<tr>
<td>10.493 Integrated Chemical Engineering Topics II</td>
<td></td>
</tr>
<tr>
<td>10.494 Integrated Chemical Engineering Topics III</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td></td>
</tr>
<tr>
<td>Select 48 units</td>
<td>48</td>
</tr>
<tr>
<td>Total Units</td>
<td>231-234</td>
</tr>
</tbody>
</table>
No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1. 18.034 Differential Equations is also an acceptable option.

2. One of 10.26, 10.27, 10.28, or 10.29 must be taken as a departmental requirement and cannot also be used to satisfy the laboratory requirement within restricted electives.

CHEMICAL ENGINEERING (COURSE 10-C)

Department of Chemical Engineering (p. 161)

Bachelor of Science as Recommended by the Department of Chemical Engineering

Students planning to follow this curriculum must submit a statement of goals and a coherent program of subjects no later than the spring term of their junior year.

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS)</td>
<td>8</td>
</tr>
<tr>
<td>Requirement</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST)</td>
<td>2</td>
</tr>
<tr>
<td>Requirement [can be satisfied by 5.60 and 18.03 in the Departmental Program]</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 3.014, 6.111, 10.702[J], or 15.301 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Departmental Requirements

<table>
<thead>
<tr>
<th>Units</th>
<th>Departmental Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.60</td>
<td>Thermodynamics and Kinetics</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10.10</td>
<td>Introduction to Chemical Engineering</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10.213</td>
<td>Chemical and Biological Engineering-Thermodynamics</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10.301</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10.302</td>
<td>Transport Processes</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18.03</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives

Students must choose electives that form a coherent plan of study. Students must include two restricted electives selected according to the following lists.

Select one of the following:

<table>
<thead>
<tr>
<th>Units</th>
<th>3.014</th>
<th>Materials Laboratory (CI-M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.36</td>
<td>Biochemistry and Organic Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>10.702[J]</td>
<td>Introduction to Experimental Biology and Communication (CI-M)</td>
<td></td>
</tr>
<tr>
<td>10.26</td>
<td>Chemical Engineering Projects Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>10.27</td>
<td>Energy Engineering Projects Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>10.28</td>
<td>Chemical-Biological Engineering Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>10.29</td>
<td>Biological Engineering Projects Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>10.467</td>
<td>Polymer Science Laboratory (CI-M)</td>
<td></td>
</tr>
</tbody>
</table>

Select one additional subject from the above list or the following:

<table>
<thead>
<tr>
<th>Units</th>
<th>6.021[J]</th>
<th>Cellular Biophysics and Neurophysiology (CI-M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.033</td>
<td>Computer System Engineering (CI-M)</td>
<td></td>
</tr>
<tr>
<td>6.111</td>
<td>Introductory Digital Systems Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>14.05</td>
<td>Intermediate Macroeconomics (CI-M)</td>
<td></td>
</tr>
<tr>
<td>15.279</td>
<td>Management Communication for Undergraduates (CI-M)</td>
<td></td>
</tr>
<tr>
<td>15.301</td>
<td>Managerial Psychology Laboratory (CI-M)</td>
<td></td>
</tr>
</tbody>
</table>

Unrestricted Electives

Unrestricted Electives

Total Units

<table>
<thead>
<tr>
<th>Units</th>
<th>48</th>
</tr>
</thead>
</table>

Total Units Beyond the GIRs Required for SB Degree

<table>
<thead>
<tr>
<th>Units</th>
<th>180-192</th>
</tr>
</thead>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student's departmental program will count toward one or the other, but not both.

1. 18.034 Differential Equations is also an acceptable option.

2. If the student chooses to include a subject from the second list of Restricted Electives (6.021[J]-15.301), the subject must fit logically within the plan of study.
COMPUTER SCIENCE AND ENGINEERING (COURSE 6-3)

Bachelor of Science in Computer Science and Engineering

General Institute Requirements (GIRs)

Summary of Subject Requirements	Subjects
Science Requirement | 6
Humanities, Arts, and Social Sciences (HASS) Requirement | 8
Restricted Electives in Science and Technology (REST) Requirement | 2
Laboratory Requirement | 1
Total GIR Subjects Required for SB Degree | 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.01</td>
<td>Introduction to EECS I</td>
</tr>
<tr>
<td>6.02</td>
<td>Introduction to EECS II</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
<tr>
<td>6.UAT & 6.UAP</td>
<td>Oral Communication and Undergraduate Advanced Project (CI-M) (^1)</td>
</tr>
<tr>
<td>6.UAR</td>
<td>Seminar in Undergraduate Advanced Research (CI-M)</td>
</tr>
</tbody>
</table>

Restricted Electives

Two mathematics subjects (also satisfies REST requirement):

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03</td>
<td>Differential Equations (^2)</td>
</tr>
<tr>
<td>or 18.06</td>
<td>Linear Algebra</td>
</tr>
</tbody>
</table>

One department laboratory:

Select one of the following CS laboratory subjects: 12-18

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.035</td>
<td>Computer Language Engineering</td>
</tr>
<tr>
<td>6.170</td>
<td>Software Studio</td>
</tr>
<tr>
<td>6.172</td>
<td>Performance Engineering of Software Systems</td>
</tr>
<tr>
<td>6.813</td>
<td>User Interface Design and Implementation</td>
</tr>
</tbody>
</table>

Three CS foundation subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.004</td>
<td>Computation Structures</td>
</tr>
<tr>
<td>6.005</td>
<td>Elements of Software Construction</td>
</tr>
<tr>
<td>6.006</td>
<td>Introduction to Algorithms</td>
</tr>
</tbody>
</table>

Three CS header subjects:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.033</td>
<td>Computer System Engineering (CI-M)</td>
</tr>
<tr>
<td>6.034</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>6.046[J]</td>
<td>Design and Analysis of Algorithms</td>
</tr>
</tbody>
</table>

Advanced Undergraduate Subjects:

Select two subjects from a departmental list of advanced undergraduate subjects: 24

Unrestricted Electives

Select 48 units 48

Total Units 216-222

Departmental Program Units That Also Satisfy the GIRs (36)

Total Units Beyond the GIRs Required for SB Degree 180-186

No subject can be counted \(\text{both}\) as part of the 17-subject GIRs \(\text{and}\) as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but \(\text{not both}\).

\(^1\) See the list of communication-intensive subjects below for alternatives to the 6.UAT/6.UAP sequence.

\(^2\) 18.700 Linear Algebra is also an acceptable option.

Communication-Intensive Subjects in the Major

To complete the required communication-intensive subjects in the major, students must take one of the following CI-M subjects as a restricted elective in the department laboratory, header, or advanced undergraduate subjects categories by the end of the third year:

Departmental Laboratory CI-Ms

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.021[J]</td>
<td>Cellular Biophysics and Neurophysiology</td>
</tr>
<tr>
<td>6.025[J]</td>
<td>Medical Device Design</td>
</tr>
<tr>
<td>6.033</td>
<td>Computer System Engineering</td>
</tr>
</tbody>
</table>

1
2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.101</td>
<td>Introductory Analog Electronics Laboratory</td>
</tr>
<tr>
<td>6.111</td>
<td>Introductory Digital Systems Laboratory</td>
</tr>
<tr>
<td>6.115</td>
<td>Microcomputer Project Laboratory</td>
</tr>
<tr>
<td>6.129[J]</td>
<td>Biological Circuit Engineering Laboratory</td>
</tr>
<tr>
<td>6.131</td>
<td>Power Electronics Laboratory</td>
</tr>
<tr>
<td>6.161</td>
<td>Modern Optics Project Laboratory</td>
</tr>
<tr>
<td>6.163</td>
<td>Strobe Project Laboratory</td>
</tr>
<tr>
<td>6.182</td>
<td>Psychoacoustics Project Laboratory</td>
</tr>
<tr>
<td>6.182[J]</td>
<td>Foundations of Information Policy</td>
</tr>
</tbody>
</table>

To satisfy the second CI-M, students must take one of the following options:

Option 1
- 6.UAR Seminar in Undergraduate Advanced Research

Option 2
- 6.UAT Oral Communication
- 6.UAP Undergraduate Advanced Project

Option 3
- 6.UAT Oral Communication

Plus a second departmental laboratory subject from the above list

* 6.UAR, or 6.UAT plus 6.UAP, typically constitutes the second CI-M.*
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (COURSE 6-2)

Department of Electrical Engineering and Computer Science (p. 184)

Bachelor of Science in Electrical Engineering and Computer Science

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS)</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement (satisfied by the mathematics requirement in the Department Program)</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement (satisfied by 6.01 and 6.02 together in the Departmental Program)</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.01 Introduction to EECS I</td>
<td>12</td>
</tr>
<tr>
<td>6.02 Introduction to EECS II</td>
<td>12</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>6</td>
</tr>
<tr>
<td>6.UAT & 6.UAP Oral Communication and Undergraduate Advanced Project (CI-M)</td>
<td>1</td>
</tr>
<tr>
<td>6.UAR Seminar in Undergraduate Advanced Research (CI-M)</td>
<td>1</td>
</tr>
</tbody>
</table>

Restricted Electives

Two mathematics subjects (also satisfies REST requirement):
6.041 Probabilistic Systems Analysis | 12
or 6.042[J] Mathematics for Computer Science
18.03 Differential Equations | 12
or 18.06 Linear Algebra

One departmental laboratory:
Select one of the following undergraduate laboratory subjects: 12-18
6.035 Computer Language Engineering
6.022[J] Quantitative Systems Physiology
6.101 Introductory Analog Electronics Laboratory (CI-M)
6.111 Introductory Digital Systems Laboratory (CI-M)
6.115 Microcomputer Project Laboratory (CI-M)
6.123[J] Bioinstrumentation Project Lab
6.129[J] Biological Circuit Engineering Laboratory (CI-M)
6.131 Power Electronics Laboratory (CI-M)
6.142[J] Robotics: Science and Systems II
6.161 Modern Optics Project Laboratory (CI-M)
6.163 Strobe Project Laboratory (CI-M)
6.170 Software Studio
6.172 Performance Engineering of Software Systems
6.182 Psychoacoustics Project Laboratory (CI-M)
6.813 User Interface Design and Implementation

Four EECS foundation subjects:
Select four from the following EECS foundation list 48
with two chosen from the EE foundation list and two from the CS foundation list:

EE foundation list:
6.002 Circuits and Electronics
6.003 Signals and Systems
6.004 Computation Structures (may be counted under either EE or CS)
6.007 Electromagnetic Energy: From Motors to Solar Cells

CS foundation list:
6.004 Computation Structures (may be counted under either EE or CS)
6.005 Elements of Software Construction
6.006 Introduction to Algorithms

Three EECS header subjects:
Select three header subjects from the following EECS header list, with at least one chosen from the EE header list and at least one from the CS header list:

EE header list:
- 6.011 Signals, Systems, and Inference
- 6.012 Microelectronic Devices and Circuits
- 6.013 Electromagnetics and Applications
- 6.021[J] Cellular Biophysics and Neurophysiology (CI-M)

CS header list:
- 6.033 Computer System Engineering (CI-M)
- 6.034 Artificial Intelligence
- 6.046[J] Design and Analysis of Algorithms

Advanced undergraduate subjects:
Select two subjects from a departmental list of advanced undergraduate subjects

Unrestricted Electives
Select 48 units

Total Units 222-228

Departmental Program Units That Also Satisfy the GIRs (36)

Total Units Beyond the GIRs Required for SB Degree 186-192

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 See the list of communication-intensive subjects below for alternatives to the 6.UAT/6.UAP and the 6.UAT/6.UAP sequence.
2 18.600 Probability and Random Variables is also an acceptable option.
3 18.700 Linear Algebra is also an acceptable option.
4 Students who take both 6.021[J] and 6.022[J] may use 6.022[J] to satisfy the department laboratory requirement.

Communication-Intensive Subjects in the Major
To complete the required communication-intensive subjects in the major, students must take one of the following options:

Option 1
6.UAR Seminar in Undergraduate Advanced Research

Option 2
6. UAT Oral Communication *

Option 3
6.UAT Oral Communication

Plus a second departmental laboratory subject from the above list

* 6.UAR, or 6.UAT plus 6.UAP, typically constitutes the second CI-M.
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (COURSE 6-P)

Department of Electrical Engineering and Computer Science (p. 185)

Master of Engineering in Electrical Engineering and Computer Science

The Master of Engineering degree is awarded only to students who have already received, or who will simultaneously receive, one of the Bachelor’s degrees listed below. See the degree charts to view the requirements of each undergraduate program.

- Bachelor of Science in Electrical Science and Engineering (Course 6-1) (p. 383)
- Bachelor of Science in Electrical Engineering and Computer Science (Course 6-2) (p. 380)
- Bachelor of Science in Computer Science and Engineering (Course 6-3) (p. 378)

The graduate component of the MEng program is described below.

Course 6-P Graduate Requirements

Required Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.THM</td>
<td>Master of Engineering Program Thesis</td>
<td>24</td>
</tr>
</tbody>
</table>

Restricted Electives

Four graduate subjects totaling at least 42 units from a list specified by EECS.

<table>
<thead>
<tr>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two subjects from a restricted departmental list of mathematics, science, and engineering electives.</td>
<td>24</td>
</tr>
</tbody>
</table>

| Total Units | 90-96 |

1 6-PA Program requires performance of thesis at company location.

2 The 42 units must be chosen so that among these four subjects and the two Advanced Undergraduate Subjects used for the SB degree there are three subjects that satisfy one of the Department’s Concentration Fields. (See the site below for these Concentration lists.)

For further details on all EECS programs, visit the website (http://www.eecs.mit.edu/acad.html).
ELECTRICAL SCIENCE AND ENGINEERING (COURSE 6-1)

Department of Electrical Engineering and Computer Science (p. 184)

Bachelor of Science in Electrical Science and Engineering

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.01</td>
<td>Introduction to EECS I 12</td>
</tr>
<tr>
<td>6.02</td>
<td>Introduction to EECS II 12</td>
</tr>
<tr>
<td>or 6.03</td>
<td>Introduction to EECS II from a Medical Technology Perspective</td>
</tr>
</tbody>
</table>

Select one of the following: 12

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.UAT & 6.UAP</td>
<td>Oral Communication and Undergraduate Advanced Project (CI-M)</td>
</tr>
<tr>
<td>6.UAR</td>
<td>Seminar in Undergraduate Advanced Research (CI-M)</td>
</tr>
</tbody>
</table>

Restricted Electives

Two mathematics subjects (also satisfies REST requirement):

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.041</td>
<td>Probabilistic Systems Analysis 12</td>
</tr>
<tr>
<td>18.03</td>
<td>Differential Equations 12</td>
</tr>
<tr>
<td>or 18.06</td>
<td>Linear Algebra</td>
</tr>
</tbody>
</table>

One departmental laboratory:

Select one of the following undergraduate laboratory subjects: 12-18

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.035</td>
<td>Computer Language Engineering</td>
</tr>
<tr>
<td>6.022[J]</td>
<td>Quantitative Systems Physiology</td>
</tr>
<tr>
<td>6.101</td>
<td>Introductory Analog Electronics Laboratory (CI-M)</td>
</tr>
<tr>
<td>6.111</td>
<td>Introductory Digital Systems Laboratory (CI-M)</td>
</tr>
<tr>
<td>6.115</td>
<td>Microcomputer Project Laboratory (CI-M)</td>
</tr>
<tr>
<td>6.123[J]</td>
<td>Bioinstrumentation Project Lab</td>
</tr>
<tr>
<td>6.129[J]</td>
<td>Biological Circuit Engineering Laboratory (CI-M)</td>
</tr>
<tr>
<td>6.131</td>
<td>Power Electronics Laboratory (CI-M)</td>
</tr>
<tr>
<td>6.142[J]</td>
<td>Robotics: Science and Systems II</td>
</tr>
<tr>
<td>6.161</td>
<td>Modern Optics Project Laboratory (CI-M)</td>
</tr>
<tr>
<td>6.163</td>
<td>Strobe Project Laboratory (CI-M)</td>
</tr>
<tr>
<td>6.170</td>
<td>Software Studio</td>
</tr>
<tr>
<td>6.172</td>
<td>Performance Engineering of Software Systems</td>
</tr>
<tr>
<td>6.182</td>
<td>Psychoacoustics Project Laboratory (CI-M)</td>
</tr>
<tr>
<td>6.813</td>
<td>User Interface Design and Implementation</td>
</tr>
</tbody>
</table>

Three EE foundation subjects:

Select three of the following: 36

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.002</td>
<td>Circuits and Electronics</td>
</tr>
<tr>
<td>6.003</td>
<td>Signals and Systems</td>
</tr>
<tr>
<td>6.004</td>
<td>Computation Structures</td>
</tr>
<tr>
<td>6.007</td>
<td>Electromagnetic Energy: From Motors to Solar Cells</td>
</tr>
</tbody>
</table>

Three EE header subjects:

Select three of the following: 36

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.011</td>
<td>Signals, Systems, and Inference</td>
</tr>
<tr>
<td>6.012</td>
<td>Microelectronic Devices and Circuits</td>
</tr>
<tr>
<td>6.013</td>
<td>Electromagnetics and Applications</td>
</tr>
<tr>
<td>6.021[J]</td>
<td>Cellular Biophysics and Neurophysiology (CI-M)</td>
</tr>
</tbody>
</table>

Advanced undergraduate subjects:

Select two subjects from a departmental list of advanced undergraduate subjects 24

Unrestricted Electives

Select 48 units

<table>
<thead>
<tr>
<th>Total Units</th>
<th>216-222</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departmental Program Units That Also Satisfy the GIRs</td>
<td>(36)</td>
</tr>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>180-186</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

2. See the list of communication-intensive subjects below for alternatives to the 6.UAT/6.UAP sequence.

2. 18.600 Probability and Random Variables is also an acceptable option.

3. 18.700 Linear Algebra is also an acceptable option.

Communication-Intensive Subjects in the Major

To complete the required communication-intensive subjects in the major, students must take one of the following CI-M subjects as a restricted elective in the department laboratory, header, or advanced undergraduate subjects categories by the end of the third year:

<table>
<thead>
<tr>
<th>Departmental Laboratory CI-Ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.101 Introductory Analog Electronics Laboratory</td>
</tr>
<tr>
<td>6.111 Introductory Digital Systems Laboratory</td>
</tr>
<tr>
<td>6.115 Microcomputer Project Laboratory</td>
</tr>
<tr>
<td>6.129[J] Biological Circuit Engineering Laboratory</td>
</tr>
<tr>
<td>6.131 Power Electronics Laboratory</td>
</tr>
<tr>
<td>6.161 Modern Optics Project Laboratory</td>
</tr>
<tr>
<td>6.163 Strobe Project Laboratory</td>
</tr>
<tr>
<td>6.182 Psychoacoustics Project Laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Header and Advanced Undergraduate CI-Ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.021[J] Cellular Biophysics and Neurophysiology</td>
</tr>
<tr>
<td>6.025[J] Medical Device Design</td>
</tr>
</tbody>
</table>

To satisfy the second CI-M, students must take one of the following options:

Option 1

| 6.UAR Seminar in Undergraduate Advanced Research |

Option 2

| 6.UAT Oral Communication |

6.UAR, or 6.UAT plus 6.UAP, typically constitutes the second CI-M.
ENGINEERING AS RECOMMENDED BY THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS (COURSE 16-ENG)

Bachelor of Science in Engineering as Recommended by the Department of Aeronautics and Astronautics

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement (can be satisfied from among 6.0001/6.0002, 16.001, and 18.03 in the Departmental Program)</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement (can be satisfied by 16.622, 16.821, or 16.831[J] in the Departmental Program)</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

- 2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
- 2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below) [see the Laboratory and Capstone section below for specific options]

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Departmental Core</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0001 Introduction to Computer Science Programming in Python</td>
<td>6</td>
</tr>
<tr>
<td>6.0002 Introduction to Computational Thinking and Data Science</td>
<td>6</td>
</tr>
<tr>
<td>16.001 Unified Engineering I</td>
<td>12</td>
</tr>
<tr>
<td>16.002 Unified Engineering II</td>
<td>12</td>
</tr>
<tr>
<td>16.003 Unified Engineering III</td>
<td>12</td>
</tr>
<tr>
<td>16.004 Unified Engineering IV</td>
<td>12</td>
</tr>
<tr>
<td>16.06 Principles of Automatic Control or 16.07 Dynamics</td>
<td>12</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>Total Units</td>
<td>234</td>
</tr>
</tbody>
</table>

Departmental Program Units That Also Satisfy the GIRs (36)

Total Units Beyond the GIRs Required for SB Degree 198

Concentration Subjects

These electives define a concentrated area of study and must be chosen with the written approval of the AeroAstro Undergraduate Office. A minimum of 42 units of engineering topics and a minimum of 12 units of mathematics or science topics must be included in the 72 units of concentration electives. In all cases, the concentration subjects must be clearly related to the theme of the concentration.

Laboratory and Capstone Subjects

Select one of the following: 12

- 16.82 Flight Vehicle Engineering (CI-M)
- 16.83[J] Space Systems Engineering (CI-M)

Select one of the following sequences: 18

- Experimental Projects:
 - 16.621 Experimental Projects I
 - 16.622 Experimental Projects II (CI-M)
- Flight Vehicle Development:
 - 16.821 Flight Vehicle Development (CI-M)
- Space Systems Development:
 - 16.831[J] Space Systems Development (CI-M)

Unrestrictive Electives

Select 48 units

| **Total Units** | 234 |
| **Total Units Beyond the GIRs Required for SB Degree** | 198 |

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 18.034 Differential Equations is also an acceptable option.

2 A list of approved subjects for each concentration, as well as additional information about the 16-ENG program, is available on the department’s website (http://web.mit.edu/aeroastro/academics/undergrad/degrees.html).
Bachelor of Science in Engineering as Recommended by the Department of Chemical Engineering

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 5.60 and 10.301 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 1.106/1.107, 2.671, 3.014, 5.310, 10.702(J), or 12.335 in the Departmental Program]</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.60 Thermodynamics and Kinetics</td>
<td>12</td>
</tr>
<tr>
<td>10.10 Introduction to Chemical Engineering</td>
<td>12</td>
</tr>
<tr>
<td>10.213 Chemical and Biological Engineering Thermodynamics</td>
<td>12</td>
</tr>
<tr>
<td>10.301 Fluid Mechanics</td>
<td>12</td>
</tr>
<tr>
<td>10.302 Transport Processes</td>
<td>12</td>
</tr>
<tr>
<td>10.37 Chemical Kinetics and Reactor Design</td>
<td>9</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
</tbody>
</table>

All subjects are suitable for any concentration within the program. In consultation with the advisor, students select one subject from each of the three groups. Students may not exceed the 45-unit cap except by petition.

Group I. Select one of the following Course 10 CI-M subjects:

- 10.26 Chemical Engineering Projects Laboratory (CI-M)
- 10.27 Energy Engineering Projects Laboratory (CI-M)
- 10.28 Chemical-Biological Engineering Laboratory (CI-M)
- 10.29 Biological Engineering Projects Laboratory (CI-M)
- 10.467 Polymer Science Laboratory (CI-M)

Group II. Select one of the following Institute Laboratory subjects:

- 1.106 Environmental Fluid Transport Processes and Hydrology Laboratory and Environmental Chemistry and Biology Laboratory
- 2.671 Measurement and Instrumentation Laboratory (CI-M)
- 3.014 Materials Laboratory (CI-M)
- 5.310 Laboratory Chemistry
- 5.35 Introduction to Experimental Chemistry
- 10.702(J) Introduction to Experimental Biology and Communication (CI-M)
- 12.335 Experimental Atmospheric Chemistry (CI-M)
- 20.109 Laboratory Fundamentals in Biological Engineering (CI-M)

Group III. Select one of the following:

- 1.00 Introduction to Computers and Engineering Problem Solving
- 1.080A & 1.080B Environmental Chemistry I and Environmental Chemistry II
- 3.012 Fundamentals of Materials Science and Engineering
- 5.12 Organic Chemistry I
- 5.61 Physical Chemistry
These four electives define a concentrated area of study in one of the following designated concentrations: biomedical engineering, energy, environmental studies, or materials process and design.\(^5\)

Capstone
Select one of the following options to obtain 12 units of capstone experience: Senior Thesis, Integrated Chemical Engineering or Integrated Chemical Engineering Topics modules, or Senior Project

Option 1:
- Undergraduate Thesis

Option 2. Select any combination of the following:
- 10.490 Integrated Chemical Engineering I
- 10.491 Integrated Chemical Engineering II
- 10.492 Integrated Chemical Engineering Topics I
- 10.493 Integrated Chemical Engineering Topics II
- 10.494 Integrated Chemical Engineering Topics III

Option 3:
- 10.910 Independent Research Problem

and select any combination of the following:
- 10.492 Integrated Chemical Engineering Topics I
- 10.493 Integrated Chemical Engineering Topics II
- 10.494 Integrated Chemical Engineering Topics III

Unrestricted Electives
Select 48 units

Total Units 219–234

Departmental Program Units That Also Satisfy the GIRs (36)

Total Units Beyond the GIRs Required for SB Degree 183–198

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

\(^2\) Subject may be of particular interest for energy concentration.

\(^3\) Subject may be of particular interest for biomedical engineering concentration.

\(^4\) Subject may be of particular interest for materials process and design concentration.

\(^5\) Subject may be of particular interest for environmental studies concentration.

In all cases, the electives must be chosen with the approval of the student’s advisor and the department. Lists of recommended subjects for Each concentration are available from the department, and additional information on current subject offerings is available on the Chemical Engineering Department website (http://mit.edu/cheme/academics/course). Note that subjects that have been used to satisfy the foundational concepts may not also be counted toward the engineering concentration.
ENGINEERING AS RECOMMENDED BY THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING (COURSE 1-ENG)

Bachelor of Science in Engineering as Recommended by the Department of Civil and Environmental Engineering

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied from among 1.101 and 1.102 or 1.106 and 1.107 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

General Department Requirements (GDRs)

| Units |
1.00 Introduction to Computers and Engineering Problem Solving	12
or 1.000 Computer Programming for Scientific and Engineering Applications	
1.010 Uncertainty in Engineering	12
1.013 Senior Civil and Environmental Engineering Design (CI-M)	12
1.073 Introduction to Environmental Data Analysis	6
or 1.074 Multivariate Data Analysis	
18.03 Differential Equations	12
Core Subjects	

Elective Subjects with Engineering Content

Students are required to formulate or select one area of core coursework. They can select from the following areas or create their own core from a combination of them with the approval of the CEE Program Officer.

Environment:

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.060A Fluid Mechanics I</td>
<td></td>
</tr>
<tr>
<td>1.061A Transport Processes in the Environment I</td>
<td></td>
</tr>
<tr>
<td>1.070A[J] Introduction to Hydrology and Water Resources</td>
<td></td>
</tr>
<tr>
<td>1.080A Environmental Chemistry I</td>
<td></td>
</tr>
<tr>
<td>1.083A Environmental Health Engineering and Biology I</td>
<td></td>
</tr>
<tr>
<td>1.092 Traveling Research Environmental eXperience (TREX): Fieldwork, Analysis, and Communication (CI-M)</td>
<td></td>
</tr>
<tr>
<td>1.106 Environmental Fluid Transport Processes and Hydrology Laboratory</td>
<td></td>
</tr>
<tr>
<td>1.107 Environmental Chemistry and Biology Laboratory</td>
<td></td>
</tr>
<tr>
<td>Mechanics/Materials:</td>
<td></td>
</tr>
<tr>
<td>1.035 Mechanics of Structures and Soils</td>
<td></td>
</tr>
<tr>
<td>1.050 Solid Mechanics</td>
<td></td>
</tr>
<tr>
<td>1.060A Fluid Mechanics I</td>
<td></td>
</tr>
<tr>
<td>1.060B Fluid Mechanics II</td>
<td></td>
</tr>
<tr>
<td>1.101 Introduction to Civil and Environmental Engineering Design I</td>
<td></td>
</tr>
<tr>
<td>1.102 Introduction to Civil and Environmental Engineering Design II</td>
<td></td>
</tr>
<tr>
<td>Systems:</td>
<td></td>
</tr>
<tr>
<td>1.011 Project Evaluation and Management (CI-M)</td>
<td></td>
</tr>
<tr>
<td>1.020 Principles of Energy and Water Sustainability</td>
<td></td>
</tr>
<tr>
<td>1.022 Urban Networks</td>
<td></td>
</tr>
<tr>
<td>1.041[J] Transportation Systems Modeling</td>
<td></td>
</tr>
<tr>
<td>1.101 Introduction to Civil and Environmental Engineering Design I</td>
<td></td>
</tr>
<tr>
<td>1.102 Introduction to Civil and Environmental Engineering Design II</td>
<td></td>
</tr>
</tbody>
</table>

Elective Subjects with Engineering Content

Students are required to take four Restricted Electives selected from subjects offered within or outside CEE to form a coherent program of study under supervision by CEE faculty.

Unrestricted Electives

Select 48-54 units

Total Units 216
<table>
<thead>
<tr>
<th>Departmental Program Units That Also Satisfy the GIRs</th>
<th>(36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.
ENGINEERING AS RECOMMENDED BY THE DEPARTMENT OF MECHANICAL ENGINEERING (COURSE 2-A)

Department of Mechanical Engineering (p. 210)

Bachelor of Science in Engineering as Recommended by the Department of Mechanical Engineering

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement (can be satisfied by 2.086 in the Departmental Core Subjects and one subject in the Elective Subjects with Engineering Content)</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [satisfied by 2.671 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

- 2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
- 2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Core Subjects

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-Level Subjects:</td>
</tr>
<tr>
<td>2.00</td>
</tr>
<tr>
<td>2.01</td>
</tr>
<tr>
<td>2.086</td>
</tr>
<tr>
<td>2.087</td>
</tr>
<tr>
<td>2.03</td>
</tr>
<tr>
<td>2.05</td>
</tr>
<tr>
<td>2.051</td>
</tr>
<tr>
<td>2.06</td>
</tr>
<tr>
<td>2.678</td>
</tr>
</tbody>
</table>

Second-Level Subjects:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.009</td>
</tr>
<tr>
<td>2.02A</td>
</tr>
<tr>
<td>or 2.02B</td>
</tr>
<tr>
<td>2.04A</td>
</tr>
<tr>
<td>or 2.04B</td>
</tr>
<tr>
<td>2.671</td>
</tr>
</tbody>
</table>

Elective Subjects with Engineering Content

Select 72 units (must include one REST subject outside Course 2) ²

Unrestricted Electives

Select 48 units

Total Units

Departmental Program Units That Also Satisfy the GIRs (36)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

¹ Students may also fulfill this requirement by completing an alternative 2.00X subject, i.e., 2.00B.

² These electives define a concentrated area of study and must be chosen with the written approval of the MechE Undergraduate Office. The 72 units of concentration electives must be engineering topics. Concentration electives must include one subject that meets the REST GIR, but not subjects that fulfill a HASS GIR. Engineering topics are usually obtained from engineering courses, but in some cases, non-engineering subjects may be necessary for the particular engineering program defined by the concentration (e.g., management subjects for an engineering management concentration). In all cases, the relationship of concentration subjects to the theme of the concentration must be obvious.
MATERIALS SCIENCE AND ENGINEERING (COURSE 3)

Department of Materials Science and Engineering (p. 201)

Bachelor of Science in Materials Science and Engineering

General Institute Requirements (GIRs)

Summary of Subject Requirements

| Subjects |
| --- | --- |
| Science Requirement | 6 |
| Humanities, Arts, and Social Sciences (HASS) | 8 |
| Restricted Electives in Science and Technology (REST) Requirement | 2 |
| Laboratory Requirement | 1 |

Total GIR Subjects Required for SB Degree | 17 |

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.012 Fundamentals of Materials Science and Engineering</td>
<td>15</td>
</tr>
<tr>
<td>3.014 Materials Laboratory (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>3.016 Mathematical Methods for Materials Scientists and Engineers (^1)</td>
<td>12</td>
</tr>
<tr>
<td>or 18.03 Differential Equations</td>
<td></td>
</tr>
<tr>
<td>3.022 Microstructural Evolution in Materials</td>
<td>12</td>
</tr>
<tr>
<td>3.024 Electronic, Optical and Magnetic Properties of Materials</td>
<td>12</td>
</tr>
<tr>
<td>3.032 Mechanical Behavior of Materials</td>
<td>12</td>
</tr>
<tr>
<td>3.034 Organic and Biomaterials Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>3.042 Materials Project Laboratory (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>3.044 Materials Processing</td>
<td>12</td>
</tr>
</tbody>
</table>

Select one of the following: | 12 |

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following:</td>
<td></td>
</tr>
</tbody>
</table>

1.00 Introduction to Computers and Engineering Problem Solving |
3.021 Introduction to Modeling and Simulation |
3.016 Mathematical Methods for Materials Scientists and Engineers \(^2\) |
6.01 Introduction to EECS I |
Select one of the following: | 9-12 |

3.930 Internship Program |
& 3.931 Internship Program |
3.THU Undergraduate Thesis |

Restricted Electives

Select 48 units from the following: | 48 |

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.004 Principles of Engineering Practice</td>
<td></td>
</tr>
</tbody>
</table>
3.016 Mathematical Methods for Materials Scientists and Engineers \(^1\) |
3.017 Modelling, Problem Solving, Computing, and Visualization |
3.021 Introduction to Modeling and Simulation \(^1\) |
3.046 Thermodynamics of Materials |
3.048 Advanced Materials Processing |
3.052 Nanomechanics of Materials and Biomaterials |
3.053\([J]\) Molecular, Cellular, and Tissue Biomechanics |
3.054 Cellular Solids: Structure, Properties, Applications |
3.055\([J]\) Biomaterials Science and Engineering |
3.063 Polymer Physics |
3.064 Polymer Engineering |
3.07 Introduction to Ceramics |
3.071 Amorphous Materials |
3.072 Symmetry, Structure and Tensor Properties of Materials |
3.074 Imaging of Materials |
3.080 Economic and Environmental Materials Selection |
3.081 Industrial Ecology of Materials |
3.086 Innovation and Commercialization of Materials Technology |
3.14 Physical Metallurgy |
3.15 Electrical, Optical, and Magnetic Materials and Devices |
3.152 Magnetic Materials |
3.153 Nanoscale Materials |

2015–2016 MIT Bulletin | 391
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.154[J]</td>
<td>Materials Performance in Extreme Environments</td>
</tr>
<tr>
<td>3.155[J]</td>
<td>Micro/Nano Processing Technology (CI-M)</td>
</tr>
<tr>
<td>3.156</td>
<td>Photonic Materials and Devices</td>
</tr>
<tr>
<td>3.18</td>
<td>Materials Science and Engineering of Clean Energy</td>
</tr>
<tr>
<td>3.19</td>
<td>Sustainable Chemical Metallurgy</td>
</tr>
</tbody>
</table>

Unrestricted Electives

Select 48 units

Total Units 228-231

Departmental Program Units That Also Satisfy the GIRs (39)

Total Units Beyond the GIRs Required for SB Degree 189-192

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1. These subjects can count as part of the required subjects or as restricted electives, but not both.
2. 18.034 Differential Equations is also an acceptable option.
3. Students may elect 9–12 units.
4. Substitution of similar subjects may be permitted by petition.
BACHELOR OF SCIENCE AS RECOMMENDED BY THE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING (COURSE 3-A)

Bachelor of Science as Recommended by the Department of Materials Science and Engineering

Students planning to follow this curriculum must submit a program of study no later than the beginning of the their junior year.

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement (can be satisfied by 3.014 in the Departmental Program)</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.014 Materials Laboratory (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>Select five of the following core subjects</td>
<td>60-63</td>
</tr>
<tr>
<td>3.012 Fundamentals of Materials Science and Engineering</td>
<td></td>
</tr>
<tr>
<td>3.016 Mathematical Methods for Materials Scientists and Engineers (^{1,2}) or 18.03 Differential Equations</td>
<td></td>
</tr>
<tr>
<td>3.022 Microstructural Evolution in Materials</td>
<td></td>
</tr>
<tr>
<td>3.024 Electronic, Optical and Magnetic Properties of Materials</td>
<td></td>
</tr>
<tr>
<td>3.032 Mechanical Behavior of Materials</td>
<td></td>
</tr>
<tr>
<td>3.034 Organic and Biomaterials Chemistry</td>
<td></td>
</tr>
<tr>
<td>3.042 Materials Project Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>3.044 Materials Processing</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives

Select three of the following: 36

<table>
<thead>
<tr>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.004 Principles of Engineering Practice</td>
</tr>
<tr>
<td>3.016 Mathematical Methods for Materials Scientists and Engineers (^2)</td>
</tr>
<tr>
<td>3.017 Modelling, Problem Solving, Computing, and Visualization</td>
</tr>
<tr>
<td>3.021 Introduction to Modeling and Simulation (^2)</td>
</tr>
<tr>
<td>3.046 Thermodynamics of Materials</td>
</tr>
<tr>
<td>3.048 Advanced Materials Processing</td>
</tr>
<tr>
<td>3.052 Nanomechanics of Materials and Biomaterials</td>
</tr>
<tr>
<td>3.053 Molecular, Cellular, and Tissue Biomechanics</td>
</tr>
<tr>
<td>3.054 Cellular Solids: Structure, Properties, Applications</td>
</tr>
<tr>
<td>3.055 Biomaterials Science and Engineering</td>
</tr>
<tr>
<td>3.063 Polymer Physics</td>
</tr>
<tr>
<td>3.064 Polymer Engineering</td>
</tr>
<tr>
<td>3.07 Introduction to Ceramics</td>
</tr>
<tr>
<td>3.071 Amorphous Materials</td>
</tr>
<tr>
<td>3.072 Symmetry, Structure and Tensor Properties of Materials</td>
</tr>
<tr>
<td>3.074 Imaging of Materials</td>
</tr>
<tr>
<td>3.080 Economic and Environmental Materials Selection</td>
</tr>
<tr>
<td>3.081 Industrial Ecology of Materials</td>
</tr>
<tr>
<td>3.086 Innovation and Commercialization of Materials Technology</td>
</tr>
<tr>
<td>3.14 Physical Metallurgy</td>
</tr>
<tr>
<td>3.15 Electrical, Optical, and Magnetic Materials and Devices</td>
</tr>
<tr>
<td>3.152 Magnetic Materials</td>
</tr>
<tr>
<td>3.153 Nanoscale Materials</td>
</tr>
<tr>
<td>3.154 Materials Performance in Extreme Environments</td>
</tr>
<tr>
<td>3.155 Micro/Nano Processing Technology (CI-M)</td>
</tr>
<tr>
<td>3.156 Photonic Materials and Devices</td>
</tr>
<tr>
<td>3.18 Materials Science and Engineering of Clean Energy</td>
</tr>
<tr>
<td>3.19 Sustainable Chemical Metallurgy</td>
</tr>
</tbody>
</table>
Select six electives from a proposal of study approved by the department.

Unrestricted Electives

Select 48 units

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
</tr>
</tbody>
</table>

Total Units

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>231</td>
</tr>
</tbody>
</table>

Departmental Program Units That Also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>36-39</td>
</tr>
</tbody>
</table>

Total Units Beyond the GIRs Required for SB Degree

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>192</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1. 18.034 Differential Equations is also an acceptable option.
2. These subjects may count as part of the required subjects or as restricted electives, but not both.
3. Students must develop a program of six elective subjects appropriate to their stated goals.

Communication-Intensive Subjects in the Major

Required subject (see degree chart above):

| 3.014 Materials Laboratory | 12 |

Choose one of the following as the second CI-M subject:

<table>
<thead>
<tr>
<th>12-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.009 The Product Engineering Process</td>
</tr>
<tr>
<td>2.671 Measurement and Instrumentation</td>
</tr>
<tr>
<td>3.042 Materials Project Laboratory</td>
</tr>
<tr>
<td>5.36 Biochemistry and Organic Laboratory</td>
</tr>
<tr>
<td>5.38 Biological and Physical Chemistry Laboratory</td>
</tr>
<tr>
<td>6.021[J] Cellular Biophysics and Neurophysiology</td>
</tr>
<tr>
<td>7.02[J] Introduction to Experimental Biology and Communication</td>
</tr>
<tr>
<td>10.26 Chemical Engineering Projects Laboratory</td>
</tr>
<tr>
<td>10.28 Chemical-Biological Engineering Laboratory</td>
</tr>
<tr>
<td>10.29 Biological Engineering Projects Laboratory</td>
</tr>
<tr>
<td>10.467 Polymer Science Laboratory</td>
</tr>
</tbody>
</table>

Example of a 3-A Program

A student planning a career in medicine might select the following subjects, in addition to the above requirements, in order to satisfy the premedical requirements recommended by the Global Education and Career Development Center:

<table>
<thead>
<tr>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12 Organic Chemistry I</td>
</tr>
<tr>
<td>5.13 Organic Chemistry II</td>
</tr>
</tbody>
</table>
MECHANICAL AND OCEAN ENGINEERING (COURSE 2-OE)

Department of Mechanical Engineering (p. 210)

Bachelor of Science in Mechanical and Ocean Engineering

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 2.001 and 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 2.671 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.001 Mechanics and Materials I</td>
</tr>
<tr>
<td>2.002 Mechanics and Materials II</td>
</tr>
<tr>
<td>2.004 Dynamics and Control I</td>
</tr>
<tr>
<td>2.005 Thermal-Fluids Engineering I</td>
</tr>
<tr>
<td>2.016 Hydrodynamics</td>
</tr>
<tr>
<td>2.017[J] Design of Electromechanical Robotic Systems</td>
</tr>
<tr>
<td>2.019 Design of Ocean Systems (CI-M)</td>
</tr>
<tr>
<td>2.065 Acoustics and Sensing</td>
</tr>
<tr>
<td>2.086 Numerical Computation for Mechanical Engineers</td>
</tr>
<tr>
<td>2.612 Marine Power and Propulsion</td>
</tr>
<tr>
<td>2.670 Mechanical Engineering Tools [1]</td>
</tr>
</tbody>
</table>

2.671 Measurement and Instrumentation (CI-M) | 12 |

18.03 Differential Equations | 12 |

Restricted Electives

Select one elective from the Restricted Electives list below: [1]

Unrestricted Electives

Select 48 units

Total Units

Departmental Program Units That Also Satisfy the GIRs | (36) |

Total Units Beyond the GIRs Required for SB Degree | 183 |

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both. [1]

Consult the MechE Undergraduate Office, Room 1-110, regarding substitutions.

Restricted Electives

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.006 Thermal-Fluids Engineering II</td>
</tr>
<tr>
<td>2.007 Design and Manufacturing I</td>
</tr>
<tr>
<td>2.008 Design and Manufacturing II</td>
</tr>
<tr>
<td>2.092 Finite Element Analysis of Solids and Fluids I</td>
</tr>
<tr>
<td>2.12 Introduction to Robotics</td>
</tr>
<tr>
<td>2.14 Analysis and Design of Feedback Control Systems</td>
</tr>
<tr>
<td>2.51 Intermediate Heat and Mass Transfer</td>
</tr>
<tr>
<td>2.60[J] Fundamentals of Advanced Energy Conversion</td>
</tr>
<tr>
<td>2.700 Principles of Naval Architecture</td>
</tr>
<tr>
<td>2.72 Elements of Mechanical Design</td>
</tr>
<tr>
<td>2.96 Management in Engineering</td>
</tr>
<tr>
<td>2.THU Undergraduate Thesis</td>
</tr>
</tbody>
</table>

1 Consulting the MechE Undergraduate Office, Room 1-110, regarding substitutions.
MECHANICAL ENGINEERING (COURSE 2)

Department of Mechanical Engineering (p. 210)

Bachelor of Science in Mechanical Engineering

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS)</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 2.001 and 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 2.671 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Core Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.001 Mechanics and Materials I</td>
<td>12</td>
</tr>
<tr>
<td>2.002 Mechanics and Materials II</td>
<td>12</td>
</tr>
<tr>
<td>2.003[J] Dynamics and Control I</td>
<td>12</td>
</tr>
<tr>
<td>2.004 Dynamics and Control II</td>
<td>12</td>
</tr>
<tr>
<td>2.005 Thermal-Fluids Engineering I</td>
<td>12</td>
</tr>
<tr>
<td>2.006 Thermal-Fluids Engineering II</td>
<td>12</td>
</tr>
<tr>
<td>2.007 Design and Manufacturing I</td>
<td>12</td>
</tr>
<tr>
<td>or 2.017[J] Design of Electromechanical Robotic Systems</td>
<td></td>
</tr>
<tr>
<td>2.008 Design and Manufacturing II</td>
<td>12</td>
</tr>
<tr>
<td>2.009 The Product Engineering Process (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>2.086 Numerical Computation for Mechanical Engineers</td>
<td>12</td>
</tr>
<tr>
<td>2.670 Mechanical Engineering Tools</td>
<td>3</td>
</tr>
<tr>
<td>2.671 Measurement and Instrumentation (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>2.THU Undergraduate Thesis</td>
<td>6</td>
</tr>
</tbody>
</table>

Restricted Electives

Select two of the following: 1

| 2.016 Hydrodynamics |
| 2.017[J] Design of Electromechanical Robotic Systems |
| 2.019 Design of Ocean Systems (CI-M) |
| 2.050[J] Nonlinear Dynamics: Chaos |
| 2.092 Finite Element Analysis of Solids and Fluids I |
| 2.12 Introduction to Robotics |
| 2.14 Analysis and Design of Feedback Control Systems |
| 2.184 Biomechanics and Neural Control of Movement |
| 2.370 Fundamentals of Nanoengineering |
| 2.51 Intermediate Heat and Mass Transfer |
| 2.60[J] Fundamentals of Advanced Energy Conversion |
| 2.650[J] Introduction to Sustainable Energy |
| 2.71 Optics |
| 2.72 Elements of Mechanical Design |
| 2.797[J] Molecular, Cellular, and Tissue Biomechanics |
| 2.813 Energy, Materials, and Manufacturing |
| 2.96 Management in Engineering |

Unrestricted Electives

Select 48 units 4

| Total Units | 225 |

Departmental Program Units That Also Satisfy the GIRs (36)

| Total Units Beyond the GIRs Required for SB Degree | 189 |

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 Students may fulfill this requirement by completing an alternative Course 2 CI-M subject (e.g., 2.013 or 2.750[J]). No substitutions are allowed for 2.671.
2 Consult the MechE Undergraduate Office, Room 1-110, regarding substitutions.
3 To encourage more substantial research, design, or independent study, the department permits up to 15 units of 2.THU credit, subject to approval of the student’s thesis advisor.
4 The department suggests that students elect a basic electronics subject (e.g., 2.678, 6.002, or 6.071[J]) as early as possible in their program.
NUCLEAR SCIENCE AND ENGINEERING (COURSE 22)

Department of Nuclear Science and Engineering (p. 225)

Bachelor of Science in Nuclear Science and Engineering

General Institute Requirements (GIRs)

Summary of Subject Requirements	Subjects
Science Requirement | 6
Humanities, Arts, and Social Sciences (HASS) Requirement [can be satisfied by 22.04[J] in the Departmental Program] | 8
Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 8.03 and 22.071[J] in the Departmental Program] | 2
Laboratory Requirement [can be satisfied by 22.09 in the Departmental Program] | 1
Total GIR Subjects Required for SB Degree | 17

Communication Requirement
2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement
Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Required Core Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.02</td>
<td>Introduction to Applied Nuclear Physics</td>
</tr>
<tr>
<td>22.033</td>
<td>Nuclear Systems Design Project</td>
</tr>
<tr>
<td>22.05</td>
<td>Neutron Science and Reactor Physics</td>
</tr>
<tr>
<td>22.09</td>
<td>Principles of Nuclear Radiation Measurement and Protection (CI-M)</td>
</tr>
</tbody>
</table>

Select two of the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.04[J]</td>
<td>Social Problems of Nuclear Energy (CI-M)</td>
</tr>
<tr>
<td>22.055</td>
<td>Radiation Biophysics</td>
</tr>
<tr>
<td>22.06</td>
<td>Engineering of Nuclear Systems</td>
</tr>
</tbody>
</table>

Required Thesis

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.THT</td>
<td>Undergraduate Thesis Tutorial</td>
</tr>
<tr>
<td>22.THU</td>
<td>Undergraduate Thesis (CI-M)</td>
</tr>
</tbody>
</table>

Unrestricted Electives
Select 60 units | 60

Total Units | 231

Departmental Program Units That Also Satisfy the GIRs (36-48)

Total Units Beyond the GIRs Required for SB Degree | 183-195

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student's departmental program will count toward one or the other, but not both.

1. 18.034 Differential Equations is also an acceptable option.
2. Unit totals shown are the minimum requirements.
ANTHROPOLOGY (COURSE 21A)

Anthropology Section (p. 233)

Bachelor of Science in Anthropology

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [between three and six subjects can be from the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21A.00 Introduction to Anthropology: Comparing Human Cultures</td>
<td>12</td>
</tr>
<tr>
<td>21A.01 How Culture Works</td>
<td>12</td>
</tr>
<tr>
<td>21A.802 Seminar in Ethnography and Fieldwork (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>21A.852 Seminar in Anthropological Theory (CI-M)</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

A coherent program of eight anthropology subjects, which may include a pre-thesis tutorial (21A.THT) and a thesis (21A.THU). The decision to write a thesis is made in consultation between the student and advisor.

Unrestricted Electives

Select 72-114 units \(^1\)

Total Units

180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

\(^1\) This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
COMPARATIVE MEDIA STUDIES (CMS)

Comparative Media Studies/Writing Program (p. 235)

Bachelor of Science in Comparative Media Studies

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [between three and six subjects can be from the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects	Units
Tier I: 21L.011 The Film Experience | 12
CMS.100 Introduction to Media Studies | 12
Tier II (Mid-tier): Select one of the following: | 12
CMS.400 Media Systems and Texts (CI-M)
CMS.403[J] Media and Methods: Performing (CI-M)
CMS.405 Media and Methods: Seeing and Expression (CI-M)
CMS.407 Media and Methods: Sound (CI-M)
Tier III (Capstone): Select one of the following: | 12
21L.706 Studies in Film (CI-M)
CMS.701 Current Debates in Media (CI-M)
Restricted Electives

Select six restricted electives. Qualified students may, with departmental approval, substitute a pre-thesis tutorial (CMS.THT) and thesis (CMS.THU) for one elective.

Unrestricted Electives

Select 96-132 units ² 96-132

Total Units 216

Departmental Program Units That Also Satisfy the GIRs (36-72)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

² This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
ECONOMICS (COURSE 14)

Department of Economics (p. 241)

Bachelor of Science in Economics

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS)</td>
<td>8</td>
</tr>
<tr>
<td>Requirement [between one and three subjects can be from the Departmental Program]</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST)</td>
<td>2</td>
</tr>
<tr>
<td>Requirement [one subject can be satisfied by 14.30 in the Departmental Program]</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 14.33 in the Departmental Program]</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.01 Principles of Microeconomics</td>
<td>12</td>
</tr>
<tr>
<td>14.02 Principles of Macroeconomics</td>
<td>12</td>
</tr>
<tr>
<td>14.04 Intermediate Microeconomic Theory</td>
<td>12</td>
</tr>
<tr>
<td>14.05 Intermediate Macroeconomics (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>14.30 Introduction to Statistical Methods in Economics</td>
<td>12</td>
</tr>
<tr>
<td>14.32 Econometrics</td>
<td>12</td>
</tr>
<tr>
<td>14.33 Research and Communication in Economics: Topics, Methods, and Implementation (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>14.THU Thesis</td>
<td>15</td>
</tr>
</tbody>
</table>

Restricted Electives

Select five elective subjects in economics 60

Unrestricted Electives

Select 57-81 units 57-81

Total Units 216

Departmental Program Units That Also Satisfy the GIRs (36-60)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 Or an approved alternative in statistics. (Consult department.)

2 May be replaced by an additional elective subject in economics.

3 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
GLOBAL STUDIES AND LANGUAGES (COURSE 21G)

Global Studies and Languages Section (p. 245)

Bachelor of Science in Global Studies and Languages (French Studies)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [between three and six subjects may be satisfied by subjects in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Prerequisite subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.301 French I</td>
<td></td>
</tr>
<tr>
<td>21G.302 French II</td>
<td></td>
</tr>
</tbody>
</table>

Required Subjects

21G.304 French IV	12
21G.306 French: Communication Intensive I	3
21G.307 French: Communication Intensive II	3

Registration for 21G.306 and 21G.307 must be simultaneous with one of the following:

21G.308 Writing (Like the) French	
21G.310 French Conversation: Intensive Practice	
21G.311 Introduction to French Culture	
21G.312 Basic Themes in French Literature and Culture	

21G.315 Cross-cultural Perspectives on Contemporary French Society	
21G.320 Introduction to French Literature	
21G.321 Childhood and Youth in French and Francophone Cultures	
21G.322 Frenchness in an Era of Globalization	
21G.325 New Culture of Gender: Queer France	
21G.341 Contemporary French Film and Social Issues	
21G.346 Topics in Modern French Literature and Culture	
21G.347 Social and Literary Trends in Contemporary Short French Fiction	

Restricted Electives

A coherent program of eight subjects beyond French II, which may include a pre-thesis tutorial (21G.THT) and a thesis (21G.THU).

Unrestricted Electives

Select 78-114 units 2

Total Units

216

Departmental Program Units That Also Satisfy the GIRs (36-72)

Total Units Beyond the GIRs Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 The units for the prerequisite subjects are not included in the calculations for this degree chart.

2 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
Global Studies and Languages Section (p. 245)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [between three and six subjects may be satisfied by subjects in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Prerequisite subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.401 German I</td>
<td></td>
</tr>
<tr>
<td>21G.402 German II</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.404 German IV</td>
<td>12</td>
</tr>
<tr>
<td>21G.406 German: Communication Intensive I</td>
<td>3</td>
</tr>
<tr>
<td>21G.407 German: Communication Intensive II</td>
<td>3</td>
</tr>
</tbody>
</table>

Registration for 21G.406 and 21G.407 must be simultaneous with one of the following:

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.405 Intermediate German: Intensive Study of Language and Culture</td>
<td></td>
</tr>
<tr>
<td>21G.409 Advanced German: Visual Arts, Media, Creative Expression</td>
<td></td>
</tr>
<tr>
<td>21G.410 Advanced German: Communication for Professionals</td>
<td></td>
</tr>
<tr>
<td>21G.412 Advanced German: Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>21G.414 German Culture, Media, and Society</td>
<td></td>
</tr>
<tr>
<td>21G.415 Germany and Its European Context</td>
<td></td>
</tr>
<tr>
<td>21G.416 20th- and 21st-Century German Literature</td>
<td></td>
</tr>
<tr>
<td>21G.420 Visual Histories: German Cinema 1945 to Present</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restricted Electives</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A coherent program of eight subjects beyond German II, which may include a pre-thesis tutorial (21G.THT) and a thesis (21G.THU).</td>
<td>96</td>
</tr>
</tbody>
</table>

Unrestricted Electives

Select 78-114 units ² | 78-114 |

Total Units

| Total GIRs Required for SB Degree Units | 216 |
| Departmental Program Units That Also Satisfy the GIRs (36-72) | |

Total Units Beyond the GIRs Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 The units for the prerequisite subjects are not included in the calculations for this degree chart.

2 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
Global Studies and Languages Section (p. 245)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [between three and six subjects may be satisfied by subjects in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Prerequisite subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.701 Spanish I</td>
<td></td>
</tr>
<tr>
<td>21G.702 Spanish II</td>
<td></td>
</tr>
</tbody>
</table>

Required Subjects

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.704 Spanish IV</td>
<td>12</td>
</tr>
<tr>
<td>21G.708 Spanish: Communication Intensive I</td>
<td>3</td>
</tr>
<tr>
<td>21G.709 Spanish: Communication Intensive II</td>
<td>3</td>
</tr>
</tbody>
</table>

Registration for 21G.708 and 21G.709 must be simultaneous with one of the following range of subjects:

<table>
<thead>
<tr>
<th>Prerequisite subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21G.716[J] Introduction to Contemporary Hispanic Literature and Film</td>
<td></td>
</tr>
<tr>
<td>21G.717[J] Introduction to Spanish Culture</td>
<td></td>
</tr>
<tr>
<td>21G.730 Hispanic America: One Hundred Years of Literature and Film</td>
<td></td>
</tr>
<tr>
<td>21G.735 Advanced Topics in Hispanic Literature and Film</td>
<td></td>
</tr>
<tr>
<td>21G.736 The Short Story in Spain and Hispanic America</td>
<td></td>
</tr>
<tr>
<td>21G.738[J] Literature and Social Conflict: Perspectives on Modern Spain</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives

A coherent program of eight subjects beyond Spanish II, which may include a pre-thesis tutorial (21G.THT) and a thesis (21G.THU).

Unrestricted Electives

Select 78–114 units

Total Units

Departmental Program Units That Also Satisfy the GIRs

Total Units Beyond the GIRs Required for SB Degree

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 The units for the prerequisite subjects are not included in the calculations for this degree chart.

2 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
HISTORY (COURSE 21H)

History Section (p. 250)

Bachelor of Science in History

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [three subjects can be satisfied by subjects in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one 21H seminar subject (excluding 21H.390)</td>
<td>9-12</td>
</tr>
<tr>
<td>21H.390 Seminar in Historical Methods (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>21H.THT History Pre-Thesis Tutorial</td>
<td>12</td>
</tr>
<tr>
<td>21H.THU History Thesis (CI-M)</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

Select a coherent program, in consultation with a major advisor, of seven subjects from the history curriculum and three related subjects from a second HASS discipline

Unrestricted Electives

Select 48-69 units

Total Units

216

Departmental Program Units That Also Satisfy the GIRs (36)

Total Units Beyond the GIRs Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject

1. Select from among 21H subjects for which the first digit after the decimal point is 3. See the History website (http://history.mit.edu/subjects) for additional information.

2. The seven 21H subjects must be drawn from two geographical areas and include one pre-modern subject (before 1700) and one modern subject.
Bachelor of Science in Humanities

All options in this major are by special arrangement, requiring approval by the Dean of the School of Humanities, Arts, and Social Sciences (SHASS). The approval process requires students to designate two communication-intensive (CI-M) subjects in their proposed program of study at the time they submit their proposal for review. The proposed CI-M subjects will be reviewed by the SHASS Academic Administrator and the Subcommittee on the Communication Requirement (SOCR) before the program proposal is submitted to the Dean of SHASS. In most cases, CI-M subjects are selected from among advanced subjects serving as CI-M subjects for related programs. For example, a student proposing a program in American Studies may want to include a subject that serves as a CI-M subject in the history major (Course 21H).

Up to six subjects (72 units) may be used for both the major and the GIRs, but the units from those subjects may not count toward the 180 units required beyond the GIRs. In addition, no more than one subject that counts toward the distribution component of the HASS Requirement may be counted toward the degree program.

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>(between three and six subjects can be from the Departmental Program. Only one subject being used to meet the distribution component of the HASS Requirement may be counted toward the degree program.)</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST)</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)
[The CI-M subjects are normally selected from the CI-M subjects for majors in related disciplines.]

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.THT Humanities Pre-Thesis Tutorial</td>
<td>6</td>
</tr>
<tr>
<td>21.THU Undergraduate Thesis in Humanities</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

The restricted electives for each option are determined in consultation with the faculty advisor in the chosen field.

American Studies

A minimum of nine subjects (108 units) beyond the pre-thesis and thesis. Remaining subjects selected from at least two of the three disciplinary areas.

Ancient and Medieval Studies

A minimum of nine subjects (108 units) beyond the pre-thesis and thesis, including two language subjects in Area I (or equivalent proficiency), and seven other subjects selected from at least two of the three disciplinary areas (Areas II-IV).

Asian and Asian Diaspora Studies

A minimum of nine subjects (108 units) beyond the pre-thesis and thesis, including two language subjects in Area I (or equivalent proficiency), and seven other subjects selected from at least two of the three disciplinary areas (Areas II-IV).

Latin American and Latino Studies

A minimum of eight subjects (96 units) beyond the introductory course, pre-thesis, and thesis. Remaining subjects include two language subjects in Area I (or equivalent proficiency), and six subjects selected from at least two of the three disciplinary areas (Areas II-IV).

Russian and Eurasian Studies

A minimum of nine subjects (108 units) beyond the pre-thesis and thesis, two of which must satisfy the language requirement, and at least six of which must be MIT subjects or subjects taken at Harvard or Wellesley under cross-registration.

Women’s and Gender Studies

A minimum of nine subjects (108 units) beyond the pre-thesis and thesis, including two language subjects in Area I (or equivalent proficiency), and seven other subjects selected from at least two of the three disciplinary areas (Areas II-IV).

WGS.101 Introduction to Women’s and Gender Studies

WGS.301 Feminist Thought
A minimum of seven subjects (84 units) beyond the introductory course, advanced feminist theory course, pre-thesis, and thesis. In consultation with the director, the pre-thesis and thesis may be replaced by two additional WGS courses.

Unrestricted Electives

<table>
<thead>
<tr>
<th>Select 54-126 units</th>
<th>54-126</th>
</tr>
</thead>
</table>

Total Units

216

Departmental Program Units That Also Satisfy the GIRs

36-72

Total Units Beyond the GIRs Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

2 With the consent of the faculty advisor in the chosen field, a student may substitute two subjects for the pre-thesis and thesis requirement.

3 See the Interdisciplinary Programs section for more detailed information about American Studies (p. 328).

4 See the Interdisciplinary Programs section for more detailed information about Ancient and Medieval Studies (p. 330).

5 See the Interdisciplinary Programs section for more detailed information about Asian and Asian Diaspora Studies (p. 331).

6 See the Interdisciplinary Programs section for more detailed information about Latin American and Latino Studies (p. 333).

7 See the Interdisciplinary Programs section for more detailed information about Russian and Eurasian Studies (p. 334).

8 Students majoring in Russian and Eurasian Studies may substitute two subjects for the pre-thesis tutorial and thesis.

9 See the Interdisciplinary Programs section for more detailed information about Women’s and Gender Studies (p. 335).

9 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
Bachelor of Science in Humanities and Engineering

As a matter of general Course 21 policy, subjects used to meet the General Institute Science Requirement, the REST Requirement, and the Laboratory Requirement may not be included in the six-subject Engineering component of 21E degrees.

Students must designate two CI-M subjects by petitioning the Subcommittee on the Communication Requirement (http://web.mit.edu/commreq/cim/course21e21s.html). Normally, students are expected to complete one CI-M from each area of study, usually chosen from the subjects designated as CI-M for each major.

General Institute Requirements (GIRs)

Summary of Subject Requirements

Subjects	Science Requirement: 6
Humanities, Arts, and Social Sciences (HASS)	8
Requirement [between three and six subjects can be from the Departmental Program. Only one subject being used to meet the distribution component of the HASS Requirement may be counted toward the degree program.]	
Restricted Electives in Science and Technology (REST) Requirement	2
Laboratory Requirement	1

Total GIR Subjects Required for SB Degree 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Restricted Electives

For the humanities component, choose one of the following (further details may be obtained from the descriptions of programs in specific fields and the relevant field office):

- American Studies
- Ancient and Medieval Studies
- Anthropology
- Asian and Asian Diaspora Studies
- Comparative Media Studies
- Global Studies and Languages (in French, German, or Spanish)
- History
- Latin American and Latino Studies
- Literature
- Music
- Russian and Eurasian Studies
- Science, Technology, and Society (STS)
- Theater Arts
- Women’s and Gender Studies
- Writing: Creative
- Writing: Digital Media
- Writing: Science Writing

For the engineering component, select six elective subjects restricted to one of the engineering curricula and approved by a faculty member in the field.

Unrestricted Electives

Select 48-117 units

Total Units 216

Departmental Program Units That Also Satisfy the GIRs (36-72)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 American Studies, Ancient and Medieval Studies, Asian and Asian Diaspora Studies, Latin American and Latino Studies, Russian and Eurasian Studies, Theater Arts, and Women’s and Gender Studies are also available as options within the Course 21 degree program (p. 406), by special arrangement with the Dean of the School of Humanities, Arts, and Social Sciences.

2 Russian language subjects beyond level IV are not offered at MIT, but may be taken at Harvard University or Wellesley College through cross-registration.

3 When possible, the subject satisfying the Institute Laboratory Requirement and one of the subjects satisfying the REST Requirement should be selected from this same curriculum, in addition to the regular requirement.

4 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
Restricted Electives: Humanities Component (by area of study)

American Studies
Select seven elective subjects, including two in history and two in literature 63-84
21.THT Humanities Pre-Thesis Tutorial
21.THU Undergraduate Thesis in Humanities
Total Units 81-102

Ancient and Medieval Studies
Select seven elective subjects that follow the general structure of the Minor 63-84
21.THT Humanities Pre-Thesis Tutorial
21.THU Undergraduate Thesis in Humanities
Total Units 81-102

Anthropology
21A.00 Introduction to Anthropology: Comparing Human Cultures 12
or 21A.01 How Culture Works
Select seven elective subjects 78-84
21A.802 Seminar in Ethnography and Fieldwork 12
or 21A.852 Seminar in Anthropological Theory
Total Units 102-108

Asian and Asian Diaspora Studies
Select seven elective subjects that follow the general structure of the Minor 63-84
21.THT Humanities Pre-Thesis Tutorial
21.THU Undergraduate Thesis in Humanities
Total Units 81-102

Comparative Media Studies
21L.011 The Film Experience 12
or CMS.100 Introduction to Media Studies
Select one of the following mid-tier subjects: 12
CMS.400 Media Systems and Texts
CMS.403[J] Media and Methods: Performing

Global Studies and Languages (in French, German, or Spanish)
Select nine elective subjects, which may include a pre-thesis tutorial and thesis (21G.THT and 21G.THU), subject to faculty approval 81-108

History
Select seven elective subjects 63-84
21H.THT History Pre-Thesis Tutorial
21H.THU History Thesis
Total Units 81-102

Latin American and Latino Studies
17.55[J] Introduction to Latin American Studies 12
Select six elective subjects, including study in at least two disciplines and subjects in either Spanish or Portuguese 54-72
21.THT Humanities Pre-Thesis Tutorial
21.THU Undergraduate Thesis in Humanities
Total Units 84-102

Literature
Select eight elective subjects, including two seminars and subjects in three historical periods or thematic complexes 96

Music
21M.301 Harmony and Counterpoint I 12
21M.302 Harmony and Counterpoint II 12
21M.500 Advanced Seminar in Music 12
Select one of the following: 12
21M.220 Medieval and Renaissance Music
21M.235 Monteverdi to Mozart: 1600-1800
21M.250 Beethoven to Mahler: 1800-1910
21M.260 Stravinsky to the Present

With the consent of the faculty advisor, a student may substitute two subjects for 21.THT and 21.THU.

A pre-thesis tutorial (CMS.THT) and thesis (CMS.THU), totaling 18 units of credit, may be substituted for one CMS elective.

See the minor in Ancient and Medieval Studies (p. 338) for a list of available subjects and a description of the structure of the program.

An honors thesis may be done at the invitation and approval of faculty.

See the minor in Asian and Ancient Diaspora Studies (p. 340) for a list of available subjects and a description of the structure of the program.
Select two terms of performance subjects 12
Select two electives in two different categories 24
(usually theory/composition and history/literature)
Select an elective in any category (theory/composition, history/literature, or two terms of performance) 12

Total Units 96

Russian and Eurasian Studies
Select seven elective subjects, two of which must satisfy the language requirement 1 63-84
21.THT Humanities Pre-Thesis Tutorial 6
21.THU Undergraduate Thesis in Humanities 12

Total Units 81-102

Science, Technology, and Society (STS)
Select seven elective subjects 1 63-84
STS.091 Critical Issues in STS 12
STS.THT Undergraduate Thesis Tutorial 6
STS.THU Undergraduate Thesis 12

Total Units 93-114

Theater Arts
Select five elective subjects 45-60
21M.606 Introduction to Stagecraft 9
21M.710 Script Analysis 12
21M.805 Performance and Design Practicum 6
21M.815 Studio Performance and Design Practicum 6
or 21M.851 Independent Study in Performance and Design 6
21M.THT Pre-Thesis Tutorial 6
21M.THU Undergraduate Thesis 12

Total Units 96-111

Women’s and Gender Studies
WGS.101 Introduction to Women’s and Gender Studies 12
Select six elective subjects 72
21.THT Humanities Pre-Thesis Tutorial 1 6
21.THU Undergraduate Thesis in Humanities 12

Total Units 102

Writing: Creative
Select seven subjects centered in creative or expository writing 1 84
21W.THT Writing and Humanistic Studies Pre-Thesis Tutorial 6
21W.THU Writing and Humanistic Studies Thesis 12

Total Units 102

Writing: Digital Media
21W.765[J] Interactive Narrative 12
21W.785 Communicating with Web-Based Media 12
Select a CI-M subject in writing 12
Select three related subjects from another department 27-36
21W.THT Writing and Humanistic Studies Pre-Thesis Tutorial 6
21W.THU Writing and Humanistic Studies Thesis 12

Total Units 93-102

Writing: Science Writing
Select a subject in basic exposition 1 12
Select a subject in digital media 12
Select a subject in science, technology, and society 9-12
Select an elective writing subject 12
21W.777 Science Writing in Contemporary Society 12
21W.778 Science Journalism 12
21W.792 Science Writing Internship 12
21W.THT Writing and Humanistic Studies Pre-Thesis Tutorial 6
21W.THU Writing and Humanistic Studies Thesis 12

Total Units 99-102

Must include at least one Tier I subject (http://web.mit.edu/sts/academic/tier1.html) and one Tier II subject (http://web.mit.edu/sts/academic/tier2.html).

With the permission of the director of the program, students may substitute two 12-unit subjects for 21.THT and 21.THU.

One of these subjects is normally at the introductory level; one may be selected from a related field.

Select from the 21W subjects for which the first digit after the decimal is 0.
HUMANITIES AND SCIENCE (COURSE 21S)

Bachelor of Science in Humanities and Science

As a matter of general Course 21 policy, subjects used to meet the General Institute Science Requirement, the REST Requirement, and the Laboratory Requirement may not be included in the six-subject Science component of 21S degrees.

Students must designate two CI-M subjects by petitioning the Subcommittee on the Communication Requirement (http://web.mit.edu/commreq/cim/course21e21s.html). Normally, students are expected to complete one CI-M from each area of study, usually chosen from the subjects designated as CI-M for each major.

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>[between three and six subjects can be from the Departmental Program. Only one subject being used to meet the distribution component of the HASS Requirement may be counted toward the degree program.]</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Restricted Electives</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>For the humanities component, one of the following (further details may be obtained from the descriptions of programs in specific fields and the relevant field office):</td>
<td>81-114</td>
</tr>
<tr>
<td>American Studies ¹</td>
<td></td>
</tr>
<tr>
<td>Ancient and Medieval Studies ¹</td>
<td></td>
</tr>
<tr>
<td>Anthropology</td>
<td></td>
</tr>
<tr>
<td>Asian and Asian Diaspora Studies ¹</td>
<td></td>
</tr>
</tbody>
</table>

Comparative Media Studies

Global Studies and Languages (in French, German, or Spanish)

History

Latin American and Latino Studies ¹

Literature

Music

Russian and Eurasian Studies ¹, ²

Science, Technology, and Society (STS)

Theater Arts ¹

Women’s and Gender Studies ¹

Writing: Creative

Writing: Digital Media

Writing: Science Writing

For the science component, select six elective subjects restricted to one of the science curricula and approved by a faculty member in the field. ³

Unrestricted Electives

Select 48-117 units ⁴

Total Units

216

Departmental Program Units That Also Satisfy the GIRs (36-72)

Total Units Beyond the GIRs Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

¹ American Studies, Ancient and Medieval Studies, Asian and Asian Diaspora Studies, Latin American and Latino Studies, Russian and Eurasian Studies, Theater Arts, and Women’s and Gender Studies are also available as options within the Course 21 degree program (p. 406), by special arrangement with the Dean of the School of Humanities, Arts, and Social Sciences.

² Russian language subjects beyond level IV are not offered at MIT, but may be taken at Harvard University or Wellesley College through cross-registration.

³ When possible, the subject satisfying the Institute Laboratory Requirement and one of the subjects satisfying the REST Requirement should be selected from this same curriculum, in addition to the regular requirement.

⁴ This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
Restricted Electives: Humanities Component (by area of study)

American Studies
Select seven elective subjects, including two in history and two in literature.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.THT</td>
<td>Humanities Pre-Thesis Tutorial</td>
<td>6</td>
</tr>
<tr>
<td>21.THU</td>
<td>Undergraduate Thesis in Humanities</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units: **81-102**

With the consent of the faculty advisor, a student may substitute two subjects for 21.THT and 21.THU.

Ancient and Medieval Studies
Select seven elective subjects that follow the general structure of the Minor.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.THT</td>
<td>Humanities Pre-Thesis Tutorial</td>
<td>6</td>
</tr>
<tr>
<td>21.THU</td>
<td>Undergraduate Thesis in Humanities</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units: **81-102**

See the minor in Ancient and Medieval Studies (p. 338) for a list of available subjects and a description of the structure of the program.

Anthropology

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21A.00</td>
<td>Introduction to Anthropology: Comparing Human Cultures</td>
<td>12</td>
</tr>
<tr>
<td>or 21A.01</td>
<td>How Culture Works</td>
<td></td>
</tr>
</tbody>
</table>

Select seven elective subjects.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21A.802</td>
<td>Seminar in Ethnography and Fieldwork</td>
<td>12</td>
</tr>
<tr>
<td>or 21A.852</td>
<td>Seminar in Anthropological Theory</td>
<td></td>
</tr>
</tbody>
</table>

Total Units: **102-108**

An honors thesis may be done at the invitation and approval of the faculty.

Asian and Asian Diaspora Studies
Select seven elective subjects that follow the general structure of the Minor.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.THT</td>
<td>Humanities Pre-Thesis Tutorial</td>
<td>6</td>
</tr>
<tr>
<td>21.THU</td>
<td>Undergraduate Thesis in Humanities</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units: **81-102**

See the minor in Asian and Asian Diaspora Studies (p. 340) for a list of available subjects and a description of the structure of the program.

Comparative Media Studies

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21L.011</td>
<td>The Film Experience</td>
<td>12</td>
</tr>
<tr>
<td>or CMS.100</td>
<td>Introduction to Media Studies</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following mid-tier subjects:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS.400</td>
<td>Media Systems and Texts</td>
<td></td>
</tr>
<tr>
<td>CMS.403[J]</td>
<td>Media and Methods: Performing</td>
<td></td>
</tr>
<tr>
<td>CMS.405</td>
<td>Media and Methods: Seeing and Expression</td>
<td></td>
</tr>
<tr>
<td>CMS.407</td>
<td>Media and Methods: Sound</td>
<td></td>
</tr>
<tr>
<td>CMS.701</td>
<td>Current Debates in Media</td>
<td></td>
</tr>
</tbody>
</table>

Select one capstone subject:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21L.706</td>
<td>Studies in Film</td>
<td>12</td>
</tr>
<tr>
<td>21M.220</td>
<td>Medieval and Renaissance Music</td>
<td>12</td>
</tr>
<tr>
<td>21M.235</td>
<td>Monteverdi to Mozart: 1600-1800</td>
<td>12</td>
</tr>
<tr>
<td>21M.250</td>
<td>Beethoven to Mahler: 1800-1910</td>
<td>12</td>
</tr>
<tr>
<td>21M.260</td>
<td>Stravinsky to the Present</td>
<td></td>
</tr>
</tbody>
</table>

Select five CMS electives.

Total Units: **45-60**

A pre-thesis tutorial (CMS.THT) and thesis (CMS.THU), totaling 18 units of credit, may be substituted for one CMS elective.

Comparative Media Studies

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS.403[J]</td>
<td>Media and Methods: Performing</td>
<td></td>
</tr>
<tr>
<td>CMS.405</td>
<td>Media and Methods: Seeing and Expression</td>
<td></td>
</tr>
<tr>
<td>CMS.407</td>
<td>Media and Methods: Sound</td>
<td></td>
</tr>
</tbody>
</table>

Select one capstone subject:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21L.706</td>
<td>Studies in Film</td>
<td>12</td>
</tr>
<tr>
<td>CMS.701</td>
<td>Current Debates in Media</td>
<td></td>
</tr>
</tbody>
</table>

Select five CMS electives.

Total Units: **81-102**

Global Studies and Languages (in French, German, or Spanish)
Select nine elective subjects, which may include a pre-thesis tutorial (21.G.THT) and thesis (21.G.THU), subject to faculty approval.

Total Units: **81-108**

History
Select seven elective subjects.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.THT</td>
<td>Humanities Pre-Thesis Tutorial</td>
<td>6</td>
</tr>
<tr>
<td>21.THU</td>
<td>Undergraduate Thesis in Humanities</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units: **81-102**

Latin American and Latino Studies

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.55[J]</td>
<td>Introduction to Latin American Studies</td>
<td>12</td>
</tr>
</tbody>
</table>

Select six elective subjects, including study in at least two disciplines and subjects in Spanish or Portuguese.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.THT</td>
<td>Humanities Pre-Thesis Tutorial</td>
<td>6</td>
</tr>
<tr>
<td>21.THU</td>
<td>Undergraduate Thesis in Humanities</td>
<td>12</td>
</tr>
</tbody>
</table>

Total Units: **84-102**

Literature
Select eight elective subjects, including two seminars and subjects in three historical periods or thematic complexes.

Total Units: **96**

Literature
Select eight elective subjects, including two seminars and subjects in three historical periods or thematic complexes.

Total Units: **96**

Music

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.301</td>
<td>Harmony and Counterpoint I</td>
<td>12</td>
</tr>
<tr>
<td>21M.302</td>
<td>Harmony and Counterpoint II</td>
<td>12</td>
</tr>
<tr>
<td>21M.500</td>
<td>Advanced Seminar in Music</td>
<td>12</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.220</td>
<td>Medieval and Renaissance Music</td>
<td>12</td>
</tr>
<tr>
<td>21M.235</td>
<td>Monteverdi to Mozart: 1600-1800</td>
<td>12</td>
</tr>
<tr>
<td>21M.250</td>
<td>Beethoven to Mahler: 1800-1910</td>
<td>12</td>
</tr>
<tr>
<td>21M.260</td>
<td>Stravinsky to the Present</td>
<td></td>
</tr>
</tbody>
</table>
Select two terms of performance subjects 12
Select two electives in two different categories 24 (usually theory/composition and history/literature)
Select an elective in any category (theory/composition, history/literature, or two terms of performance) 12

Total Units 96

Russian and Eurasian Studies
Select seven elective subjects, two of which must satisfy the language requirement 1 63-84

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.THT</td>
<td>Humanities Pre-Thesis Tutorial 6</td>
</tr>
<tr>
<td>21.THU</td>
<td>Undergraduate Thesis in Humanities 12</td>
</tr>
</tbody>
</table>

Total Units 81-102

Rsussian language subjects beyond Level IV are not offered at MIT, but may be taken at Harvard University or Wellesley College through cross-registration.

Science, Technology, and Society (STS)
Select seven elective subjects 1 63-84

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS.091</td>
<td>Critical Issues in STS 12</td>
</tr>
<tr>
<td>STS.THT</td>
<td>Undergraduate Thesis Tutorial 6</td>
</tr>
<tr>
<td>STS.THU</td>
<td>Undergraduate Thesis 12</td>
</tr>
</tbody>
</table>

Total Units 93-114

Must include at least one Tier I subject (http://web.mit.edu/sts/academic/tier1.html) and one Tier II subject (http://web.mit.edu/sts/academic/tier2.html).

Theater Arts
Select five elective subjects 45-60

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.606</td>
<td>Introduction to Stagecraft 9</td>
</tr>
<tr>
<td>21M.710</td>
<td>Script Analysis 12</td>
</tr>
<tr>
<td>21M.805</td>
<td>Performance and Design Practicum 6</td>
</tr>
<tr>
<td>21M.815</td>
<td>Studio Performance and Design Practicum 6</td>
</tr>
<tr>
<td>or 21M.851</td>
<td>Independent Study in Performance and Design</td>
</tr>
<tr>
<td>21M.THT</td>
<td>Pre-Thesis Tutorial 6</td>
</tr>
<tr>
<td>21M.THU</td>
<td>Undergraduate Thesis 12</td>
</tr>
</tbody>
</table>

Total Units 96-111

Women’s and Gender Studies
WGS.101 Introduction to Women’s and Gender Studies 12
Select six elective subjects 72

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.THT</td>
<td>Humanities Pre-Thesis Tutorial 1 6</td>
</tr>
<tr>
<td>21.THU</td>
<td>Undergraduate Thesis in Humanities 12</td>
</tr>
</tbody>
</table>

Total Units 102

Writing: Creative
Select seven subjects centered in creative or expository writing 1 84

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21W.THT</td>
<td>Writing and Humanistic Studies Pre-Thesis Tutorial 6</td>
</tr>
<tr>
<td>21W.THU</td>
<td>Writing and Humanistic Studies Thesis 12</td>
</tr>
</tbody>
</table>

Total Units 102

One of these subjects is normally at the introductory level; one may be selected from a related field.

Writing: Digital Media
21W.765[J] Interactive Narrative 12
21W.785 Communicating with Web-Based Media 12
Select a CI-M subject in writing 12
Select three related subjects from another department 27-36
21W.THT Writing and Humanistic Studies Pre-Thesis Tutorial 6
21W.THU Writing and Humanistic Studies Thesis 12

Total Units 93-102

Writing: Science Writing
Select a subject in basic exposition 1 12
Select a subject in digital media 12
Select a subject in science, technology, and society 9-12
Select an elective writing subject 12
21W.777 Science Writing in Contemporary Society 12
21W.778 Science Journalism 12
21W.792 Science Writing Internship 12
21W.THT Writing and Humanistic Studies Pre-Thesis Tutorial 6
21W.THU Writing and Humanistic Studies Thesis 12

Total Units 99-102

Select from the 21W subjects for which the first digit after the decimal is a 0.
LINGUISTICS AND PHILOSOPHY (COURSE 24-2)

Department of Linguistics and Philosophy (p. 253)

Bachelor of Science in Linguistics and Philosophy (Linguistics Track)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS)</td>
<td>8</td>
</tr>
<tr>
<td>Requirement [between three and five subjects can be from the Departmental Program]</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by either 24.905 or 24.909 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

- 2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
- 2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.900</td>
<td>12</td>
</tr>
<tr>
<td>24.901</td>
<td>12</td>
</tr>
<tr>
<td>24.902</td>
<td>12</td>
</tr>
<tr>
<td>24.903</td>
<td>12</td>
</tr>
<tr>
<td>24.918</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
</tr>
</tbody>
</table>

Select one of the following three Linguistic Analysis subjects:

| 24.909 Field Methods in Linguistics (CI-M) | 12 |
| 24.910 Advanced Topics in Linguistic Analysis (CI-M) | 12 |

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.914 Language Variation and Change (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>24.09 Minds and Machines</td>
<td></td>
</tr>
<tr>
<td>24.241 Logic I</td>
<td></td>
</tr>
<tr>
<td>24.251 Introduction to Philosophy of Language (CI-M)</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following five Experimental Results subjects:

24.904 Language Acquisition	12
24.905 Labor in Psycholinguistics	1
24.906 The Linguistic Study of Bilingualism	1
24.907 Abnormal Language	1
24.915 Linguistic Phonetics	1

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.904 Language Acquisition</td>
<td>12</td>
</tr>
<tr>
<td>24.905 Labor in Psycholinguistics</td>
<td>1</td>
</tr>
<tr>
<td>24.906 The Linguistic Study of Bilingualism</td>
<td>1</td>
</tr>
<tr>
<td>24.907 Abnormal Language</td>
<td>1</td>
</tr>
<tr>
<td>24.915 Linguistic Phonetics</td>
<td>1</td>
</tr>
</tbody>
</table>

Restricted Electives

A coherent program of three additional subjects from linguistics, philosophy, or a related area

Unrestricted Electives

Select 84-120 units

Total Units

- 216 Departmental Program Units That Also Satisfy the GIRs (36-72)

Total Units Beyond the GIRs Required for SB Degree

- 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1. Students who do not use 24.905 or 24.909 to satisfy the Laboratory Requirement may count a sixth subject from within the Departmental Program toward the HASS Requirement.

2. This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
Department of Linguistics and Philosophy (p. 253)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [between three and five subjects can be from the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 24.905[J] in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

- 2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
- 2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.900 Introduction to Linguistics</td>
<td>12</td>
</tr>
<tr>
<td>24.251 Introduction to Philosophy of Language (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>24.260 Topics in Philosophy</td>
<td>12</td>
</tr>
<tr>
<td>Select one of the following Logic subjects:</td>
<td>12</td>
</tr>
<tr>
<td>24.118 Paradox and Infinity</td>
<td></td>
</tr>
<tr>
<td>24.241 Logic I</td>
<td></td>
</tr>
<tr>
<td>24.242 Logic II</td>
<td></td>
</tr>
<tr>
<td>24.243 Classical Set Theory</td>
<td></td>
</tr>
<tr>
<td>24.244 Modal Logic</td>
<td></td>
</tr>
<tr>
<td>24.245 Theory of Models</td>
<td></td>
</tr>
<tr>
<td>Select two of the following Knowledge and Reality subjects:</td>
<td>24</td>
</tr>
<tr>
<td>24.08[J] Philosophical Issues in Brain Science</td>
<td></td>
</tr>
<tr>
<td>24.09 Minds and Machines</td>
<td></td>
</tr>
<tr>
<td>24.111 Philosophy of Quantum Mechanics</td>
<td></td>
</tr>
<tr>
<td>24.112 Space, Time, and Relativity</td>
<td></td>
</tr>
<tr>
<td>24.115 Philosophy and Time</td>
<td></td>
</tr>
<tr>
<td>24.211 Theory of Knowledge</td>
<td></td>
</tr>
<tr>
<td>24.215 Topics in the Philosophy of Science</td>
<td></td>
</tr>
<tr>
<td>24.221 Metaphysics</td>
<td></td>
</tr>
<tr>
<td>24.253 Philosophy of Mathematics</td>
<td></td>
</tr>
<tr>
<td>24.280 Foundations of Probability</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>12</td>
</tr>
<tr>
<td>9.65 Cognitive Processes</td>
<td></td>
</tr>
<tr>
<td>24.903 Language and Its Structure III: Semantics and Pragmatics</td>
<td></td>
</tr>
<tr>
<td>24.904 Language Acquisition</td>
<td></td>
</tr>
<tr>
<td>24.905[J] Laboratory in Psycholinguistics</td>
<td>2</td>
</tr>
</tbody>
</table>

Restricted Electives

A coherent program of four additional subjects, at least two of which must be in Linguistics and Philosophy, approved by the major advisor.

Unrestricted Electives

Select 84-120 units 84-120

Total Units

216

Departmental Program Units That Also Satisfy the GIRs (36-72)

Total Units Beyond the GIRs Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 Students may select a logic subject from another department (e.g., Mathematics) with the approval of their major advisor.
2 Students who do not use 24.905[J] to satisfy the Laboratory Requirement may count a sixth subject from within the Departmental Program toward the HASS Requirement.
3 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
Bachelor of Science in Literature

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below) [select two subjects from the list of approved CI-M subjects]

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select three of the following advanced seminars (^1)</td>
<td>36</td>
</tr>
<tr>
<td>21L.701 Literary Methods (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21L.702 Studies in Fiction (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21L.703 Studies in Drama (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21L.704 Studies in Poetry (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21L.705 Major Authors (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21L.706 Studies in Film (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21L.707 Problems in Cultural Interpretation (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21L.709 Studies in Literary History (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21L.715 Media in Cultural Context (CI-M)</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives

Select seven additional subjects to form a coherent program \(^1\)\(^2\) 78-84

Unrestricted Electives

Select 96-138 units \(^3\) 96-138

Total Departmental Program Units = 216

Total Departmental Program Units That Also Satisfy the GIRs = (36-72)

Total Units Beyond the GIRs Required for SB Degree = 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

\(^1\) Four of the 10 subjects from the required subjects and restricted electives must be chosen, in consultation with a faculty advisor, either from four of five historical periods (ancient and medieval; Renaissance and Restoration; 18th century and Enlightenment; 19th century and Romanticism; 20th century and contemporary culture) or from four of five thematic complexes (historical period; genre or mode; author study; film, media, and popular culture; gender and ethnic studies).

\(^2\) A maximum of three subjects may be selected from among introductory subjects (http://lit.mit.edu/curriculum/introductory-subjects), as described on the Literature website.

\(^3\) This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
MUSIC (COURSE 21M-1)

Music and Theater Arts Section (p. 260)

Bachelor of Science in Music

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.011 Introduction to Western Music</td>
<td>12</td>
</tr>
<tr>
<td>21M.030 Introduction to World Music</td>
<td>12</td>
</tr>
<tr>
<td>21M.301 Harmony and Counterpoint I</td>
<td>12</td>
</tr>
<tr>
<td>21M.500 Advanced Seminar in Music (CI-M)</td>
<td>12</td>
</tr>
</tbody>
</table>

Select one of the following:

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.220 Medieval and Renaissance Music (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>21M.235 Monteverdi to Mozart: 1600-1800 (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>21M.260 Stravinsky to the Present (CI-M)</td>
<td>12</td>
</tr>
</tbody>
</table>

Select two terms of Performance subjects (6 units each); see list below.

Restricted Electives

A coherent program of five subjects from the music curriculum chosen in consultation with faculty advisor(s)

Unrestricted Electives

Select 84-120 units 1 84-120

Total Units 216

Departmental Program Units That Also Satisfy the GIRs (36-72)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.

Performance Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.401 MIT Concert Choir</td>
<td>6</td>
</tr>
<tr>
<td>21M.405 MIT Chamber Chorus</td>
<td>6</td>
</tr>
<tr>
<td>21M.410 Vocal Repertoire and Performance</td>
<td>6</td>
</tr>
<tr>
<td>21M.421 MIT Symphony</td>
<td>6</td>
</tr>
<tr>
<td>21M.423 Conducting and Score-Reading</td>
<td>6</td>
</tr>
<tr>
<td>21M.426 MIT Wind Ensemble</td>
<td>6</td>
</tr>
<tr>
<td>21M.442 MIT Festival Jazz Ensemble</td>
<td>6</td>
</tr>
<tr>
<td>21M.445 Chamber Music Society</td>
<td>6</td>
</tr>
<tr>
<td>21M.450 MIT Balinese Gamelan</td>
<td>6</td>
</tr>
<tr>
<td>21M.451 Studio Accompanying for Pianists</td>
<td>3-6</td>
</tr>
<tr>
<td>21M.460 MIT Senegalese Drum Ensemble</td>
<td>6</td>
</tr>
<tr>
<td>21M.480 Advanced Music Performance</td>
<td>6</td>
</tr>
<tr>
<td>21M.490 Emerson Scholar Solo Recital</td>
<td>6</td>
</tr>
</tbody>
</table>

2015–2016 MIT Bulletin | 417
PHILOSOPHY (COURSE 24-1)

Bachelor of Science in Philosophy

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Other major requirements:

- **Communication Requirement**: 2 subjects designated as communication-intensive.
- **Physical Education Requirement**: Swimming requirement, plus four physical education courses for eight points.

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one introductory philosophy subject (number range 24.00-24.09)</td>
<td>12</td>
</tr>
<tr>
<td>Select one of the following History of Philosophy subjects:</td>
<td>12</td>
</tr>
<tr>
<td>24.01 Classics of Western Philosophy</td>
<td></td>
</tr>
<tr>
<td>24.201 Topics in the History of Philosophy (CI-M)</td>
<td></td>
</tr>
<tr>
<td>Select one of the following Knowledge and Reality subjects:</td>
<td>12</td>
</tr>
<tr>
<td>24.08(J) Philosophical Issues in Brain Science</td>
<td></td>
</tr>
<tr>
<td>24.09 Minds and Machines</td>
<td></td>
</tr>
<tr>
<td>24.111 Philosophy of Quantum Mechanics</td>
<td></td>
</tr>
<tr>
<td>24.112 Space, Time, and Relativity</td>
<td></td>
</tr>
<tr>
<td>24.114(J) A Philosophical History of Energy</td>
<td></td>
</tr>
<tr>
<td>24.115 Philosophy and Time</td>
<td></td>
</tr>
<tr>
<td>24.211 Theory of Knowledge</td>
<td></td>
</tr>
<tr>
<td>24.215 Topics in the Philosophy of Science</td>
<td></td>
</tr>
</tbody>
</table>

Select one of the following Value subjects: 12

- 24.02 Moral Problems and the Good Life
- 24.03 Good Food: The Ethics and Politics of Food
- 24.04(J) Justice
- 24.06(J) Bioethics
- 24.120 Moral Psychology (CI-M)
- 24.222 Decisions, Games and Rational Choice
- 24.231 Ethics (CI-M)
- 24.235(J) Philosophy of Law (CI-M)
- 24.236 Topics in Social Theory and Practice
- 24.237(J) Feminist Thought (CI-M)

Select one of the following Logic subjects: 4

- 24.118 Paradox and Infinity
- 24.241 Logic I
- 24.242 Logic II
- 24.243 Classical Set Theory
- 24.244 Modal Logic
- 24.245 Theory of Models
- 24.260 Topics in Philosophy (CI-M)

Other requirements:

- **Restrict Electives**: Select a coherent program of five additional subjects, two of which must be in philosophy, with approval of the major advisor.
- **Unrestricted Electives**: Select 84-120 units

Total Units: 216

Departmental Program Units That Also Satisfy the GIRs: (36-72)

Total Units Beyond the GIRs Required for SB Degree: 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1. No more than four of the total number of philosophy subjects for the major may be introductory philosophy subjects. At least three of the total number of philosophy courses must be at the 200 level or above.
2. The introductory subject cannot also be used as a departmental distribution subject.
3. Students may substitute another subject with a history of philosophy orientation, with the approval of the major advisor in consultation with the instructor.
Students may select a logic subject from another department (e.g., Mathematics) with the approval of their major advisor.

This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
POLITICAL SCIENCE (COURSE 17)

Department of Political Science (p. 264)

Bachelor of Science in Political Science

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [between two and five subjects can inform the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 17.871 in the Departmental Program]</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.869 Political Science Scope and Methods (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>17.871 Political Science Laboratory</td>
<td>15</td>
</tr>
<tr>
<td>17.THT Thesis Research Design Seminar (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>17.THU Undergraduate Political Science Thesis (at least 12 units; additional units by special arrangement)</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

Select seven subjects, including one subject from the each of the four groups listed below and three additional political science subjects representing a coherent plan of study. Specific subjects satisfying these criteria should be chosen in consultation with a faculty advisor.

Unrestricted Electives

Select 81-120 units 2 81-120

Total Units 216

Departmental Program Units That Also Satisfy the GIRs 36-72

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 Students typically enroll in subjects as follows: 17.869, fall term, junior year; 17.871, spring term, junior year; 17.THT, fall term, senior year; 17.THU, spring term, senior year.

2 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.

Restricted Electives

Political Philosophy/Social Theory

Select one subject in political philosophy/social theory from the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.007[J]</td>
<td>Feminist Thought</td>
</tr>
<tr>
<td>17.01[J]</td>
<td>Justice</td>
</tr>
<tr>
<td>17.021[J]</td>
<td>Philosophy of Law</td>
</tr>
<tr>
<td>17.035[J]</td>
<td>Libertarianism in History</td>
</tr>
</tbody>
</table>

American Politics

Select one subject in American politics from the following:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.20</td>
<td>Introduction to the American Political Process</td>
</tr>
<tr>
<td>17.245</td>
<td>Constitutional Law: Structures of Power and Individual Rights</td>
</tr>
<tr>
<td>17.249[J]</td>
<td>Law and Society</td>
</tr>
<tr>
<td>17.251</td>
<td>Congress and the American Political System I</td>
</tr>
<tr>
<td>17.261</td>
<td>Congress and the American Political System II</td>
</tr>
<tr>
<td>17.263</td>
<td>Electoral Politics, Public Opinion, and Democracy</td>
</tr>
<tr>
<td>17.265</td>
<td>Public Opinion and American Democracy</td>
</tr>
<tr>
<td>17.267</td>
<td>Democracy in America</td>
</tr>
<tr>
<td>17.275</td>
<td>Public Opinion Research Design and Training Seminar</td>
</tr>
</tbody>
</table>

Public Policy

Select one of the following options:

Option 1:
Select one political science subject in public policy from the following:

- 17.30[J] Making Public Policy
- 17.303[J] Methods of Policy Analysis
- 17.307 American Public Policy for Washington Interns
- 17.309[J] Science, Technology, and Public Policy
- 17.315 Health Policy
- 17.317 US Social Policy
- 17.33 Building a Better World
- 17.391[J] Human Rights at Home and Abroad
- 17.393[J] Environmental Law, Policy, and Economics: Pollution Prevention and Control

Option 2:
Select one subject in another field designated as fulfilling the public policy requirement

International Politics

Select one of the following options:

Option 1:
Select one subject in international relations / security studies from the following:

- 17.40 American Foreign Policy: Past, Present, and Future
- 17.405 Seminar on Politics and Conflicts in the Middle East
- 17.407 Chinese Foreign Policy
- 17.41 Introduction to International Relations
- 17.411 Globalization, Migration, and International Relations
- 17.42 Causes and Prevention of War
- 17.433 International Relations of East Asia
- 17.441 International Politics and Climate Change
- 17.445 International Relations Theory in the Cyber Age
- 17.447 Cyberpolitics in International Relations

- 17.473 The Politics of Nuclear Proliferation
- 17.483 US Military Power

Option 2
Select one subject in comparative politics from the following:

- 17.50 Introduction to Comparative Politics
- 17.509 Social Movements in Comparative Perspective
- 17.515 Comparative Electoral Politics
- 17.517 Participation in Public Life
- 17.523 Ethnic Conflict in World Politics
- 17.53 The Rise of Asia
- 17.537 Politics and Policy in Contemporary Japan
- 17.55[J] Introduction to Latin American Studies
- 17.561 European Politics
- 17.565 Israel: History, Politics, Culture, and Identity
- 17.569 Russia’s Foreign Policy: Toward the Post-Soviet States and Beyond
- 17.57[J] Soviet and Post-Soviet Politics and Society: 1917 to the Present
- 17.571 African Politics
- 17.581 Riots, Rebellions, Revolutions
- 17.583 Conflict and the Graphic Novel
- 17.591 Research Seminar in Applied International Studies

17.567, a 9-unit version of this subject that is taught during IAP, is also acceptable.
SCIENCE, TECHNOLOGY, AND SOCIETY/SECOND MAJOR (STS)

Science, Technology, and Society Program (p. 268)

Bachelor of Science in Science, Technology, and Society (Second Major)

The full major in Science, Technology, and Society (STS) may be pursued only as a second major in conjunction with another degree program in a field of engineering or science, or in other fields on a case-by-base basis.

General Institute Requirements (GiRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [between three and six subjects can be from the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

- 2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
- 2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select one of the following Tier I subjects:</td>
<td></td>
</tr>
<tr>
<td>STS.001 Technology in American History</td>
<td>12</td>
</tr>
<tr>
<td>STS.002 Finance and Society</td>
<td></td>
</tr>
<tr>
<td>STS.003 The Rise of Modern Science</td>
<td></td>
</tr>
<tr>
<td>STS.004 Intersections: Science, Technology, and the World</td>
<td></td>
</tr>
<tr>
<td>STS.006[J] Bioethics</td>
<td></td>
</tr>
<tr>
<td>STS.007 Technology in History</td>
<td></td>
</tr>
<tr>
<td>STS.008 Technology and Experience</td>
<td></td>
</tr>
<tr>
<td>STS.009 Evolution and Society</td>
<td></td>
</tr>
<tr>
<td>STS.010 Neuroscience and Society</td>
<td></td>
</tr>
</tbody>
</table>

Select one Tier II subject

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS.091 Critical Issues in STS (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>STS.THT Undergraduate Thesis Tutorial</td>
<td>6</td>
</tr>
<tr>
<td>STS.THU Undergraduate Thesis (CI-M)</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

Select a coherent group of five elective subjects in STS, plus four subjects related to the historical and social study of science and technology, in consultation with the STS undergraduate officer

Unrestricted Electives

Select 54-99 units

<table>
<thead>
<tr>
<th>Total Units Beyond the GiRs Required for SB Degree</th>
<th>180</th>
</tr>
</thead>
</table>

No subject can be counted both as part of the 17-subject GiRs and as part of the 180–198 units required beyond the GiRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1. See list of Tier II subjects on department’s website (http://web.mit.edu/sts/academic/tier2.html).

2. This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GiRs required for an SB degree.
THEATER ARTS (COURSE 21M-2)

Music and Theater Arts Section (p. 260)

Bachelor of Science in Theater Arts

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS)</td>
<td>8</td>
</tr>
<tr>
<td>Requirement [between three and six subjects can be satisfied by subjects in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.THT Pre-Thesis Tutorial</td>
<td>6</td>
</tr>
<tr>
<td>21M.THU Undergraduate Thesis</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

Theoretical Studies

Select three of the following: 36

- 21M.611 Foundations of Theater Practice
- 21M.703[J] Media and Methods: Performing
- 21M.710 Script Analysis
- 21M.711 Production Seminar
- 21M.715 Topics in Theater Arts
- 21M.846 Topics in Performance Studies
- 21M.863 Advanced Topics in Theater Arts

Practical Studies

Select at least 60 units from the following: 60-66

- 21M.600 Introduction to Acting
- 21M.603 Introduction to Design for the Theater

- 21M.604[J] Playwriting I
- 21M.605 Voice and Speech for the Actor
- 21M.606 Introduction to Stagecraft
- 21M.624 Acting with the Camera (CI-M)
- 21M.645 Motion Theater
- 21M.704 Music Theater Workshop
- 21M.705 The Actor and the Text
- 21M.732 Costume Design (CI-M)
- 21M.733 Scenic Design (CI-M)
- 21M.734 Lighting Design
- 21M.735 Technical Design for Performance (CI-M)
- 21M.785[J] Playwrights' Workshop (CI-M)
- 21M.790 Directing
- 21M.830 Acting: Techniques and Style (CI-M)
- 21M.840 Performance Media
- 21M.851 Independent Study in Performance and Design

Unrestricted Electives

Select 84-126 units 1

Total Units 216

Departmental Program Units That Also Satisfy the GIRs (36-72)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student's departmental program will count toward one or the other, but not both.

1 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
WRITING (COURSE 21W)

Comparative Media Studies/Writing Program (p. 235)

Bachelor of Science in Writing (Creative Writing Option)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [between three and six subjects can be from the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21W.THT Writing and Humanistic Studies Pre-Thesis Tutorial</td>
<td>6</td>
</tr>
<tr>
<td>21W.THU Writing and Humanistic Studies Thesis (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>12</td>
</tr>
<tr>
<td>21W.757 Fiction Workshop (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.758 Genre Fiction Workshop (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.759 Writing Science Fiction (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.762 Poetry Workshop (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.770 Advanced Fiction Workshop (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.771 Advanced Poetry Workshop (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.777 Science Writing in Contemporary Society (CI-M)</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives

Select six subjects centered on creative writing, of which one is normally introductory; three subjects in literature, one of which may be in CMS.

Unrestricted Electives

Select 78-123 units

Total Units 216

Departmental Program Units That Also Satisfy the GIRs (36-72)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
Comparative Media Studies/Writing Program (p. 235)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [between three and six subjects can be from the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21W.765[J] Interactive Narrative</td>
<td>12</td>
</tr>
<tr>
<td>21W.785 Communicating with Web-Based Media</td>
<td>12</td>
</tr>
<tr>
<td>21W.THT Writing and Humanistic Studies Pre-Thesis Tutorial</td>
<td>6</td>
</tr>
<tr>
<td>21W.THU Writing and Humanistic Studies Thesis (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>12</td>
</tr>
<tr>
<td>21W.757 Fiction Workshop (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.758 Genre Fiction Workshop (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.759 Writing Science Fiction (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.762 Poetry Workshop (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.770 Advanced Fiction Workshop (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.771 Advanced Poetry Workshop (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.777 Science Writing in Contemporary Society (CI-M)</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives

Select three subjects in writing, which may be in digital media, creative writing, or science writing, and three related subjects from another department.

Unrestricted Electives

Select 78-123 units \(^1\)

<table>
<thead>
<tr>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>216</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Units Beyond the GIRs Required for SB Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student's departmental program will count toward one or the other, but not both.

\(^1\) This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
Comparative Media Studies/Writing Program (p. 235)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [between three and six subjects can be from the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21W.777</td>
<td>12</td>
</tr>
<tr>
<td>Science Writing in Contemporary Society (CI-M)</td>
<td></td>
</tr>
<tr>
<td>21W.778</td>
<td>12</td>
</tr>
<tr>
<td>Science Journalism</td>
<td></td>
</tr>
<tr>
<td>21W.792</td>
<td>12</td>
</tr>
<tr>
<td>Science Writing Internship</td>
<td></td>
</tr>
<tr>
<td>21W.THT</td>
<td>6</td>
</tr>
<tr>
<td>Writing and Humanistic Studies Pre-Thesis Tutorial</td>
<td></td>
</tr>
<tr>
<td>21W.THU</td>
<td>12</td>
</tr>
<tr>
<td>Writing and Humanistic Studies Thesis (CI-M)</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives

Select four subjects in writing, of which one is normally introductory; three are writing subjects approved for this major, and one is in digital media

Select one approved Science, Technology, and Society subject

Unrestricted Electives

Select 102-138 units

Total Units

| Departmental Program Units That Also Satisfy the GIRs | (36-72) |
| Total Units Beyond the GIRs Required for SB Degree | **180** |

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 This chart has been calculated based on an overlap of 36 units (3 subjects) between the HASS General Institute Requirement and the departmental requirements. Students who develop a program of study with more overlap will be able to select more unrestricted electives to meet the number of total units beyond the GIRs required for an SB degree.
MANAGEMENT SCIENCE (COURSE 15)

Management Program (p. 274)

Bachelor of Science in Management Science

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement [two subjects can be satisfied by 14.01 and 14.02 in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 6.041 and 18.06 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 15.301 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

- 2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
- 2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 Introduction to Computers and Engineering Problem Solving</td>
<td>12</td>
</tr>
<tr>
<td>6.041 Probabilistic Systems Analysis</td>
<td>12</td>
</tr>
<tr>
<td>14.01 Principles of Microeconomics</td>
<td>12</td>
</tr>
<tr>
<td>14.02 Principles of Macroeconomics</td>
<td>12</td>
</tr>
<tr>
<td>15.053 Optimization Methods in Management Science</td>
<td>12</td>
</tr>
<tr>
<td>15.075[J] Statistical Thinking and Data Analysis</td>
<td>12</td>
</tr>
<tr>
<td>15.279 Management Communication for Undergraduates (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>15.301 Managerial Psychology Laboratory (CI-M)</td>
<td>15</td>
</tr>
<tr>
<td>15.501 Corporate Financial Accounting</td>
<td>12</td>
</tr>
<tr>
<td>18.06 Linear Algebra</td>
<td>12</td>
</tr>
</tbody>
</table>

Unrestricted Electives

Select 72-90 units

Total Units

- **240**
- **Departmental Program Units That Also Satisfy the GIRs**
 - (60)
- **Total Units Beyond the GIRs Required for SB Degree**
 - **180**

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.
BIOLOGY (COURSE 7)

Department of Biology (p. 290)

Bachelor of Science in Biology

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied from among 5.12 or 5.60 and 7.03 or 7.05 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 7.02[J] or 20.109 in the Departmental Program]</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12 Organic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>7.03 Genetics</td>
<td>12</td>
</tr>
<tr>
<td>7.05 General Biochemistry</td>
<td>12</td>
</tr>
<tr>
<td>or 5.07[J] Biological Chemistry I</td>
<td></td>
</tr>
<tr>
<td>7.06 Cell Biology</td>
<td>12</td>
</tr>
</tbody>
</table>

Select one of the following: 1

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.60 Thermodynamics and Kinetics</td>
</tr>
<tr>
<td>7.10[J] Physical Chemistry of Biomolecular Systems</td>
</tr>
<tr>
<td>20.110[J] Thermodynamics of Biomolecular Systems</td>
</tr>
</tbody>
</table>

Select one of the following: 1

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.02[J] Introduction to Experimental Biology and Communication (CI-M)</td>
</tr>
<tr>
<td>20.109 Laboratory Fundamentals in Biological Engineering (CI-M)</td>
</tr>
</tbody>
</table>

Restricted Electives

Select three undergraduate-level 12-unit subjects offered by the Department of Biology for which 7.03 and/or 7.05 are prerequisites. 2

Select one of the following 30-unit project laboratory subjects:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.15 Experimental Molecular Genetics (CI-M)</td>
</tr>
<tr>
<td>7.16 Experimental Molecular Biology (CI-M)</td>
</tr>
<tr>
<td>7.18 Topics in Experimental Biology (CI-M)</td>
</tr>
</tbody>
</table>

Unrestricted Electives

Select 72-75 units

Total Units 216

Department Program Units That Also Satisfy the GIRs (36)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 The department recommends 5.60, 7.10[J], or 20.110[J] to fulfill this component of the program, but it will also accept 2.005 Thermal-Fluids Engineering I, 3.012 Fundamentals of Materials Science and Engineering, 8.044 Statistical Physics I, or 10.213 Chemical and Biological Engineering Thermodynamics.

Restricted Electives

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.08[J] Biological Chemistry II</td>
</tr>
<tr>
<td>7.09 Quantitative and Computational Biology</td>
</tr>
<tr>
<td>7.20[J] Human Physiology</td>
</tr>
<tr>
<td>7.21 Microbial Physiology</td>
</tr>
<tr>
<td>7.22 Development and Evolution</td>
</tr>
<tr>
<td>7.23 Immunology</td>
</tr>
<tr>
<td>7.26 Molecular Basis of Infectious Disease</td>
</tr>
<tr>
<td>7.27 Principles of Human Disease</td>
</tr>
<tr>
<td>7.28 Molecular Biology</td>
</tr>
<tr>
<td>7.29[J] Cellular and Molecular Neurobiology</td>
</tr>
<tr>
<td>7.31 Current Topics in Mammalian Biology: Medical Implications</td>
</tr>
<tr>
<td>7.32 Systems Biology</td>
</tr>
</tbody>
</table>

430 | 2015–2016 MIT Bulletin
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.36[J]</td>
<td>Foundations of Computational and Systems Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.37[J]</td>
<td>Molecular and Engineering Aspects of Biotechnology</td>
<td>12</td>
</tr>
<tr>
<td>or 7.371</td>
<td>Biological and Engineering Principles Underlying Novel Biotherapeutics</td>
<td>12</td>
</tr>
<tr>
<td>7.38</td>
<td>Forces in Cell Biology and Development</td>
<td>12</td>
</tr>
<tr>
<td>7.41</td>
<td>Principles of Chemical Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.45</td>
<td>The Hallmarks of Cancer</td>
<td>12</td>
</tr>
<tr>
<td>7.49[J]</td>
<td>Developmental Neurobiology</td>
<td>12</td>
</tr>
</tbody>
</table>

BIOLOGY (COURSE 7-A)

Department of Biology (p. 290)

Bachelor of Science in Biology

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree 17

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12 Organic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>7.03 Genetics</td>
<td>12</td>
</tr>
<tr>
<td>7.05 General Biochemistry</td>
<td>12</td>
</tr>
<tr>
<td>or 5.07[J] Biological Chemistry I</td>
<td></td>
</tr>
<tr>
<td>7.06 Cell Biology</td>
<td>12</td>
</tr>
</tbody>
</table>

Select one of the following:

- 5.60 Thermodynamics and Kinetics 12
- 7.10[J] Physical Chemistry of Biomolecular Systems

Select one of the following:

- 7.02[J] Introduction to Experimental Biology and Communication (CI-M) 15-18

- 20.109 Laboratory Fundamentals in Biological Engineering (CI-M)

Restricted Electives

Select three undergraduate-level 12-unit subjects offered by the Department of Biology for which 7.03 and/or 7.05 are prerequisites. 2

Select one of the following CI-M subjects: 12-18

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.014 Materials Laboratory (CI-M)</td>
</tr>
<tr>
<td>5.36 Biochemistry and Organic Laboratory (CI-M)</td>
</tr>
<tr>
<td>5.38 Biological and Physical Chemistry Laboratory (CI-M)</td>
</tr>
<tr>
<td>6.021[J] Cellular Biophysics and Neurophysiology (CI-M)</td>
</tr>
<tr>
<td>7.19 Communication in Experimental Biology (CI-M)</td>
</tr>
<tr>
<td>8.13 Experimental Physics I (CI-M)</td>
</tr>
<tr>
<td>9.12 Experimental Molecular Neurobiology (CI-M)</td>
</tr>
<tr>
<td>9.28 Current Topics in Developmental Neurobiology (CI-M)</td>
</tr>
<tr>
<td>10.26 Chemical Engineering Projects Laboratory (CI-M)</td>
</tr>
<tr>
<td>10.27 Energy Engineering Projects Laboratory (CI-M)</td>
</tr>
<tr>
<td>10.28 Chemical-Biological Engineering Laboratory (CI-M)</td>
</tr>
<tr>
<td>10.29 Biological Engineering Projects Laboratory (CI-M)</td>
</tr>
<tr>
<td>20.380 Biological Engineering Design (CI-M)</td>
</tr>
</tbody>
</table>

Unrestricted Electives

Select 90-93 units

Total Units 216

Departmental Program Units That Also Satisfy the GIRs (36)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 The department recommends 5.60, 7.10[J], or 20.110[J] to fulfill this component of the program, but it will also accept 2.005 Thermal-Fluids Engineering I, 3.012 Fundamentals of Materials Science and Engineering, 8.044 Statistical Physics I, or 10.213 Chemical and Biological Engineering Thermodynamics.

Restricted Electives

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.08[J]</td>
<td>Biological Chemistry II</td>
<td>12</td>
</tr>
<tr>
<td>7.09</td>
<td>Quantitative and Computational Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.20[J]</td>
<td>Human Physiology</td>
<td>12</td>
</tr>
<tr>
<td>7.21</td>
<td>Microbial Physiology</td>
<td>12</td>
</tr>
<tr>
<td>7.22</td>
<td>Development and Evolution</td>
<td>12</td>
</tr>
<tr>
<td>7.23</td>
<td>Immunology</td>
<td>12</td>
</tr>
<tr>
<td>7.26</td>
<td>Molecular Basis of Infectious Disease</td>
<td>12</td>
</tr>
<tr>
<td>7.27</td>
<td>Principles of Human Disease</td>
<td>12</td>
</tr>
<tr>
<td>7.28</td>
<td>Molecular Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.29[J]</td>
<td>Cellular and Molecular Neurobiology</td>
<td>12</td>
</tr>
<tr>
<td>7.31</td>
<td>Current Topics in Mammalian Biology: Medical Implications</td>
<td>12</td>
</tr>
<tr>
<td>7.32</td>
<td>Systems Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.36[J]</td>
<td>Foundations of Computational and Systems Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.37[J]</td>
<td>Molecular and Engineering Aspects of Biotechnology</td>
<td>12</td>
</tr>
<tr>
<td>or 7.371</td>
<td>Biological and Engineering Principles Underlying Novel Biotherapeutics</td>
<td></td>
</tr>
<tr>
<td>7.38</td>
<td>Forces in Cell Biology and Development</td>
<td>12</td>
</tr>
<tr>
<td>7.41</td>
<td>Principles of Chemical Biology</td>
<td>12</td>
</tr>
<tr>
<td>7.45</td>
<td>The Hallmarks of Cancer</td>
<td>12</td>
</tr>
<tr>
<td>7.49[J]</td>
<td>Developmental Neurobiology</td>
<td>12</td>
</tr>
</tbody>
</table>

 Fundamentals of Ecology II counts as one Biology restricted elective.
BRAIN AND COGNITIVE SCIENCES (COURSE 9)

Department of Brain and Cognitive Sciences (p. 297)

Bachelor of Science in Brain and Cognitive Sciences

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Required Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS)</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree 17

Communication Requirement

- 2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
- 2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier I: 6.0001 Introduction to Computer Science</td>
<td>12</td>
</tr>
<tr>
<td>6.0002 Programming in Python and Introduction to Computational Thinking and Data Science</td>
<td></td>
</tr>
<tr>
<td>9.00 Introduction to Psychological Science</td>
<td>12</td>
</tr>
<tr>
<td>9.01 Introduction to Neuroscience</td>
<td>12</td>
</tr>
<tr>
<td>9.40 Introduction to Neural Computation</td>
<td>12</td>
</tr>
<tr>
<td>Select one of the following: 1</td>
<td></td>
</tr>
<tr>
<td>6.041 Probabilistic Systems Analysis</td>
<td>12</td>
</tr>
<tr>
<td>9.07 Statistics for Brain and Cognitive Science</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Required Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.05 Introduction to Probability and Statistics</td>
<td></td>
</tr>
<tr>
<td>18.600 Probability and Random Variables</td>
<td></td>
</tr>
</tbody>
</table>

Tier 2:

Select three of the following; up to seven may be taken:

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Required Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.04 Sensory Systems</td>
<td></td>
</tr>
<tr>
<td>9.09[J] Cellular and Molecular Neurobiology</td>
<td></td>
</tr>
<tr>
<td>9.10 Cognitive Neuroscience</td>
<td></td>
</tr>
<tr>
<td>9.14 Brain Structure and its Origins</td>
<td></td>
</tr>
<tr>
<td>9.15 Neural Circuits, Neuromodulatory, and Neuroendocrine Systems</td>
<td></td>
</tr>
<tr>
<td>9.16 Cellular Neurophysiology</td>
<td></td>
</tr>
<tr>
<td>9.18[J] Developmental Neurobiology (CI-M)</td>
<td></td>
</tr>
<tr>
<td>9.20 Animal Behavior</td>
<td></td>
</tr>
<tr>
<td>9.31 Neurophysiology of Learning and Memory</td>
<td></td>
</tr>
<tr>
<td>9.35 Perceptual Systems</td>
<td></td>
</tr>
<tr>
<td>9.54 Computational Aspects of Biological Learning</td>
<td></td>
</tr>
<tr>
<td>9.65 Cognitive Processes</td>
<td></td>
</tr>
<tr>
<td>9.85 Infant and Early Childhood Cognition (CI-M)</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory [Tier 2]:

Select one of the following:

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Required Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.12 Experimental Molecular Neurobiology (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>9.17 Systems Neuroscience Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>9.59[J] Laboratory in Psycholinguistics (CI-M)</td>
<td></td>
</tr>
<tr>
<td>9.63 Laboratory in Visual Cognition (CI-M)</td>
<td></td>
</tr>
</tbody>
</table>

Tier 3:

Select up to four of the following:

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Required Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.24 Disorders and Diseases of the Nervous System</td>
<td></td>
</tr>
<tr>
<td>9.28 Current Topics in Developmental Neurobiology (CI-M)</td>
<td></td>
</tr>
<tr>
<td>9.26[J] Principles and Applications of Genetic Engineering for Biotechnology and Neuroscience</td>
<td></td>
</tr>
<tr>
<td>9.46 Neuroscience of Morality (CI-M)</td>
<td></td>
</tr>
<tr>
<td>9.56[J] Abnormal Language</td>
<td></td>
</tr>
<tr>
<td>9.71 Functional MRI Investigations of the Human Brain (CI-M)</td>
<td></td>
</tr>
<tr>
<td>9.77 Computational Perception</td>
<td></td>
</tr>
<tr>
<td>24.904 Language Acquisition</td>
<td></td>
</tr>
</tbody>
</table>
Research:

Select one of the following (Laboratory cannot also count for Research):

<table>
<thead>
<tr>
<th>Subject</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.12</td>
<td>Experimental Molecular Neurobiology (CI-M)</td>
</tr>
<tr>
<td>9.17</td>
<td>Systems Neuroscience Laboratory (CI-M)</td>
</tr>
<tr>
<td>9.41</td>
<td>Research and Communication in Neuroscience and Cognitive Science (CI-M)</td>
</tr>
<tr>
<td>9.50</td>
<td>Research in Brain and Cognitive Sciences</td>
</tr>
<tr>
<td>9.59[J]</td>
<td>Laboratory in Psycholinguistics (CI-M)</td>
</tr>
<tr>
<td>9.63</td>
<td>Laboratory in Visual Cognition (CI-M)</td>
</tr>
<tr>
<td>9.URG</td>
<td>Undergraduate Research</td>
</tr>
</tbody>
</table>

Restricted Electives

Select zero to four subjects. 9.URG cannot count as a Restricted Elective

Unrestricted Electives

Select 48-72 units

<table>
<thead>
<tr>
<th>Units</th>
<th>48-72</th>
</tr>
</thead>
</table>

Total Units

<table>
<thead>
<tr>
<th>Units</th>
<th>240</th>
</tr>
</thead>
</table>

Departmental Program Units That Also Satisfy the GIRs (60)

Total Units Beyond the GIRs Required for SB Degree

| Units | 180 |

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student's departmental program will count toward one or the other, but not both.

1. The department encourages students to take 9.07.
2. Additional elective units may be available to the extent the General Institute Requirements are fulfilled by subjects taken in the department program.
CHEMISTRY (COURSE 5)

Department of Chemistry (p. 302)

Bachelor of Science in Chemistry

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement (one subject can be satisfied by 5.12, 5.60, or 5.61 in the Departmental Program)</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.03 Principles of Inorganic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>5.07 Biological Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>5.12 Organic Chemistry I</td>
<td>12</td>
</tr>
<tr>
<td>5.13 Organic Chemistry II</td>
<td>12</td>
</tr>
<tr>
<td>5.35 Introduction to Experimental Chemistry</td>
<td>12</td>
</tr>
<tr>
<td>5.36 Biochemistry and Organic Laboratory (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>5.37 Organic and Inorganic Laboratory</td>
<td>12</td>
</tr>
<tr>
<td>5.38 Biological and Physical Chemistry Laboratory (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>5.60 Thermodynamics and Kinetics</td>
<td>12</td>
</tr>
<tr>
<td>5.61 Physical Chemistry</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

Select at least two of the following:

5.04 Principles of Inorganic Chemistry II

5.08 Biological Chemistry II
5.43 Advanced Organic Chemistry
5.62 Physical Chemistry

Unrestricted Electives

Select 60 units

Total Units: 204

Departmental Program Units That Also Satisfy the GIRs: 24

Total Units Beyond the GIRs Required for SB Degree: 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.
EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES (COURSE 12)

Department of Earth, Atmospheric, and Planetary Sciences (p. 307)

Bachelor of Science in Earth, Atmospheric, and Planetary Sciences

General Institute Requirements (GiRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied from among 12.001 and 18.03 in the Department Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Material:</td>
<td></td>
</tr>
<tr>
<td>12.001 Introduction to Geology</td>
<td>12</td>
</tr>
<tr>
<td>12.002 Introduction to Geophysics and Planetary Science</td>
<td>12</td>
</tr>
<tr>
<td>12.003 Introduction to Atmosphere, Ocean, and Climate Dynamics</td>
<td>12</td>
</tr>
<tr>
<td>12.009[J] Theoretical Environmental Analysis</td>
<td>12</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>12.TIP Thesis Preparation</td>
<td>6</td>
</tr>
<tr>
<td>12.THU Undergraduate Thesis (at least 6 units, CI-M)</td>
<td>6</td>
</tr>
<tr>
<td>Laboratory/Field Subjects:</td>
<td></td>
</tr>
<tr>
<td>Select one of the following options:</td>
<td></td>
</tr>
<tr>
<td>Option 1:</td>
<td></td>
</tr>
<tr>
<td>12.115 & 12.116 Field Geology II and Analysis of Geologic Data (CI-M)</td>
<td></td>
</tr>
<tr>
<td>Option 2:</td>
<td></td>
</tr>
<tr>
<td>12.221 & 12.222 Field Geophysics and Field Geophysics Analysis (CI-M)</td>
<td></td>
</tr>
<tr>
<td>Option 3:</td>
<td></td>
</tr>
<tr>
<td>12.307 Weather and Climate Laboratory (CI-M)</td>
<td></td>
</tr>
<tr>
<td>Option 4:</td>
<td></td>
</tr>
<tr>
<td>12.335 Experimental Atmospheric Chemistry (CI-M)</td>
<td></td>
</tr>
<tr>
<td>Option 5:</td>
<td></td>
</tr>
<tr>
<td>12.410[J] Observational Techniques of Optical Astronomy (CI-M)</td>
<td></td>
</tr>
<tr>
<td>Discipline and Supporting Science Subjects</td>
<td></td>
</tr>
<tr>
<td>Select 60 units from either the Discipline or Supporting Science subjects; no more than 36 units can be from Supporting Science.</td>
<td>60</td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td></td>
</tr>
<tr>
<td>Select 66-72 units</td>
<td>66-72</td>
</tr>
<tr>
<td>Total Units</td>
<td>216</td>
</tr>
<tr>
<td>Departmental Program Units That Also Satisfy the GiRs</td>
<td>(36)</td>
</tr>
<tr>
<td>Total Units Beyond the GiRs Required for SB Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GiRs and as part of the 180–198 units required beyond the GiRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1. 18.034 Differential Equations is also an acceptable option.
2. The program of study must be approved by the student’s academic advisor and the undergraduate committee of the department.
3. Students with appropriate interests may substitute two subjects in urban planning, economics, policy, or management for subjects in the Supporting Science category.

Discipline Subjects

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.005 Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences</td>
</tr>
<tr>
<td>12.006[J] Nonlinear Dynamics: Chaos</td>
</tr>
<tr>
<td>12.007 Geobiology: History of Life on Earth</td>
</tr>
<tr>
<td>12.008 Classical Mechanics: A Computational Approach</td>
</tr>
<tr>
<td>12.021 Earth Science, Energy, and the Environment</td>
</tr>
<tr>
<td>12.086 Modeling Environmental Complexity</td>
</tr>
<tr>
<td>12.102 Environmental Earth Science</td>
</tr>
</tbody>
</table>
12.104 Geochemistry of the Earth and Planets
12.108 Structure of Earth Materials
12.109 Petrology
12.113 Structural Geology
12.114 Field Geology I
12.119 Analytical Techniques for Studying Environmental and Geologic Samples
12.120 Environmental Earth Science Field Course
12.158 Molecular Biogeochemistry
12.163 Geomorphology
12.170 Essentials of Geology
12.201 Essentials of Global Geophysics
12.207 Nonlinear Dynamics: Continuum Systems
12.213 Alternate Energy Sources
12.214 Essentials of Applied Geophysics
12.301 Past and Present Climate
12.306 Atmospheric Physics and Chemistry
12.310 An Introduction to Weather Forecasting
12.333 Atmospheric Dynamics
12.336 Air Pollution
12.338 Aerosol and Cloud Microphysics and Chemistry
12.385 Science, Politics, and Environmental Policy
12.340 Global Warming Science
12.348 Global Climate Change: Economics, Science, and Policy
12.420 Physics and Chemistry of the Solar System
12.425 Extrasolar Planets: Physics and Detection Techniques
12.43 Space Systems Engineering
12.431 Space Systems Development
3.012 Fundamentals of Materials Science and Engineering
5.030 Principles of Inorganic Chemistry I
5.12 Organic Chemistry I
5.61 Physical Chemistry
6.0001 Introduction to Computer Science Programming in Python
& 6.0002 and Introduction to Computational Thinking and Data Science
7.03 Genetics
7.05 General Biochemistry
7.21 Microbial Physiology
8.03 Physics III
8.04 Quantum Physics I
8.044 Statistical Physics I
8.07 Electromagnetism II
8.09 Classical Mechanics III
8.21 Physics of Energy
12.010 Computational Methods of Scientific Programming
12.012 MatLab, Statistics, Regression, and Signal Processing
12.320 Introduction to Hydrology and Water Resources and Introduction to Hydrology Modeling
18.04 Complex Variables with Applications
18.05 Introduction to Probability and Statistics
18.06 Linear Algebra
18.100A Real Analysis
18.300 Principles of Continuum Applied Mathematics

Supporting Science Subjects
1.00 Introduction to Computers and Engineering Problem Solving
1.060A Fluid Mechanics I
& 1.060B and Fluid Mechanics II
1.061 Transport Processes in the Environment
1.080A Environmental Chemistry I
& 1.080B and Environmental Chemistry II

1 The combination of 6.0001 and 6.0002 counts as a REST subject.
2 Alternate versions of this subject, 18.100B and 18.100C, also satisfy this requirement.
MATHEMATICS (COURSE 18)

Department of Mathematics (p. 314)

Bachelor of Science in Mathematics (General Mathematics Option)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of Subject Requirements</td>
<td></td>
</tr>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [one subject can be satisfied by 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

- 2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
- 2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03 Differential Equations ¹</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

Select eight 12-unit subjects of essentially different content, including at least six advanced subjects (first decimal digit one or higher). One of these eight subjects must be one of the following:

- 18.06 Linear Algebra
- 18.700 Linear Algebra
- 18.701 Algebra I

Unrestricted Electives

Select 84 units

Total Units

192

Departmental Program Units That Also Satisfy the GIRs

12

Total Units Beyond the GIRs Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1. *Students may substitute one of the more advanced subjects 18.152 Introduction to Partial Differential Equations or 18.303 Linear Partial Differential Equations: Analysis and Numerics for 18.03. 18.034 Differential Equations, which places more emphasis on theory, is also an acceptable option.*

Communication-Intensive Subjects in the Major

To satisfy the requirement that students take two CI-M subjects, students must select one of the following options:

Option A:

Select two of the following:

- 18.104 Seminar in Analysis
- 18.204 Undergraduate Seminar in Discrete Mathematics
- 18.384 Undergraduate Seminar in Physical Mathematics
- 18.424 Seminar in Information Theory
- 18.434 Seminar in Theoretical Computer Science
- 18.504 Seminar in Logic
- 18.704 Seminar in Algebra
- 18.784 Seminar in Number Theory
- 18.821 Project Laboratory in Mathematics
- 18.904 Seminar in Topology
- 18.994 Seminar in Geometry

Option B:

Select one subject from Option A and one of the following:

- 8.06 Quantum Physics III
- 14.33 Research and Communication in Economics: Topics, Methods, and Implementation
- 18.100C Real Analysis
- 18.200 Principles of Discrete Applied Mathematics
Bachelor of Science in Mathematics (Applied Mathematics Option)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [one subject can be satisfied by 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03 Differential Equations ¹</td>
<td>12</td>
</tr>
<tr>
<td>18.04 Complex Variables with Applications</td>
<td>12</td>
</tr>
<tr>
<td>or 18.112 Functions of a Complex Variable</td>
<td></td>
</tr>
<tr>
<td>18.06 Linear Algebra ²</td>
<td>12</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>12-15</td>
</tr>
<tr>
<td>18.200 Principles of Discrete Applied Mathematics (15 units, CI-M)</td>
<td></td>
</tr>
<tr>
<td>18.200A Principles of Discrete Applied Mathematics (12 units)</td>
<td></td>
</tr>
<tr>
<td>18.300 Principles of Continuum Applied Mathematics</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

Select four additional 12-unit Course 18 subjects from the following two groups with at least one subject from each group: ³

Group I- Probability and statistics, combinatorics, computer science

Group II- Numerical analysis, physical mathematics, nonlinear dynamics

Unrestricted Electives

Select 81-84 units

Total Units 192

Departmental Program Units That Also Satisfy the GIRs (12)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

¹ Students may substitute one of the more advanced subjects 18.152 Introduction to Partial Differential Equations or 18.303 Linear Partial Differential Equations: Analysis and Numerics for 18.03. 18.034 Differential Equations, which places more emphasis on theory, is also an acceptable option.

² Students may substitute 18.700 Linear Algebra, which places more emphasis on theory and proofs, or the more advanced subject, 18.701 Algebra I.

³ A list of acceptable subjects is available from Math Academic Services and on the department’s website (http://math.mit.edu).

Communication-Intensive Subjects in the Major

To satisfy the requirement that students take two CI-M subjects, students must select one of the following options:

Option A:

Select two of the following:

18.104 Seminar in Analysis
18.204 Undergraduate Seminar in Discrete Mathematics
18.384 Undergraduate Seminar in Physical Mathematics
18.424 Seminar in Information Theory
18.434 Seminar in Theoretical Computer Science
18.504 Seminar in Logic
18.704 Seminar in Algebra
18.784 Seminar in Number Theory
18.821 Project Laboratory in Mathematics
18.904 Seminar in Topology
18.994 Seminar in Geometry

Option B:

Select one subject from Option A and one of the following:

8.06 Quantum Physics III
14.33 Research and Communication in Economics: Topics, Methods, and Implementation
18.100C Real Analysis
| 18.200 | Principles of Discrete Applied Mathematics |
Bachelor of Science in Mathematics (Theoretical Mathematics Option)

General Institute Requirements (GIRs)

Summary of Subject Requirements Subjects
Science Requirement 6
Humanities, Arts, and Social Sciences (HASS) 8
Restricted Electives in Science and Technology (REST) 2
Laboratory Requirement 1
Total GIR Subjects Required for SB Degree 17

Communication Requirement
2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)
2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement
Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects Units
18.03 Differential Equations 1 12
18.100B Real Analysis 2 12
18.701 Algebra I 12
18.702 Algebra II 12
18.901 Introduction to Topology 12

Restricted Electives
Select one of the following: 12
18.101 Analysis and Manifolds
18.102 Introduction to Functional Analysis
18.103 Fourier Analysis: Theory and Applications

Select one undergraduate seminar from the following: 12
18.104 Seminar in Analysis (CI-M)
18.504 Seminar in Logic (CI-M)
18.704 Seminar in Algebra (CI-M)
18.784 Seminar in Number Theory (CI-M)
18.904 Seminar in Topology (CI-M)
18.994 Seminar in Geometry (CI-M)

Select two additional 12-unit Course 18 subjects of essentially different content, with the first decimal digit one or higher

Unrestricted Electives
Select 84 units

Total Units 192
Departmental Program Units That Also Satisfy the GIRs 12
Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student's departmental program will count toward one or the other, but not both.

1 Students may substitute one of the more advanced subjects 18.152 Introduction to Partial Differential Equations or 18.303 Linear Partial Differential Equations: Analysis and Numerics for 18.03. 18.034 Differential Equations, which places more emphasis on theory, is also an acceptable option.

2 Alternate versions of this subject, 18.100A and 18.100C, also satisfy this requirement.

Communication-Intensive Subjects in the Major

To satisfy the requirement that students take two CI-M subjects, students must select one of the following options:

Option A:
Select two of the following:
18.104 Seminar in Analysis
18.204 Undergraduate Seminar in Discrete Mathematics
18.384 Undergraduate Seminar in Physical Mathematics
18.424 Seminar in Information Theory
18.434 Seminar in Theoretical Computer Science
18.504 Seminar in Logic
18.704 Seminar in Algebra
18.784 Seminar in Number Theory
18.821 Project Laboratory in Mathematics
18.904 Seminar in Topology
18.994 Seminar in Geometry

Option B:
Select one subject from Option A and one of the following:
8.06 Quantum Physics III
14.33 Research and Communication in Economics: Topics, Methods, and Implementation
18.100C Real Analysis
| 18.200 | Principles of Discrete Applied Mathematics |
MATHEMATICS WITH COMPUTER SCIENCE (COURSE 18-C)

Bachelor of Science in Mathematics with Computer Science

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [one subject can be satisfied by 18.03 or 18.06 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundational Subjects</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>18.06 Linear Algebra</td>
<td>12</td>
</tr>
<tr>
<td>Discrete Mathematics</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>12-15</td>
</tr>
<tr>
<td>18.062[J] Mathematics for Computer Science</td>
<td></td>
</tr>
<tr>
<td>18.200 Principles of Discrete Applied Mathematics (15 units, CI-M)</td>
<td></td>
</tr>
<tr>
<td>18.200A Principles of Discrete Applied Mathematics</td>
<td></td>
</tr>
<tr>
<td>Computation and Algorithms</td>
<td></td>
</tr>
<tr>
<td>6.01 Introduction to EECS I</td>
<td>12</td>
</tr>
<tr>
<td>6.005 Elements of Software Construction</td>
<td>12</td>
</tr>
<tr>
<td>6.006 Introduction to Algorithms</td>
<td>12</td>
</tr>
<tr>
<td>18.400[J] Automata, Computability, and Complexity</td>
<td>12</td>
</tr>
<tr>
<td>or 18.404 Theory of Computation</td>
<td></td>
</tr>
<tr>
<td>18.410[J] Design and Analysis of Algorithms</td>
<td>12</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>60-63</td>
</tr>
<tr>
<td>Select four additional 12-unit subjects from Course 18</td>
<td>4</td>
</tr>
<tr>
<td>Select one additional subject of at least 12 units from Course 6</td>
<td>5</td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td></td>
</tr>
<tr>
<td>Select 48-54 units</td>
<td></td>
</tr>
<tr>
<td>Total Units</td>
<td>204-210</td>
</tr>
<tr>
<td>Departmental Program Units That Also Satisfy the GIRs</td>
<td>(18-36)</td>
</tr>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>180-186</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 Students may substitute one of the more advanced subjects, 18.152 Introduction to Partial Differential Equations or 18.303 Linear Partial Differential Equations: Analysis and Numerics, for 18.03. 18.034 Differential Equations, which places more emphasis on theory, is also an acceptable option.

2 Students may substitute 18.700 Linear Algebra, which places more emphasis on theory and proofs, or the more advanced subject, 18.701 Algebra I.

3 6.033 Computer System Engineering (CI-M) is also an acceptable option.

4 The overall program must consist of subjects of essentially different content, and must include at least five Course 18 subjects with a first decimal digit of 1 or higher.

5 The Course 6 subject may be 6.02 Introduction to EECS II, 6.041 Probabilistic Systems Analysis, 6.17x, a Foundation or Header subject, or, with the permission of the Department of Mathematics, an advanced Course 6 subject.

Communication-Intensive Subjects in the Major

To satisfy the requirements that students take two CI-M subjects, students must select one of the following options:

Option A

Select two subjects from the list below:

18.104 Seminar in Analysis
18.204 Undergraduate Seminar in Discrete Mathematics
18.384 Undergraduate Seminar in Physical Mathematics
18.424 Seminar in Information Theory
18.434 Seminar in Theoretical Computer Science
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.504</td>
<td>Seminar in Logic</td>
</tr>
<tr>
<td>18.704</td>
<td>Seminar in Algebra</td>
</tr>
<tr>
<td>18.784</td>
<td>Seminar in Number Theory</td>
</tr>
<tr>
<td>18.821</td>
<td>Project Laboratory in Mathematics</td>
</tr>
<tr>
<td>18.904</td>
<td>Seminar in Topology</td>
</tr>
<tr>
<td>18.994</td>
<td>Seminar in Geometry</td>
</tr>
</tbody>
</table>

Option B

Select one subject from Option A and one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.033</td>
<td>Computer System Engineering</td>
</tr>
<tr>
<td>8.06</td>
<td>Quantum Physics III</td>
</tr>
<tr>
<td>14.33</td>
<td>Research and Communication in Economics: Topics, Methods, and Implementation</td>
</tr>
<tr>
<td>18.100C</td>
<td>Real Analysis</td>
</tr>
<tr>
<td>18.200</td>
<td>Principles of Discrete Applied Mathematics</td>
</tr>
</tbody>
</table>
PHYSICS (COURSE 8)

Department of Physics (p. 320)

Bachelor of Science in Physics (Focused Option)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 8.03 or 8.04, and 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [satisfied by 8.13 or equivalent in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>8.03 Physics III</td>
<td>12</td>
</tr>
<tr>
<td>8.033 Relativity</td>
<td>12</td>
</tr>
<tr>
<td>8.04 Quantum Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.044 Statistical Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.05 Quantum Physics II</td>
<td>12</td>
</tr>
<tr>
<td>8.06 Quantum Physics III (CI-M)</td>
<td>12</td>
</tr>
<tr>
<td>8.13 Experimental Physics I (CI-M)</td>
<td>18</td>
</tr>
<tr>
<td>8.14 Experimental Physics II</td>
<td>18</td>
</tr>
<tr>
<td>8.223 Classical Mechanics II</td>
<td>6</td>
</tr>
<tr>
<td>8.THU Undergraduate Physics Thesis</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restricted Electives</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>One subject in the Department of Mathematics beyond 18.03</td>
<td>12</td>
</tr>
</tbody>
</table>

Two subjects in the Department of Physics in addition to those listed above, including at least one of the following:

- 8.07 Electromagnetism II
- 8.08 Statistical Physics II
- 8.09 Classical Mechanics III

Unrestricted Electives

Select 48 units

<table>
<thead>
<tr>
<th>Total Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>222</td>
</tr>
</tbody>
</table>

Departmental Program Units That Also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
</tr>
</tbody>
</table>

Total Units Beyond the GIRs Required for SB Degree

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>186</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1. 18.034 Differential Equations is also an acceptable option.
2. A thesis of 12 units is required. Not more than 30 units of thesis credit may be included in the minimum units beyond the General Institute Requirements required for the SB degree.
3. Subject descriptions identify subjects that cannot be used for this purpose.
Bachelor of Science in Physics (Flexible Option)

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Summary of Subject Requirements</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS)</td>
<td>8</td>
</tr>
<tr>
<td>Requirement</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 8.03 or 8.04, and 18.03 or 18.034 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [satisfied by 8.13 or equivalent in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03 Differential Equations</td>
<td>12</td>
</tr>
<tr>
<td>8.03 Physics III</td>
<td>12</td>
</tr>
<tr>
<td>8.04 Quantum Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.044 Statistical Physics I</td>
<td>12</td>
</tr>
<tr>
<td>8.21 Physics of Energy</td>
<td>6-12</td>
</tr>
<tr>
<td>or 8.223 Classical Mechanics II</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td>9-12</td>
</tr>
<tr>
<td>8.05 Quantum Physics II</td>
<td></td>
</tr>
<tr>
<td>8.20 Introduction to Special Relativity</td>
<td></td>
</tr>
<tr>
<td>8.033 Relativity</td>
<td></td>
</tr>
<tr>
<td>Select one of the following experimental experiences, subject to the approval of the department:</td>
<td>18</td>
</tr>
<tr>
<td>8.13 Experimental Physics I (CI-M)</td>
<td></td>
</tr>
<tr>
<td>A laboratory subject of similar intensity in another department</td>
<td></td>
</tr>
<tr>
<td>An experimental research project or senior thesis</td>
<td></td>
</tr>
<tr>
<td>An experimentally oriented summer externship</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives

At least one subject in the Department of Physics in addition to those listed above

Unrestricted Electives

Select 66-87 units

<table>
<thead>
<tr>
<th>Total Units</th>
<th>204</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departmental Program Units That Also Satisfy the GIRs</td>
<td>(24-36)</td>
</tr>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1. 18.034 Differential Equations is also an acceptable option.
2. Not more than 30 units of thesis credit may be included in the minimum units beyond the General Institute Requirements required for the SB degree.
3. Subject descriptions identify subjects that cannot be used for this purpose.
Bachelor of Science in Computer Science and Molecular Biology

General Institute Requirements (GIRs)

Summary of Subject Requirements

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences (HASS)</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 6.042[J], 18.03, or 18.06 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 7.02[J] or 20.109 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

2 subjects designated as communication-intensive in Humanities, Arts, and Social Sciences (CI-H; see HASS Requirement, above)

2 subjects designated as communication-intensive in the Major (CI-M; see departmental program, below)

Physical Education Requirement

Swimming requirement, plus four physical education courses for eight points (See Physical Education Requirement for details.)

Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics and Introductory:</td>
</tr>
<tr>
<td>6.01 Introduction to EECS I</td>
</tr>
<tr>
<td>18.03 Differential Equations</td>
</tr>
<tr>
<td>or 18.06 Linear Algebra</td>
</tr>
<tr>
<td>Chemistry:</td>
</tr>
<tr>
<td>5.12 Organic Chemistry I</td>
</tr>
<tr>
<td>Select one of the following:</td>
</tr>
<tr>
<td>5.60 Thermodynamics and Kinetics</td>
</tr>
<tr>
<td>7.10[J] Physical Chemistry of Biomolecular Systems</td>
</tr>
<tr>
<td>20.110[J] Thermodynamics of Biomolecular Systems</td>
</tr>
</tbody>
</table>

Introductory Laboratory:

Select one of the following:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.02[J] Introduction to Experimental Biology and Communication (CI-M)</td>
</tr>
<tr>
<td>20.109 Laboratory Fundamentals in Biological Engineering (CI-M)</td>
</tr>
</tbody>
</table>

Foundational Subjects:

Three Computer Science subjects:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.005 Elements of Software Construction</td>
</tr>
<tr>
<td>6.006 Introduction to Algorithms</td>
</tr>
<tr>
<td>6.046[J] Design and Analysis of Algorithms</td>
</tr>
</tbody>
</table>

Three Biological Science subjects:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.03 Genetics</td>
</tr>
<tr>
<td>7.05 General Biochemistry</td>
</tr>
<tr>
<td>7.06 Cell Biology</td>
</tr>
</tbody>
</table>

Restricted Electives

Select one of the following in Computational Biology:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.047 Computational Biology: Genomes, Networks, Evolution</td>
</tr>
<tr>
<td>6.503 Foundations of Algorithms and Computational Techniques in Systems Biology</td>
</tr>
<tr>
<td>7.36[J] Foundations of Computational and Systems Biology</td>
</tr>
</tbody>
</table>

Select one of the following in Biology:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.20[J] Human Physiology</td>
</tr>
<tr>
<td>7.23 Immunology</td>
</tr>
<tr>
<td>7.27 Principles of Human Disease</td>
</tr>
<tr>
<td>7.28 Molecular Biology</td>
</tr>
</tbody>
</table>

Advanced Undergraduate Project

Select one of the following:

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.UAT Oral Communication and Undergraduate Advanced Project (CI-M)</td>
</tr>
<tr>
<td>6.UAP & 6.UAP Seminar in Undergraduate Advanced Research (CI-M)</td>
</tr>
</tbody>
</table>

Unrestricted Electives

Select 48 units

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Units</td>
</tr>
</tbody>
</table>

Departmental Program Units That Also Satisfy the GIRs

(36)

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

1 5.07[J] Biological Chemistry I is also an acceptable option.
Communication-Intensive Subjects in the Major

To complete the required communication-intensive subjects in the major, students must take one of the following department laboratory CI-M subjects by the end of the third year:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.02[J]</td>
<td>Introduction to Experimental Biology and Communication</td>
</tr>
<tr>
<td>20.109</td>
<td>Laboratory Fundamentals in Biological Engineering</td>
</tr>
</tbody>
</table>

The second CI-M is normally satisfied by taking either 6.UAR or the combination of 6.UAT and 6.UAP, as shown in the degree chart. However, as an alternative, 6.UAT may also be taken with any of the following to fulfill this requirement:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.101</td>
<td>Introductory Analog Electronics Laboratory</td>
</tr>
<tr>
<td>6.111</td>
<td>Introductory Digital Systems Laboratory</td>
</tr>
<tr>
<td>6.115</td>
<td>Microcomputer Project Laboratory</td>
</tr>
<tr>
<td>6.129[J]</td>
<td>Biological Circuit Engineering Laboratory</td>
</tr>
<tr>
<td>6.131</td>
<td>Power Electronics Laboratory</td>
</tr>
<tr>
<td>6.161</td>
<td>Modern Optics Project Laboratory</td>
</tr>
<tr>
<td>6.163</td>
<td>Strobe Project Laboratory</td>
</tr>
<tr>
<td>6.182</td>
<td>Psychoacoustics Project Laboratory</td>
</tr>
</tbody>
</table>
Master of Engineering in Computer Science and Molecular Biology

The Master of Engineering degree is awarded only to students who have already received, or who will simultaneously receive, the Bachelor of Science in Computer Science and Molecular Biology (Course 6-7). Refer to the undergraduate degree chart (p. 449) for requirements.

The graduate component of the MEng program is described below.

Course 6-7P Graduate Requirements

Required Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.THM</td>
<td>Master of Engineering Program Thesis</td>
<td>24</td>
</tr>
</tbody>
</table>

Restricted Electives

<table>
<thead>
<tr>
<th>Elective Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Four graduate subjects totaling at least 42 units, which includes two concentration subjects plus a third graduate subject in electrical engineering and computer science and/or biology.</td>
<td>42-48</td>
</tr>
<tr>
<td>Two subjects from a restricted departmental list of mathematics electives.</td>
<td>24</td>
</tr>
</tbody>
</table>

Total Units: 90-96

2 The required graduate subjects are selected with departmental review and approval to ensure that the combination, including two subjects in biology and/or computational biology plus a third subject in electrical engineering and computer science and/or biology, forms a distinct and appropriate area of graduate concentration.
MASTER OF ENGINEERING IN LOGISTICS (SUPPLY CHAIN MANAGEMENT)

The MIT Center for Transportation & Logistics (p. 90) (CTL) offers a 10-month master’s program leading to a Master of Engineering in Logistics. See the Supply Chain Management (p. 358) program description for details.

A Master of Engineering degree at MIT requires a minimum of 66 units of graduate subjects, plus a thesis, which collectively constitute a program of at least 90 units. The subject and thesis requirements for this program are described below.

Subject Requirements

<table>
<thead>
<tr>
<th>Core Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD.250 Analytical Methods for Supply Chain Management</td>
<td>6</td>
</tr>
<tr>
<td>ESD.252 Supply Chain Software</td>
<td>3</td>
</tr>
<tr>
<td>ESD.259[J] Business Writing for Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>ESD.260[J] Logistics Systems</td>
<td>12</td>
</tr>
<tr>
<td>ESD.262 Leading Global Teams</td>
<td>6</td>
</tr>
<tr>
<td>ESD.263[J] Thesis Writing for Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>ESD.264[J] Database, Internet, and Systems Integration Technologies</td>
<td>12</td>
</tr>
<tr>
<td>ESD.265[J] Global Supply Chain Management</td>
<td>6</td>
</tr>
<tr>
<td>ESD.803 Supply Chain Leadership Workshop</td>
<td>3</td>
</tr>
</tbody>
</table>

Financial Analysis Focus

Select one of the following: 6-9

- 15.011 Economic Analysis for Business Decisions
- 15.521 Management Accounting and Control
- ESD.251 Supply Chain Finance

Strategy Focus

Select one of the following: 9

- 15.769 Operations Strategy
- ESD.261[J] Case Studies in Logistics and Supply Chain Management

System Analysis Focus

Select one of the following: 6-12

- 15.761 Introduction to Operations Management

Electives

Select 3-30 units. The subjects listed below are popular choices; consult CTL for other options.

- 15.062[J] Data Mining: Finding the Data and Models that Create Value

Total Units 78-114

1 Students who have already successfully completed one of the required subjects at a graduate level elsewhere may petition to replace that subject with another elective.

2 For the 2015–2016 academic year, ESD.S22 will be considered an acceptable substitution for this subject.

Thesis Requirement

ESD.THG ESD Graduate Thesis
MASTER OF SCIENCE IN TRANSPORTATION (MST)

Master of Science in Transportation Program Description (p. 359)

A Master of Science degree at MIT requires a minimum of 66 units of graduate subjects, plus a thesis. The subject and thesis requirements for this program are described below.

Subject Requirements

Core Subjects

1.200[J] Transportation Systems Analysis: Performance and Optimization 12
1.201[J] Transportation Systems Analysis: Demand and Economics 12

Individually Designed Program

Select three subjects from the MST Program Areas, listed separately below.
Select one subject from the Policy and Technology Subjects, listed separately below.

Computer Programming Requirement 1

1.002 Introduction to Computers and Engineering Problem Solving 2 12

Total Units 66

1. Requests to waive this requirement based on prior coursework must be submitted in writing to the Transportation Education Committee (TEC) executive director.
2. Recommended for most students. See the MST website (http://cee.mit.edu/graduate/transportation/degreerequirements) for information about acceptable substitutions.

Thesis Requirement

Students must complete a research-based thesis on a topic of their choice that has been approved by the thesis supervisor.

1.THG Graduate Thesis 24

MST Program Areas

Select from the subjects below to fulfill the Individually Designed Program Requirement.

Air Transportation

16.71[J] The Airline Industry 12
16.72 Air Traffic Control 12
16.75[J] Airline Management 12
16.781[J] Planning and Design of Airport Systems 12
16.886[J] Air Transportation Systems Architecting 12

Analysis and Planning Methods

1.202[J] Demand Modeling 12
1.203[J] Logistical and Transportation Planning Methods 12
1.205[J] Advanced Demand Modeling 12

Data Sciences for Transportation

1.204 Computer Modeling: From Human Mobility to Transportation Networks 12
6.268 Network Science and Models 1 12
11.205 Introduction to Spatial Analysis 6
15.060 Data, Models, and Decisions 9
15.077[J] Statistical Learning and Data Mining 12
15.082[J] Network Optimization 12

Intelligent Transportation Systems, Safety, and Security

1.208 Resilient Infrastructure Networks 12
16.412[J] Cognitive Robotics 1 12
16.413 Principles of Autonomy and Decision Making 1 12

STS.487 Foundations of Information Policy 12

Logistics and Supply Chain Management

1.203[J] Logistical and Transportation Planning Methods 12
1.260[J] Logistics Systems 12
1.261[J] Case Studies in Logistics and Supply Chain Management 9
1.265[J] Global Supply Chain Management 6
ESD.266 Freight Transportation 6

Transportation Planning, Policy, and Sustainability

1.253[J] Transportation Policy, the Environment, and Livable Communities 12
2.65[J] Sustainable Energy 1 12
11.478 Behavior and Policy: Connections in Transportation 3 12
11.527 Advanced Seminar in Transportation Finance 12
ESD.132 Law, Technology, and Public Policy 12
ESD.133[J] Environmental Law, Policy, and Economics: Pollution Prevention and Control 12

Urban Transportation 2
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.251[J]</td>
<td>Comparative Land Use and Transportation Planning 3</td>
<td>12</td>
</tr>
<tr>
<td>1.252[J]</td>
<td>Urban Transportation Planning 3</td>
<td>12</td>
</tr>
<tr>
<td>1.254</td>
<td>Transport Modeling Course</td>
<td>12</td>
</tr>
<tr>
<td>1.258[J]</td>
<td>Public Transportation Systems</td>
<td>12</td>
</tr>
</tbody>
</table>

1. Also satisfies the Technology requirement.
2. Special subjects offered by the Department of Urban Studies and Planning (Course 11) may satisfy this requirement if content satisfies MST criteria. Contact program office for available offerings.
3. Also satisfies the Policy requirement.

Policy and Technology Subjects

Select from the subjects below to satisfy the Policy / Technology Requirement.

Transportation Policy Subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.252[J]</td>
<td>Urban Transportation Planning</td>
<td>12</td>
</tr>
<tr>
<td>1.253[J]</td>
<td>Transportation Policy, the Environment, and Livable Communities</td>
<td>12</td>
</tr>
</tbody>
</table>

Transportation Subjects with Substantial Policy Content

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.526[J]</td>
<td>Comparative Land Use and Transportation Planning</td>
<td>12</td>
</tr>
<tr>
<td>16.71[J]</td>
<td>The Airline Industry</td>
<td>12</td>
</tr>
</tbody>
</table>

Policy Subjects with Modest or No Transportation Content

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.255</td>
<td>Negotiation and Dispute Resolution in the Public Sector</td>
<td>12</td>
</tr>
<tr>
<td>11.481[J]</td>
<td>Analyzing and Accounting for Regional Economic Change</td>
<td>12</td>
</tr>
<tr>
<td>11.482[J]</td>
<td>Regional Socioeconomic Impact Analyses and Modeling</td>
<td>12</td>
</tr>
<tr>
<td>ESD.103[J]</td>
<td>Science, Technology, and Public Policy</td>
<td>12</td>
</tr>
<tr>
<td>ESD.132</td>
<td>Law, Technology, and Public Policy</td>
<td>12</td>
</tr>
<tr>
<td>STS.487</td>
<td>Foundations of Information Policy</td>
<td>12</td>
</tr>
</tbody>
</table>

Technology Subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.65[J]</td>
<td>Sustainable Energy</td>
<td>12</td>
</tr>
<tr>
<td>6.268</td>
<td>Network Science and Models</td>
<td>12</td>
</tr>
<tr>
<td>16.72</td>
<td>Air Traffic Control</td>
<td>12</td>
</tr>
<tr>
<td>MAS.552[J]</td>
<td>City Science</td>
<td>12</td>
</tr>
</tbody>
</table>
INDEX

A
- Academic and Research Options ... 42
- Academic Calendar .. 7
- Academic Performance and Grades ... 74
- Academic Procedures .. 71
- Academic Program, overview ... 14
- Academic Programs, undergraduate ... 30
- Academic Resources ... 27
- Activities .. 17
- Administration ... 15
- Admissions, graduate .. 63
- Admissions, undergraduate ... 52
- Advising and Support ... 27
- Aeronautics and Astronautics Department ... 141
- Aerospace Engineering, Bachelor of Science in .. 370
- Aerospace Engineering, Bachelor of Science in .. 370
- Alumni ... 16
- Anthropology Bachelor of Science (Course 21A) Degree Chart 399
- Anthropology Bachelor of Science (Course 21A) Degree Chart 399
- Anthropology Program .. 233
- Architecture (Course 4) Bachelor of Science Degree Chart 364
- Architecture (Course 4) Bachelor of Science Degree Chart 364
- Architecture Department ... 114
- Architecture Studies (Course 4-B) ... 366
- Around Campus ... 11
- Arts at MIT ... 17
- Athletics .. 19

B
- Bachelor of Science as Recommended by the Department of Chemical Engineering (Course 10-C) ... 377
- Bachelor of Science as Recommended by the Department of Materials Science and Engineering (Course 3-A) .. 393
- Bachelor of Science in Archaeology and Materials as Recommended by the Department of Materials Science and Engineering 372
- Biological Engineering (Course 20) Bachelor of Science Degree Chart 373
- Biological Engineering Department ... 154
- Biology (Course 7) Bachelor of Science Degree Chart 430
- Biology (Course 7) Bachelor of Science Degree Chart 430
- Biology (Course 7-A) Bachelor of Science Degree Chart 432
- Biology Department .. 290
- Brain and Cognitive Sciences (Course 9) Bachelor of Science Degree Chart ... 434
- Brain and Cognitive Sciences Department .. 434
- Broad Institute of MIT and Harvard ... 85

C
- Campus Life ... 17
- Campus Media .. 20
- Career and Professional Options ... 48
- Center for Archaeological Materials ... 85
- Center for Biomedical Engineering ... 85
- Center for Collective Intelligence ... 85
- Center for Computational Engineering ... 86
- Center for Computational Research in Economics and Management Science ... 86
- Center for Energy and Environmental Policy Research 86
- Center for Environmental Health Sciences .. 86
- Center for Global Change Science ... 87
- Center for International Studies .. 87
- Center for Materials Science and Engineering .. 88
- Center for Real Estate .. 89
- Center for Transportation & Logistics ... 90
- Chemical Engineering (Course 10) Bachelor of Science Degree Chart 375
- Chemical Engineering Department ... 161
- Chemical-Biological Engineering (Course 10-B) Bachelor of Science Degree Chart .. 374
- Chemistry (Course 5) Bachelor of Science Degree Chart 436
- Chemistry Department ... 302
- Civil and Environmental Engineering Department 170
- Clinical Research Center ... 90
- Comparative Media Studies Bachelor of Science Degree Chart 400
- Comparative Media Studies/Writing Program ... 235
- Computation for Design and Optimization .. 350
- Computational and Systems Biology .. 350
- Computational Science and Engineering ... 352
- Computer Science and Artificial Intelligence Laboratory 91
- Computer Science and Engineering (Course 6-3) Bachelor of Science Degree Chart .. 378
- Computer Science and Molecular Biology (Course 6-7) Bachelor of Science Degree Chart .. 449
- Computer Science and Molecular Biology (Course 6-7) Bachelor of Science Degree Chart .. 449
INDEX

Computer Science and Molecular Biology (Course 6-7P) Master of Engineering Degree Chart ... 452
Computer Science and Molecular Biology (Course 6-7P) Master of Engineering Degree Chart ... 452
Computer Science and Molecular Biology Program, Graduate 353
Computer Science and Molecular Biology Program, Undergraduate ... 328
Concrete Sustainability Hub .. 91
Costs, graduate ... 65
Costs, undergraduate ... 53

D
Deshpande Center for Technological Innovation 91
Design and Management ... 352
Digital Learning ... 27
Dining ... 20
Division of Comparative Medicine ... 92
Draper Laboratory .. 92

E
Earth, Atmospheric, and Planetary Sciences (Course 12) 437
Earth, Atmospheric, and Planetary Sciences Department 307
Economics (Course 14) ... 401
Economics Department .. 241
Edgerton Center .. 44
Electrical Engineering and Computer Science (Course 6-2) 380
Electrical Engineering and Computer Science (Course 6-P) 382
Electrical Engineering and Computer Science Department 184
Electrical Science and Engineering (Course 6-1) 383
Engineering as Recommended by the Department of Aeronautics and Astronautics (Course 16-ENG) 385
Engineering as Recommended by the Department of Chemical Engineering (Course 10-ENG) .. 386
Engineering as Recommended by the Department of Civil and Environmental Engineering (Course 1-ENG) 388
Engineering as Recommended by the Department of Mechanical Engineering (Course 2-A) ... 390

F
Financial Aid, graduate ... 67
Financial Aid, undergraduate ... 55
Fraternities, Sororities, and Independent Living Groups 21
Freshman Advising Seminars Program 43
Freshman Year ... 30

G
General Degree Requirements, graduate 59

General Institute Requirements ... 35
Global Education and Career Development 48
Global Studies and Languages (Course 21S) Bachelor of Science Degree Chart ... 402
Global Studies and Languages Program 245
Grading Options .. 44
Graduate Education ... 58
Graduate Programs in Transportation .. 359
Graduate Study at MIT ... 58
Graduation ... 78

H
Harvard-MIT Health Sciences and Technology Program 195
Harvard-MIT Health Sciences and Technology Program 354
Haystack Observatory .. 93
History (Course 21H) Bachelor of Science Degree Chart 405
History Section ... 250
Housing ... 21
Humanities .. 328
Humanities (Course 21) Bachelor of Science Degree Chart 406
Humanities and Engineering ... 336
Humanities and Engineering (Course 21E) Bachelor of Science Degree Chart ... 408
Humanities and Science .. 336
Humanities and Science (Course 21S) Bachelor of Science Degree Chart 411
Humanities Department ... 252

I
Independent Activities Period ... 42
Information Systems and Technology ... 28
Initiative on the Digital Economy .. 93
Institute for Data, Systems, and Society 178
Institute for Medical Engineering and Science 93
Institute for Soldier Nanotechnologies .. 93
Institute for Work and Employment Research 94
Institute Regulations ... 79
Interdisciplinary Graduate Programs ... 349
Interdisciplinary Programs ... 327
Interdisciplinary Undergraduate Degrees 328
Internships Abroad ... 47
Interphase EDGE ... 44

J
Joint Program on the Science and Policy of Global Change 94
INDEX

Joint Program with Woods Hole Oceanographic Institution 354
K
Knight Science Journalism Program ... 95
Koch Institute for Integrative Cancer Research 95
L
Laboratory for Financial Engineering ... 95
Laboratory for Information and Decision Systems 96
Laboratory for Manufacturing and Productivity 96
Laboratory for Nuclear Science .. 97
Leaders for Global Operations ... 355
Legatum Center for Development and Entrepreneurship 97
Libraries .. 28
Lincoln Laboratory .. 97
Linguistics and Philosophy (Course 24-2) Bachelor of Science Degree Chart .. 414
Linguistics and Philosophy Department ... 253
Literature (Course 21L) Bachelor of Science Degree Chart 416
Literature Section .. 257
M
Major Course of Study ... 33
Management Programs .. 274
Management Science (Course 15) Bachelor of Science Degree Chart .. 428
Management Science (Course 15) Bachelor of Science Degree Chart .. 428
Martin Trust Center for MIT Entrepreneurship 101
Master of Engineering in Logistics (Supply Chain Management) Degree Chart .. 453
Master of Science in Transportation (MST) Degree Chart 454
Materials Processing Center ... 102
Materials Science and Engineering (Course 3) Bachelor of Science Degree Chart ... 391
Materials Science and Engineering Department 201
Mathematics (Course 18) Bachelor of Science Degree Chart 439
Mathematics Department .. 314
Mathematics with Computer Science (Course 18-C) Bachelor of Science Degree Chart .. 444
McGovern Institute for Brain Research ... 102
Mechanical and Ocean Engineering (Course 2-OE) Bachelor of Science Degree Chart ... 395
Mechanical Engineering (Course 2) Bachelor of Science Degree Chart .. 396
Mechanical Engineering Department ... 208
Media Arts and Sciences Program .. 123
Media Lab ... 102
Medical Requirements, graduate .. 69
Medical Requirements, undergraduate ... 56
Medical Services ... 23
Microbiology Graduate Program ... 356
Microsystems Technology Laboratories ... 103
Minor in African and African Diaspora Studies 337
Minor in Ancient and Medieval Studies .. 338
Minor in Applied International Studies .. 339
Minor in Asian and Asian Diaspora Studies 340
Minor in Astronomy .. 341
Minor in Atmospheric Chemistry ... 342
Minor in Biomedical Engineering .. 342
Minor in Energy Studies .. 343
Minor in Latin American and Latino Studies 344
Minor in Middle Eastern Studies .. 345
Minor in Public Policy .. 346
Minor in Russian and Eurasian Studies .. 347
Minor in Women's and Gender Studies .. 347
Minors, interdisciplinary, undergraduate .. 336
Minors, undergraduate ... 34
MIT Center for Art, Science, and Technology 98
MIT Energy Initiative ... 98
MIT Kavli Institute for Astrophysics and Space Research 99
MIT Portugal Program ... 99
MIT Professional Education .. 100
MIT Program in Art, Culture and Technology 100
MIT Sea Grant ... 101
MIT Sloan School of Management .. 271
Music (Course 21M-1) .. 417
Music and Theater Arts Section ... 260
N
Nuclear Reactor Laboratory .. 103
Nuclear Science and Engineering (Course 22) Bachelor of Science Degree Chart ... 397
Nuclear Science and Engineering Department 224
O
Office of Digital Learning .. 104
Operations Research ... 357
Operations Research Center ... 104
Other Institutions ... 62
Overview ... 11

P
Philosophy (Course 24-1) Bachelor of Science Degree Chart 418
Physics (Course 8) Bachelor of Science Degree Chart 446
Physics Department ... 320
Picower Institute for Learning and Memory 104
Planning (Course 11) Bachelor of Science Degree Chart 367
Plasma Science and Fusion Center ... 104
Policies and Procedures .. 79
Political Science (Course 17) Bachelor of Science Degree Chart 420
Political Science Department ... 264
Privacy of Student Records ... 82
Program in Polymers and Soft Matter ... 358
Public Service Center .. 24

R
Registration .. 71
Religious Organizations ... 24
Research and Study ... 84
Research Laboratory of Electronics .. 105
ROTC Programs .. 49

S
School of Architecture and Planning ... 111
School of Engineering .. 136
School of Humanities, Arts, and Social Sciences 231
School of Science ... 287
Schools and Courses ... 110
Science, Technology, and Society Program 268
Science, Technology, and Society/Second Major (STS) 422
Simons Center for the Social Brain .. 106
Singapore-MIT Alliance ... 106
Singapore-MIT Alliance for Research and Technology Centre 107
Sociotechnical Systems Research Center 108
Student Disabilities Services ... 29
Student Government .. 24
Student Services Center .. 29
Study at Other Universities .. 45
Supply Chain Management Program 358

T
Teacher Licensure and Education .. 48
Technology and Development Program 108
Technology and Policy Program ... 359
Term Regulations and Examination Policies 72
Theater Arts (Course 21M-2) Bachelor of Science Degree Chart 423
This Is MIT .. 10
Transportation, around campus ... 25
Transportation@MIT ... 108

U
Undergraduate Degree Charts .. 361
Undergraduate Education .. 30
Undergraduate Programs ... 328
Undergraduate Research Opportunities Program 43
Urban Studies and Planning Department 126

W
WebSIS ... 29
Whitehead Institute for Biomedical Research 109
Women’s and Gender Studies Program 109
Work/Life and Family Resources .. 25
Writing (Course 21W) Bachelor of Science Degree Chart 424
Writing and Communication Center ... 29