Nondiscrimination Policy
The Massachusetts Institute of Technology is committed to the principle of equal opportunity in education and employment. The Institute does not discriminate against individuals on the basis of race, color, sex, sexual orientation, gender identity, religion, disability, age, genetic information, veteran status, ancestry, or national or ethnic origin in the administration of its educational policies, admissions policies, employment policies, scholarship and loan programs, and other Institute administered programs and activities, but may favor US citizens or residents in admissions and financial aid.*

The Vice President for Human Resources is designated as the Institute’s Equal Opportunity Officer and Title IX Coordinator. Inquiries concerning the Institute’s policies, compliance with applicable laws, statutes, and regulations (such as Title VI, Title IX, and Section 504), and complaints may be directed to the Vice President for Human Resources, Room E19-215, 617-253-6512, or to the Coordinator of Staff Diversity Initiatives/Affirmative Action, Room E19-215, 617-253-1594. In the absence of the Vice President for Human Resources or the Coordinator of Staff Diversity Initiatives/Affirmative Action, inquiries or complaints may be directed to the Executive Vice President, Room 3-211, 617-253-3928, or to the Director of Labor and Employee Relations, Room E19-235N, 617-253-4264, respectively. Inquiries about the laws and about compliance may also be directed to the Assistant Secretary for Civil Rights, US Department of Education.

*The ROTC programs at MIT are operated under Department of Defense (DOD) policies and regulations, and do not comply fully with MIT’s policy of nondiscrimination with regard to sexual orientation. MIT continues to advocate for a change in DOD policies and regulations concerning sexual orientation, and will replace scholarships of students who lose ROTC financial aid because of these DOD policies and regulations.

Accreditation
MIT is accredited by the New England Association of Schools and Colleges, Inc., through its Commission on Institutions of Higher Education.

Inquiries regarding MIT’s accreditation status should be directed to the Office of the Vice President for Institute Affairs and Secretary of the Corporation, Massachusetts Institute of Technology. Individuals may also contact:

Commission on Institutions of Higher Education
New England Association of Schools and Colleges
209 Burlington Road
Bedford, MA 01730-1433
telephone 781-271-0022
email cihe@neasc.org.

Many degree programs at MIT are accredited by specialized professional accrediting bodies, including the Association to Advance Collegiate Schools of Business, the Accreditation Board for Engineering and Technology, the American Chemical Society, the American Institute of Chemical Engineers, the Computer Science Accreditation Board, the National Architectural Accrediting Board, and the Planning Accreditation Board. Academic departments can provide information on the accreditation of the specific degree programs they offer.

Issues of the MIT Bulletin
The MIT Course Catalog is available in September and can be viewed online at http://web.mit.edu/catalog/. To obtain a print copy, visit http://web.mit.edu/referencepubs/catalog/getacopy.html.

Copies of the Student Directory and Faculty & Staff Directory, issued in November, are available to MIT students, faculty, and staff in mailrooms across campus. The online People Directory can be searched at http://web.mit.edu/people/.

The Institute reserves the right to make changes in the courses and regulations announced in the MIT Bulletin. Please send questions or comments to MIT Bulletin, Room E38-234, 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

Summer Session
During the regular Summer Session, MIT offers a limited selection of the subjects available in the academic year, as well as a few subjects designed for the special interests and needs of MIT students. Current MIT undergraduate and graduate students are automatically eligible for participation in the Summer Session.

Undergraduate and graduate students from other colleges and universities may be admitted for the Summer Session as special (non-degree) students. International students living outside the United States are not permitted to apply for the summer session. The admission standards for the Summer Session are the same as those for the regular academic year.

Further information about the Summer Session can be found at http://web.mit.edu/catalog/summer/.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree Charts</td>
<td>4</td>
</tr>
<tr>
<td>Welcome</td>
<td>5</td>
</tr>
<tr>
<td>Academic Calendar</td>
<td>6</td>
</tr>
<tr>
<td>Part 1</td>
<td></td>
</tr>
<tr>
<td>This Is MIT</td>
<td>10</td>
</tr>
<tr>
<td>Overview</td>
<td>12</td>
</tr>
<tr>
<td>Campus Life</td>
<td>19</td>
</tr>
<tr>
<td>Undergraduate Education</td>
<td>30</td>
</tr>
<tr>
<td>Graduate Education</td>
<td>57</td>
</tr>
<tr>
<td>Academic Procedures and Institute Regulations</td>
<td>68</td>
</tr>
<tr>
<td>Part 2</td>
<td></td>
</tr>
<tr>
<td>Schools and Courses</td>
<td>78</td>
</tr>
<tr>
<td>School of Architecture and Planning</td>
<td>80</td>
</tr>
<tr>
<td>School of Engineering</td>
<td>100</td>
</tr>
<tr>
<td>School of Humanities, Arts, and Social Sciences</td>
<td>187</td>
</tr>
<tr>
<td>MIT Sloan School of Management</td>
<td>225</td>
</tr>
<tr>
<td>School of Science</td>
<td>236</td>
</tr>
<tr>
<td>Part 3</td>
<td></td>
</tr>
<tr>
<td>Interdisciplinary Programs</td>
<td>270</td>
</tr>
<tr>
<td>Undergraduate Programs and Minors</td>
<td>272</td>
</tr>
<tr>
<td>Graduate Programs</td>
<td>279</td>
</tr>
<tr>
<td>Interdisciplinary Research and Study</td>
<td>297</td>
</tr>
<tr>
<td>Index</td>
<td>319</td>
</tr>
<tr>
<td>Campus Map</td>
<td>inside back cover</td>
</tr>
</tbody>
</table>

MIT Subject Descriptions are available online at http://student.mit.edu/catalog/index.cgi
Bachelor of Science Degree Requirements

School of Architecture and Planning
Art and Design/Course 4 84
Planning/Course 11 94

School of Engineering
Aerospace Engineering/Course 16-1 107
Aerospace Engineering with Information Technology/Course 16-2 107
Archaeology and Materials/Course 3-C 160
Biological Engineering/Course 20 118
Chemical-Biological Engineering/Course 10-B 126
Chemical Engineering/Course 10 124
Civil and Environmental Engineering/Course 1-A 134
Civil Engineering/Course 1-C 132
Computer Science and Engineering/Course 6-3 141
Electrical Engineering and Computer Science/Course 6-2 141
Electrical Engineering and Computer Science/Course 6-P 142
Electrical Science and Engineering/Course 6-1 141
Engineering/Course 16-ENG 109
Environmental Engineering Science/Course 1-E 133
Materials Science and Engineering/Course 3 158
Mechanical and Ocean Engineering/Course 2-OE 171
Mechanical Engineering/Course 2 168
Mechanical Engineering/Course 2-A 170
Nuclear Science and Engineering/Course 22 182

School of Humanities, Arts, and Social Sciences
Anthropology/Course 21A 191
Comparative Media Studies/Course CMS 193
Economics/Course 14 196
Foreign Languages and Literatures/Course 21F 200
History/Course 21H 203
Humanities/Course 21 204
Humanities and Engineering/Course 21E 205
Humanities and Science/Course 21S 205
Linguistics and Philosophy/Course 24-2 209
Literature/Course 21L 211
Music/Course 21M 214
Philosophy/Course 24-1 207
Political Science/Course 17 217
Science, Technology, and Society/Double Major/Course STS 220
Writing/Course 21W 223

MIT Sloan School of Management
Management Science/Course 15 229

School of Science
Biology/Course 7 240
Brain and Cognitive Sciences/Course 9 244
Chemistry/Course 5 250
Earth, Atmospheric, and Planetary Sciences/Course 12 254
Mathematics/Course 18 259
Mathematics with Computer Science/Course 18-C 261
Physics/Course 8 264
MIT has a distinctive mission and history that set us apart from other American universities. When the Institute was established, 150 years ago, science had essentially no impact on the curriculum that was followed by most American university students. Our first president, William Barton Rogers, envisioned a new kind of academic institution—one that could, as he put it, “serve the times and the nation’s needs.”

Those principles have served us well, and today our work—in engineering, the natural and social sciences, the humanities and the arts—reaches people the world over. The Institute community extends far beyond Cambridge, embracing international partners and more than 100,000 alumni around the globe.

I believe the world has never needed MIT as much as it does now. The major challenges of our age are increasingly shaped by science and technology, and by daunting problems of quantitative analysis and complex synthesis. With MIT’s expertise in interdisciplinary problem solving, the Institute has a unique opportunity, and a deep obligation, to make a critical difference—by creating the innovations, fueling the economy, and educating the leaders the world needs now.

In addressing these needs, we draw on an unwavering drive toward excellence, a spirit of innovation, a culture of collaboration, and a commitment to making an MIT education accessible to all who have the talents and ambition to benefit from our programs.

If you know MIT well, I hope that you already share my enthusiasm for this vibrant, energetic, and energizing place. If you are here to learn about us, the Bulletin will orient you not only to our courses of study but also to the Institute as a whole. And whether you are a new student, a candidate for admission, a parent, or an educator, let me offer you a warm welcome on behalf of MIT.

Susan Hockfield
President
Mon, Labor Day—Holiday

REGISTRATION DAY—FALL TERM

Number of class days (Wed, Sep 8, through Thu, Dec 9): 12 Mon, 13 Tue, 14 Wed, 12 Thu, 12 Fri = 63 days

DEADLINE to change a Spring Term Exploratory subject to Listener status

FIRST DAY OF CLASSES

DEGREE APPLICATION DEADLINE for February SB and Advanced Degrees. $50 Late Fee ($85 after December 10).

REGISTRATION DEADLINE. Signed Registration forms for all students due in Student Services Center. $50 Late Fee.

DEADLINE FOR FINAL-TERM SENIORS to submit HASS Concentration Completion form. $50 Late Fee.

CAP September Degree Candidates Meeting

First quarter Physical Education classes begin

Graduate Academic Performance Meeting

Faculty Officers recommend degrees to Corporation

Career Week

11 am–6 pm Career Fair

MINOR COMPLETION DATE. Deadline for submission of Minor Completion form for final-term seniors. $50 Late Fee.

Fri, September 30

Last day to sign up for family health insurance or waive individual coverage, E23-308

Sat, Add Date. Last day to add subjects to Registration

Last day for juniors/seniors to change an elective to or from P/D/F grading

Last day for graduate students to change a subject to or from P/D/F grading

Last day to change a subject from Listener to Credit

Last day for sophomores to change a subject to or from Exploratory

Late fee ($100) and petition required for students completing registration after this date

Last day to petition for second SB for June or September 2011 degree candidates

Last day for June and September 2011 degree candidates to apply for double major

Last day to drop half-term subjects offered in first half of term

Deadline for completing cross-registration. $50 Late Fee for any petitions approved after this date.

Columbus Day—Holiday

Family Weekend

Second quarter Physical Education classes begin

Thu, November 11

Veterans Day—Holiday

DROP DATE. Last day to cancel subjects from Registration.

Last day to change a subject from Credit to Listener

Last day to add a time-arranged subject that started after beginning of the term

Last day to add half-term subjects offered in second half of term

Last day to petition for December Advanced Standing Exam (given during Final Exam Period)

Thanksgiving Vacation
Online preregistration for Spring Term and IAP begins

Subjects with final exam—No test may be given and no assignment, term paper, or oral presentation shall fall due after this date.

Subjects with no final exam—Undergraduate Subjects: No test may be given and at most one assignment may fall due between this date and the end of the last scheduled class period in the subject.

Graduate Subjects: Either one in-class test may be given or one assignment may fall due between this date and the end of the last regularly scheduled class in the subject.

Last day of classes

Last day to drop half-term subjects offered in the second half of term

Last day to submit or change Advanced Degree Thesis Title. $80 late Fee.

Final exam period

Grade deadline. Grades due in Registrar’s Office, 5-119, according to due date indicated on the Grade Sheet. Grade Sheets must be signed, enclosed in envelopes, sealed, and delivered to Registrar’s Office on or before due date.

Spring preregistration deadline. Continuing students must initiate online preregistration by 5 pm on this date. $50 late Fee ($85 after January 13).

First day of January Independent activities Period

First day of January Independent Activities Period

Deadline for doctoral students to submit application, signed by department, to the Office of the Dean for Graduate Education, 3-138, for Spring Term Non-Resident status ($100 Late Fee). Not needed if Spring Term approved with Fall Term application.

Term Summaries of Fall Term grades delivered to departments

CAP First-Year Grades Meeting

CAP Second-Year and Third-Year Grades Meeting

CAP Fourth-Year Grades Meeting

Thesis due for doctoral degrees

Last day to petition for January Advanced Standing Exam

Graduate Academic Performance Meeting

5 pm Final deadline for continuing students to preregister online. $85 Late Fee.

Thesis due for degrees other than doctoral

Last day to go off the February degree list

Martin Luther King, Jr. Day—Holiday

CAP Deferred Action Meeting

CAP Deferred Action Meeting

English Evaluation Test for international students, 9 am–12 pm

Last day of January Independent Activities Period

Registration Day—Spring Term

Number of class days (Tue, Feb 1, through Thu, May 12): 12 Mon, 12 Tue, 14 Wed, 14 Thu, 13 Fri=65 days

Deadline to change a Fall Term Exploratory subject to Listener status
February 2011

<table>
<thead>
<tr>
<th>1</th>
<th>Tue</th>
<th>FIRST DAY OF CLASSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Wed</td>
<td>Grades Due in Registrar’s Office, 5-119, for work completed in IAP (12:00 pm)</td>
</tr>
<tr>
<td>4</td>
<td>Fri</td>
<td>Registration Deadline. Signed Registration forms for all students due in Student Services Center. $50 Late Fee.</td>
</tr>
<tr>
<td>7</td>
<td>Mon</td>
<td>Degree Application Deadline for June SB and Advanced Degrees. $50 Late Fee ($85 Late Fee after April 1).</td>
</tr>
<tr>
<td>8</td>
<td>Tue</td>
<td>Deadline for Final-term Seniors to submit HASS Concentration Completion form. $50 Late Fee.</td>
</tr>
<tr>
<td>11</td>
<td>Fri</td>
<td>Term Summaries of grades for IAP delivered to departments</td>
</tr>
<tr>
<td>16</td>
<td>Wed</td>
<td>Third quarter Physical Education classes begin</td>
</tr>
<tr>
<td>18</td>
<td>Fri</td>
<td>Graduate Academic Performance Meeting</td>
</tr>
<tr>
<td>21</td>
<td>Mon</td>
<td>CAP February Degree Candidates Meeting</td>
</tr>
<tr>
<td>22</td>
<td>Tue</td>
<td>Faculty Officers recommend degrees to Corporation</td>
</tr>
<tr>
<td>28</td>
<td>Mon</td>
<td>Minor Completion Date. Deadline for submission of Minor Completion form for final-term seniors. $50 Late Fee.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>March 2011</th>
<th>4 Fri</th>
<th>ADD DATE. Last day to add subjects to Registration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Fri</td>
<td>Last day for juniors/seniors to change an elective to or from P/D/F grading</td>
</tr>
<tr>
<td>3–10</td>
<td>Mon–Fri</td>
<td>Last day for graduate students to change a subject to or from P/D/F grading</td>
</tr>
<tr>
<td>18–19</td>
<td>Mon–Tue</td>
<td>Last day to change a subject from Listener to Credit</td>
</tr>
<tr>
<td>21</td>
<td>Thu</td>
<td>Last day for sophomores to change a subject to or from Exploratory</td>
</tr>
<tr>
<td>21–25</td>
<td>Mon–Fri</td>
<td>Late fee ($100) and petition required for students completing registration after this date</td>
</tr>
<tr>
<td>30</td>
<td>Wed</td>
<td>Last day to petition for second SB for February 2012 degree candidates</td>
</tr>
<tr>
<td>21</td>
<td>Thu</td>
<td>Last day for February 2012 degree candidates to apply for a double major</td>
</tr>
<tr>
<td>30</td>
<td>Fri</td>
<td>Last day to drop half-term subjects offered in first half of term</td>
</tr>
<tr>
<td>29</td>
<td>Fri</td>
<td>Deadline for completing cross-registration. $50 Late Fee for petitions approved after this date.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>April 2011</th>
<th>1 Fri</th>
<th>DROP DATE. Last day to cancel subjects from Registration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7–10</td>
<td>Thu–Sun</td>
<td>Last day to change a subject from Credit to Listener</td>
</tr>
<tr>
<td>18–19</td>
<td>Mon–Tue</td>
<td>Last day to add time-arranged subject that started after beginning of the term</td>
</tr>
<tr>
<td>21</td>
<td>Thu</td>
<td>Last day to petition for May Advanced Standing Exam (given during Final Exam Period)</td>
</tr>
<tr>
<td>29</td>
<td>Fri</td>
<td>Last day to add half-term subjects offered in second half of term</td>
</tr>
</tbody>
</table>

Thesis Due for doctoral degrees
Online preregistration for Fall Term and Summer Session begins.

Subjects with final exam—No test may be given and no assignment, term paper, or oral presentation shall fall due after this date.

Subjects with no final exam—Undergraduate Subjects: No test may be given and at most one assignment may fall due between this date and the end of the last scheduled class period in the subject.
Graduate Subjects: Either one in-class test may be given or one assignment may fall due between this date and the end of the last regularly scheduled class in the subject.

Thesis due for degrees other than doctoral

Last day of classes
Last day to drop half-term subjects offered in second half of term

Final exam period

Grade deadline. Grades due in Registrar’s Office, 5-119, according to due date indicated on the Grade Sheet. Grade Sheets must be signed, enclosed in envelopes, sealed, and delivered to Registrar’s Office on or before due date.

Last day to go off the June degree list

Term Summaries of Spring Term grades delivered to departments

Department grades meetings

CAP Fourth-Year Grades Meeting
Graduate Academic Performance Meeting
Faculty Officers recommend degrees to Corporation

Summer session preregistration deadline. Deadline for all students to preregister online for Summer Session. $50 Late Fee.

Fall preregistration deadline. Continuing students must initiate online preregistration by this date. $50 Late Fee ($85 after August 19).

Memorial Day—Holiday

CAP Second-Year and Third-Year Grades Meeting

The Academic Calendar is available at http://web.mit.edu/registrar/calendar/.

Projected key dates for future academic years are available at http://web.mit.edu/registrar/calendar/projected.html.
Part 1

This Is MIT
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>12</td>
</tr>
<tr>
<td>Campus Life</td>
<td>19</td>
</tr>
<tr>
<td>Undergraduate Education</td>
<td>30</td>
</tr>
<tr>
<td>Graduate Education</td>
<td>57</td>
</tr>
<tr>
<td>Academic Procedures and Institute Regulations</td>
<td>68</td>
</tr>
</tbody>
</table>
Here’s a quick look at what makes MIT tick—the ingredients of a world-class educational institution.
On February 10, 1865, four years after approval of its founding charter, the Massachusetts Institute of Technology opened its doors to admit the first class of 15 students. The event marked the culmination of an effort by William Barton Rogers, MIT’s founder and first president, to create a new kind of educational institution relevant to the times and to the nation’s need, where students would be educated in the application as well as the acquisition of knowledge. A distinguished natural scientist, Rogers stressed the importance of basic research and believed that professional competence was best fostered by the coupling of teaching and research and attention to real-world problems.

Teaching and research—with relevance to the practical world as a guiding principle—continue to be MIT’s primary purpose. The Institute is independent, coeducational, and privately endowed. Its five schools—architecture and planning; engineering; humanities, arts, and social sciences; management; and science—and college of health sciences and technology encompass numerous academic departments, divisions, and degree-granting programs, as well as interdisciplinary research centers, laboratories, and programs whose work extends beyond traditional departmental boundaries.

MISSION STATEMENT

The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

The Institute is committed to generating, disseminating, and preserving knowledge, and to working with others to bring this knowledge to bear on the world’s great challenges. MIT is dedicated to providing its students with an education that combines rigorous academic study and the excitement of discovery with the support and intellectual stimulation of a diverse campus community. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

AROUND CAMPUS

The 1998 Task Force on Student Life and Learning described MIT’s educational goals in these terms: An MIT education should prepare students for life through an integrated educational program composed of academics, research, and community. Academics establish a place for rigorous study of the fundamentals of science, engineering, social science, and the humanities, as well as a format for developing problem-solving skills, familiarity with quantitative and qualitative analysis, historical and literary insight, and an understanding of the scientific method. Participation in research provides a foundation for professional competence and opportunities for learning-by-doing. Community interaction enables students to become familiar with their responsibilities, hone their leadership and communication skills, and gain self-mastery. Although each of the three components forms a distinct area of a student’s education, the contribution of each reinforces and adds to that of the others. To provide a uniquely excellent education, MIT brings students and faculty together to learn from one another through academics, research, and community.

As recommended by the Task Force, MIT embarked on one of the most ambitious building initiatives in its history, aimed at creating a stronger campus community through enhanced residential options and the provision of advanced educational and research facilities. Upon completion, this initiative will have added nearly one million square feet of new facilities to the campus—smart residence halls and common spaces to inspire innovative collaborations, cutting-edge laboratories to support the emergence of new technologies, and visionary architecture to reinforce the intensity, curiosity, and excitement that are a defining value of the Institute, and of an MIT education.

The Institute has also moved to renovate and enhance its existing physical plant and infrastructure. Most institutional structures require renovation about every 30 years, with MIT buildings dating from the 1960s and 1970s in line for revitalization today. One recent example is the award-winning renovation of the Dreyfus Chemistry Building, a creation of I. M. Pei (March, 1940) that was dedicated in 1970. The building now contains state-of-the-art chemistry labs, enhanced safety and environmental systems, and a flexible space format that allows for reconfiguration as needs evolve. Another area of dramatic change is the ongoing transformation of the Vassar Streetscape, turning a nondescript urban byway into a central campus boulevard unifying the physical and aesthetic connections among MIT’s buildings and public spaces.

MIT’s building program, both in its broad outlines and specific details, reflects the Institute’s commitment to removing boundaries between life and learning, inspiring freedom of imagination, and reinventing the substance of education in the 21st century.

Students and Faculty

MIT enrolled 10,384 students in 2009–2010, including 4,232 undergraduates and 6,152 graduate students. These MIT students came from all 50 states, the District of Columbia, three territories, and 117 foreign countries. Nine percent of the undergraduates and 38 percent of the graduate students were international.

In the same year, there were 1,025 faculty members in MIT’s professorial ranks, including 213 women. The total teaching staff numbered 1,704. Most faculty members at MIT teach both undergraduate and graduate students. Undergraduates frequently register for graduate classes, and many undergraduates and graduate students participate, often together, in advanced research.

The confluence of ages, disciplines, and nationalities so characteristic of MIT brings together students and teachers, biologists and architects, humanists and engineers, young and old, and deeply influences the life and experience of every member of the academic community. The result is an academic environment with a strong focus on excellence and a diverse range of interests.
The Campus

MIT’s 154-acre campus extends for more than a mile along the Cambridge side of the Charles River Basin facing historic Beacon Hill and the central sections of Boston. Many academic activities occur within a group of interconnected buildings designed to permit maximum flexibility and easy communication among the departments and schools. The extensive athletic plant and playing fields are an integral part of the campus, as are the recreational buildings, dormitories, and dining halls. This arrangement contributes greatly to the sense of unity and community involvement that characterizes the Institute.

At the eastern end of the campus are the Alfred P. Sloan Building and the Grover M. Hermann Building, which house activities in management, economics, international studies, and political science. Adjacent to them is Eastgate, a 29-story student family apartment tower. The building at 70 Memorial Drive, along the riverfront, currently contains classrooms and office space for the MIT Sloan School of Management; the Program in Science, Technology, and Society; and the School of Humanities, Arts, and Social Sciences. Just opened in summer 2010 is a 215,000-square-foot building that will serve as the new home of the MIT Sloan School of Management. Like most of MIT’s new buildings, Building E62 will be submitted for Leadership in Energy and Environmental Design (LEED) certification from the US Green Building Council. The new Sloan building will be the “greenest” academic building on campus.

Also located on the east end of the campus are buildings housing the Whitaker College of Health Sciences and Technology and MIT Medical’s Health Services Center. The Whitaker College building includes research laboratories, classrooms, and the college headquarters. The Health Services Center provides a pharmacy, infirmary, and facilities for medical, dental, surgical, and other specialties.

Adjacent to Whitaker College is I. M. Pei’s Wiesner Building, housing the Media Laboratory, the Office of the Arts, and the Albert and Vera List Visual Arts Center, comprising three exhibition galleries and a film/video theater. In fall 2009, a new building opened that nearly doubles the space for the Media Lab and School of Architecture and Planning. The 163,000-square-foot extension was designed by a team headed by Pritzker Prize–winning architect Fumihiko Maki and executive architects Leers Weinzapfel Associates. The new building links to the Wiesner Building through a multilevel central atrium flanked by nine fully visible laboratories, allowing the researchers in both buildings to interact easily.

A commanding feature of the East Campus is McDermott Court, featuring a great sculpture by Alexander Calder that rises in bold contrast to the facade of the 20-story Center for Earth Sciences (Cecil and Ida Green Building). Besides the Calder, MIT’s outstanding collection of contemporary environmental sculpture includes works by Henry Moore, Louise Nevelson, Pablo Picasso, and Tony Smith.

The Institute’s main buildings, enclosing Killian Court, were designed by Welles Bosworth (Class of 1899) and dedicated in 1961. Banked by rhododendrons and lined with tall shade trees, Killian Court opens to a wide view of the Charles River, the low brick buildings of old Boston, and the concrete and glass towers that rise above them.

The most significant expansion of the main group of campus buildings since the 1930s was completed in fall 2007. The cornerstone of the project is the Green Center, named for Cecil and Ida Green, whose leadership gift for Physics initiated a major renovation of the historic Bosworth Buildings by providing significant infrastructure renewal and modernization.

Interconnected with these central buildings are the Center for Life Sciences (the Dorrance and the Whitaker buildings), the Karl Taylor Compton Laboratories (for electronics and nuclear science), the EG&G Education Center (with lecture and laboratory facilities for the Department of Electrical Engineering and Computer Science), the Center for Materials Science and Engineering (the Vannevar Bush Building), the Sloan Laboratory, the Guggenheim Laboratory, and the Center for Advanced Engineering Study.

The Ray and Maria Stata Center for Computer, Information, and Intelligence Sciences, designed by Frank O. Gehry, is a cluster of irregular shapes wrapped around a central meeting area. The Stata Center was created to foster the kinds of creative collaboration that can arise when curious, talented individuals and teams are brought together in the right environment. It is the home of the Computer Science and Artificial Intelligence Laboratory, the Laboratory for Information and Decision Systems, and the Department of Linguistics and Philosophy.

Now under construction and scheduled to open in December 2010 is a new building that will house the Koch Institute for Integrative Cancer Research. The building is located on the corner of Main and Ames streets, across from the Broad and Whitehead institutes and next to the Stata Center. The 360,000-square-foot building is being designed by Ellenzweig of Cambridge, MA. Sustainable design elements include heat-recovery methods that are incorporated into HVAC systems, low-flow fume hoods to reduce ventilation requirements, and low-velocity duct work to reduce fan energy.
improvements were made, enhancing activities on Roberts Field. Hockey. In summer 2008, a new synthetic turf was installed and lighting inside the track oval for intercollegiate football, soccer, lacrosse, and field facilities for the steeplechase and other field events, with a game field track, the first of its kind in North America. The stadium also includes an indoor ice rink and field house, and Rockwell Cage accommodates rugby, cricket, track, and tennis. The Howard W. Johnson athletics Center and playing fields for soccer, lacrosse, baseball, softball, touch football, rugby, cricket, track, and tennis. The Howard W. Johnson Athletics Center includes an indoor ice rink and field house, and Rockwell Cage accommodates varsity and intramural basketball, volleyball, and badminton. MIT’s Steinbrenner Stadium includes a six-lane, 400-meter, all-weather running track, the first of its kind in North America. The stadium also includes facilities for the steeplechase and other field events, with a game field inside the track oval for intercollegiate football, soccer, lacrosse, and field hockey. In summer 2008, a new synthetic turf was installed and lighting improvements were made, enhancing activities on Roberts Field.

Across the street from the Stata Center are facilities for the brain and cognitive sciences. Dedicated in fall 2005, the 411,000-square-foot complex provides state-of-the-art laboratories, classrooms, and offices for the Department of Brain and Cognitive Sciences, the McGovern Institute for Brain Research, and the Picower Institute for Learning and Memory. It received a LEED Silver certification from the US Green Building Council in 2008.

Across Massachusetts Avenue is the West Campus, anchored by the Stratton Student Center with social rooms, cafeterias, student activity offices, music rooms, a spacious reading room, and recreational and commercial facilities. The Student Center Plaza is bounded on the west by Kresge Auditorium and on the east by the MIT Chapel. Both buildings were designed by Eero Saarinen. The auditorium contains a large concert hall, seating 1,200, a small theater, offices, and rehearsal rooms. The chapel is used regularly for religious services by all faiths and is open throughout the day for meditation. The chapel’s unusual design includes an exterior moat that reflects light in ever-changing patterns on the interior walls.

Also located on the West Campus are the du Pont Athletic Center and playing fields for soccer, lacrosse, baseball, softball, touch football, rugby, cricket, track, and tennis. The Howard W. Johnson Athletics Center includes an indoor ice rink and field house, and Rockwell Cage accommodates varsity and intramural basketball, volleyball, and badminton. MIT’s Steinbrenner Stadium includes a six-lane, 400-meter, all-weather running track, the first of its kind in North America. The stadium also includes facilities for the steeplechase and other field events, with a game field inside the track oval for intercollegiate football, soccer, lacrosse, and field hockey. In summer 2008, a new synthetic turf was installed and lighting improvements were made, enhancing activities on Roberts Field.

These athletic facilities are complemented by the impressive Albert and Barrie Zesiger Sports and Fitness Center, designed by Pritzker Prize–winning architect Kevin Roche, John Dinkeloo & Associates, and Sasaki Associates. This luminous complex contains an Olympic-class 50-meter pool, seating for 450 spectators, a training pool, an 11,000-square-foot fitness center, and six squash courts built to international competition standards.

The Charles River Basin—two miles long and a third of a mile wide—is a major feature of MIT’s physical environment. The Pierce Boathouse and the Walter C. Wood Sailing Pavilion provide centers for extensive activity in crew and in sailing.

Lining Memorial Drive and facing the Charles River are additional student residences, among them the serpentine Baker House, designed by the Finnish architect Alvar Aalto and internationally recognized as a masterpiece of modernism. Renovated in conjunction with its fiftieth anniversary, Baker House is one of the most popular dormitories at the Institute, in part because of the extraordinary residential experience it provides. Down the road from Baker House at the end of Amherst Alley is the Westgate apartment complex for students with families and the Tang Residence Hall for graduate students.

Simmons Hall, an undergraduate dormitory on Vassar Street, was created by architect Steven Holl in collaboration with Perry Dean Rogers and Partners and acclaimed for the inventive ways it opens to the community. The Warehouse, a residential complex developed from a renovated industrial warehouse built in 1890, offers graduate students an attractive alternative to off-campus housing. The Sidney-Pacific Street graduate residence offers recreational and retail services at street level, giving the building a lively neighborhood presence. Added to the graduate community in fall 2008 is a 275,000-square-foot complex that includes 550 beds, a dining hall, and the Thirsty Ear Pub. The complex is located next to the Sidney-Pacific residence hall and is named Ashdown House after Avery Ashdown, the late housemaster for Building W1, the former home of the graduate students who now live in the new building. Ashdown House is the first LEED Gold certified building on campus. It was awarded that distinction for optimizing a sustainable design, using nontoxic materials, and incorporating innovative sustainable solutions.

The Boston and Cambridge Environment
MIT is in Cambridge, Massachusetts, on the north bank of the Charles River, facing the city of Boston. The city of Cambridge, well known as the residence of MIT and Harvard, is home to many students and professionals. More than one-fourth of its residents are students, and one out of every six jobs is in higher education. Cambridge is a city of 13 neighborhoods, ranging from approximately 700 to 15,000 residents. Only five cities in the United States with a population over 75,000 are more densely populated. The city’s diverse ethnicity is reflected in its black, Hispanic, Asian, American Indian, and white residents.

Within a two-mile radius of MIT are Boston’s Museum of Science and Museum of Fine Arts, the Gardner Museum, the New England Conservatory of Music, Symphony Hall, the New England Aquarium, and the Boston Public Library, as well as Fenway Park and TD Banknorth Garden for profes-
The Infinite Corridor, one of the main thoroughfares at the Institute, runs a distance of 825 feet, or 251 meters, between Building 7 (the Massachusetts Avenue entrance to MIT) and Building 8, opening onto Eastman Court. Nearly the length of three football fields, the corridor is 9 feet wide and 16 feet high along its principal length.

This layout allows the corridor to capture the setting sun at a particular moment, creating a solar phenomenon sometimes called “MIThenge.” As viewed from a stationary point on the earth, the path of the sun through the sky traces a circle (roughly) that moves north and south as the seasons go by. In mid-November and in late January every year, the circular path crosses the axis of the Infinite Corridor. When this occurs, given favorable weather conditions, a shaft of sunlight is thrown the entire length of the corridor. This event will be visible November 11–14, 2010, starting at 4:18 pm, and January 27–30, 2011, starting at 4:48 pm. The best viewing of the phenomenon occurs at the third-floor level, which has fewer obstructions and less traffic. For more information, see the “Infinite Corridor Astronomy” at http://web.mit.edu/mithenge/.

Infinite Corridor

ACADEMIC PROGRAM

The purpose of the academic program at MIT is to give students a solid command of basic principles, a versatility of insight and perspective concerning natural and social phenomena, the habit of continued learning, and the power that comes from a thorough and systematic approach to learning. From these attributes comes the best assurance for continued professional and personal growth, especially in today’s rapidly changing world.

Each of the academic departments, divisions, and programs listed below offers one or more degree-granting programs, as described in Parts 2 and 3 of this Bulletin. More detailed information can be obtained from the program and department offices.

School of Architecture and Planning

- Architecture
- Media Arts and Sciences
- Urban Studies and Planning

School of Engineering

- Aeronautics and Astronautics
- Biological Engineering
- Chemical Engineering
- Civil and Environmental Engineering
- Electrical Engineering and Computer Science
- Engineering Systems
- Materials Science and Engineering
- Mechanical Engineering
- Nuclear Science and Engineering
School of Humanities, Arts, and Social Sciences
 - Anthropology
 - Comparative Media Studies
 - Economics
 - Foreign Languages and Literatures
 - History
 - Humanities
 - Linguistics and Philosophy
 - Literature
 - Music and Theater Arts
 - Political Science
 - Science, Technology, and Society
 - Writing and Humanistic Studies

Sloan School of Management
 - Management

School of Science
 - Biology
 - Brain and Cognitive Sciences
 - Chemistry
 - Earth, Atmospheric, and Planetary Sciences
 - Mathematics
 - Physics

Whitaker College of Health Sciences and Technology
 - Harvard-MIT Division of Health Sciences and Technology

Joint Program with Woods Hole Oceanographic Institution

The undergraduate academic program is based on a core of General Institute Requirements and on the specific curricula offered by departments for undergraduate majors. All undergraduate courses at MIT lead to the Bachelor of Science (SB) degree. For most undergraduates, degree-granting programs require four years of full-time study.

Graduate degrees include Master of Architecture (MArch), Master of Science (SM), Master of Engineering (MEng), Master in City Planning (MCP), Master of Business Administration (MBA), Master of Finance (MFin), Engineer, Doctor of Philosophy (PhD), and Doctor of Science (ScD). Graduate students may also take advantage of a number of standing interdisciplinary programs (as described under Interdisciplinary Graduate Programs in Part 3) or develop individually tailored programs in consultation with the faculty.

Engineer degrees include Civil Engineer (CE), Electrical Engineer (EE), Engineer in Aeronautics and Astronautics (EAA), Engineer in Computer Science (ECS), Environmental Engineer (EnvE), Materials Engineer (MatE), Mechanical Engineer (MechE), Metallurgical Engineer (MetE), Naval Engineer (NavE), Nuclear Engineer (NucE), and Ocean Engineer (OceanE).

Accreditation
MIT is accredited by the New England Association of Schools and Colleges, Inc., through its Commission on Institutions of Higher Education. Inquiries regarding MIT's accreditation status should be directed to the Office of the Vice President for Institute Affairs and Secretary of the Corporation, Massachusetts Institute of Technology. Individuals may also contact:
 - Commission on Institutions of Higher Education
 - New England Association of Schools and Colleges
 - 209 Burlington Road, Suite 201
 - Bedford, MA 01730-1433
 - telephone 781-271-0022
 - email cihe@neasc.org.

Many degree programs at MIT are accredited by specialized professional accrediting bodies, including the Association to Advance Collegiate Schools of Business, the Accreditation Board for Engineering and Technology, the American Chemical Society, the American Institute of Chemical Engineers, the Computer Science Accreditation Board, the National Architectural Accrediting Board, and the Planning Accreditation Board. Academic departments can provide information on the accreditation of the specific degree programs they offer.
OVERVIEW

ADMINISTRATION

MIT Corporation
The Institute’s board of trustees is known as the Corporation, led by its chairman. Its membership includes approximately 75 distinguished leaders in science, engineering, industry, education, and public service, and (as ex officio members) the chairman, president, executive vice president and treasurer, and secretary of the Corporation. Between quarterly meetings, the Corporation functions through its officers and executive committee. For more information, visit http://web.mit.edu/corporation/.

The Corporation appoints visiting committees for each academic department and for certain of the other major activities at the Institute that relate to the undergraduate student experience. These committees, whose members are leaders in their respective professions, make recommendations to the Institute administration and the Corporation concerning departmental activities and in turn provide counsel to the departments.

Academic and Administrative Organization
The Institute’s chief executive officer is the president. Senior academic and administrative officers of the Institute include the chancellor, provost, executive vice president, associate provosts, deans of the schools, vice presidents, vice chancellor and dean for graduate education, dean for undergraduate education, dean for student life, and director of the MIT Libraries.

The Institute’s academic departments and divisions—each under the leadership of a head, director, or associate dean—are organized within the five schools and Whitaker College. In addition, numerous interdisciplinary laboratories and centers have been organized to facilitate research in fields that extend across traditional boundaries; administration of each laboratory or center is the responsibility of the faculty member who serves as its director. Research projects sponsored by government, industry, or foundations are administered through the Office of Sponsored Programs.

Educational policy for the Institute is determined by the MIT Faculty (referring to those members of the faculty and administration who have voting privileges as designated by the Rules and Regulations of the Faculty). The Faculty meets monthly during the academic year and conducts much of its business through a number of elected standing committees. The Faculty Policy Committee (FPC), which includes student members, maintains a broad overview of the Institute’s academic programs, deals with a wide range of policy issues of concern to the Faculty, and coordinates the work of the Faculty committees. The chair of the Faculty chairs the FPC.

Communication and exchange within and between the faculty and the administration are facilitated through four Institute-wide councils. Senior officers responsible for the overall administration of the Institute, plus the chair of the Faculty, meet regularly as the Academic Council to confer on matters of Institute policy. Department heads and directors of major laboratories and centers join them to form the Faculty Council, which meets as needed. The Administrative Council, comprised of the heads of the major administrative sections of the Institute, meets regularly during the academic year. The Creative Arts Council, chaired by an associate provost, consists of deans, department heads, directors in the arts, and campus-wide faculty representatives who meet to confer on issues concerning arts programs and policy.

For a detailed view of MIT’s organizational structure, see the online organization chart at http://web.mit.edu/orgchart/.

ALUMNI

MIT Alumni Association
The MIT Alumni Association, founded by alumni in 1875, provides multiple ways for the Institute’s 122,239 former students to stay in touch with one another and maintain their connections to the Institute. Under the direction of a volunteer alumni board, the Association staff helps alumni organize events, communicate with one another, and raise funds for MIT.

In addition to programs such as regional clubs and reunions, the Association offers an opportunity for alumni to make a virtual “infinite connection” to the MIT community at http://alum.mit.edu/. More than 80,000 alumni members have made that connection and are using Email Forwarding for Life, the online alumni directory, alumni email lists, online mentoring services, events registration, and online Alumni Fund giving. Social networking sites such as LinkedIn, Facebook, Twitter, and the Slice of MIT blog are also very popular. More than 9,600 alumni volunteer their services for MIT each year, with many serving as class and club officers, educational counselors, and members of the MIT Corporation and its visiting committees. Other popular alumni programs include View from the Top, Tech Reunions, Toast to IAP, and the Enterprise Forum of MIT.

In fiscal year 2009, the Alumni Fund reported $41.5 million in gifts, contributed by more than 36,000 alumni donors, students, parents, and friends.
Life at MIT is anything but dull. But inquiring minds still need to know. Are there fraternities and sororities at MIT? What about the performing arts? Where are the dining services? Is child care available? How much does health care coverage cost? Come back to this section for these topics and more.
ACTIVITIES

There is much more to an MIT education than study and research in classrooms and laboratories. Numerous activities and services are available that complement academic pursuits and provide opportunities for students to grow and develop new interests. This section describes just a few of the activities that define campus life.

There are more than 400 co-curricular student organizations at MIT (many open to both faculty and students), including the Outing Club, the Solar Electric Vehicle Team, the Debate Team, the FM local broadcasting station (WMBR), the MIT Society for Women Engineers, the Student Art Association, Model UN, Circle K, the Black Students’ Union, the Latino Cultural Center, the Asian American Association, and the South Asian American Students Association.

Many students are actively engaged in service work either through the Public Service Center or on their own. Groups such as the Intrafraternity Council and Alpha Phi Omega, the national service fraternity, Share a Vital Earth, and Educational Studies Program sponsor active social service programs. For example, the Educational Studies Program provides opportunities for MIT students to work with area high school students.

MIT also has a number of groups oriented toward different backgrounds and lifestyles. Over 30 international student groups sponsor a rich array of programs, including discussion groups and social events. The International Students’ Association sponsors a newsletter, assemblies, and other events. MIT has an active organization of Gays, Lesbians, Bisexuals and Friends at MIT (GAMIT), which organizes weekly awareness programs and discussion groups, and sponsors social events throughout the year. The Technology Community Women (TCW) is composed of spouses of MIT students, undergraduate as well as graduate, and sponsors monthly programs as a social and service organization. Other interest groups focus on bridge, chess, ham radio, and strategic games.

For more information, contact the Association of Student Activities, Room W20-401, see the ASA website at http://web.mit.edu/asa/www/, or contact the Student Activities Office, Room W20-549, 617-253-6777.

ADVISING AND COUNSELING

The Institute offers a variety of resources for advising, counseling, and personal support. By intention, they are not centralized in one counseling center. Students are free to choose the resource that appears to be most helpful, and support is available in many forms, including walk-in conversations as well as scheduled appointments, and with goals ranging from information dissemination to skilled psychotherapy.

All students have an academic advisor. The Office of Undergraduate Advising and Academic Programming assigns advisors to freshmen. Academic departments assign faculty advisors to students who have declared a major. In addition, there are faculty undergraduate and graduate officers in each academic department, as well as academic administrators who consult with students about their academic programs.

The Student Support Services section of the Office of the Dean for Undergraduate Education offers support and advising to all students, whether the situation is academic, personal, or both. It also provides a broad range of assistance to all students and works closely with other offices in supporting women students, members of underrepresented minorities, students with disabilities, or lesbian, gay, bisexual, or transgendered students.

Several campus offices specialize in particular areas, such as Student Financial Services (including student employment), the religious counselors, the Global Education and Career Development Center, and the Office of Undergraduate Advising and Academic Programs. The Campus Police can be helpful to students in many ways, and for students seeking information about particular fields, there is a Premedical Advisory Council, and a Prelaw Advisory Council.

The psychiatrists, psychologists, and social workers in the Medical Department are considered by many students to be the Institute’s most skilled counselors. In addition, the Center for Health Promotion and Wellness runs seminars ranging from stress management and smoking cessation to weight control and nutrition education, and the department’s Social Work Service provides individual and group counseling for substance abusers.

ARTS AT MIT

The arts are a fundamental component of MIT’s core curriculum and community, reflecting and enhancing the Institute’s creativity, innovation, and excellence while advancing the self-discovery, problem-solving, and collaborative skills needed by leaders meeting the challenges of the 21st century.

More than half of all MIT undergraduates enroll in arts courses each year—over a third of them in music classes—and many major or minor in arts-related subjects. MIT’s arts faculty includes eminent artists such as Pulitzer Prize-winning composer John Harbison and writer Junot Díaz, as well as writer Alan Lightman and video and performance artist Joan Jonas.

Each year MIT’s performing groups and outside artists present over 300 music, theater, and dance events. Productions range from chamber music to electronic “hyperinstruments,” from Shakespearean plays to improv comedy, and from ballroom to modern dance. MIT’s world music program features Boston’s only Balinese gamelan, a Senegalese drumming ensemble, and an acclaimed South Asian performance series.

Art, Culture, and Technology

The Department of Architecture’s Program in Art, Culture, and Technology operates as a critical production- and education-based laboratory focusing on artistic research, advanced visual studies, and transdisciplinary collaboration with the context of MIT’s technological community. Its weekly lecture series is open to the public. For information on its events and undergraduate and graduate academic programs, visit http://act.mit.edu/.

Dance

Classes in dance at MIT explore movement composition and theory, history and literature, and performance. Students may now also pursue a HASS concentration (three semester subjects) in dance known as “Physical
Imagination.” Extracurricular dance activities at MIT are sponsored by the Folk Dance Club, Tech Squares, Ballroom Dancing Club, Dance Troupe, and various international student groups, providing regular opportunities for dancers at all levels of ability. Access their websites via http://web.mit.edu/arts/dance/.

Literary Arts
MIT’s Program in Writing and Humanistic Studies offers courses in fiction, nonfiction prose, poetry, science writing, and digital media, taught by award-winning faculty. The Writers Series, Poetry@MIT series, and the Artist-in-Residence Program frequently present readings and lectures by renowned writers. For more information, call 617-253-7894 or visit http://writing.mit.edu/. The Literature Section maintains a level of excellence and innovation as it remains responsive to MIT’s distinctive intellectual environment. Its Pleasures in Poetry session, during IAP, meets each weekday, bringing together faculty, staff, students, and others from the community who share a love of poetry. It also sponsors readings by visiting authors which are open to the MIT community as well as the public. Literature, along with the MIT Libraries, sponsors the MIT Literary Society, an undergraduate reading group that focuses on literary discussion outside the classroom. Students may contribute their own writings to a variety of campus publications, as well as compete for annual writing prizes awarded in several categories. For more information, call 617-253-7894 or visit http://lit.mit.edu/. Also see http://web.mit.edu/arts/literaryarts/.

Media Arts
An international leader in the development of innovative digital media and information technologies, MIT’s Media Lab is a uniquely flexible organization where faculty members, research staff, and students from numerous, seemingly unrelated disciplines work together “atelier style,” doing the things that conventional wisdom says can’t or shouldn’t be done. The goal is to develop technologies and concepts that foster creativity—empowering people of all ages, from all walks of life, in all societies, to design and invent new possibilities for themselves and the communities around them.

Researchers in the Media Lab, with backgrounds ranging from computer science to psychology, music to graphic design, and architecture to mechanical engineering, see a future where machines not only augment human capabilities, but also relate to people on more “human” terms—a future where our devices not only respond to commands, but also understand them. Research opportunities for students are available through the Program in Media Arts and Sciences, based in MIT’s School of Architecture and Planning, and through the Undergraduate Research Opportunities Program. For more information, visit http://www.media.mit.edu and http://web.mit.edu/arts/mediaarts/.

Music
MIT’s music faculty includes internationally acclaimed composers, performers, and musicologists. Students can choose to pursue a full or joint major, a minor, or a HASS concentration in music. They can also take private lessons with financial support from the Emerson scholarship program; music subjects in theory, composition, history, jazz and world music; or participate (for credit or not) in faculty-led performance ensembles. These include the MIT Symphony Orchestra, Wind Ensemble, Festival Jazz Ensemble, Chamber Music Society, Concert Choir, Chamber Chorus, Balinese Gamelan Galak-Tika, and Rambax MIT (a Senegalese drumming ensemble). In addition to ensemble performances and student recitals, concerts are also presented as part of the MIT Faculty, Affiliated Artists, Guest Artists, and MITHAS. Artists of national and international stature frequently come to perform at MIT and to interact with students in and out of the classroom. For more information call 617-253-3210, or email mta-request@mit.edu. In addition to the performance opportunities offered by the music program within the School of Humanities, Arts, and Social Sciences, there are many student-directed ensembles and a capella groups that perform on campus as well. Visit http://web.mit.edu/arts/music/.

Theater
MIT’s programs in Theater Arts afford opportunities for serious study and training in acting, directing, playwriting, dramaturgy, stagecraft, and design. Classes are small, and students work directly with renowned faculty and guest artists, or initiate independent student workshop productions. Students may choose a minor or a HASS concentration in theater; it is also possible to create an individually tailored theater major. A wide variety of theatrical performances are presented by MIT Dramashop and Dance Theater Ensemble, the co-curricular student-producing group of MIT Theater Arts. These productions, directed by professionals in their fields, often offer interested students opportunities to further develop their work in professional settings. Extracurricular student organizations such as Shakespeare Ensemble, Musical Theatre Guild, Gilbert & Sullivan Players, and the improv group Roadkill Buffet offer additional performance and production experience.

An annual Theater Arts Open House on Registration Day in early September allows students to meet the people who produce theater events and to learn more about opportunities to get involved in various productions. For more information, call 617-253-2877, or visit http://web.mit.edu/arts/theater/.

Visual Arts
From large-scale public art to film and photography, the visual arts are celebrated in innovative ways at MIT. Excellent opportunities exist for members of the MIT community to view and create art in a variety of media (see List Visual Arts Center, MIT Museum, and Student Art Association below). MIT students can take classes in traditional fine arts at Harvard, the Massachusetts College of Art and Design, the School of the Museum of Fine Arts, and Wellesley College through cross-registration programs (see http://web.mit.edu/arts/learn/visualarts). Opportunities for on-campus coursework in the visual arts can be found by consulting the Program in Art, Culture and Technology and the Comparative Media Studies Program, or by visiting http://web.mit.edu/arts/visualarts/.

Artists-in-Residence
A flourishing Artist-in-Residence Program complements the curriculum, allowing students to engage with distinguished visiting artists, including novelist Margaret Atwood, poet and novelist Chris Abani, composer Tan Dun, cartoonist Art Spiegelman, video artist Bill Viola, visual artist Zanele...
Muholi, action architect Elizabeth Streb, filmmaker Michel Gondry, graffiti artists Tats Cru, and architect/engineer/artist Santiago Calatrava.

List Visual Arts Center

Just as MIT pushes the frontiers of scientific and intellectual inquiry, the mission of the List Visual Arts Center is to explore contemporary art in all media. Each year, the center presents a challenging exhibition program that looks beyond art’s traditional aesthetic functions to examine the cultural, social, political, scientific, or economic contexts that inform the work. Exhibitions are presented in three galleries on the first floor of the I. M. Pei–designed Wiesner Building (Building E15) and the Dean’s Gallery in the Sloan School (Building E52). All are free and open to the public. Nationally distributed catalogs, artist talks, gallery tours, and symposia accompany the exhibitions.

The List Center also manages MIT’s permanent collection of artworks, including a student loan art program of approximately 500 works that enables students to borrow original pieces of art, such as prints and photographs, for up to a year, and a sizable collection of paintings, sculpture, drawings, prints, and photos sited throughout the MIT campus.

For more information about the List Center’s exhibitions and programs, call 617-253-4680, or visit http://listart.mit.edu/.

MIT Museum

The MIT Museum’s broad range of exhibitions and programs for children and adults provides unique public access to what the Institute has always done best: the application of innovative research to the solution of real-world problems. On a yearly basis, over 100,000 people visit the museum and its galleries.

The Innovation Gallery features interactive displays from a variety of research labs at MIT and a popular program space which complements exhibitions on the history of MIT, artificial intelligence, holography and spatial imaging, and the kinetic sculptures of Arthur Ganson.

In addition to the main collection at 265 Massachusetts Avenue, the MIT Museum oversees the Hart Nautical Gallery in Building 5 and the Compton Gallery in Building 10. Visit http://web.mit.edu/museum/ for an in-depth look at the museum’s collections, exhibitions, public programs, and services to the community.

Office of the Arts

The Office of the Arts oversees, coordinates, supports, and facilitates arts activities under the direction of the director of arts initiatives. The office’s branches include the Council for the Arts and Student and Artist-in-Residence Programs. For general information on arts programs and activities at MIT, call the office at 617-253-4003, or stop by Room E15-205. Also be sure to visit Arts at MIT at http://web.mit.edu/arts/ and see the arts calendar at http://artscal.mit.edu/.

Council for the Arts at MIT

The council is a volunteer group of alumni and friends established in 1972 by MIT president Jerome B. Wiesner to support the visual, literary, and performing arts. Appointed by the president of MIT to three-year terms, council members are major donors to the arts at MIT and serve as advisers to the associate provost. The Council for the Arts recognizes distinguished artists from all disciplines with one of the country’s most esteemed arts prizes, the Mc Dermott Award. In addition, the council, since its inception, has awarded over 2,300 individual grants and administers annual student prizes in the arts, including the Sudler Prize, the Laya and Jerome B. Wiesner Student Art Awards, and the Harold and Arlene Schnitzer Prize in the Visual Arts. See http://web.mit.edu/arts/about/office/council/index.html. Council programs directly benefit MIT students by providing free tickets to the Boston Symphony Orchestra, Boston Chamber Music Society, and Boston Modern Orchestra Project, as well as free admission to Boston’s Museum of Fine Arts, the Photographic Resource Center, the Harvard Art Museum, the Institute of Contemporary Art/Boston, and a number of performances and concerts throughout the year.

The Council for the Arts’ Grants Program encourages the dreams and talents of the MIT community, providing the opportunity for students, faculty, and staff to apply for funding for arts projects in all disciplines. Grants range from a few hundred to several thousand dollars. For more information, visit http://web.mit.edu/arts/do/funding/grantguide.html.

Student Programs

Several programs encourage students to engage in the arts. Freshman seminars led by MIT faculty and staff introduce participants to the many academic and performance programs in the arts at MIT and the Boston area. Arts Scholars is an honors program that enables students who are active in the arts to attend exhibitions, plays, and concerts with experts in the respective arts disciplines. Art Representatives are students selected from each dorm, living group, and graduate department to disseminate information about arts events at MIT to their peers. The Grad Arts Forum encourages interdisciplinary communication among graduate students through a series of presentations and informal discussions of artistic work by grad students. The seminar Promoting the Arts Through Design provides students with a hands-on opportunity to design promotional materials for a local nonprofit arts organization. Student Programs also administers the annual mural competition for currently enrolled MIT students. For more information, visit http://web.mit.edu/spair/.

Student Art Association

The Student Art Association offers noncredit classes and facilities for many visual arts activities including animation, ceramics, photography, painting, and drawing. For more information, call 617-253-7019, or visit http://saa.mit.edu/.

ATHLETICS

Athletics and recreation are an important part of campus life for many students at MIT, and the Institute encourages everyone to participate in some type of athletic activity.

The Institute supports a broad intercollegiate athletic program offering 33 varsity sports. While the Engineers’ rowing programs compete at the Division I level, MIT’s primary league affiliation lies with the New England Women’s and Men’s Athletic Conference (NEWMAC) as a Division III mem-
ber of the NCAA. Although crew is the only classified Division I program, water polo, sailing, rifle, track and field, squash, cross country, fencing, and men’s volleyball all compete against Division I opponents.

MIT features one of the nation’s most expansive club programs, with over 900 participants and 35 teams, a third of which are martial arts clubs. All club teams are led and organized by MIT students and are governed by the student-led Club Sports Council. The Institute places all of its club programs into two categories: instructional and competitive. Instructional clubs offer formal training under the supervision of professional instructors, while competitive clubs compete in regional and national-level tournaments, with many ranking in the nation’s top 10. The most successful clubs at MIT include sport taekwondo, women’s water polo, women’s ultimate frisbee, rugby, and cycling.

The MIT intramural sports program offers competition in 19 sports, with participation of more than 4,000 students and faculty. Ultimate frisbee, soccer, and badminton are among the most competitive and popular activities.

MIT’s athletic complex, with its 10 buildings and 26 acres of playing fields, is one of the most expansive in New England. Steinbrenner Stadium, one of the nation’s finest track and field facilities, contains the recently renovated Roberts Field, which features a new FieldTurf artificial playing surface and lights; the Johnson Athletic Center houses an indoor track and ice rink. Recent enhancements include a new bubble and reconstruction of four indoor courts at the J.B. Carr Tennis Center and the installation of two saunas. The duPont Athletic Center is equipped with a pistol and rifle range, fencing room, wrestling room, squash courts, the Rudovsky Indoor Golf Range, and additional instructional rooms for dance and martial arts. The Zesiger Sports and Fitness Center features two swimming pools, a fitness center, international-scale squash courts, and a multiactivity court. The Staata Center is home to the Alumni Pool and the Wang Fitness Center. MIT’s athletic facilities extend to the Charles River with the Wood Sailing Pavilion and the Pierce Boathouse.

For information on MIT’s Physical Education Requirement, see Undergraduate Education in Part 1; for more information on MIT’s athletic programs, visit http://www.mitathletics.com/.

CAMPUS DINING

MIT Campus Dining has over 30 locations across the campus: a broad portfolio of food service management companies, restaurateurs, convenience store operators, and vending specialists creates a range of diverse, convenient, healthy, and economical options.

MIT does not offer traditional meal plans. Meals are paid for with cash or by using one of the two available MIT debit accounts: Dining Dollars or TechCASH. A Dining Dollars debit account is restricted to meal purchases and can be used in all dining halls, restaurants, food courts, and cafés on campus. A TechCASH account can be used for all campus services, including food purchases. Some retail locations accept credit or debit cards. More information about Dining Dollars and TechCASH accounts can be found at http://web.mit.edu/mitcard/.

The House Dining Membership program, which provides members with a 50 percent discount on dinner meals prepared in House Dining Rooms, is available to all students and required of students who choose to live in Baker House, Simmons Hall, Next House, or McCormick Hall. Students who live in one of these four halls are automatically enrolled in the program. House Dining Rooms, like all Campus Dining operations, are open to the entire MIT Community. Ashdown Dining is a special residential dining service with a special meal plan exclusive to undergraduates living in Ashdown. For details on this program and other information about MIT Campus Dining, including menus, hours of operation, locations, nutrition, and special diets, visit http://dining.mit.edu/. Students with special dietary needs are encouraged to contact MIT Campus Dining at 617-253-4875 or foodstuff@mit.edu with questions. Confidential consultations with MIT Medical are also available.

CAMPUS MEDIA

Student publications at MIT include The Tech, a student newspaper published twice weekly; Technique, the senior yearbook; Voo Doo, an occasional humor magazine; The Graduate Student News, a publication of the Graduate Student Council; Counterpoint, a joint MIT-Wellesley student publication; Rune, a journal of arts and letters; and E-merging, a transcultural literary journal. Students may also contribute their talents to house newspapers and to a variety of departmental and organizational newsletters.

On the air, WMBr is MIT’s commercial-free radio station operating under a license held by the Technology Broadcasting Corporation, and MIT Student Cable Television broadcasts original and syndicated programming 24 hours per day.

MIT Press

The MIT Press (http://mitpress.mit.edu/) is one of the largest and most respected university presses in the world. It is a major publishing presence in diverse fields, including art and architecture; cognitive science; computer science; economics; environmental studies; game studies; life sciences; linguistics; neuroscience; new media; philosophy; and science, technology, and society. The Press publishes journals, scholarly monographs, trade books, textbooks, and reference works, in print and electronic formats.

CAMPUS PARKING

Parking facilities at MIT are extremely limited. Students are advised to avoid bringing an automobile to MIT if possible. In general, the Institute cannot provide parking for freshmen. Students may obtain information about parking on campus and request a parking permit on the MIT Parking and Transportation Office website, http://web.mit.edu/facilities/transportation/parking/student/index.html. Students with disabilities who have parking requests should see the Medical Department, or the Disabilities Services Department, for approval.

Students who plan to bring motor vehicles to Cambridge should take careful note of the information regarding pertinent Massachusetts laws...
CHILD CARE AND PARENTING RESOURCES

Center for Work, Family, and Personal Life
The MIT Center for Work, Family, and Personal Life offers information on work/life issues including child care, children’s schooling, and parenting. The center’s comprehensive website offers listings and guidance on child care programs, babysitters, schools, summer camps, and other local resources for parents and children. Child care costs are higher in Boston than in many other cities and space is limited; plan to begin your search early and to contact the center by phone or email for additional assistance or an individual consultation.

The center also offers resources on child development, balancing work and family, relocation to MIT, raising bilingual children, and many other issues. The office is located in Room 16-151, 617-253-1592, worklife@mit.edu, http://hrweb.mit.edu/worklife/index.html.

Technology Children’s Centers
MIT's child care centers, Technology Children's Centers (TCC), provide year-round educational care to children from two months of age through kindergarten entry (approximately six years of age). TCC has three sites on campus and a fourth site near Lincoln Laboratory in Lexington, MA, approximately 10 miles west of campus. TCC’s campus centers, located at Eastgate, Stata, and Westgate, serve approximately 130 children; TCC at Lincoln Laboratory (LINC) serves an additional 110 children. TCC is managed by the MIT Center for Work, Family, and Personal Life, in partnership with Bright Horizons/Family Solutions, a child care management company.

TCC offers priority enrollment to members of the MIT community. However, please be advised that there are long waiting lists for campus care for children in all age groups, and that incoming students are unlikely to secure a space for an infant or toddler on campus.

Information about services, tuition, and financial aid, and application forms are available at http://web.mit.edu/mitchildcare/.

For information about additional child care options, contact the Center for Work, Family, and Personal Life at worklife@mit.edu, or visit http://hrweb.mit.edu/worklife/index.html.

MIT Day Camp
The MIT Day Camp is operated by the Athletic Department on weekdays from 9 am to 3:45 pm from mid-June through mid-August for children ages 6 to 13. An early drop-off starting at 8 am is available, and an extended sitting service is available until 5:30 pm. The nine-week program is divided into sessions, so that a child may be enrolled for a few weeks or for the entire summer.

Enrollment is limited. Visit http://web.mit.edu/daycamp/, or call the Day Camp Office at 617-253-2913 for additional information.

DISABILITIES SERVICES OFFICE

The Disabilities Services Office (DSO) is responsible for coordinating the Institute’s efforts to comply with the Americans with Disabilities Act of 1990 and Section 504 of the Rehabilitation Act of 1973. The DSO provides qualified students with disabilities equal access to all Institute programs, activities, and services. The goals of the DSO’s support services are to encourage students to be self-sufficient, to enhance the educational process, and to support overall personal and professional development of students, without compromising existing academic standards.

These services include receiving and reviewing disability-related documentation and determining the appropriate accommodations required; communicating with faculty (with the student’s permission); and developing plans for accommodations. Disabilities Services also provides, or arranges, a variety of auxiliary services for qualified students with disabilities, such as coordination of sign language interpreters, text alternatives, and other academic accommodations. The Disabilities Services Office is located in Room 7-145. For further information, call 617-253-1674 or visit http://studentlife.mit.edu/dso/.

FRATERNITIES, SORORITIES, AND INDEPENDENT LIVING GROUPS

MIT recognizes 38 fraternities, sororities, and independent living groups (FSILGs). Of these, 24 are nationally affiliated fraternities and two are local. There are also six living groups, five of which are coed and one is for women only. All six sororities are nationally affiliated; four are residential. Most groups live in houses owned by the respective chapter’s house corporation located off campus in the Boston, Brookline, and Cambridge communities. The Interfraternity Council (IFC) acts as the governing body for the fraternities, the Panhellenic Association represents the sororities, and the Living Group Council represents the living groups. In addition, there are several students affiliated with historically black and latino fraternities and sororities at MIT.

The oldest fraternity on campus was founded at MIT in 1873. More than 45 percent of the undergraduate population is affiliated with a fraternity, sorority, or living group. FSILGs play an active role on campus, and members hold leadership positions in various clubs and organizations. FSILG members also take part in a number of intramural sports, as well as volunteer their time with many charitable and nonprofit organizations.

Each fraternity, sorority, and living group espouses the values of leadership, scholarship, citizenship, and service. Each organization is self-governing, manages all its operations and maintenance, and develops its own academic, social, membership, recreational, and external policies and programs. These organizations provide a unique experience in leadership, community planning, and group interactions.
Each fraternity, sorority, or living group has a live-in resident advisor (usually an MIT graduate student). Resident advisors serve as mentors, guides, and resources for students and act as a liaison between the undergraduate chapter and MIT.

MIT students have opportunities to learn more about each of the fraternities, sororities, and living groups throughout the academic year. The formal recruitment period for fraternities and sororities is usually held in September. However, many fraternities hold recruitment events year round. In addition, incoming students receive information about the FSILGs at Orientation and Campus Preview Weekend programs. For more information about FSILGs, contact the Fraternity, Sorority, and Living Group Office in the Stratton Student Center, Room W20-549, 617-253-7546, or FSILG-Office@mit.edu.

HOUSING

Undergraduate Housing
At the undergraduate level, MIT is essentially a residential university. Of the total undergraduate student body of 4,100, about 3,000 single men and women live in the 12 Institute residence halls on campus, and about 1,100 single men and women take advantage of living in MIT-approved fraternities, sororities, and independent living group residences. Transfer students may be able to obtain housing on a space-available basis after the Freshman Housing Lottery.

The residential system provides an environment conducive to personal development and academic achievement. The achievement of both goals relies greatly on individual initiative and responsibility, as well as on effective student governance in the residences. Students work with the professional staff in the offices of Residential Life Programs and Fraternities, Sororities, and Independent Living Groups to support and create conditions that enhance student learning and personal development.

Faculty families chosen for their understanding of and interest in students live in each of the Institute residence halls. They are not charged with formal academic or operational responsibilities; instead, they welcome informal associations with their residents. In all of the Institute residence halls, graduate resident tutors support the faculty residents in providing personal assistance to undergraduates.

With the exception of the all-female McCormick Hall, Institute residence halls have coeducational living facilities. Most of the coed residence halls also have single-gender living areas. Although first-year students are not guaranteed an assignment to a particular residence hall or single-gender area, every effort is made to assign students to one of their top choices.

Student governing groups establish and administer many residence hall regulations and maintain acceptable standards of community behavior. Residential student governments also organize social, athletic, and intellectual programs for residence hall members. In each Institute residence hall, a tax determined by the residents is collected by MIT and made available to the residence hall government to help support such activities. Individual fraternity, sorority, and independent living group chapters have similar charges to support their extracurricular programs.

The Institute believes that it is to the great advantage of all new students who do not live at home to reside on campus—that is, to live in a residence hall. First-year undergraduates particularly gain from associations with upperclass students and participation in residence programs. Therefore, all unmarried first-year undergraduates who cannot commute daily from their own homes or those of close relatives in the greater Boston area are required to live on campus. Exceptions to this requirement are made through a petition process reviewed by MIT Housing and the Office of the Dean for Student Life.

Institute Houses (Undergraduate)
Everett Moore Baker House
Bexley Hall
Burton-Conner House
East Campus Houses—Munroe, Hayden, Wood, Goodale, Bemis, and Walcott
Frank S. MacGregor House
Stanley McCormick Hall
New West Campus Houses—Ballard, Lawrence, Coolidge, Desmond, Fisk, and Thorn, which include Chocolate City, French House, German House, International House, and Spanish House
500 Memorial Drive (Next House)
Phoenix Group (NW35)
Random Hall
Senior House
Simmons Hall

Rooms in the Institute houses are engaged for the full academic year. For 2010–2011 the rents for the houses will range from $2,756 to $3,953 per term.

A student who cancels a room assignment after the deadline of June 15 will be charged a cancellation fee. A student who withdraws from MIT during a regular term will receive a refund based on proration of the term rental over 15 weeks of occupancy.

Fraternities, Sororities, and Independent Living Groups
Undergraduates affiliated with a fraternity, sorority, or independent living group have the option of residing in the chapter house after their freshman year. Each FSILG has its own meal plan, many with chefs that cook for the entire chapter. In addition, members share responsibility for chapter house jobs and work closely with alumni and the FSILG office on the general maintenance and upkeep of the chapter facility. Room and board at FSILGs varies per term.

Student House
The MIT Student House is a coeducational, cooperative living group for financially needy students. It is owned by a corporation of Student House alumni and alumnae and is located off campus in Boston. The 30 undergraduate members maintain the residence and do all the work except for major repairs. Students cooperate in the management of the house and the academic, recreational, and social aspects of student life, thereby creating a savings per member averaging $1,000 per semester. Student
House is also a member of the Living Group Council. Information on Student House may be obtained by writing to studs-request@mit.edu, or MIT Student House, 111 Bay State Road, Boston, MA 02215-1798.

Additional Information
Additional information on undergraduate housing and application procedures is contained in The Guide to Residences. Each first-year student is sent a copy of this brochure about four months before registration day of the term for which he or she has been admitted to MIT. Others may request copies from the Undergraduate Housing Office, Room W59-200, 617-253-2811. Information about fraternities or sororities also may be obtained from the FSILG Office, Room W20-549, 617-253-7546 or at http://web.mit.edu/reslife/fsilg/.

Graduate Single Student Housing
Approximately 35 percent of MIT's single graduate students reside on campus in Avery Allen Ashdown House, Ping Yuan Tang Residence Hall, Harold Edgerton House, The Warehouse (NW30), and Sidney-Pacific Residence Hall. Students must be registered each term (not including the summer) in order to reside in on-campus student housing. MIT attempts to house all new graduate students who desire to live on campus. New single student assignments are for one year. Returning students who receive housing through the Continuing Allocation Process may remain in housing continuously until they graduate, as long as they are registered each term. Students sign a new license agreement each year they are in residence.

These residence halls provide a rich living environment in a number of different formats, including suites, kitchen suites, and apartments. All of the buildings have active student governments that plan and facilitate social and cultural events. All of the buildings have a faculty member or faculty members in residence who, along with the house manager, support the students. All units are available as single sex. Coed two-bedroom apartments in Edgerton House and Tang Hall, two-bedroom suites and apartments in Sidney-Pacific, and two- and three-bedroom suites and apartments in Ashdown are available upon request. All buildings except for Edgerton House are furnished.

The rent for all graduate residences is charged on a monthly basis and the licenses are from the date of occupancy until August 15 each year. Graduate Housing's strict termination policies can be found on its website. All rents include heat, hot water, electricity, internet, and basic cable. Building amenities include low-cost laundry, playrooms, barbecues, and other common spaces.

Rents range from $735 to $1,155 per month, per student. Details about each of the residences can be found at http://housing.mit.edu/.

MIT graduate housing is assigned through an allocation process administered by the Graduate Housing Office. Students can enter the allocation for fall term housing between March and early May. Assignments are available in late May. A second allocation takes place in November for spring term housing. Rooms that become available outside the allocation process are made available through a waiting list that runs from July through May. Details of the allocation and waiting list are available at http://housing.mit.edu/.

The Graduate and Family Housing Office, located in W59-200, can be reached at graduatehousing@mit.edu or at 617-253-5148.

Student Family Housing
Approximately 400 graduate and undergraduate families reside in MIT Family Housing. Family Housing is provided in Eastgate, a high-rise apartment building, and Westgate, which consists of a high-rise building and several garden-style buildings. Both communities have an active student government that plans and facilitates social and cultural events for the entire family. Apartments range from efficiencies to 2-bedroom apartments and are all unfurnished.

Residence in student family housing is limited to regular undergraduate and graduate students who are registered and attending MIT and whose families reside together on a full-time basis, and to single parents with at least one child in residence. Except during the summer, students must be registered each term in order to reside in on-campus student housing. New graduate student assignments are either for one and a half or two years depending on the start date of the student’s program, with a new license agreement signed each year. Married undergraduates or undergraduates with children may live in Family Housing during their eight semesters of guaranteed housing. Returning students who receive housing through the Continuing Allocation Process may remain in housing continuously until they graduate, as long as they are registered each term. They will also sign a new license agreement each year.

Eastgate and Westgate each have an MIT staff person in residence to provide active support to the community. Each building has a playground and Cambridge school buses stop at the buildings.

The rent for all family residences is charged on a monthly basis and the licenses are from the date of occupancy until August 15 each year. Family Housing’s strict termination policies can be found on its website. All rents include heat, hot water, electricity, internet, and basic cable. Building amenities include low-cost laundry, playrooms, barbecues, and other common spaces.

Rents range from $1,113 to $1,647 per month, per apartment. Details about each of the residences can be found at http://housing.mit.edu/.

Student family housing is managed by the MIT Graduate and Family Housing Office and is assigned through an allocation process. Students can enter the allocation for fall term housing between March and early May. Assignments are available in late May. A second allocation takes place in November for spring term housing. Apartments that become available outside the allocation process are made available through a waiting list that runs from July through May. Details of the allocation and waiting list are available at http://housing.mit.edu/.

The Graduate and Family Housing Office, located in W59-200, can be reached at graduatehousing@mit.edu or at 617-253-5148.

Off-Campus Housing
Students who do not live on campus can consult the Off-Campus Housing Service, which maintains listings of available rentals in the greater Boston area. The staff helps students to locate accommodations that suit individual preferences and finances, and advises and assists them during
their tenancy if difficulties arise. Address correspondence to Off-Campus Housing Service, Room W59-200, 617-253-1493, or visit http://web.mit.edu/housing/och/.

INFORMATION SERVICES AND TECHNOLOGY

MIT’s computing environment supports a rich array of technologies and information resources for academic, research, and administrative use. The Information Services and Technology (IS&T) department supports “universal” services and facilities for everyone, including MITnet (the campus network), the Athena Computing Environment (centrally provided hardware and software resources), the on-campus telephone system, co-location services for high-performance research computers, and a variety of support services.

MITnet connects thousands of computers across the campus and its connection to the internet gives MIT high-speed access to computers around the world. The MIT campus is fully wireless and provides an extensive Mobile Web application.

The Athena Computing Environment is MIT’s academic computing environment, which powers computing clusters (labs), private workstations, remote-access servers, and personal machines throughout campus. Athena provides a vast collection of third-party software, including popular packages such as MATLAB, Maple, and Mathematica, and provides easy access to the aFS file system for personal and group file storage.

Students increasingly use laptops as part of their coursework on MIT’s campus-wide wireless and wired networks. While MIT does not require that every student own a computer, the vast majority do. IS&T provides recommendations and buying advice for laptops that meet faculty guidelines and are competitively priced.

IS&T provides full support for recommended systems and software through a range of technical help services. The starting point for help is the IS&T Service Desk. The Help Desk also offers on-campus certified warranty repair, installation, and upgrades for the following manufacturers: Apple, Dell, and Lenovo/IBM. The Adaptive Technology for Information and Computing program provides technologies for students and staff with disabilities.

For more information on IS&T and computing at MIT, visit http://ist.mit.edu/. For details on getting started with IT as a student, visit http://ist.mit.edu/start/students/., which presents an overview of MIT’s student computing environment, with links to further details, including recommendations for systems.

LIBRARIES

The MIT Libraries support all of the Institute’s programs of research and study with holdings of more than 2.9 million print volumes and 3.1 million additional items, such as microforms, maps, images, musical scores, manuscripts, video, and electronic resources. The library system also includes the Institute Archives and Special Collections containing many of MIT’s founding documents, technical reports, and the personal papers of noted faculty. For a complete list of library locations and hours, see http://libraries.mit.edu/about/.

A wide range of online services and resources are available through the MIT Libraries’ website, at http://libraries.mit.edu. Patrons can locate library items using the online catalog, Barton, at http://libraries.mit.edu/barton/, or search over 20,000 journals, databases, and other serial publications using Vera, at http://libraries.mit.edu/vera/.

In addition, the online interlibrary loan service, at http://libraries.mit.edu/lilla/, makes available materials from other libraries worldwide. On-site access is provided to over a dozen libraries in the Boston Library Consortium.

Other library resources and services include: Academic Media Production Services for video production and conferencing, webcasting, and distance education; complete digital scanning, microfilm, and photocopying facilities; GIS and data resources; and metadata services.

Workshops on library resources and instructional support are offered for MIT courses and other groups, and in-depth consultation on research projects is available with subject specialists. Reference assistance is also available through the Ask Us! service, at http://libraries.mit.edu/ask/., and from library staff.

The MIT Libraries also manage DSpace (http://dspace.mit.edu/), a unique digital repository created to capture, preserve, and share MIT’s intellectual output with the world. DSpace currently houses over 20,000 MIT theses and the digital works of 50 communities representing collections of MIT faculty, researchers, labs, and centers.

While primarily serving the MIT community, library facilities at MIT can be used by others in accordance with MIT Libraries’ policies. Users from outside of MIT may apply for borrowing privileges at https://library.mit.edu/docs/app/orders/pcard/.

MEDICAL SERVICES

MIT Medical

To meet the health care needs of MIT community members, MIT Medical offers a single, centralized source of comprehensive health insurance, care and treatment at its own medical centers, and an extensive roster of health promotion programs. Convenient, on-campus access to a broad range of clinical services and medical and dental specialties is delivered by highly qualified health care professionals. Affiliations with many of the Boston area’s leading hospitals allow clinicians to refer patients with more serious conditions to the most appropriate specialists.

Visits to MIT Medical are by appointment, except for urgent care, which is available seven days a week. The Mental Health Service also has walk-in urgent care hours from 2 to 4 daily, Monday through Friday. MIT community members should call 617-253-1311 or 617-258-0656 (TTY) day or night for medical advice; for regular appointments, call 617-253-4481. MIT Medical is located in Building E23.

For more information about MIT Medical, including appointment hours, phone numbers, and clinician profiles, visit http://medweb.mit.edu/.
MIT Student Health Plan
The MIT Student Health Plan consists of two plans, the MIT Student Medical Plan and the MIT Student Extended Insurance Plan. Further information on both can be found under Medical Requirements in the sections on Undergraduate Education and Graduate Education.

MIT OpenCourseWare
MIT OpenCourseWare (OCW), available at http://ocw.mit.edu/, is a large-scale, web-based publication of the educational materials from virtually all of the MIT faculty’s courses. This unique initiative enables the open sharing of MIT teaching materials with educators, enrolled students, and self-learners around the world.

OCW provides open access to the core academic content—syllabi, lecture notes, course calendars, problem sets and solutions, exams, reading lists, and even a selection of video lectures—from MIT courses representing 33 academic disciplines and all five of MIT’s schools. As of March 2010, the initiative includes materials from more than 1,976 courses, presenting virtually the entire curriculum of the Institute.

At MIT, OCW’s impact has been felt across the campus. Students use resources such as problem sets and exams for study and practice. Some instructors refer students to OCW for part of their coursework, and a number of faculty members use OCW materials in their classroom teaching. Alumni access OCW materials to continue their lifelong learning.

Course materials contained on the OCW website may be freely used, copied, distributed, translated, and modified by anyone, anywhere in the world for noncommercial purposes. Truly a global initiative, OCW materials have been visited by more than 66 million individuals to date. Visitors have come to the site from more than 215 countries, territories, and city-states around the globe—including every member of the United Nations—and materials already have been translated into at least 10 different languages.

MIT has also been instrumental in establishing the OCW Consortium, which brings together practitioners from more than 250 institutions around the world.

For more information about MIT OpenCourseWare, contact Steve Carson, Room E70-810, 1 Broadway, 8th floor, MIT, 617-253-1250, ocw@mit.edu.

Public Service Center
The Public Service Center (PSC) offers MIT students multiple ways to enrich communities beyond MIT while expanding their own education and life experiences. The guidance, resources, and support offered by the PSC help students to identify the public service options, both paid and volunteer, best suited to their passions and abilities.

Through a selection of fellowships and grants, the IDEAS Competition, programs such as ScienceExpo and Freshmen Urban Program (FUP), community service work-study positions, service learning classes, and advising resources, the PSC helps students gain hands-on experiences that serve communities and the students themselves in life-transforming ways.

Fellowships, Value-Added Internships, and Grants. In locations as near as Cambridge or as far as India, there are many opportunities to work on community issues, whether it is addressing predatory lending in the city of Lawrence, MA; implementing a reforestation and tree nursery plan in Mexico; or testing an electronic pill box in India. Students can work individually or as part of a team on projects during term breaks, during the academic year, and during the summer.

The MIT IDEAS Competition. Students form teams to develop and implement projects that make a positive change for communities across the globe. Entries are judged on their innovation, feasibility, and community impact.

Programs, Planning, and Volunteering. Through local outreach programs, MIT students can teach in a K-12 science classroom, serve as a mentor to adolescents in math and science, or teach a child to read. CityDays, ScienceExpo, FUP, Giving Tree, and ReachOut are programs led by students under the direction of the PSC. Also, PSC staff advise students about international and local volunteer opportunities, service group management, grants and proposal writing, and other areas that help MIT students and groups to participate in community service.

Community Service Work-Study. Students who qualify for Federal work-study are able to add to their work experience while assisting nonprofit organizations with the problems they face.

Service Learning. Applied learning for student and community benefit is another way that students can gain pragmatic educational and life experiences while serving community needs. For example, freshmen can enroll in a public service design seminar, where they may build a prototype that eases vaccine transportation in the developing world, or redesign a community garden’s composting device. Students gain a deeper understanding of their subjects, and a better understanding of their own problem-solving abilities.

The innovative and engaging outreach activities available through the student groups, residence-based activities, departments, and programs at MIT are too numerous to name. A sampling of groups can be found online through the MIT Outreach Database, http://web.mit.edu/outreach/. The PSC website, http://web.mit.edu/mitpsc/, is a useful resource for finding out more about the varied and exciting ways to participate in public service at MIT.

Religious Organizations
There are currently about 30 active and long-standing student religious organizations on campus that are based in the Chapel and Building W11. Ministers representing the major faiths devote all or a large part of their time to on-campus activities, counseling individual students and advising student religious organizations.

The first chaplain to the Institute was appointed in 2007. This decision reflects the recognition that religious convictions appear increasingly important as personal identity markers. MIT considers that one of its responsibilities is to maintain an atmosphere of religious freedom for all and to provide all members of the MIT community opportunity for the exercise of spiritual interests. The chaplain to the Institute monitors that responsibility, and offers support and counsel in times of loss and trauma.
STUDENT GOVERNMENT

Undergraduate Student Government
The Undergraduate Association (UA), the major governmental body to which all undergraduates belong, works to improve the quality of undergraduate life. It is assisted by a variety of committees. The Finance Board coordinates budgets and allocates funds to student organizations. The Committee on Educational Policy proposes educational reforms and provides student feedback to the departments and the Institute on important educational issues. The Nominations Committee recommends student representatives for more than 50 administrative and faculty committees.

Each class at MIT annually elects a president and executive committee for its class council, which plans and coordinates programs and social events throughout the year.

The Association of Student Activities, a joint committee of the UA and the Graduate Student Council (see below), is responsible for recognizing student groups and activities, allocating student office space, and organizing the Activities Midway, which takes place during orientation in August.

All living groups determine governing structures responsible for the functioning of their houses, including sponsoring social events and handling judicial matters within the respective houses. To deal with problems of common concern, the fraternities have formed the Interfraternity Council (IFC), the sororities have formed the Panhellenic Council, and the Institute houses have formed the Dormitory Council. The IFC and Panhellenic Council work to improve relations between fraternities and sororities and Boston’s Back Bay community. The Dormitory Council coordinates common house activities, such as freshman orientation, and major social events, and handles interhouse judicial problems.

Graduate Student Government
The Graduate Student Council (GSC) exists to enhance the overall graduate experience at MIT by promoting the general welfare and concerns of the graduate student body, creating new programs and initiatives, and communicating with the MIT faculty and administration on behalf of graduate students. The GSC seeks to emphasize, in all its activities, the core values of representation, communication, collaboration, transparency, and accountability.

The council accomplishes its goals through a structure of elected representatives, standing committees, and officers. GSC representatives facilitate communication between the council and their constituency (a department, academic program, living group, or demographic group). The standing committees span all facets of the graduate experience, including orientation for all incoming graduate students, the career fair and a variety of academic seminars throughout the year, large social and cultural activities, and even the Muddy Charles Pub.

On issues such as housing, stipends, health care, and advising, as well as nearly any other academic or student-life related issue, the GSC serves as the primary voice and advocate for the graduate student body. In addition, the GSC nominates individuals to serve on a number of Institute committees, to ensure that there is a student voice in decisions made throughout the Institute.

The GSC also interfaces with graduate student groups through the Association of Student Activities (a joint committee of the GSC and the Undergraduate Association) and the GSC funding board, which allocates event funding to these groups. Additionally, the GSC maintains relations with other graduate student organizations both locally and nationally so as to share ideas about how to best address graduate students’ needs.

The GSC office is located in Room 50-220, Walker Memorial, above the Muddy Charles Pub. To keep students apprised of the council’s activities, it publishes The Graduate and maintains a comprehensive website at http://gsc.mit.edu/ which serves as a repository for a large amount of information relevant to graduate students.

STUDENT SERVICES CENTER

The Student Services Center, conveniently located along the Infinite Corridor in Room 11-120, provides students with information about their financial and academic records in one central location together with services such as registration, transcripts, enrollment certification, cross-registration, refund checks, scholarship checks, loan processing, and tuition payments. Student Financial Services staff are available to meet with students (and their parents) to discuss questions about student bills, financial aid, loans, payment plans, and a variety of other academic and financial matters. Students can also pick up or drop off many Institute forms. Copies of MIT’s course catalog can be obtained at the center as well.

The Student Services Center is open Monday, Tuesday, Thursday, and Friday from 9 am to 5 pm, and Wednesday from 10 am to 5 pm. For further information, call 617-258-8600 or email ssc-www@mit.edu. Visit http://web.mit.edu/sfs/about_us/ for a complete description of the financial services available to students.

WEBSIS

WebSIS is the web-based student information system for students, faculty, and staff. Through WebSIS students can preregister for upcoming terms, view registration, check grades, maintain personal information, apply for their degrees, track financial aid requirements, complete loan entrance counseling, and view current student account activity; advisors and administrators can view the academic records of students in their departments and approve degree applicants; instructors and administrators can view enrollment lists, student photographs, and prerequisite reports for their classes.

For more information visit http://student.mit.edu/.
To earn a bachelor’s degree, undergraduates must complete the General Institute Requirements as well as the course of study prescribed for the degree to be awarded. This section outlines the general requirements together with other important aspects of undergraduate education, including admissions and financial aid.

<table>
<thead>
<tr>
<th>Academic Programs</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Year</td>
<td>31</td>
</tr>
<tr>
<td>Major Course of Study</td>
<td>34</td>
</tr>
<tr>
<td>Minors</td>
<td>34</td>
</tr>
<tr>
<td>General Institute Requirements</td>
<td>36</td>
</tr>
<tr>
<td>Science Requirement</td>
<td>36</td>
</tr>
<tr>
<td>Communication Requirement</td>
<td>37</td>
</tr>
<tr>
<td>HASS Requirement</td>
<td>38</td>
</tr>
<tr>
<td>REST Requirement</td>
<td>40</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>41</td>
</tr>
<tr>
<td>Physical Education Requirement</td>
<td>42</td>
</tr>
<tr>
<td>Academic and Research Options</td>
<td>42</td>
</tr>
<tr>
<td>Independent Activities Period</td>
<td>42</td>
</tr>
<tr>
<td>Undergraduate Research Opportunities Program</td>
<td>43</td>
</tr>
<tr>
<td>Undergraduate Seminars and Freshman Advising Seminars</td>
<td>43</td>
</tr>
<tr>
<td>Edgerton Center</td>
<td>44</td>
</tr>
<tr>
<td>Grading Options</td>
<td>44</td>
</tr>
<tr>
<td>Study at Other Universities</td>
<td>44</td>
</tr>
<tr>
<td>Internships Abroad</td>
<td>47</td>
</tr>
<tr>
<td>Career and Professional Options</td>
<td>47</td>
</tr>
<tr>
<td>Global Education and Career Development Center</td>
<td>47</td>
</tr>
<tr>
<td>Teacher Training and Education</td>
<td>47</td>
</tr>
<tr>
<td>ROTC Programs</td>
<td>48</td>
</tr>
<tr>
<td>Admissions</td>
<td>51</td>
</tr>
<tr>
<td>Costs</td>
<td>53</td>
</tr>
<tr>
<td>Financial Aid</td>
<td>55</td>
</tr>
<tr>
<td>Medical Requirements</td>
<td>56</td>
</tr>
</tbody>
</table>
Academic Programs

The undergraduate programs at MIT are designed to help students develop the knowledge and capabilities needed to meet the challenges of modern society. An MIT education joins the power of a specific discipline to a concern for social values and goals. In addition to developing expertise in a given field, undergraduates are encouraged to take advantage of the opportunities for broad learning at MIT, and to become creative, intellectual leaders and problem solvers, whose passion for learning is lifelong.

Central to the MIT undergraduate experience is the concept that a four-year residential college requires a full-time academic program. An MIT degree represents not only a specified number of credit units and a collection of subjects, but an intensity and continuity of involvement in an academic enterprise and an immersion in the culture of MIT as well. In general, MIT is not an appropriate place to pursue an undergraduate education on an extended, part-time basis.

MIT students base their studies on a core of subjects in science, mathematics, and the humanities, arts, and social sciences (the General Institute Requirements). They major in the physical or biological sciences, in management science, in architecture or urban studies and planning, in an area of the humanities, arts, and social sciences, or in one of the engineering fields. In the first year, many students take subjects from a variety of options in mathematics, physics, chemistry, biology, and humanities, arts, and social sciences. During the second year, students generally continue their studies with subjects meeting various Institute requirements and beginning subjects in departmental programs. In the third and fourth years, students focus on the departmental programs.

There is also time for students to take elective subjects each year. These elective opportunities allow students to follow social interests or to enrich their educational backgrounds. Students may also use elective time to prepare for study in a professional field such as medicine or law or to begin work toward graduate study. Students may also pursue minors in many fields.

One of the most exciting features of undergraduate education at MIT is the opportunity for students to join with faculty in ongoing research projects. For example, experiences in the Undergraduate Research Opportunities Program (UROP) encourage intellectual commitment and self-direction, and often provide a focus for students’ undergraduate studies. During the Independent Activities Period in January, students can spend time in workshops, independent research projects, intensive subjects and seminars, field trips, lecture series, and other activities that do not easily fit into the traditional academic calendar.

To complete work for a bachelor’s degree in any Course (major), each student must fulfill the General Institute Requirements and must complete the departmental program specified by that Course. Details on General Institute Requirements and on selecting a major course of study are discussed later in this section.

The program for the SB takes four years of full-time study for most students. Of the freshmen who entered between 1999 and 2003, the percentage of students who received their degrees within six years of entrance was about 93 percent.

Freshman Year

During the first year at MIT, students lay the foundation for their college education. First-year students may accommodate their individual preparation and learning styles by choosing among a variety of ways to complete the core subjects and prepare for further undergraduate study.

To begin fulfilling the General Institute Requirements (described later in this section), freshmen choose subjects in mathematics, chemistry, biology, and physics to fulfill the science core, and select from a wide range of subjects in the humanities, arts, and social sciences (HASS subjects). Students have various options for satisfying the first year of the Communication Requirement.

A normal program for the first year includes completion of four or five of the six science core subjects in mathematics, physics, biology, and chemistry, and two of the eight HASS subjects, including a Communication-Intensive subject. Students may round out their programs with electives, often including Freshman Advising Seminars (led by the students’ advisors) and other undergraduate seminars. Some freshmen also elect to become involved in the Undergraduate Research Opportunities Program, described later in this section.

Entering students with degree credit for one or more of the science core requirements may substitute more advanced subjects or may take electives or Restricted Electives in Science and Technology (REST) Requirement subjects. Procedures for obtaining degree credit at entrance are described in the Admissions section.

Students may also enroll in one of the special freshman learning communities: the Concourse Program, the Experimental Study Group, the Media Arts and Sciences Freshman Program, and Terrascope. These learning communities have their own faculty, meeting places, and methods of operation. In these programs, students make progress comparable to that of other freshmen, but the manner in which individual Institute requirements are met varies from program to program and among students within each program. In all four programs there is an especially high level of student-faculty interaction.

Concourse Program

Concourse is a learning community of students and instructors within MIT who are interested in human knowledge in its broad possibilities. It combines the rigor of the sciences and mathematics with elements of a liberal education, all aimed at educating our students to the fullest extent possible and allowing them to reach their full potential. Up to 60 freshmen can enter this yearlong program of study that covers most of the first-year General Institute Requirements. Concourse provides the advantages of a small school while retaining the vast range of opportunities offered by the Institute as a whole. Concourse students have close interactions with instructors and fellow students as well as Concourse Program alumni and prominent guest speakers from diverse fields. Students also have the rare opportunity to have teaching faculty from a number of different disciplines gathered in one place, enabling formal and informal cross-disciplinary exploration. The approach is that of a scholarly community with intense participation and support by faculty, staff, student assistants, and freshmen.

The program’s facilities lie at the heart of the MIT campus and consist of a dedicated classroom and lounge, complete with kitchen and semi-
The Experimental Study Group (ESG) is an innovative academic program geared primarily toward motivated first-year students who wish to take an active part in their MIT education. Each year 50 freshmen, 12 staff members, and 25 upperclass instructors (who were in ESG as freshmen) participate in the program. Staff members are selected for their teaching ability and their strong interest in community-based education and are drawn from the departments of Biology, Chemistry, Mathematics, Physics, and the School of Humanities, Arts, and Social Sciences.

In place of lectures and large classes, ESG students participate in small interactive classes (typically fewer than 12 students), discussion-based seminars, study groups, and hands-on labs. Almost all the core subjects in biology, chemistry, mathematics, and physics are offered through ESG, as well as several HASS subjects (including a CI-HW writing class each fall). Although ESG can be a full-time activity for freshmen, students may take one or two subjects outside of ESG.

ESG’s small classes are structured to be active learning environments with plenty of opportunity for lively discussion, question-and-answer sessions, student presentations, and peer-led problem-solving sessions. ESG also promotes educational innovation by encouraging staff and students to design and teach experimental 6-unit seminars that combine theory and practice. Seminars offered this past year include diverse topics such as Vlogging the ESG experience, Chemistry of Sports, Mathematics of Toys and Games, Exploring Pharmacology, and Life at MIT: The Psychology of Emerging Adulthood.

ESG’s centrally located facility is comprised of 14 rooms (including a central lounge and a kitchen) where classes are held and weekly activities are offered, such as luncheons and dinners, guest speakers, and evening study sessions. Students and staff also plan regular outings for the freshmen such as hiking and skiing trips and visits to local museums and attractions.

For more information about ESG, contact Dr. Holly Sweet, associate director, Room 24-612, 617-253-7786, hbsweet@mit.edu, or visit http://web.mit.edu/esg/.

Media Arts and Sciences Freshman Program

The Program in Media Arts and Sciences (MAS) offers a special freshman program emphasizing research at MIT’s internationally known Media Laboratory. In the freshman program, instructors connect research topics in the Media Laboratory to core physics and chemistry subjects, and students learn firsthand how research is carried out.

The Program in Media Arts and Sciences is part of the School of Architecture and Planning. It is housed in the Media Laboratory, which carries on advanced research in the invention and creative use of technology to enhance communication and expression. (For more information on Media Arts and Sciences, see Part 2; for more information on the Media Laboratory, see Interdisciplinary Research and Study in Part 3.)

Up to 24 freshmen in the MAS Freshman Program are introduced to the learning-by-apprenticeship mode that characterizes MAS. During the fall term students take part in one of several MAS Freshman Advising Seminars, and take MAS.110 Fundamentals of Computational Media Design, with hands-on design exercises looking at the intersection between expression and technology. In the spring term they take MAS.111 Introduction to Doing Research in Media Arts and Sciences, which includes documenting and presenting research results. In conjunction with MAS.111, all students participate through the Undergraduate Research Opportunities Program (UROP) in one of the research projects at the Media Laboratory. (For descriptions of the MAS subjects, see the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi; a description of UROP can be found later in this section.)

Researchers from the Media Laboratory teach recitation or tutorial sections in the fall for subjects 8.01 and 3.091 and in the spring for 8.02, in which they emphasize connections between the fundamentals of physics and chemistry and ongoing research at the Media Laboratory. Students take the lectures for these subjects, as well as lectures and recitations in other core and elective subjects, with other freshmen. (For descriptions of these subjects, see the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.)

The program director is Dr. V. Michael Bove, Jr. For information contact Linda Peterson, Room E15-401, mas@media.mit.edu, or visit http://www.media.mit.edu/mas/foa/.

Terrascope

The Terrascope Program offers a unique opportunity for MIT freshmen to expand their academic experience beyond the walls of the classroom. Terrascope balances the lecture/problem set learning of introductory (or “core”) science subjects with studies of complex, real-world problems that require innovative solutions drawn from a variety of disciplines.

The program is based on the idea that our Earth system provides a valuable context for learning basic science and engineering concepts. Students are encouraged to apply those concepts in creative ways to understand the interdependent physical, chemical, and biological processes that shape our planet, and to design strategies to ensure a sustainable environment for the future.

Terrascope is a flexible program—only two subjects are required beyond the traditional General Institute Requirements (GIRs). During the fall term, Terrascope students enroll in 12.000 Solving Complex Problems...
(9 units), a popular subject (also known as Mission 2014) designed to explore how teams of scientists and engineers approach difficult problems that require multidisciplinary approaches. Solutions are published on a class website and participants defend their work before a panel of outside experts. This final presentation is broadcast live over the internet.

In the spring, students enroll in 1.016 Communicating Complex Environmental Issues: Designing and Building Interactive Museum Exhibits (9 units). Using 12.000 as a starting point, students work in teams to design, engineer, and build an interactive museum-style exhibit that teaches others about some aspect of the problem on which they’ve become expert.

Students may also choose to enroll in SP.360 Terrascope Radio (12 units), an optional subject that provides an opportunity to satisfy the freshman Communication Requirement (CI-H credit). This subject explores radio as a medium for expression and communication, particularly of complex scientific ideas, and culminates in the production of a professional-quality radio program.

Fieldwork and close interactions with researchers and others is an important part of the Terrascope experience. Terrascope students attend weekly lunch seminars during which researchers and others speak about their work. Students may also participate in a credit-bearing activity during MIT’s Independent Activities Period. Finally, students in the Terrascope program have the opportunity to conduct field research in a location relevant to the problem under study during spring break. Past locations have included Alaska, the Amazon rainforest, Chile, the Galapagos Islands, Iceland, and New Orleans. Expenses for the trip are largely covered by the program.

Terrascope offers students a variety of exclusive facilities, including classroom and study space, a kitchen, and lounge.

For more information, or to apply for the program, visit http://web.mit.edu/terrascope/.

Seminar XL

Seminar XL is a collaborative undergraduate learning experience in which groups of four to six students meet for 90 minutes twice per week to share their understanding of course concepts and problem-solving methods. A facilitator guides each working group, where the facilitator is a research scientist, a graduate student, or an upperclass undergraduate student who previously earned an A in the course. Although the Office of Minority Education (OME) historically has sponsored the program for first-year students, OME encourages upperclass students to enroll as well. However, only first-year students may receive course credit, provided they attend at least 80 percent of the working group sessions. Upperclass students must register as listeners.

After the fifth week, interested students may enroll in Seminar XL Limited Edition, which operates two 90-minute working group sessions per week, as does the regular Seminar XL. There is no course credit awarded, but past students have benefited greatly from this program.

For more information about Seminar XL, Seminar XL LE, and other OME services, visit the Office of Minority Education, Room 4-113, 617-253-5010, or visit http://web.mit.edu/ome/.

First-year Academics

The preceding overview conveys the nature and scope of the academic options for first-year students. Incoming freshmen are referred to http://web.mit.edu/firstyear/ for detailed information on academics, the advisory system, and support services.

Freshman Grading

In the first term and IAP, freshmen are graded on a pass or no-record basis. They receive grades of P, D, or F in all subjects they take, where P indicates C or better performance (C- with modifier used within MIT). Freshmen receive no credit for subjects with D or F grades and these subjects do not appear on their transcripts.

In the second term, freshmen are graded on an A, B, C, or no-record basis. They continue to receive no credit for subjects with D or F grades, which do not appear on their transcripts. The A, B, or C grades are used in calculating students’ term and cumulative ratings.

Freshman grading is designed to ease the transition from high school by giving students time to adjust to factors like increased workloads and variations in academic preparation. Students are encouraged to improve time-management skills and develop more mature attitudes about learning. A, B, and C grades are used during the second term so that freshmen can begin the progression to regular A-F grading in the sophomore year.

Use of Hidden Grades

MIT’s educational policy is to provide “hidden” grades to students for educational and advising purposes only. Hidden grades will stay hidden and are never included on an external transcript. However, students should be aware that some US Federal grant programs (currently ACG/SMART grants) require a GPA to be calculated using all grades, including hidden grades. The Student Financial Aid office, with written explicit permission of the student, will use GPAs calculated with hidden grades to determine qualification for these grants.

Many students use the freedom of hidden grades in the first year to adjust to the demands of MIT and to take some educational risks. Students should reflect carefully on their choices in light of the fact that the actual grades will be taken into account for eligibility for certain Federal grants. Students in these positions should discuss their options with their advisors and carefully weigh their choices.

Credit Limit for Freshmen

A freshman may not register or receive credit for subjects totaling more than 54 units in the fall term and 57 units in the spring term. The Committee on Academic Performance (CAP) rarely grants requests to exceed the credit limit. (Only in the fall term may freshmen exceed the 54-unit credit limit by 3 units to take 12.000 Solving Complex Problems or by 6 units to take Seminar XL: You Can Be A Success at MIT.) Credit earned for passing an Advanced Standing Examination will be counted toward the term credit limit unless the exam is taken either in the September or February examination period. ROTC subjects (listed in the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi) are excluded from this credit limit. Note that all MIT students are limited to 12 units during the Independent Activities Period in January.
UNDERGRADUATE EDUCATION

Major Course of Study

Whether or not they enter with plans for a specific field of study, all students are encouraged to examine with an open mind the wide range of Courses (majors) available at the Institute. Students may attend departmental orientation programs to talk with faculty and others with experience in fields of potential interest. They should select electives that will help them think about possible majors. The Independent Activities Period in January, described later in this section, provides students with opportunities to investigate different fields. For many students, this consideration of fields will reinforce existing convictions, while for others it will open up new avenues of interest. MIT may, however, limit enrollment in particular fields of study to balance resources with student interest.

Each student entering MIT is assigned an advisor who assists the student in designing an effective program of study. The selection of elective subjects is an important consideration, one that students should discuss in depth with their advisors.

All undergraduate degree programs combine the study of basic principles with practical applications. This combination helps to motivate lifelong learning necessary for professional competence.

Students usually choose a Course (major) at the end of the first year, though they need not do so until the end of the second year. There is sufficient overlap and flexibility so that selection or change of Course can be made with relative ease in the second year.

All undergraduate and graduate academic programs, as well as faculty listings for each of the Institute’s departments, are described fully in Parts 2 and 3.

Detailed information on undergraduate registration may be found in Academic Procedures and Institute regulations in Part 1.

Electives

Electives may be used for several different purposes. For example, students who are undecided about their eventual majors may decide to use some portion of their electives to explore the various departments or fields they are considering. Students more certain of their academic and professional goals may choose to use electives to explore areas of secondary interest. Still other students focus first on departmental or General Institute Requirements, deferring subjects of a more supplemental nature until a later year. The study of a language may also be started or continued.

Freshmen should select electives that best suit their individual needs.

There are several hundred subjects without prerequisites that are especially appropriate for first-year students. However, in general, any subject offered by the Institute is open to all students, provided they satisfy the prerequisites.

Double Majors

Students may earn a bachelor’s degree with two majors by successfully completing the GIRs and the departmental requirements for each major. To add a second major, a student must apply to the Committee on Curricula (COC) by Add Date of his or her penultimate term. Applications submitted after this deadline will be considered by the COC at its discretion on a case-by-case basis.

A double major program should be completed in a four- or five-year period and should be planned in advance. A student’s plan for completing both majors must be outlined in the application to the COC. The application must also include the expected completion date for the degree, and it must be approved by both programs. Students should consult Student Financial Services regarding any impact that pursuing a double major might have on their eligibility for MIT or federal financial aid, particularly if they anticipate needing more than eight semesters to complete their studies.

Students must select a second major in a different area from the primary major. Students pursuing a double major may also complete up to two minors, but a minor may not be taken in the same area as either of the major programs.

Only registered undergraduates who have completed at least three terms at MIT, including at least one term with a declared major, may apply. Transfer students must complete at least two terms at MIT, including at least one term with a declared major. Students with cumulative averages below 4.0 will not be considered except in exceptional cases. A student who has previously earned a bachelor’s degree with a single major may not return to complete a second major.

Students who have successfully petitioned to pursue a second bachelor’s degree may switch to a double major in the same field through Add Date of their final term. Students who want to switch from a second SB to a double major and also plan to change departments in one or both majors must apply for a double major by Add Date of their penultimate term.

For details on eligibility, deadlines, and procedures, see the COC website, http://web.mit.edu/doublemajor/.

Program for Two Bachelor’s Degrees

This program is being discontinued and is not available to students who began their studies during the 2008–2009 academic year or later. For details on eligibility, deadlines, and procedures, see the COC website, http://web.mit.edu/registrar/subjects/cmtes/coc/petitions_secondSB.html.

Minors

A number of fields in science, engineering, architecture, management, and the humanities, arts, and social sciences offer minor programs providing significant experience in their disciplines. Several interdisciplinary minors, including an Institute-wide minor in energy studies, are also available; for further information on interdisciplinary minors, see the Interdisciplinary Undergraduate Programs and Minors section in Part 3.

Students who successfully complete minor programs will have their fields of study specified as part of their Bachelor of Science degrees, thus giving public recognition of focused work in other disciplines. The general guidelines for a minor program are as follows:

- Minor programs consist of five to seven subjects, though generally six. These subjects may count toward General Institute Requirements and Departmental Program requirements.
- Subjects taken under the junior-senior P/D/F grading option cannot be used for a minor program.
- At the discretion of the minor advisor, transfer credit may be used to fulfill a portion of the minor program. MIT subjects, including those...
taken through cross-registration, must comprise at least half of the minor program.

• A student may not take a minor in the area of his or her major. In addition, minors are not allowed in either field of composite degrees, which combine two different fields (for example, the SB in Mathematics with Computer Science, SB in Humanities and Science, or the SB in Humanities and Engineering).

• A student may earn no more than two minors, which are awarded only when the student receives the SB degree, and which must be associated with a specific degree. This two-minor maximum applies even if the student receives two SB degrees.

• The student should designate the minor program by the end of the sophomore year, but no later than Add Date, one full term preceding the one in which the SB degree is awarded. The student must complete an application form for a minor in consultation with the appropriate minor advisor. Note that the application and completion forms for HASS minors are different from those used in other fields.

Minor in an Architecture, Engineering, Management, or Science Field

Minors are currently available in the following architecture, engineering, management, and science fields:

- Architecture
- Astronomy*
- Biology
- Biomedical Engineering*
- Brain and Cognitive Sciences
- Chemistry
- Civil Engineering
- Earth, Atmospheric, and Planetary Sciences
- Energy Studies*
- Environmental Engineering Science
- Management
- Management Science
- Materials Science and Engineering
- Mathematics
- Mechanical Engineering
- Nuclear Science and Engineering
- Physics
- Toxicology and Environmental Health

More information on these minors appears in Part 2 of this catalog; those marked with an asterisk are described in the Interdisciplinary Undergraduate Programs and Minors section in Part 3. For additional information, instructions, and applications, students should contact the Undergraduate Office in their field of interest, or the Office of Undergraduate Advising and Academic Programming in Room 7-104.

Minor in Humanities, Arts, or Social Sciences

Students electing a Humanities, Arts, and Social Sciences (HASS) minor program will study a field in greater depth than the HASS concentration component of the General Institute Requirements allows and will encounter the structure of an intellectual discipline to a greater degree.

Most HASS minor programs are arranged into at least three levels, or tiers, expressing different degrees of sophistication in the articulation and resolution of intellectual problems. However, subjects included in the regional studies minors are divided into four areas; students are required to distribute subjects across those four areas.

Of the six subjects required for the HASS minor, at most five may count toward satisfaction of the eight-subject Institute HASS Requirement. Of these five, at most one may count toward satisfying the distribution component of the HASS Requirement (Note: The distribution component of the HASS Requirement has changed for freshmen entering MIT during the 2010–2011 academic year. For further information, see the section on the Humanities, Arts, and Social Sciences [HASS] Requirement.)

HASS minor programs have been approved in the following fields:

- African and African Diaspora Studies*
- Ancient and Medieval Studies*
- Anthropology
- Applied International Studies*
- Chinese
- Comparative Media Studies
- East Asian Studies*
- Economics
- French
- German
- History
- History of Art and Architecture
- Japanese
- Latin American Studies*
- Linguistics
- Literature
- Middle Eastern Studies*
- Music
- Philosophy
- Political Science
- Psychology
- Public Policy*
- Russian Studies*
- Science, Technology, and Society
- Spanish
- Theater Arts
- Urban Studies and Planning
- Visual Arts
- Women’s and Gender Studies*
- Writing

Detailed information on these minors may be found in Part 2 of this catalog; those marked with an asterisk are described in the Interdisciplinary Undergraduate Programs and Minors section in Part 3. Additional information about the HASS minors also is available at the SHASS Dean’s Office (Room 4-240) or at http://shass.mit.edu/undergraduate/.
GENERAL INSTITUTE REQUIREMENTS

To be recommended for the degree of Bachelor of Science, students must have attended the Institute not less than three regular academic terms, which ordinarily must include the term of graduation. Also, students must have satisfactorily completed programs of study approved in accordance with the faculty regulations, including the General Institute Requirements (GIRs) described on the following pages, and the departmental program of the Course in which the degree is to be awarded. A student must petition the Subcommittee on the Communication Requirement for any substitutions in the Communication Requirement; the Subcommittee on the HASS Requirement for any substitutions in the Humanities, Arts, and Social Sciences (HASS) Requirement; and the Committee on Curricula for any substitutions in other GIRs. Departures from the departmental programs are allowed with departmental permission. The departmental programs and degree requirements appear in Part 2.

Science Requirement

MIT expects its graduates to have an understanding and appreciation of the basic concepts and methods of the physical and biological sciences. These concepts and methods are needed in most degree programs at the Institute. More important, they are an essential part of the background that MIT graduates bring to their roles as professionals and as broadly educated citizens in a world strongly influenced by science and technology.

Students begin with six science core subjects in mathematics, physics, biology, and chemistry, and then add the Laboratory and Restricted Electives in Science and Technology (REST) Requirements, both described later in this section. These programs introduce basic elements of the scientific method: experimental foundations and techniques, mathematical analysis, and conceptual models for experimental facts. Important experimental as well as conceptual aspects are introduced by the chemistry and biology requirements and by the Laboratory Requirement. Mathematical methods common to much of science and technology are explored in the mathematics requirement. Basic concepts that underlie many physical phenomena are defined and elucidated in the physics and REST requirements.

In addition to a rigorous introduction to the sciences, these requirements are intended to stimulate and challenge each student to review critically his or her knowledge, and to explore alternative conceptual and mathematical formulations which may provide better explanations of natural phenomena or may lead to better applications of technology.

The development of critical and constructive approaches to both theory and practice in science, engineering, and other professions is a central objective of the Institute’s educational programs.

\[\text{Biology}\]

The Institute requirement in biology may be satisfied by one of three introductory subjects, 7.012, 7.013, or 7.014. These three subjects, denoted as Biology (GIR), cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. In addition, each subject has its own distinctive material. Subject 7.012 is offered in the fall term; 7.013 and 7.014 are taught in the spring.

Bachelor of Science Degree Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Institute Requirements (GIRs)</td>
<td>17</td>
</tr>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry (5.091, 5.111, or 5.112)</td>
<td></td>
</tr>
<tr>
<td>Physics (8.01, 8.011, 8.012, or 8.011; and 8.02, 8.021, or 8.022)</td>
<td></td>
</tr>
<tr>
<td>Calculus (18.01, 18.01A, or 18.014; and 18.02, 18.02A, 18.022, 18.023, or 18.024)</td>
<td></td>
</tr>
<tr>
<td>Biology (7.012, 7.013, or 7.014)</td>
<td></td>
</tr>
<tr>
<td>Laboratory (LAB) Requirement (12 units)</td>
<td>1</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Communication Requirement, to be satisfied by 4 subjects:</td>
<td></td>
</tr>
<tr>
<td>2 Communication-Intensive HAASS subjects (CI-H)</td>
<td></td>
</tr>
<tr>
<td>2 Communication-Intensive Major subjects (CI-M)(^1)</td>
<td></td>
</tr>
<tr>
<td>Physical Education Requirement</td>
<td></td>
</tr>
<tr>
<td>PLUS Departmental Program and Unrestricted Electives</td>
<td></td>
</tr>
<tr>
<td>The departmental program may specify some of the GIR subjects, and includes 180–198(^\text{2}) additional units beyond the GIRs.</td>
<td></td>
</tr>
<tr>
<td>Students track their progress by checking off the subjects that count towards the 17 GIR subjects. The remaining units then count toward the additional 180–198 units beyond the General Institute Requirements. Students are allowed a minimum of 48 units of unrestricted electives.</td>
<td></td>
</tr>
<tr>
<td>Students schedule their programs each year within a normal load of the equivalent 8 or 8 1/2 subjects, and complete all degree requirements within the equivalent of 32–34 subjects.</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>Transfer students generally will graduate under the requirements that apply to the class they join when they enter MIT.</td>
<td></td>
</tr>
<tr>
<td>(^1) Communication-Intensive Major subjects (CI-M) are designated on the degree charts in Part 2.</td>
<td></td>
</tr>
<tr>
<td>(^2) The total of 180–198 units does not include ROTC subjects, if selected.</td>
<td></td>
</tr>
</tbody>
</table>

Chemistry

The Institute requirement in chemistry may be satisfied by taking 3.091 Introduction to Solid-State Chemistry, or 5.111 or 5.112 Principles of Chemical Science. These three subjects are denoted as Chemistry (GIR). Subject 3.091 is designed for students who are particularly interested in the chemistry of the solid state. Subjects 5.111 and 5.112 emphasize basic chemical principles and their applications. Subject 5.112 is intended for students with a strong background in high school chemistry.

Mathematics

The Institute requires all students to complete single variable calculus [18.01 or equivalent, denoted as Calculus I (GIR)] and multivariable calculus [18.02 or equivalent, denoted as Calculus II (GIR)].
Students with advanced-standing, advanced-placement, or transfer credit for 18.01 may go directly into multivariable calculus. Two versions are offered in the fall term: 18.02, the basic version, and 18.022, a somewhat more theoretical version. Both 18.02 and 18.022 present calculus as it is used in science and engineering.

The sequence 18.014–18.02a Calculus with Theory assumes a substantial background in calculus and emphasizes proofs.

Students with a year of high school calculus may qualify for 18.01a–18.02a. This sequence covers the material in one and a half terms. (See the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi, for more information.)

Students with advanced-placement, advanced-standing, or transfer credit for 18.01 will lose it if they take 18.01, will receive 3 units of elective credit if they take 18.01a, and will receive 9 units of elective credit if they take 18.014.

Physics
The Institute requirement in physics may be satisfied through several combinations of introductory physics subjects. Subjects 8.01, 8.01l, 8.011, and 8.012 are denoted as Physics I (GIR); 8.02, 8.021, and 8.022 are denoted as Physics II (GIR). Most students find the 8.01–8.02 sequence suited to their needs. The sequence 8.012–8.022 covers essentially the same subject matter as 8.01–8.02, but is more advanced mathematically; calculus is used freely from the beginning of the term. Subject 8.01l is offered in the fall term for students who have had little exposure to physics with calculus in high school. A student may switch from a Physics I (GIR) subject in one sequence to a Physics II (GIR) subject in another.

Students who score a 5 on Parts I and II of the Physics C Advanced Placement test will receive credit for 8.01.

Students with advanced-placement or advanced-standing credit for 8.01 who elect to take 8.012 will receive 6 units of elective credit in place of 8.01.

Communication Requirement
The Communication Requirement makes the development of effective writing and speaking an integral part of undergraduate education at the Institute. The Communication Requirement ensures that all undergraduates receive substantial instruction and practice in general expository writing and speaking and the forms of discourse common to their professional fields.

The Communication Requirement consists of four Communication-Intensive (CI) subjects sequenced throughout a student’s undergraduate career. Students take two CI subjects in the humanities, arts, and social sciences (CI-H) and two CI subjects in their major program (CI-M). Students must maintain a minimum pace in completing their CI subjects in order to remain in good standing with the Communication Requirement. They must complete one of their CI subjects by the end of the first year, two by the end of the second, three by the end of the third year, and four by graduation.

Students must earn a passing grade to receive CI credit. CI subjects must be taken for a letter grade. Students may not use their junior-senior P/D/F option. Only one CI-H subject per term may be counted toward completion of the Communication Requirement. However, students may receive credit for more than one CI-M subject in the same term or a CI-H and a CI-M completed concurrently.

The general structure of the requirement is described below. Additional information can be found at http://web.mit.edu/commreq/. More information on CI-H subjects is included in the section of the Bulletin on the HASS Requirement. Specifics on the CI-M subjects for each major appear in the descriptions of the individual undergraduate degree programs.

First year. Students must pass one CI-H or CI-HW subject by the end of their second term at the Institute.

Before entering MIT, all students are asked to take the Freshman Essay Evaluation (FEE). The FEE is a placement tool used to determine the best program for each undergraduate within the Communication Requirement. Students who receive a score of “CI-H/CI-HW Required” on the FEE or receive a score of 5 on either the Advanced Placement Language and Composition Test or the Advanced Placement Literature and Composition Test have the option of taking any CI-H subject, including specially designated expository writing subjects (CI-HW): 21f.222 Expository Writing for Bilingual Students; 21l.000/21w.734j Writing about Literature; 21l.010 Writing with Shakespeare; 21w.730 Writing and Rhetoric; 21w.731 Writing and Experience; and 21w.732 Science Writing and New Media.

All other students must take one of the designated CI-HW expository writing subjects as their first CI subject.

Students who do not complete a CI-H/CI-HW subject in their first term at MIT may not advance to sophomore standing in their second term.

Second year. Students must pass at least two CI subjects by the end of their fourth term at the Institute. In most cases, these first two CI subjects will satisfy the CI-H portion of the requirement, providing a foundation in written and oral exposition.

Third year. Students must pass at least three of the four required CI subjects by the end of their sixth term. Most students will take their first CI-M subject as juniors and begin to develop the communication skills specific to the professional and academic culture of their discipline.

Before receiving an SB degree. Students must complete two CI-H subjects and the two CI-M subjects specified for their SB degree program prior to receiving their degree.

Noncompliance. Students who fall behind the minimum pace of completion for the Communication Requirement are in noncompliance. At the end of each term, the names of noncompliant students are forwarded to the Committee on Academic Performance, which may take further action to bring such students into good academic standing.

Double majors. Students who wish to complete two majors must pass two CI-H subjects and complete the CI-M subjects that fulfill the communication component of each major. Normally, these students will take four CI-M subjects, that is, two in each major program. In certain cases a CI-M subject may be common to both departments. These CI-M subjects may be used to fulfill the communication component of two majors simultaneously if the subject is approved by petition to the Subcommittee on the Communication Requirement and by both departments.

Second SB degree (for students who entered prior to the 2008–2009 academic year). Students who wish to receive two SB degrees must pass two CI-H subjects and complete the CI-M subjects that fulfill the communication component of each major. Normally, these students will take four
CI-M subjects, that is, two in each major program. However, a CI-M subject may be used to fulfill the communication component of two degrees simultaneously if the subject is approved by petition to the Subcommittee on the Communication Requirement and by both departments. To be consistent with MIT policy on two SB degrees, departments should approve a student’s proposed program only if the CI-M subjects in the program would be acceptable for a single degree.

Humanities, Arts, and Social Sciences (HASS) Requirement

MIT provides a substantial and varied program in the humanities, arts, and social sciences that forms an essential part of the education of every undergraduate. This program is intended to ensure that students develop a broad understanding of human society, its traditions, and its institutions. The requirement enables students to deepen their knowledge in a variety of cultural and disciplinary areas and encourages the development of sensibilities and skills vital to an effective and satisfying life as an individual, a professional, and a member of society.

More specifically, the objectives of the program are to develop skills in communication, both oral and written; knowledge of human cultures, past and present, and of the ways in which they have influenced one another; awareness of concepts, ideas, and systems of thought that underlie human activities; understanding of the social, political, and economic framework of different societies; and, finally, sensitivity to modes of communication and self-expression in the arts. Work in these areas will, where appropriate, display a special concern with the relation of science and technology to society.

The student’s program in the Humanities, Arts, and Social Sciences (HASS) is based on the following Institute requirement:

Minimum. Every candidate for a bachelor’s degree must have completed a minimum of eight term subjects in the humanities, arts, and social sciences, including distribution and concentration components. Two HASS subjects that are designated Communication Intensive may also be used toward the Communication Requirement. See the description of the Communication Requirement earlier in this section.

Distribution. The following description of the distribution component of the HASS Requirement applies to classes entering in academic year 2010–2011 and beyond. Students who entered prior to 2010–2011 and transfer students entering in 2010–2011 should refer to the section below on HASS Distribution subjects for details on their requirement. Additional information is available at http://web.mit.edu/hassreq/.

Three of the eight subjects must be selected from designated categories: humanities, arts, and social sciences. The three subjects may be taken at any stage of the student’s undergraduate career, although students are encouraged to complete their distribution by the end of their junior year.

Humanities: Humanities subjects describe and interpret human achievements, problems, and historical changes at individual as well as societal levels. Although humanist inquiry employs a variety of methods, such disciplines as history, literature, and philosophy typically produce their accounts of cultural accomplishments through close analysis of texts and ideas: contemporary and historical, personal and communal, imaginative and reflective.

Arts: Arts subjects emphasize the skilled craft, practices, and standards of excellence involved in creating representations through images, words, sounds, and movement (e.g., sculptures, stories, plays, music, dance, films, or video games). Although arts subjects also engage in critical interpretation and historical analysis, they focus more centrally on expressive and aesthetic techniques and tools, such as the uses of rhythm, texture, and line.

Social Sciences: Social Science subjects engage in theory-driven as well as empirical exploration and analysis of human transactions. They address the mental and behavioral activities of individuals, groups, organizations, institutions, and nations. Social science disciplines such as anthropology, economics, linguistics, political science, and psychology seek generalizable interpretations and explanations of human interaction.

Concentration. Before the third year, each student selects a field of concentration. Concentration requirements are set by each field and consist of either three or four subjects. An individual’s program of concentration is arranged in consultation with a designated advisor in the field. One of the subjects that counts toward the distribution may also be designated as a concentration subject with the permission of the concentration advisor. In individual cases, a special interdisciplinary program of concentration may be arranged with the approval of the Subcommittee on the HASS Requirement. This approval must be obtained ahead of time, before the desired combination of subjects has been completed.

Currently, the following fields of concentration are offered:

- American Studies
- Ancient and Medieval Studies
- Anthropology
- Archaeology and Archaeological Science
- Asian Studies
- Black Studies
- Comparative Media Studies
- Development Economics
- Economics
- Ethics
- Ethnic Studies
- Foreign Languages and Literatures
- **Chinese, ELS, French, German, Japanese, Spanish**
- History
- History of Art and Architecture
- Labor in Industrial Society
- Latin American Studies
- Linguistics
- Literature
- Middle Eastern Studies
- Music
- Philosophy
- Physical Imagination (Dance)
- Political Science
- Psychology
- Religious Studies
- Russian Studies
Students interested in exploring or registering for a field of concentration should speak with an advisor designated by that field.

HASS Information. For detailed information on distribution subjects and on the concentration requirements in any field, and for assistance with any aspect of the Humanities, Arts, and Social Sciences Requirement, visit the HASS Requirement website at http://web.mit.edu/hassreq/.

HASS Distribution Subjects

For First-Year Students Entering in Academic Year 2010–2011

Students entering MIT during the 2010–2011 academic year must take one subject in each of the following categories: Humanities, Arts, and Social Sciences. Over 600 subjects may be used to fulfill this requirement. For a complete list of the subjects in each category, consult the online subject listing and schedule (http://student.mit.edu/catalog/index.cgi).

For Continuing Students

Undergraduates who entered MIT prior to fall 2010 must take three distribution (HASS-D) subjects from three different categories listed below. Each category consists of subjects that are appropriate for students who may never take another subject in that area of learning, and the five categories together offer a range of choices suited to the different interests, abilities, and preparations of MIT undergraduates. Transfer students entering MIT during academic year 2010–2011 also must fulfill this requirement.

Language Option. Because the Institute regards competence in foreign language as a fundamental value, a student may substitute one language subject at level III or IV for one HASS-D subject. The two remaining HASS-D subjects may be taken from any two categories.

The 2010–2011 HASS-D subjects, listed by category areas, are as follows:

Category 1: Literary and Textual Studies

This category consists of subjects devoted to the interpretation of texts, to literary traditions, and to genres.

- 21F.010 Introduction to European and Latin American Fiction
- 21F.022J International Women’s Voices [SP.661J]
- 21F.311 Introduction to French Culture
- 21F.716 Introduction to Contemporary Hispanic Literature and Film
- 21L.003 Reading Fiction
- 21L.004 Reading Poetry
- 21L.006 American Literature
- 21L.007 World Literatures
- 21L.009 Shakespeare
- 21L.012 Forms of Western Narrative
- 21L.421 Comedy
- 21W.735 Writing and Reading the Essay
- 21W.775 Writing about Nature and Environmental Issues

Category 2: Language, Thought, and Value

Subjects in this category focus on the study of concepts, principles, and modes of expression basic to our efforts to understand individuals and their place in the universe.

- 21F.059 Paradigms of European Thought and Culture
- 21L.001 Foundations of Western Culture: Homer to Dante
- 21L.002 Foundations of Western Culture: The Making of the Modern World
- 21L.017 The Art of the Probable
- 21L.448J Darwin and Design [21W.739J]
- 21W.742J Writing about Race [SP.575J]
- 21W.747 Rhetoric
- 24.00 Problems of Philosophy
- 24.01 Classics of Western Philosophy
- 24.02 Moral Problems and the Good Life
- 24.04J Justice [17.01J]
- 24.06J Bioethics [STS.006J]
- 24.09 Minds and Machines
- 24.900 Introduction to Linguistics
- STS.011 Ethics and Politics in Science and Technology

Category 3: Visual and Performing Arts

Subjects in this category are drawn from music, the visual arts, drama and dance, and film. Some are historical and analytical; others are more directly concerned with the creation of art.

- 21L.005 Introduction to Drama
- 21L.011 The Film Experience
- 21L.016 Learning from the Past: Drama, Science, Performance [meets with 21M.616J]
- 21M.011 Introduction to Western Music
- 21M.013J The Supernatural in Music, Literature, and Culture [21A.113J, 21L.013J]
- 21M.030 Introduction to World Music
- 21M.065 Introduction to Musical Composition
- 21M.223J Folk Music of the British Isles and North America [21L.423J]
- 21M.226 Jazz
- 21M.301 Harmony and Counterpoint I
- 21M.611 Foundations of Theater Practice
- 21M.616 Learning from the Past: Drama, Science, Performance [meets with 21L.016]
- 21M.621J Theater and Cultural Diversity in the US [SP.595J]
Category 4: Cultural and Social Studies

Subjects in this category study human societies by examining forms of social, cultural, economic, political, and religious organization and behavior.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21A.109</td>
<td>Understanding Culture</td>
</tr>
<tr>
<td>21A.226</td>
<td>Ethnic and National Identity</td>
</tr>
<tr>
<td>21A.345</td>
<td>The Politics of International Development</td>
</tr>
<tr>
<td>21F.029</td>
<td>Topics in Asian American Literature</td>
</tr>
<tr>
<td>21F.064</td>
<td>Introduction to Japanese Culture [meets with 21F.592]</td>
</tr>
<tr>
<td>21F.076</td>
<td>Globalization: The Good, the Bad, and the In-Between</td>
</tr>
<tr>
<td>21W.784</td>
<td>Becoming Digital: Writing about Media Change</td>
</tr>
<tr>
<td>CMS.100</td>
<td>Introduction to Media Studies</td>
</tr>
<tr>
<td>SP.401</td>
<td>Introduction to Women’s and Gender Studies</td>
</tr>
<tr>
<td>SP.409</td>
<td>Women and Global Activism in Media and Politics</td>
</tr>
<tr>
<td>STS.007</td>
<td>Evolution and Society</td>
</tr>
<tr>
<td>STS.010</td>
<td>Neuroscience and Society</td>
</tr>
</tbody>
</table>

Category 5: Historical Studies

Subjects in this category study the development of people, institutions, or countries over a considerable period of time.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>21F.027J</td>
<td>Asia in the Modern World: Images and Representations [21H.917J; meets with 21F.590]</td>
</tr>
<tr>
<td>21F.043J</td>
<td>Introduction to Asian American Studies: Historical and Contemporary Issues [21H.150J]</td>
</tr>
<tr>
<td>21F.590</td>
<td>Asia in the Modern World: Images and Representations [meets with 21F.027J]</td>
</tr>
<tr>
<td>21H.001</td>
<td>How to Stage a Revolution</td>
</tr>
<tr>
<td>21H.104J</td>
<td>Riots, Strikes, and Conspiracies in American History [31.015J]</td>
</tr>
<tr>
<td>21H.105</td>
<td>American Classics</td>
</tr>
<tr>
<td>21H.301</td>
<td>The Ancient World: Greece</td>
</tr>
<tr>
<td>21H.302</td>
<td>The Ancient World: Rome</td>
</tr>
<tr>
<td>21H.416</td>
<td>Medieval Economic History in Comparative Perspective [14.70J]</td>
</tr>
<tr>
<td>21H.421</td>
<td>Introduction to Environmental History</td>
</tr>
<tr>
<td>21H.433</td>
<td>The Age of Reason: Europe in the 18th and 19th Centuries</td>
</tr>
<tr>
<td>21H.601</td>
<td>Islam, the Middle East, and the West</td>
</tr>
<tr>
<td>21H.912</td>
<td>The World Since 1492</td>
</tr>
</tbody>
</table>

Electives

The remainder of the eight-subject requirement, above and beyond the Distribution and Concentration, may be fulfilled by subjects from any distribution category, or by subjects that are designated as HASS electives.

Students may petition to obtain HASS credit for subjects taken by cross-registration at Harvard University or Wellesley College. Students may also petition to obtain HASS credit for graduate subjects, with the consent of the instructor.

Restricted Electives in Science and Technology (REST) Requirement

Through Restricted Electives in Science and Technology (REST) Requirement subjects, students can broaden and deepen the educational foundation in basic science begun in the first-year program and further the understanding of scientific inquiry. These subjects are designed to give students the opportunity to proceed further in areas already studied, or to explore other areas of potential interest.

REST subjects vary in approach and emphasis. Some give a systematic introduction to the fundamental concepts and principles of a field; others illustrate through examples some of the attitudes, concerns, and methods that characterize professional work in the field. In general, REST subjects are not too specialized, too advanced, or devoted chiefly to instruction in a particular skill. Students typically take REST subjects in the second year, although with the proper prerequisites they may begin taking them in the first year.

Students meet the REST Requirement by taking two subjects from the list below. Of the subjects used to fulfill the requirement, the student can take no more than one in his or her department. However, subjects designated with a J that are offered jointly with another department do not fall under the departmental limitation.

In many cases, subjects required by a Departmental Program for the SB degree are also on the lists of REST and Laboratory Requirement subjects. Thus, students who follow a particular Departmental Program may simultaneously satisfy some part of these requirements.

REST Requirement Subjects

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Introduction to Computers and Engineering Problem Solving</td>
</tr>
<tr>
<td>1.018J</td>
<td>Ecology I: The Earth System [7.30J]</td>
</tr>
<tr>
<td>1.050</td>
<td>Engineering Mechanics I</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2.001</td>
<td>Mechanics and Materials I</td>
</tr>
<tr>
<td>2.003</td>
<td>Dynamics and Control I [1.053J]</td>
</tr>
<tr>
<td>2.005</td>
<td>Thermal-Fluids Engineering I</td>
</tr>
<tr>
<td>3.012</td>
<td>Fundamentals of Materials Science and Engineering</td>
</tr>
<tr>
<td>3.021J</td>
<td>Introduction to Modeling and Simulation [1.021J, 10.333J, 22.00J]</td>
</tr>
<tr>
<td>3.046</td>
<td>Thermodynamics of Materials</td>
</tr>
<tr>
<td>4.440J</td>
<td>Building Structural Systems I [1.056J]</td>
</tr>
<tr>
<td>5.07J</td>
<td>Biological Chemistry I [20.507J]</td>
</tr>
<tr>
<td>5.12</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>5.60</td>
<td>Thermodynamics and Kinetics</td>
</tr>
<tr>
<td>5.61</td>
<td>Physical Chemistry</td>
</tr>
<tr>
<td>6.00</td>
<td>Introduction to Computer Science and Programming</td>
</tr>
<tr>
<td>6.002</td>
<td>Circuits and Electronics</td>
</tr>
<tr>
<td>6.041</td>
<td>Probabilistic Systems Analysis</td>
</tr>
<tr>
<td>6.042J</td>
<td>Mathematics for Computer Science [18.062J]</td>
</tr>
<tr>
<td>6.071J</td>
<td>Electronics, Signals, and Measurement [22.071J]</td>
</tr>
<tr>
<td>7.03</td>
<td>Genetics</td>
</tr>
<tr>
<td>7.05</td>
<td>General Biochemistry</td>
</tr>
<tr>
<td>8.03</td>
<td>Physics III</td>
</tr>
<tr>
<td>8.04</td>
<td>Quantum Physics I</td>
</tr>
<tr>
<td>8.20</td>
<td>Introduction to Special Relativity</td>
</tr>
<tr>
<td>8.21</td>
<td>Physics of Energy</td>
</tr>
<tr>
<td>8.28J</td>
<td>Introduction to Astronomy [12.402J]</td>
</tr>
<tr>
<td>8.286</td>
<td>The Early Universe</td>
</tr>
<tr>
<td>9.01</td>
<td>Introduction to Neuroscience</td>
</tr>
<tr>
<td>10.301</td>
<td>Fluid Mechanics</td>
</tr>
<tr>
<td>12.001</td>
<td>Introduction to Geology</td>
</tr>
<tr>
<td>12.002</td>
<td>Physics and Chemistry of the Terrestrial Planets</td>
</tr>
<tr>
<td>12.003</td>
<td>Physics of the Atmosphere and Ocean</td>
</tr>
<tr>
<td>12.102</td>
<td>Environmental Earth Science</td>
</tr>
<tr>
<td>12.400</td>
<td>The Solar System</td>
</tr>
<tr>
<td>12.425</td>
<td>Extrasolar Planets: Physics and Detection Techniques</td>
</tr>
<tr>
<td>14.30</td>
<td>Introduction to Statistical Method in Economics</td>
</tr>
<tr>
<td>16.001</td>
<td>Unified Engineering I</td>
</tr>
<tr>
<td>18.03</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>18.034</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>18.036</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>18.05</td>
<td>Introduction to Probability and Statistics</td>
</tr>
<tr>
<td>18.06</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>18.700</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>20.110J</td>
<td>Thermodynamics of Biomolecular Systems [2.772J]</td>
</tr>
<tr>
<td>22.01</td>
<td>Introduction to Ionizing Radiation</td>
</tr>
<tr>
<td>22.02</td>
<td>Introduction to Applied Nuclear Physics</td>
</tr>
</tbody>
</table>

Laboratory Requirement

The Laboratory Requirement (one subject of 12 units or two subjects of 6 units) is met by enrolling in subjects designed for this purpose, and normally is fulfilled in the first two years. The available subjects are listed below.

A typical laboratory subject offers the student an opportunity to set up and carry out experiments dealing with phenomena of the natural world. Under faculty supervision, the student plays a substantial role in planning the design of the experiment, selecting the measurement technique, and determining the procedure to be used for validation of the data.

Hypotheses are formulated and then tested by comparing them with the results of the experiments. The student then compares and discusses the experimental results in terms of the current state of knowledge and prepares progress reports and final reports of the work.

The laboratory subjects call for a major commitment of the student’s attention to one or more experimental problems and emphasize as much as possible work of project type rather than routine experimental exercises. The subjects are designed to stimulate the student’s resourcefulness and ideas.

The Laboratory Requirement is not intended primarily to teach specific techniques for later experimental work, provide broad coverage of a particular field, or complement a specific subject. The laboratory subjects are planned to give each student, at an early stage of his or her educational experience at MIT, an opportunity to work on one or more experimental problems, exercising the same type of initiative and resourcefulness as a professional would in similar circumstances. If the subject is more than 12 units, 12 units will be used to meet the Laboratory Requirement and the additional units will be counted as elective units.

Laboratory Requirement Subjects

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.101</td>
<td>Introduction to Civil and Environmental Engineering Design I (0-3-3)</td>
</tr>
<tr>
<td>1.102</td>
<td>Introduction to Civil and Environmental Engineering Design II (1-3-2)</td>
</tr>
<tr>
<td>1.106</td>
<td>Environmental Fluid Transport Processes and Hydrology Laboratory (0-4-2)</td>
</tr>
<tr>
<td>1.107</td>
<td>Environmental Chemistry and Biology Laboratory (0-4-2)</td>
</tr>
<tr>
<td>2.008</td>
<td>Design and Manufacturing II (3-3-6) [gives 6 units of laboratory credit]</td>
</tr>
<tr>
<td>2.017J</td>
<td>Design of Electromechanical Robotic Systems (3-4-5) [1.015J]</td>
</tr>
<tr>
<td>2.671</td>
<td>Measurement and Instrumentation (3-3-6)</td>
</tr>
<tr>
<td>2.672</td>
<td>Project Laboratory (0-3-3)</td>
</tr>
<tr>
<td>2.014</td>
<td>Materials Laboratory (1-4-7)</td>
</tr>
<tr>
<td>4.411</td>
<td>Building Technology Laboratory (2-4-6)</td>
</tr>
<tr>
<td>5.310</td>
<td>Laboratory Chemistry (2-8-2)</td>
</tr>
<tr>
<td>5.35</td>
<td>Introduction to Experimental Chemistry (2-8-2)</td>
</tr>
<tr>
<td>6.01</td>
<td>Introduction to EECS I (2-4-6) [gives 6 units of laboratory credit]</td>
</tr>
<tr>
<td>6.02</td>
<td>Introduction to EECS II (4-4-4) [gives 6 units of laboratory credit]</td>
</tr>
<tr>
<td>6.101</td>
<td>Introductory Analog Electronics Laboratory (2-9-1)</td>
</tr>
<tr>
<td>6.102</td>
<td>Introductory RF Design Laboratory (2-9-1)</td>
</tr>
<tr>
<td>6.111</td>
<td>Introductory Digital Systems Laboratory (3-7-2)</td>
</tr>
<tr>
<td>6.115</td>
<td>Microcomputer Project Laboratory (3-6-3)</td>
</tr>
<tr>
<td>6.131</td>
<td>Power Electronics Laboratory (3-6-3)</td>
</tr>
<tr>
<td>6.141J</td>
<td>Robotics: Science and Systems I (2-6-4) [16.405J]</td>
</tr>
<tr>
<td>6.161</td>
<td>Modern Optics Project Laboratory (3-5-4)</td>
</tr>
<tr>
<td>6.163</td>
<td>Strobe Project Laboratory (2-8-2)</td>
</tr>
<tr>
<td>6.173</td>
<td>Multicore Systems Laboratory (3-8-4)</td>
</tr>
<tr>
<td>6.182</td>
<td>Psychoacoustics Project Laboratory (3-6-3)</td>
</tr>
</tbody>
</table>
To satisfy the Physical Education Requirement undergraduates entering MIT as freshmen must take four physical education courses (for eight points) and complete the swimming requirement. Transfer students need to complete four points (two classes) as well as the swimming requirement by the end of their sophomore year. Students must attend 11 sessions to receive the two points for a physical education course.

Students find it best to complete their four courses during their freshman year; however, students are responsible for completing their Physical Education Requirement by their sophomore year. Students must attend 11 sessions to receive the two points for a physical education course.

Physical education registration is open to the entire MIT community. Registration is conducted online at http://mitpe.com/. Information on registration can be obtained through WebSIS at http://student.mit.edu/. Registration dates are posted in the Academic Calendar.

Physical education courses offered last year included Group Exercise (PiYo, Kickboxing, Pilates, Step, Yoga), Archery, Backpacking/Hiking, Badminton, Cross-Country Ski, Dance (Tango, Salsa, Square), Fencing, Figure Skating, Golf, Ice Hockey, Kayaking, Martial Arts (Aikido, Jiujitsu, Sport Taekwondo), Pistol, Ropes Adventure, Running/Jogging, Sailing, SCUBA, Self Defense, Skating, Skiing/Snowboarding, Soccer (indoor), Squash, Tennis, Ultimate Frisbee, Volleyball, and Weight Training.

Students must wear appropriate attire for activity classes. Most classes provide all necessary equipment. Students must supply skates and sticks for ice hockey classes, and rackets for tennis classes. Nonmarking court shoes are required for squash and tennis. Lab fees are required for some courses. Undergraduate and graduate students must activate their MIT ID card to gain access to all sport facilities at no additional charge during the academic year.

For further information contact the Physical Education Office, Room W35-297X, 617-253-4291, mitpe@mit.edu, or visit http://mitpe.com/.

ACADEMIC AND RESEARCH OPTIONS

Independent Activities Period

Independent Activities Period (IAP) is a four-week period in January during which faculty and students are freed from the rigors of regularly scheduled classes for flexible teaching and learning and for independent study.
and research. IAP is part of the academic program of the Institute—the “1” month in MIT’s “4-1-4” academic calendar. Students are encouraged to explore the educational resources of the Institute by taking specially designed subjects, arranging individual projects with faculty members, or organizing and participating in IAP activities. They may also pursue interests independently either on or off campus.

Departmental programs may require students to complete a subject (of no more than 12 units) during one IAP.

Activities

More than 600 activities are offered each year on a wide range of topics, both academic and nonacademic. In addition, “special topic” subjects exist in most departments, for which students can arrange credit for individual work.

Many IAP activities, both credit and noncredit, are organized each fall. They are advertised, beginning in early November, on the IAP website at http://web.mit.edu/iap/.

Organizing Activities

Nonacademic activities may be organized or attended by members of the MIT Community: faculty, students, and employees. Tips on organizing a IAP activity are available on the web at http://web.mit.edu/iap/. Organizers may approach MIT departments and organizations to help defray expenses.

Students find organizing IAP activities a rewarding challenge. For many, it is their first opportunity to develop and teach a program from their own ideas. In doing so, they acquire organizational and leadership skills that prove invaluable to their careers.

Tuition, Room, and Board

Regular students paying full tuition in either the fall or spring term do not have to pay additional tuition or room fees to the Institute during IAP. The meal plan spans the entire academic year and includes IAP. Students who have not been charged full tuition in either the fall or spring term are subject to additional tuition charges and should consult the Registrar’s Office, Room 5-119, 617-258-6409.

Academic Credit and Grades

Students should follow directions published on MIT’s IAP website at http://web.mit.edu/iap/ regarding registration for subjects. In addition to the organized subjects, students may make arrangements to earn credit for independent work under faculty supervision. The total credits a student can earn during IAP is limited to 12 credit units. Credits received by freshmen during IAP are not counted toward their credit limits for the spring or fall term.

All credit-bearing subjects during IAP are to be graded following the grading system approved for that subject number. A subject can be graded P/D/F during IAP only if it has been approved with P/D/F grading. Similarly, the number of units awarded must be as specified for that subject. Faculty sometimes offer newly organized credit activities under special problem subject numbers for which credit units are “to be arranged.”

In order for students to receive credit for work done in IAP, grades must be submitted to the Registrar’s Office by the deadline at the end of IAP given in the academic calendar. If a grade is received after the Add Date of the succeeding term and the student did not register in the subject during IAP, the student must petition in order to receive credit. IAP credit will not be given if the grade is received after the end of the succeeding spring term.

Students may view their IAP grades on WebSIS shortly after the start of the spring term. Students who do not receive grades when expected should check promptly with their instructors or the Registrar’s Office to ensure the grades are submitted and recorded.

Special Students

Applications for special student status solely for IAP will not be accepted. Special students admitted to the fall or spring term must consult the Admissions Office concerning their status during IAP; they do not automatically have IAP privileges. If the special student has paid full tuition during the fall term or is admitted to do so in the spring, there will not be an additional tuition charge for IAP. If the student has not been paying full tuition, a charge for the IAP units will be added to either the fall or spring term up to a maximum of full tuition for the term.

Undergraduate Research Opportunities Program

The Undergraduate Research Opportunities Program (UROP) invites undergraduates to participate in a wide range of research activities that are available in every academic department and most interdisciplinary laboratories and centers in collaboration with MIT faculty.

There are many advantages to becoming involved in such pursuits as early as possible in an undergraduate career: establishing ties to faculty; investigating a potential major; acquiring data-gathering and laboratory techniques; exploring the frontiers of a field; undertaking topics not amenable to the classroom; facing a real-world problem; and establishing a focus for educational experiences. Through UROP, students may gain a better understanding of the intellectual process of inquiry, while having the opportunity to experience personal and professional growth. Students may earn pay or academic credit, or may work on a volunteer basis. Whatever the chosen mode, all UROP work is expected to be worth academic credit.

Guidelines for participating are available online at http://web.mit.edu/urop/. This website lists UROP contacts for Institute departments, laboratories, and centers. While these people are prepared to assist students, a certain amount of footwork and negotiation is required to achieve a satisfying collaboration. The UROP experience is unlike any other; its benefits and rewards are great, but expectations and standards are commensurate. For advice and assistance, contact UROP staff in the Office of Undergraduate Advising and Academic Programming, Room 7-104, 617-253-7306, fax 617-258-8816, urop@mit.edu.

Undergraduate Seminars and Freshman Advising Seminars

Undergraduate seminars, offered in the fall and spring terms, provide undergraduates with an opportunity to interact closely with faculty on topics of current interest. Freshman Advising Seminars are a special subset of seminars open only to first-term freshmen, in which the seminar leader is also the freshman advisor to the seminar participants. Seminars vary
both in style and topic. Most are oriented to small group discussion, but others have speakers, go on field trips, or engage in hands-on learning. All seminars carry six units of credit, and the class size is restricted to a small group. All seminars are graded P/D/F.

Information about undergraduate seminars, including titles and descriptions, can be found at http://student.mit.edu/catalog/Undergraduate_Seminars.html. Information about Freshman Advising Seminars, including title, descriptions, and application information for incoming freshmen, can be found at http://web.mit.edu/firstyear/. These websites are maintained by the Office of Undergraduate Advising and Academic Programming, Room 7-104, 617-253-6771, firstyear-www@mit.edu.

Edgerton Center
The Edgerton Center provides resources and opportunities for students to pursue hands-on projects, activities, and seminars. The center can provide a workspace, test equipment, access to the Student Machine Shop, or simply advice and encouragement.

The laboratory, classroom, and studio are located in Strobe Alley on the fourth floor of Building 4. For more information on facilities, contact Jim Bales at bales@mit.edu or Amy Fitzgerald at amyfitz@mit.edu. The Student Shop (http://web.mit.edu/Edgerton/www/Shop.html) is located in Room 4-403 and offers regular training sessions; contact manager Mark Belanger at mdbelang@mit.edu for access and training.

Typical subjects offered include introductory electronics, digital photography, seminars for public service, and alternative energies. In addition, the stroboscope project laboratory (6.163) is taught each term. During IAP, staff members lead workshops teaching technical skills that many students find useful for UROP projects. A listing of the subjects offered can be found at http://web.mit.edu/Edgerton/www/Courses.html.

The Edgerton Center is the joint sponsor of the Service Learning Initiative at MIT with the Public Service Center, bringing community service projects into the academic curriculum. It is also a cosponsor of the IDEAS Competition, promoting innovative projects that benefit communities, both local and international. For more information about Service Learning opportunities contact servicelearning@mit.edu, or call 617-258-0872. For more information on the IDEAS Competition, email ideas-admin@mit.edu.

D-Lab is a yearlong series of classes and field trips that begins in the fall with a class on international development and appropriate technology, SP.722J/11.025J/11.472. During IAP, students travel overseas to work with local community partners in developing countries to identify projects they can work on during the spring term design seminars, including subjects SP.722J/2.722J and SP.723. For more information about D-Lab, visit the webpage at http://d-lab.mit.edu/ or contact Victor Grau Serrat at 617-253-5985, victoris@mit.edu.

The Edgerton Center Outreach Program gives MIT students an on-campus opportunity to teach engineering and science to 4th through 8th graders from area schools. Topics include mechanical engineering, circuits, optics, biology, and more. Contact Amy Fitzgerald at 617-253-7931 or amyfitz@mit.edu to become involved.

The center also supports a range of hands-on student activities, including the Solar Electric Vehicle Team, BELIN (Biological Energy Interest Group), FIRST Robotics Team, Formula SAE, and a variety of other engineering groups. If you are interested in starting up a new team, contact Steven Banaaert, sgtist@mit.edu.

In addition, Professor Harold Edgerton’s high-speed photography legacy lives on with the Strobe Alley exhibition of Edgerton photographs. Hands-on experiments in science and engineering are attractions of the corridor laboratory as well.

The center offers UROP projects for students in engineering design, high-speed video motion analysis, scientific photography, and community outreach. Positions are also available for student instructors at the center throughout the year.

The faculty director of the Edgerton Center is Professor J. Kim Vandiver, Room 4-408, kimv@mit.edu. For general information, contact Sandi Lipnoski, Room 4-408, 617-253-4629, slipnosk@mit.edu, or visit http://web.mit.edu/edgerton/.

Grading Options
Grading options are intended to provide students with the opportunity to explore new and challenging subjects and to broaden their educational experience, with reduced effect on term and cumulative ratings. These options must be approved by the student’s advisor and designated by Add Date.

Sophomore Exploratory. Sophomores may designate one subject as exploratory in each of their fall and spring terms. An exploratory subject is one in which the student may either accept the grade awarded in the subject or change the subject to listener status through Registration Day of the succeeding term. Students receive no credit for listener subjects, which do not appear on transcripts. Any subject may be designated as exploratory—including an Institute, departmental, or minor requirement or a cross-registered subject taken at another school.

Junior-Senior P/D/F. A student may take a total of two subjects to be graded P, D, or F during his or her junior and senior years, where P indicates C or better performance (C- with modifier used within MIT). Such subjects may not be used to fulfill the General Institute Requirements or departmental or minor requirements. However, the subjects will count in the units completed beyond the General Institute Requirements.

Study at Other Universities
There are a number of opportunities for MIT undergraduates to study at other universities, including study abroad, domestic study away, and cross-registration programs with local universities. Students who spend a term or a year studying abroad or at another U.S. university find that in addition to the intellectual benefit, they are enriched by day-to-day exposure to different cultural and/or social experiences. Through the cross-registration programs students may take subjects not offered at MIT.

Study Abroad Opportunities
Cambridge-MIT Undergraduate Student Exchange Program through the Cambridge-MIT Undergraduate Student Exchange Program (CME), MIT students can spend their junior year studying at the University of Cambridge in England.

Founded in 1209, the University of Cambridge consists of 31 self-governing colleges where students live and study in a supportive educational environment. Lectures, laboratories, and project work are organized by the
University; the colleges organize small-group sessions (“supervisions”) designed to complement the lectures. In addition to teaching, research is of major importance at Cambridge. Since the beginning of the 20th century, more than 60 members of the University of Cambridge have won Nobel Prizes.

MIT students who study for a year at Cambridge receive sufficient transfer credit to permit normal progress toward their MIT degree. Participating departments include Aeronautics and Astronautics; Biology; Brain and Cognitive Sciences; Chemical Engineering; Chemistry; Civil and Environmental Engineering; Earth, Atmospheric and Planetary Sciences; Economics; Electrical Engineering and Computer Science (including Course 6-3); History; Materials Science and Engineering; Mathematics; Mechanical Engineering; and Physics.

While on exchange, MIT students pay tuition to MIT; they are billed at Cambridge for the costs of room and board only. While away at Cambridge during the fall and spring semesters, a student maintains full-time student status at MIT.

Interested students should discuss their plans with CME faculty coordinators in the departments as early as possible. For further information, students should contact Dean Brian Wahl, 617-715-5331, bwahl@mit.edu, or their departments. A list of CME faculty coordinators and administrators in each department can be found at http://web.mit.edu/cmi/ue/cme-mit/mit-how-to-apply.html.

MIT-Madrid Program

The MIT-Madrid Program gives students the opportunity to study in Madrid for the spring term during their sophomore or junior year. Depending upon major and interests, students can choose science and engineering courses at the Universidad Politécnica de Madrid and/or humanities, arts, and social sciences courses at the Universidad Complutense de Madrid; instruction and coursework are in Spanish. These are leading universities in Spain, each with its distinguished tradition and history. In addition to academic courses, students can participate in an internship during this program. Students who plan to participate must be in good academic standing and have taken Spanish IV at MIT or its equivalent. MIT-Madrid Program participants are placed individually with Spanish families in homestays. For more information visit http://web.mit.edu/studyabroad/before/mit-madrid.html.

IAP-Madrid Program

The IAP-Madrid Program is a Spanish II language program open to MIT undergraduate and graduate students. This is an MIT course taught by an MIT faculty member. For more information contact the Global Education Office, Room 12-189, studyabroad@mit.edu.

MISTI

MISTI (MIT International Science and Technology Initiatives) offers a range of study abroad opportunities in diverse locations with carefully planned programs and facilitated experiential learning opportunities. MIT students can choose science and engineering courses at the Universidad Complutense de Madrid and/or humanities, arts, and social sciences courses at the Universidad de Alcalá de Henares. Instruction and coursework are in Spanish.

While on exchange, MIT students pay tuition to MIT; they are billed at the host university for the costs of room and board only. While away at the host university during the fall and spring semesters, a student maintains full-time student status at MIT.

Interested students should discuss their plans with CME faculty coordinators in the departments as early as possible. For further information, students should contact Dean Brian Wahl, 617-715-5331, bwahl@mit.edu, or their departments. A list of CME faculty coordinators and administrators in each department can be found at http://web.mit.edu/cmi/ue/cme-mit/mit-how-to-apply.html.

Departmental Exchange Programs

The Department of Aeronautics and Astronautics offers study at the University of Pretoria in South Africa. For more information contact Professor Mark Neubert, 617-253-6835, mneubert@mit.edu.

The Department of Architecture has two exchange programs, one with Delft University of Technology in the Netherlands and the other with the University of Hong Kong. For more information visit http://architecture.mit.edu/undergraduate-foreign-exchange.html.

The Department of Materials Science and Engineering has an exchange program with Oxford University. For more information contact Professor Linn Hobbs, 617-253-6835, hobbs@mit.edu.

The Department of Political Science and Program in Science, Technology, and Society are starting an exchange program with Sciences Po in Paris, France. For more information, contact the Global Education Office, Room 12-189, studyabroad@mit.edu.

Other Study Abroad Options

MIT students may also apply for admission directly to foreign institutions that offer study abroad programs or to a study abroad program administered by another US institution or a study abroad provider. Examples of such opportunities include study at l’École Polytechnique in France, a year-long or summer program at the London School of Economics, and programs at Australian universities. To explore these options, and many other exciting opportunities around the world, schedule an appointment with the Global Education Office, Room 12-189.

Students interested in study abroad should begin planning as early as possible. They should meet with a staff member in the Global Education Office and work out their plans with a faculty advisor and appropriate transfer credit examiner(s) in the department. They also must complete a Worksheet for Planning Study Abroad/Domestic Study Away (http://web.mit.edu/studyabroad/before/forms.html) in order to gain approval for study abroad. While on an approved study abroad program during the fall and/or spring term(s), a student maintains full-time student status at MIT. Although it is most common to study abroad during the junior year, it is also possible to participate in a study abroad program in the sophomore year or, in some cases, in the senior year. Study during IAP and/or summer are options as well.

Financial aid is portable for study abroad. Students who receive financial aid at MIT are advised to discuss their study abroad plans with the Student Financial Aid Office at least one term prior to the term in which they wish to commence study abroad. This will help students develop the best possible financial plans for their time abroad.

Numerous institutions offer programs abroad taught in English. It is possible to study in a foreign country without prior knowledge of the host country’s language. However, a working command of the language can add greatly to the overseas experience. Even a student without prior language skills can usually achieve a good level of proficiency in a foreign language by the beginning of the junior year if he or she begins language study by spring term of freshman year.

With proper planning and preparation, students who successfully complete an approved program of study abroad receive transfer credit toward their MIT degree. While at the host institution, students must arrange to
have an official transcript sent directly to the MIT Registrar’s Office showing coursework and final grade(s) completed at the outside institution. Upon return, they must submit a completed Request for Additional Credit Form, signed by the appropriate transfer credit examiner(s).

For further information, contact the Global Education Office, Room 12-189, 617-253-6057, studyabroad@mit.edu, or visit http://web.mit.edu/geo/.

Domestic Study Away

Students may choose to spend from one term to one year studying at another academic institution within the US. Students studying at another US university usually pay tuition to the outside institution rather than to MIT. While on an approved domestic study away program during the fall and/or spring term(s), students maintain full-time student status at MIT. Students interested in domestic study away should make an appointment with the Global Education Office, 12-189, studyabroad@mit.edu.

To qualify for Domestic Year Away status, students must show that their proposed program of study draws upon resources available at the outside institution that are not generally available at MIT, or at the institutions with which MIT has cross-registration privileges. In addition, a planned program of study should be consistent with an overall degree program at MIT. Students must be accepted by a school of established academic merit and undertake a workload comparable to that at MIT. Students planning to spend time studying at another academic institution in the US need to work out their plans with a faculty advisor and appropriate transfer credit examiner(s) and must complete a Worksheet for Planning Study Abroad/Domestic Study Away (http://web.mit.edu/studyabroad/before/forms.html).

With proper planning and preparation, students who successfully complete an approved program of study at another US university receive transfer credit. While at the host institution, students must arrange to have an official transcript sent directly to the MIT Registrar’s Office showing coursework and final grade(s) completed at the outside institution. Upon return, they must submit a completed Request for Additional Credit Form, signed by the appropriate transfer credit examiner(s).

For further information, contact the Global Education Office, Room 12-189, studyabroad@mit.edu or visit http://web.mit.edu/geo/.

Cross-registration Programs

Harvard University

MIT undergraduates are permitted to take subjects at Harvard University (except Harvard Business School, Harvard Extension School, and Harvard Summer School) for degree credit at no extra charge. This cooperative arrangement is not applicable to the summer session. In general, MIT students take subjects at Harvard which are not offered regularly at MIT. Cross-registration is limited to upperclass students who must be regularly enrolled at MIT and paying full tuition for the term in question. No more than half of a student’s registration (up to a maximum of 24 units) may be taken at Harvard in any one term.

Arrangements are made through the School of Humanities, Arts, and Social Sciences Dean’s Office, Room 4-240. When appropriate, Harvard subjects can count toward fulfillment of the HASS Requirement; in most cases, students must submit a petition to the Subcommittee on the HASS Requirement in order for such subjects to count toward fulfillment of the HASS Requirement. Letter grades earned in Harvard subjects appear on the transcripts of MIT undergraduates. Detailed information about the Harvard cross-registration option for undergraduates is available at http://web.mit.edu/shass/undergraduate/programs/cross-reg.shtml.

Wellesley College

MIT students may cross-register for any courses at Wellesley, if they present the necessary prerequisites. This exchange program is not applicable to IAP or the summer session. Wellesley is a small, liberal arts college for women located on a 500-acre campus 17 miles west of Cambridge.

Through the Wellesley Education Department, MIT students may earn Massachusetts certification to teach at the elementary or high school level. This certification is recognized by many other states.

Students generally cannot substitute Wellesley subjects for MIT Science Requirement subjects (Chemistry, Biology, Physics, and Calculus) or Institute Laboratory Requirement subjects. They may take Wellesley subjects to satisfy Restricted Electives in Science and Technology (REST) Requirements, but need the approval of the Committee on Curricula.

Wellesley subjects may be designated as part of the Concentration for the Humanities, Arts, and Social Sciences at the discretion of the designated advisor in that field of concentration. Students may use Wellesley courses as unrestricted electives toward fulfilling the Humanities, Arts, and Social Sciences Requirement, but they must petition to do so.

Wellesley subjects may be used to fulfill departmental major and minor requirements with the permission of a faculty advisor.

For upperclass students, letter grades will be recorded for Wellesley subjects, unless the student designates a Wellesley subject as one of his or her two electives to be graded P, D, or F. Grades for freshmen will be converted to the MIT first-year grading system.

Students may take physical education classes at Wellesley on a space-available basis and may apply these classes toward their MIT physical education requirements. MIT students receive full library privileges at the Wellesley College Library.

Wellesley operates free weekday bus service between the two campuses. The service is open to everyone with an MIT or Wellesley identification card, but priority will be given to cross-registered students. The ride is about 50 minutes each way.

Detailed information on registration procedures is available at http://web.mit.edu/registrar/reg/req/MITtoWellesley.html. The Exchange Office at Wellesley is located in Room 339C, Green Hall, 781-283-2325.

Massachusetts College of Art and Design and the School of the Museum of Fine Arts

MIT undergraduates may cross-register at the Massachusetts College of Art and Design (MassArt), a state college, and the School of the Museum of Fine Arts (SMFA), a private school affiliated with the Museum of Fine Arts Boston. Both are highly respected art schools in Boston with studio classes such as drawing, painting, and printmaking that are not offered for credit at MIT.

Classes taken at MassArt and SMFA through the cross-registration program are graded P, D, or F and may not be used to satisfy Institute, departmental, or minor requirements. They may be used toward unrestricted
elective credit. Only one subject from either school may be taken in a semester. This program is not applicable to IAP or the summer session.

Students must complete a cross-registration form, available in the Student Services Center, Room 11-120, by the deadline set by the MIT Registrar. Detailed information is available at http://visualarts.mit.edu/about/xreg_art.html.

Internships Abroad
In addition to study abroad programs, MIT students may gain international experience by working as interns in companies or research institutes abroad. The MIT International Science and Technology Initiatives (MISTI) offer internship opportunities in Brazil, China, France, Germany, India, Israel, Italy, Japan, Mexico, and Spain. Internships range from three months to one year; all expenses are covered. The program is open to both undergraduate and graduate students, and arrangements after graduation are also possible. MISTI sends over 400 students abroad each year. For more information, see the description of the Center for International Studies in Interdisciplinary Research and Study in Part 3 or visit http://web.mit.edu/misti/.

CAREER AND PROFESSIONAL OPTIONS

Global Education and Career Development Center
The Global Education and Career Development Center (GECDC) empowers MIT students and alumni to achieve lifelong success through seamless access to significant global experiences, comprehensive and holistic career services, and mutually beneficial connections with employers and graduate schools. It accomplishes this through four primary programs:

- Career Planning and Preparation
- Preprofessional Advising
- Employment Recruitment Services
- Global Education

Through career planning and preparation programs students learn to make informed career decisions and find opportunities related to their professional objectives. Students are encouraged to begin their career education early, including meeting with a counselor and visiting the center’s website (http://careers.mit.edu/) to learn about available resources. Career development is an ongoing process that includes self-assessment, competency development, research into career options, experiential learning, and preparation for the job search or for the graduate/professional school application process.

These programs help undergraduate and graduate students explore and learn about:

- The relationship between what they are doing at MIT and life after graduation
- Life skills required to succeed in the competitive global marketplace and contribute to society
- Career options in relation to choice of major
- Internships, externships, study abroad, fellowships, and other experiential learning opportunities
- Writing a resume and cover letter, networking with alumni and industry professionals, conducting informational and formal interviews, negotiating salary, and participating in career fairs
- Finding employment after graduation

Admitted pre-freshmen can apply for the Freshman/Alumni Summer Internship Program, a 6-unit graded seminar (SP.800/SP.801) that offers career development training. The program accepts 100 students each year; applications are accepted on a first-come, first-served basis from June 1 through August 14 of the summer prior to matriculation at MIT.

Students interested in exploring and applying to law or medical, dental, or other health-related professional schools are supported by the Preprofessional Advising staff in the GECDC, Room 12-170. Students from all majors can apply to law and health-related professional schools; however, individuals interested in a health profession must fulfill certain subject requirements. Students should visit http://web.mit.edu/career/www/preprof/ for information on admissions criteria, the application process, the advisor assignment process, and services provided.

The center’s employment recruiting program provides students with opportunities for internships, summer jobs, and full-time positions after graduation. Hundreds of employers recruit students through a password-protected recruitment management system and on-campus recruiting visits. Many employers also host presentations and participate in career fairs, which provide the opportunity for students at any stage in their academic program to discuss employment prospects and find out about careers at different organizations.

The Global Education Office provides comprehensive support to undergraduates interested in studying abroad as well as expertise and consultation to faculty and program directors. The office acts as a one-stop office for information on MIT global education opportunities, helping students investigate and prepare for global opportunities that best fit their academic and life interests as well as integrating the global experience into their life at MIT and career. The office manages study abroad programs and processes directly and works with partner programs such as the UROP Office, Public Service Center, and MISTI to support other opportunities. It also provides support and guidance to students preparing applications for distinguished fellowships, including but not limited to the Rhodes, Marshall, Mitchell, Gates, and Fulbright fellowships. For further information, see the section on Academic and Research Options in this chapter.

For further information, contact the Global Education and Career Development Center, Rooms 12-189 (Global Education) or 12-170 (Career Development), 617-253-4733, fax 617-253-8457, or visit http://gecdc.mit.edu/.

Teacher Training and Education
Options for MIT students interested in teaching elementary or secondary school range from exploratory activities such as tutoring and UROP activities to formal certification programs.

For students who wish to explore teaching as a career (in the short or long term), the MIT/Wellesley Scheller Teacher Education Program (STEP), housed in the Department of Urban Studies and Planning, provides the
requirements for Massachusetts State Teacher Certification in math and science at the middle and high school levels (and can be transferred to many other states). Courses offered through the STEP are also useful for students preparing to teach at the college level, as well as those who wish to apply their work to related research fields such as curriculum design or educational technology. Those going into industry find that the STEP can contribute to work in advancing educational programs, as well as work on human-computer interface and software development.

Education subjects that focus on math/science teaching at the secondary level (grades 5-12) are offered through Course 11 Urban Studies and Planning. To receive Massachusetts Teacher Certification, students must complete supervised practice teaching and additional coursework at MIT, or through Wellesley College. A HASS concentration in Course 11 with emphasis in education is offered as part of the undergraduate curriculum.

For additional information see the STEP home page at http://education.mit.edu/tep/.

To explore K-12 teaching opportunities less formally, students may volunteer as tutors or teacher assistants in local schools, offer informal classes through the Educational Studies Program, or work with faculty members who conduct research in schools. (Refer to the UROP Directory for a list of faculty members interested in such research.) The Student Services Center, Room 11-120, and the Public Service Center, Room 3-123, can also provide assistance.

ROTC Programs

Military training has existed at MIT ever since the Institute opened its doors in 1865. More than 12,000 officers have been commissioned from MIT, of whom more than 150 have reached the rank of general or admiral. Students who are United States citizens or who have applied for citizenship, are of good moral character, and are medically qualified for military service, may enroll in the programs for physical training credit and leadership training. Non-citizens who fulfill naturalization requirements for citizenship prior to graduation may enroll and participate in the four-year nonscholarship programs. Any full-time MIT student may participate in the programs for leadership training.

All three programs have the following characteristics in common:

- Application is voluntary.
- Admission is selective.
- All admit men and women.
- Enrollment as a nonscholarship freshman or sophomore does not involve a military service obligation.
- Federal law and Department of Defense regulations presently exclude from the Armed Forces people who engage in homosexual conduct. (ROTC academic classes, however, are open to all students regardless of their sexual orientation.)
- Most students enter the program at the beginning of their freshman year. However, entry up to the beginning of the junior year is available.
- To be eligible for a commission as an officer in the Armed Forces, students must complete the Reserve Officers’ Training Corps (ROTC) program, including summer training, and earn their bachelor’s degree.
- Upon request by the student, any required summer employment financial aid contribution can be waived if summer training makes such employment impossible.
- Nonscholarship students may compete for ROTC scholarships, many of which cover full tuition and fees, and range from one to three-and-a-half years for the Army, Air Force, and Navy.
- Enrollment as a scholarship recipient beyond the freshman year generally creates an obligation of four years of active duty service in the Army, Navy, or Air Force, or in some cases, for alternative service in the National Guard or Reserve.

Aerospace Studies (AS), Military Science (MS), and Naval Science (NS) subjects are not included in a student’s grade point average, and the credits do not count toward a degree. These subjects can be applied toward the Physical Education Requirement. In some cases, the ROTC programs may include departmentally approved subjects that provide academic credit.

Students who accept a contract to become an officer must maintain acceptable levels of academic performance and physical fitness. ROTC academic performance requirements may exceed Institute standards. Breach or willful evasion of the contract could lead to a period of enlisted service or to repayment of scholarship funds.

Specific information concerning benefits, ROTC training programs, career opportunities, and contractual obligations can be obtained from the program offices listed in this section.

Air Force ROTC

The Air Force ROTC program provides students the opportunity to become commissioned officers in the Air Force while completing their undergraduate or graduate degree. It is designed to develop the leadership and management skills essential for an Air Force officer while preparing the student for assignment in a career field related to his or her academic specialty.

Training Program

The program consists of classroom and leadership laboratory work during the four years of academic study and one summer training period of four weeks between the second and third years at an Air Force base. Students with three academic years remaining may enroll in the four-year program by combining the first two years.

The first two years of the four-year program are known as the General Military Course (GMC). Upon completion of the GMC and summer field training, students may compete for entry into the Professional Officer Course (POC). Selection into the POC is based on academic aptitude and performance, successful completion of the GMC and field training, and recommendation of the professor of Aerospace Studies.

Two-Year Program

The two-year program is for those students who do not complete the first two years of the four-year Air Force ROTC program. Such students may apply if they have two years remaining in their academic program at MIT. In lieu of completing the GMC, these students receive five weeks of field training at an Air Force base during the summer between their two years.
They receive the same benefits and complete the same academic program required of POC members in the four-year program.

Scholarships

Air Force ROTC scholarships are available on a competitive basis to qualified applicants. Scholarships pay up to full tuition, include $900 per year for textbooks, and a $300–500 nontaxable allowance each month. Two- to three-and-a-half year scholarships are offered on a competitive basis in addition to the four-year scholarships offered to high school seniors. The detachment commander also has three-and-a-half year full-tuition scholarships to award to outstanding freshmen (technical majors) and $18,000 per year scholarships to award to non-technical students. All eligible recipients of partial scholarships have the opportunity to compete for scholarship upgrades ranging from 80% to 100% tuition.

Classroom Instruction

The Aerospace Studies curriculum emphasizes the history, organization, and mission of the Air Force, including its role in national defense strategy and American society. Academic classes and leadership laboratory activities provide training and practical experience in developing leadership and managerial skills.

Students enrolled in the first two years of the program attend one hour of class and two hours of Leadership Laboratory (LLAB). In the final two years of the program, the class time is three hours per week with the same LLAB requirement. LLAB has always been a highlight of the program, introducing cadets to a variety of motivational and interactive activities. Aside from standard drill practice, students participate in guest-speaker events, athletic competitions, self-defense class, marksmanship training, rock climbing, career day, and much more. Cadets must also complete two hours of physical fitness training each week.

Extracurricular Events

Throughout the four years of the program, cadets also have many optional extracurricular opportunities to expand their leadership skills and interact with the active duty Air Force. Many students visit Air Force bases all over the country, participate in military orientation flights, receive civilian flight training, and offer their service to others in our national service organization, the Arnold Air Society. In the summer, students can also apply for a variety of programs—15 in all—including flying gliders, participating as a field engineer, research internships, or foreign language immersion by living abroad.

Eligibility Requirements

To be eligible for the Air Force ROTC scholarship program and the POC, students must be citizens of the United States; physically qualified in accordance with existing Air Force regulations; and enrolled at MIT, Endicott College, Gordon College, Harvard University, Salem State College, Tufts University, or Wellesley College as full-time students.

Application Procedure

Interested students can sign up for the Air Force ROTC program by visiting the Aerospace Studies Department, Room W59-114, 617-253-4475, airforce@mit.edu.

Army ROTC

The Army ROTC program at MIT is designed to enhance a student’s college education by integrating into the curriculum leadership and management theory with leadership practicum modules. Through coursework and in-class practical experience, students will develop decision-making, team-building, and time-management skills—leadership qualities that are essential to success in any field, including corporate or research careers. Students completing the ROTC program are awarded a commission as a Second Lieutenant in the US Army. Students may participate in the first two years of Army ROTC with no commitment to military service.

The Military Science and Leadership Program is a four-year program composed of the Basic Course (freshman and sophomore years) and the Advanced Course (junior and senior years).

Four-Year Program

The four-year curriculum combines classroom and leadership laboratory work. Any MIT student is eligible to participate in the leadership development courses regardless of academic grade.

During the summer between their junior and senior years, students participate in a five-week Leadership Development and Assessment Course (LDAC) at Fort Lewis, WA (near Seattle). Upon graduation from college and successful completion of LDAC, students are commissioned as officers in the US Army, US Army Reserves, or Army National Guard.

Two-Year Program

The two-year program is designed for students who did not complete the first two years of the Army ROTC program. If students have at least one-and-a-half years remaining in their academic program at MIT or are interested in pursuing a graduate degree, they may be eligible to participate in the Advanced Course. Students may participate in a four-week training camp (the Leader’s Training Course) at Fort Knox, KY, in lieu of completing the Basic Course (freshman and sophomore years). Once students complete the Leader’s Training Course, they are eligible to receive the same benefits as members in the four-year program.

Scholarships

Army ROTC scholarships are available on a competitive basis to qualified applicants. Two-, three-, and four-year scholarships are available each year, and are awarded on campus through the professor of military science. High school seniors may apply for four-year scholarships in conjunction with their application to MIT. Scholarships pay full tuition and all mandatory fees, plus $1,200 for books and supplies each year, and a tax-free stipend ranging from $300 to $500 per month. The scholarship is flexible, in that it can be used for either tuition or for room and board.
Program of Instruction
The Army ROTC curriculum is designed to enhance a student’s college education by providing distinctive leadership and management training in conjunction with realistic experience. The program emphasizes leadership theory and practice, organizational management, public speaking, tactics, purpose and history of the military, and physical fitness.

Students enrolled in the first two years of the program attend one hour of class and three hours of physical fitness each week. Collegiate athletes who meet Army fitness standards are excused from physical fitness training while their sport is in season. In the final two years of the program, class and physical fitness total four hours per week. Students also participate in a monthly Leadership Lab that highlights a particular military activity. Finally, students participate in a field training exercise each term that includes small unit leadership training, military tactics, land navigation, rappelling, obstacle negotiation, and a helicopter orientation ride.

Extracurricular Events
The ROTC program offers MIT students a wide spectrum of opportunities to participate in numerous challenging and rewarding extracurricular activities, such as high adventure training and field training exercises. Army Airborne, Air Assault, Mountain Warfare, and other military schooling and training programs are available on a voluntary basis to qualified cadets. Also, there are global summer internships available at national research laboratories, numerous Army bases, or the Pentagon. Finally, following graduation there are opportunities—primarily for students going on to law, medical, dental, or veterinary school—to defer the service obligation until completion of their graduate studies. Many graduate study opportunities are funded by the Army.

Opportunities in the US Army Reserve/Army National Guard
Army ROTC offers opportunities to seek a commission as a Second Lieutenant in the Army National Guard or Army Reserves. This unique option provides the flexibility for newly commissioned officers to participate in the Army part time while pursuing an advanced degree or a full-time career.

Eligibility Criteria
Enrollment in the freshman and sophomore ROTC courses is open to all MIT students. To be eligible for Army ROTC scholarships and/or enrollment in the junior- and senior-year ROTC courses, students must be citizens of the United States; physically and medically qualified in accordance with existing Army regulations; and enrolled at MIT, Harvard University, Tufts University, Wellesley College, Endicott College, Gordon College, or Salem State College as full-time students.

Application Procedure
Students normally apply for the four-year program during their freshman year, but students may enroll in the course or apply for a campus-based scholarship each semester. Interested students can inquire about the Army ROTC program by visiting the Army ROTC office in Room W59-192, 617-253-4471, or by visiting http://web.mit.edu/armyrotc/.

Naval ROTC
The purpose of the Naval ROTC program is to provide instruction and training in naval science subjects which, when coupled with a bachelor’s degree, qualify selected students for commissions in the US Navy and US Marine Corps. Upon graduation, commissionees serve in the unrestricted line of the Navy or Marine Corps. Unrestricted line officers will be expected to serve in the aviation, submarine, surface warfare communities, or the Marine Corps. Additionally, MIT commissionees are eligible to become Naval Reactors Engineers in Washington, DC.

The Naval ROTC unit at MIT offers two officer development programs: the Scholarship Program or the College Program. The Scholarship Program provides full tuition, all fees, uniforms, a semester book stipend, and a monthly stipend for two, three, or four years. Depending on which community is selected for service selection, the active duty obligation for the scholarship students is from four to eight years. Students in the College Program for two, three, or four years receive naval science books and all uniforms, in addition to a monthly stipend during the last two academic years if accepted for advanced standing by Naval Service Training Command. Students in this program must complete one summer cruise after their junior year and incur a three-year active duty obligation. Each year many of the top College Program students receive full-tuition scholarships for their remaining years in school. The monthly stipends are $250 for freshmen, $300 for sophomores, $350 for juniors, and $400 for seniors. Harvard and Tufts students are eligible for both the Scholarship and College Programs.

Upon completion of the program and receipt of a baccalaureate degree, graduates are commissioned as Ensigns or Second Lieutenants in the Navy or Marine Corps. Newly commissioned officers report directly to active duty within one year of commissioning (generally within a few months). Upon completion of the active duty obligation, the officer may be released to inactive duty, but must serve in the individual ready reserve for a total of eight years from the date of original commissioning.

Program of Instruction
The Naval ROTC program of instruction encompasses the science of nautical matters and principles of leadership and management, all vital to being a naval officer. The program has three interacting and equally important aspects. The first aspect consists of the professional academic subjects taught by the Naval Science Department (one two-hour naval science subject is required each term), and the second aspect consists of the academic subjects taught by the Institute. In addition to recommended coursework, one year of calculus, physics, English, and one term of American military history or national security policy are required. The third aspect consists of the professional training gained from leadership laboratories (two hours a week throughout the school year), tours conducted to local naval facilities, cruises aboard active duty naval vessels, and practical navigation and piloting practice conducted aboard training craft.

Between academic years, midshipmen attend a month of summer training aboard active duty naval vessels and at shore bases throughout the world to become familiar with Navy and Marine Corps procedures.
Eligibility Requirements
To be eligible for the four-year Naval ROTC program, an entering student must be a United States citizen, at least 17 years of age, and physically qualified by the Department of Defense Medical Review Board.

Application Procedure
Further information can be obtained from the Commanding Officer, NROTC and Naval Administrative Unit, Room W59-110, at any US Navy Recruiting Station, or at http://navyrotc.mit.edu/.

ADMISSIONS

Freshman Admissions
The information provided here contains a broad overview of Admissions policies and procedures. For specific information and application deadlines, visit the Undergraduate Admissions website at http://mitadmissions.org/.

Secondary School Preparation
The majority of undergraduate men and women enter MIT as members of the freshman class, directly following completion of secondary school studies. MIT expects that its applicants will have enrolled in a broad, rigorous program in high school. Applicants should be able to read with intelligence and sensitivity and to express ideas clearly in spoken and written form. In mathematics, emphasis should be on mastery of fundamental principles, operations, and definitions, and on preparation for the study of calculus. Work in the sciences should stress basic concepts and quantitative understanding, both in the classroom and in the laboratory. Ideal preparation for MIT includes English (four years), history and social studies (two or more years), mathematics (four years, including a strong preparation in algebra, plane geometry, trigonometry, and calculus), sciences (four years, preferably including general science, biology, chemistry, and physics), and a foreign language. However, interested students whose high school program does not match this curriculum in every detail are also invited to apply.

Application Procedures
Applicants are encouraged to visit the Admissions website at http://mitadmissions.org/ and register for a MyMIT account, through which prospective students can apply, track their application and financial aid forms, and arrange for overnight and day visits. The application will be available online beginning in the summer of the year prior to proposed entry. Early Action (available to citizens and permanent residents of the United States only) has a November 1 deadline. Regular Action candidates must complete the application process by January 1 of the year of intended entrance. Completed Early Action applications will be considered in mid-December. At that time the committee may offer admission, deny admission, or defer the decision to Regular Action. Deferred applications are reconsidered without prejudice in March. A student who seeks early consideration in this way is free to file applications at other colleges and, if offered admission at MIT, is not required to reply to the Institute before the candidates’ reply date in early May. There is an application fee for both Regular and Early Action which may be waived with the submission of a fee waiver request.

Additionally, MIT participates in the Questbridge program. Interested applicants should consult the MIT Questbridge website at http://www.questbridge.org/cmp/partner_schools/mit/home.html for eligibility and application information.

Applicant Interviews
MIT highly recommends that applicants interview with a member of the MIT Educational Council. Council members are MIT graduates who have volunteered to interview for the Office of Admissions. Applicants will be referred via their MyMIT account to a member of the council near the applicant’s home. Details and interview deadlines can be found on the Admissions website, http://www.mitadmissions.org/topics/apply/interviews_educational_counselors_ecs/index.shtml.

Campus Tours and Information Sessions
Prospective applicants and their families are welcome to visit the Admissions Office Monday through Friday between 9 am and 5 pm. Student-guided tours of the campus are offered year-round each weekday (except holidays) at 11:00 am and 3:00 pm. From January through November, the tours are directly preceded by a group information session (10:00 am and 2:00 pm) in Room 10-100.

Interphase
Interphase is a rigorous seven-week summer residential academic and community-building program for admitted MIT freshmen that instills subject mastery of calculus, physics, and chemistry, and helps them explore their cultural identities through reading, writing, and discussion. In addition, students take physical education classes and participate in small-group learning activities and workshops designed to develop their analytical thinking and communication skills. These endeavors should position them to thrive during their MIT academic careers. Extracurricular activities include day trips to area cultural, recreational, and industrial sites. Ample opportunities to begin building social networks and faculty connections are provided. For incoming students of all races and national origins, the program offers a rich, multicultural educational experience that prepares them to become both leaders on campus and in the increasingly diverse global society. Students can earn academic credit upon successful completion of the coursework, giving them a head start towards fulfillment of their graduation requirements.

For more information, contact the Office of Minority Education at 617-253-5010.

Deferred Admissions
Occasionally, students may wish to take one or two years off between secondary school and college. In such cases, it is recommended that the student follow normal admissions procedures, as if going directly on to college, and then request deferment. Deferreds are granted for many reasons, except full-time enrollment at another school.
Advanced Placement
MIT has always encouraged students to move ahead academically according to their capabilities. There are four procedures by which students entering from secondary schools may receive credit and/or placement: the College Board Advanced Placement Program; A-levels, the International Baccalaureate, Cambridge Pre-U, and other international exams; college transcript; and Advanced Standing Examination at MIT.

Students who take college-level subjects offered in their schools in cooperation with the College Board Advanced Placement Program should take the appropriate examinations administered by the board each year in May and instruct the board to send the scores to MIT. Degree credit for MIT subjects and, where appropriate, advanced placement, is given on the basis of a high achievement on the tests (in most cases a score of 5). A score of 5 on humanities, arts, and social sciences tests recognized by MIT may enable students to receive credit (9 units) applicable to the unrestricted elective requirements only. This credit does not reduce the General Institute Requirements of eight one-term subjects in the areas of Humanities, Arts, and Social Sciences.

In some secondary schools, selected students take college-level subjects at a local college. Such students may submit an official transcript from the college showing subjects taken and grades earned in order to receive MIT credit under the regular college transfer procedures. MIT’s academic departments rarely approve transfer credit for online study or for dual-enrollment classes taught in high schools.

Students will be notified about the credit offered before registration.

Standardized Testing Requirements
Specific SAT, ACT, and TOEFL testing requirements are outlined in detail on the Admissions website, http://www.mitadmissions.org/topics/apply/standardized_test_requirements/index.shtml. The last acceptable testing date for Regular Action freshman admission to the Class of 2015 is the January 2011 testing date. If you take January tests, you must list MIT as a school to receive your scores or we will not receive them in time for our review. Note that the closing dates for registration are usually four to six weeks (five to seven weeks outside the United States) before the testing date. Students should request that the testing agency send all scores directly to MIT (code 3514 for the SAT and TOEFL; code 1858 for the ACT).

These examinations are offered throughout the world. The test dates, locations, and fees for the SAT Reasoning and SAT Subject Tests and TOEFL are outlined in an information bulletin that may be obtained from the internet at http://www.collegeboard.com/, most guidance offices or by writing directly to the College Board, 45 Columbus Avenue, New York, NY 10023. Information about the ACT may be obtained at http://www.act.org/ or by writing to ACT, 500 ACT Drive, P.O. Box 168, Iowa City, IA 52243.

English Proficiency
Lectures, laboratory sessions, and written and oral examinations at MIT are conducted in English.

College Transfer Admissions
Students who have completed a minimum of one year and a maximum of two and one-half years at the time of entry to MIT may be considered for transfer admission.

A student contemplating transfer to MIT should plan a program of studies to include as many as possible of the mathematics, physics, biology, chemistry, and humanities, arts, and social sciences subjects as are included in the typical first two years of MIT.

Specific testing requirements are outlined in detail on the Transfer Admissions website, at http://web.mit.edu/admissions/transfer/apply.html#q3.

Transfer applicants from foreign countries are admitted only for September entrance. Admitted and enrolling transfer students are required to complete at least three terms at MIT in order to earn a degree.

Application Procedures
Visit http://web.mit.edu/admissions/transfer/ for detailed information on application procedures.

Application Cycles
For September entry, the application and all supporting documents are due by February 15 for domestic applicants, and by March 15 for international applicants. For domestic applicants seeking February entry, applications are due by November 15. (Citizens of foreign countries may apply for September entrance only.) There is a nonreturnable application fee for transfer admission.

Applicants must submit the following documents:

- A certified transcript of the college record to date
- Three letters of recommendation from faculty instructors
- A secondary school transcript sent directly from the secondary school to the Admissions Office
- Standardized test reports

For transfer student financial aid information, see the section on Financial Aid.

Advanced Credit
Students admitted by transfer may receive credit for subjects of study completed elsewhere (with a grade of C or higher) that are substantially equivalent to corresponding Institute subjects.

Special Student Admissions
The Institute can accept a limited number of undergraduates who wish to undertake special studies and who are not degree candidates at MIT, but who have had at least one year of study at another college or university. Special Students enjoy most of the privileges of the regular student but are not eligible for campus housing or financial assistance from MIT. Students wishing to apply for special student status should visit the Special Student website.
Special student status is granted for one term only, and a new application for this status is required for any successive terms. Admission as a special student does not carry any implication for other applications. It is a guest status only and not a means to an undergraduate degree at MIT. Applicants must present strong academic credentials. Admission is also subject to available places in the classroom or laboratory.

More information, including application deadlines and fees, and the downloadable Special Student application can be found on the Special Student website, [http://web.mit.edu/admissions/graduate/special_students/index.html](http://web/mit.edu/admissions/graduate/special_students/index.html).

Deadlines for filing applications are August 1 for fall term, January 1 for spring term, and May 1 for summer term. Deadlines for international student applicants are June 1 for fall term, November 1 for spring term, and March 1 for summer term. International students living abroad are not permitted to apply for the summer term.

COSTS

Undergraduate student costs for the academic year 2010–2011 at MIT will be about $53,210. This includes $39,212 for tuition and mandatory fees, plus an estimate for the costs of room and meals, books, supplies, and personal expenses. An allowance for travel is added to the student costs if the student lives in the United States. The allowance varies depending on the student's home address. The cost of books and supplies, clothes, laundry, recreation, and other personal necessities vary widely, depending upon interests, tastes, and needs, but typically total about $2,764. There are many dining and housing options available at MIT and the range of student expenses for room and board is broad. Student Financial Services uses a standard allowance of $11,234 for room and meals. Actual costs for 2010–2011 may be more or less than the standard allowances based on individual costs.

The following are the basic tuition and fees at MIT for the academic year 2010–2011 (which are reviewed and likely to increase each year):

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition</td>
<td>$38,040</td>
</tr>
<tr>
<td>Student Activity Fee</td>
<td>$272</td>
</tr>
<tr>
<td>MIT Student Extended Insurance Plan (optional)</td>
<td>$1,740</td>
</tr>
</tbody>
</table>

Payment of the tuition fee entitles all regular and special students to many health care services at MIT Medical (Building E23) at no charge. The MIT Student Extended Insurance Plan covers hospitalization due to accidents or illness. The insurance is required for all students, unless they can demonstrate that they have comparable coverage through another insurance program. Refer to the Medical Requirements section of this chapter for additional details or visit http://medweb.mit.edu/.

The tuition for all regular undergraduates in the fall and spring terms is $19,470 per term. Full tuition in either term of the current year covers the January Independent Activities Period (IAP). Tuition rates for the Summer Session are published each year in the Summer Session Catalog, available in April.

Regular undergraduate students who have permission to take only a few subjects are initially charged full tuition. They may then apply to have their tuition charged at the rate of $605 per unit with the approval of the faculty advisor. In such cases, there is a minimum fee of $3,630 for subjects and a minimum of $1,620 for the SB thesis. Registration for 32 or more units will be assessed the full tuition charge. Upon recommendation of a department, the Dean for Undergraduate Education, in the case of an undergraduate student, may set a special tuition rate in unusual circumstances. Financial aid will be adjusted based on enrollment costs. Some classes (including ROTC and classes taken on listener status) are not included in the determination of financial aid eligibility.

Special students are charged at the rate of $605 per unit taken either for credit or not for credit. This unit fee applies up to a maximum of $19,470 per term and is subject to the following minimum fees:

<table>
<thead>
<tr>
<th>Category</th>
<th>Minimum Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Members of the MIT community</td>
<td>$3,630</td>
</tr>
<tr>
<td>(Includes special students who are full-time employees of the Institute or who are dependents of full-time employees or regular students.)</td>
<td></td>
</tr>
<tr>
<td>Other special students</td>
<td>$5,445</td>
</tr>
</tbody>
</table>

Internship and cooperative programs offered by MIT provide industrial and research experience through a series of work assignments interwoven with regular study at the Institute. The tuition fee for these programs is the same as that for other regular undergraduate students:

- Electrical Science and Engineering, or Electrical Engineering and Computer Science, or Computer Science and Engineering, Course 6-A
- Materials Science and Engineering, Course 3-B

Upon recommendation of the department, a special tuition rate for any cooperative program may be set in an unusual case. Light-load tuition adjustments are not normally available to students who are (or were) in cooperative and internship programs.

A student withdrawing before the start of a term is not charged any tuition for that term, and any tuition payments previously made for that term will be refunded. Students withdrawing during the fall or spring term are charged one-twelfth of the stated tuition for the term for each week from the starting date of the term, with a minimum two-week charge. A student is financially obligated to the Institute for the tuition appropriate to the program approved by his or her faculty advisor at the beginning of the term. Any subsequent reduction in fees is based on the date that cancellation of subject or withdrawal from the Institute is effected. At that time, any excess payments which the student has made will be refunded.

If the student receives financial aid through one of the Title IV federally based student financial aid programs, and aid is reduced as a consequence of the reduced tuition, the reduction in aid will be made in accordance with current federal regulations. Contact Student Financial Services for examples of refund calculations.
Miscellaneous Fees

Miscellaneous fees include the following:

- Application fee for undergraduate admission: $75
- Fee for late submission of preregistration: $50 ($85 if very late)
- Fee for late filing of the degree application: $50 ($85 if very late—see Academic Calendar preceding the Overview section in Part 1)
- Fee for late initiation of the registration process or very late registration: $100

Miscellaneous fees are nonrefundable unless levied in error.

Payment of Tuition and Other Charges

An individual who registers as a student at MIT agrees to pay all charges on his or her account when due, and acknowledges that the Institute may charge late charges (or finance charges for MIT Payment Plan accounts), suspend registration, revoke Institute services, and withhold the degree if these charges are not paid.

Student Financial Services (SFS) gathers, bills, and collects student charges and provides a student account statement of that activity. These charges originate in the offices from which the student receives Institute services. SFS bills by posting a monthly student account billing statement on MITPay—a secure, paperless online billing and payment system. The statement is posted by the 10th of any month in which there’s a new charge or credit on the account. SFS sends courtesy email reminders to students each month to check the statement and pay any balance due. The statement includes charges (e.g., tuition, fees, housing, and library fees), payments (financial aid, tuition awards), additional amounts due, and payment deadlines. Visit http://web.mit.edu/sfs/bills/index.html for more information on getting and paying the student account bill.

Payment in full or a satisfactory arrangement for payment is due prior to the beginning of each term (July 1, August 1, and January 1). New charges and credits that occur after the initial statement will appear on a subsequent statement. If a student anticipates that he or she may not be able to pay the entire account by the July, August, or January deadline, the MIT Payment Plan is available and should be considered.

Participation in the MIT Payment Plan allows an installment payment arrangement over four months each term (three months during the summer). A finance charge of 0.667 percent per month (8 percent annual percentage rate) is assessed on the unpaid account balance (excluding extended student medical insurance). To sign up for the plan, download the appropriate form at http://web.mit.edu/sfs/forms_and_publications/index.html and return it to SFS.

SFS also offers information on various loan programs as additional options, including federal programs. For more information visit http://web.mit.edu/sfs/loans/get_a_loan.html.

If a student fails to make satisfactory arrangements for payment and has amounts outstanding after a payment due date, that balance will be subject to late fees of 1.5 percent per month (18 percent annual percentage rate). Outstanding balances at the end of a term will result in a hold on the student’s registration or graduation. Student accounts unpaid after the student has left MIT for any reason may be reported to credit bureaus, sent to an outside collection agency, and assessed additional collection fees.

SFS staff members are available to answer questions and offer assistance in resolving billing matters related to student accounts, payment options, billing sponsors, educational loans, refund and cash advances. Visit SFS in the Student Services Center, Room 11-120, or http://web.mit.edu/sfs/.

Undergraduate students are subject to the Financial Hold policy adopted by the Committee on the Undergraduate Program (CUP) and the Committee on Academic Performance (CAP) in 1998. Students who have not paid their outstanding student account balance, made satisfactory arrangements with SFS to pay the balance, or completed a financial aid application by the end of the term will lose access to student services for subsequent terms. Removal of services includes the right to register for the term, Athena access, MIT housing, dining, the MIT Card, and library access. Students who have not made efforts to resolve their financial problems will not be allowed to register or receive credit retroactively.

Non-payment of Tuition and Other Charges

If a student has an outstanding balance at the end of the term, including Independent Living Group charges, the student’s graduation or registration for the subsequent term is placed on hold.

Students who have unanticipated financial problems during a term should resolve them using the resources of SFS and Student Support Services (SSS), as well as outside sources such as parents and relatives. The policy is designed to allow students sufficient time to resolve their financial difficulties. Students owing fall term balances have six months, from August to January, to clear their accounts before a hold on registration is imposed; students owing spring term balances have five months, from January through May. This should be sufficient time for students to deal with their financial issues.

To resolve financial holds, students should contact their student account counselors in the Student Services Center, Room 11-120.

Policy on Undergraduate Financial Holds

Undergraduates with unpaid balances will not be allowed to register for any subsequent term, receive credit retroactively, nor receive any student services, including but not limited to the libraries, dining system, computing resources, and Institute housing. To assure the timely payment of bills and equitable treatment of students, as well as to educate students about their rights and responsibilities in meeting their financial obligations to the Institute, the following procedures have been approved by the Committee on the Undergraduate Program and the Committee on Academic Performance.

Notifications to Undergraduates with Unpaid Balances

After the fifth week of the term, SFS will identify undergraduates who have unpaid balances on their student accounts for that term and who have not made satisfactory arrangements for payment of those balances. SFS will notify these students—both through the regular billing process and by email—informing them of the MIT policy regarding financial holds and registration holds for subsequent terms.

After the eleventh week of the term, SFS will identify undergraduate students who have unpaid balances on their student accounts for that term.
and who have not made satisfactory arrangements for payment of those balances. SFS will notify these students—both through the regular monthly billing process and by email—informs them of the Institute’s policy regarding financial holds.

Removal of Services
Undergraduate students who have not paid or negotiated satisfactory arrangements for payment of unpaid balances from the previous term may not register for subsequent terms, and therefore may not partake of institute student services. When students have not made satisfactory payment arrangements by Registration Day of the subsequent term, SFS and other institute offices may take the following actions:

- The right to live in MIT housing is suspended.
- The MIT Card is deactivated, and undergraduates are not authorized to use the services for which the card provides access. These services include but are not limited to the libraries, the dining system, computing resources, and Institute housing.
- Students are permitted to retain an mit.edu email address which will be forwarded to a specified outside email provider until the normal graduation date. All other computer services, including Athena access and use of MIT licensed software, will be suspended.
- Undergraduates will be excluded from the student payroll and UROP systems.
- Undergraduates will not be placed on class rosters and will be removed from class lists generated through the HASS-D lottery. They will not be allowed to participate in class projects. Work that is turned in for the class will not be graded or returned.

Undergraduates who do not settle their prior term balances or who have not made efforts to resolve their financial problems will not be allowed to register for the subsequent term or receive credit retroactively. Students who face loss of services should immediately contact their student account counselors in Room 11-120.

FINANCIAL AID

Grants, Loans, and Employment
MIT meets the full financial need of every undergraduate for all four years of his or her undergraduate career. Student Financial Services (SFS) awards grants and loans based on the financial need of the individual student, as determined by analysis of information provided on the Free Application for Federal Student Aid (FAFSA) and the CSS Profile form. Copies of the most recent parental federal tax return(s) are required in support of aid applications.

SFS reviews applications and makes need-based awards to students from the most suitable Institute grant and loan resources. MIT is fortunate in having received gifts from many benefactors, alumni, and friends to help support the educational needs of MIT students.

Students choose term-time work and/or loan eligibility to meet their self-help requirement, which is an amount (determined by family income and other factors) that students are expected to contribute themselves. Student loan funds allow the student to pay part of the costs of his or her education on long-term credit under favorable financial terms. However, MIT student loans are granted to meet systematically calculated financial need only. Undergraduate loans are provided from several government and private sources, including the Federal Perkins Loan Program and the Federal Direct Stafford Loan Program.

Specific jobs are not assigned; students are expected to arrange employment most suitable to their own talents and schedules. SFS Student Employment website, http://web.mit.edu/sfs/jobs/ maintains listings of positions for students seeking part-time jobs during the term or full-time summer jobs. On-campus employment is usually available in residence halls, offices, libraries, and laboratories. Listings for off-campus positions are also available. Students’ earnings from part-time work depend on experience and, of course, their time availability.

SFS Student Employment participates in the Federal Community Service Program (part of the Federal Work-Study Program). Eligible students work in jobs that have a direct impact on the Cambridge and Boston communities. Wages are subsidized up to the student’s work-study eligibility. For more information, visit http://web.mit.edu/sfs/jobs/paid_community_service.html.

All students who are thinking of attending MIT are strongly urged to explore all areas of financial assistance, including government and private scholarship and loan programs. A number of states sponsor scholarship programs for residents, and information on eligibility may usually be obtained from secondary school guidance counselors. ROTC programs at MIT may also provide substantial scholarship support.

For more information on financing an MIT education, visit http://web.mit.edu/sfs/.

Applications
Details on applying for financial aid are available at http://web.mit.edu/sfs/financial_aid/.

Entering Freshmen and Transfer Students
Students who wish to be considered for financial aid should complete the Free Application for Federal Student Aid (FAFSA) and the CSS Profile form. SFS Financial Aid also requires the parents’ most recent tax returns, W-2 forms, and all schedules. An application for admission is not prejudiced by an application for aid; the two decisions are entirely separate. Need criteria have no bearing on admissions, and admissions criteria have no part in determining qualifications for aid.

International Students
As with other undergraduates, MIT meets the full need of international undergraduate students who demonstrate financial need. International students who wish to be considered for financial aid should complete the International Student CSS PROFILE online and provide verification of parent income. International students who have difficulty accessing the online PROFILE may submit a paper copy of the International Students Financial Aid Application to Student Financial Services.

Students should also seek aid from sources other than MIT. International students should make all arrangements for their financial obligations to MIT for their entire stay in the United States before leaving their home country.
For complete instructions on applying for financial aid, including the documents required, visit http://web.mit.edu/sfs/financial_aid/prospective_freshmen_and_transfer.html.

Upperclass Students

Enrolled students receiving financial aid are required to reapply each year for continued assistance in the following year. Award applications must be submitted no later than April 15 of the year preceding the term in which aid is anticipated. Upperclass students must complete the Free Application for Federal Student Aid (FAFSA) and the CSS Profile form. The application process also requires a copy of the most recent parental federal tax return(s), and all applicants are expected to apply for a state grant where applicable, as well as any renewable grants received in prior years.

A student’s eligibility for MIT undergraduate grant funds will end when the student receives an initial degree, or after the equivalent of eight terms, whichever occurs first. Eligibility for Federal Pell Grants may continue beyond the eighth term under some conditions, but ends with receipt of a bachelor’s degree.

Eligibility for undergraduate loans continues through all undergraduate programs. A student becomes eligible for the higher loan maximums that pertain to graduate students upon enrollment in a graduate program. Additional information is available at http://web.mit.edu/sfs/loans/.

Veterans’ Benefits

Students who are receiving veterans’ benefits need to verify their enrollment each year in order to be certified. Enrollment may be verified by submitting a copy of the approved registration form to the Veterans Administration (VA) coordinator in Student Financial Services, Room 11-320. Students may also wait until registration information appears online, typically the second week of the term. VA regulations require that benefits stop between the spring and fall terms if the period is greater than 60 days. Students with questions should consult with the VA coordinator.

Medical Requirements

Medical Report

MIT requires that all incoming students submit a medical history, have a complete physical examination, and document immunity against certain infectious diseases. Medical Report forms need to be submitted before registering for classes. Specific deadlines for each term are listed on the form itself. More information and downloadable Medical Report forms may be found at http://medweb.mit.edu/howdoi/guides/undergraduate.html#medreq.

Registration will not be permitted for any student who has not complied with the Medical Report and/or immunization requirements stated above.

Health Insurance

All MIT students must have health insurance that meets the requirements for the Massachusetts Student Health Insurance Plan (SHIP). Students with J-1 visas under MIT sponsorship must have insurance that also meets US Department of State regulations for themselves and their spouses and children who accompany them. More information about Massachusetts health insurance requirements may be found at http://medweb.mit.edu/healthplans/student/waiver.html.

MIT Student Health Plan

The MIT Student Health Plan consists of two health plans, the MIT Student Medical Plan and the MIT Student Extended Insurance Plan.

- The **MIT Student Medical Plan** covers a wide range of services provided at MIT Medical, including primary care, many medical specialties, urgent care seven days a week, mental health care, and other services (see **Medical Services in Chapter 2**). Registered MIT students paying tuition to MIT are automatically enrolled in the MIT Student Medical Plan as part of their tuition. Student partners and children of students may use MIT Medical on a fee-for-service basis for limited services, or by paying a Partner/Child MIT Student Medical Plan premium for comprehensive access. To enroll their families, students must complete the MIT Student Health Plan enrollment form annually during the fall enrollment period. Partners and children of students who purchase the MIT Student Medical Plan premium must also provide evidence that they are enrolled in a health insurance plan or may purchase the MIT Student Extended Insurance Plan. If students wish to enroll their spouse (or spousal equivalent) or children, a new enrollment form must be submitted each academic year (September to August).

- The **MIT Student Extended Insurance Plan** is designed to coordinate with the MIT Student Medical Plan and provides coverage for more extensive care, such as hospitalization, diagnostic tests, physical therapy, surgery, prescription medication, and obstetrical care. Since health insurance is mandatory under Massachusetts law, all regular students and special students (registered with 27 or more units), including students on a J-1 or F-1 visa, are automatically enrolled in the MIT Student Extended Insurance Plan. Prior to the beginning of each term, students may submit an online request to waive the Student Extended Insurance Plan if they already have coverage which meets the Massachusetts requirements for student health insurance. J-1 students under MIT visa sponsorship may waive the MIT Student Extended Insurance Plan only if their policies meet both the Massachusetts requirements and specified United States Information Agency (USIA) requirements. In order to demonstrate comparable coverage Massachusetts state law requires coverage through an insurance carrier based in the United States. New waiver forms must be filled out each academic year.

Special students taking two or more subjects, but registered at MIT with less than 27 units, are eligible to purchase the MIT Student Extended Insurance Plan, but are not enrolled automatically.

- The deadline for submitting enrollment forms and waiver forms is September 30 for fall term, February 28 for spring term, and June 30 for summer term.

More information about the MIT Student Health Plans, including benefits, rates, and enrollment or waiver processes, may be found at http://medweb.mit.edu/healthplans/student/.

Please contact MIT Health Plans at stuplans@med.mit.edu with enrollment or waiver questions, or contact Claims and Member Service at mservices@med.mit.edu with any questions about benefits or claims.
What graduate degrees does MIT offer? Can graduate students take classes at other institutions? What are the dates for submitting admissions materials? How much will it all cost? For current and prospective graduate students, this section has the answers.
GRADUATE STUDY AT MIT

For more than a century, MIT graduate programs have provided ideal environments for advanced study by faculty and students working together to extend the boundaries of knowledge. The Institute has traditionally been a national leader in engineering and science graduate education. In addition, top-ranked graduate programs in economics; political science; linguistics; science, technology, and society; architecture; media studies; urban studies; and management have broadened the spectrum of graduate education.

The most important factor in the effectiveness of graduate programs at MIT is the quality of the faculty. MIT is proud of its nationally and internationally recognized faculty of scholars and academic leaders, who are also effective teachers and research collaborators.

The broad scope and high quality of its graduate education have made MIT an international leader. More than a third of its graduate students come from foreign nations. Significant efforts have been made, with some success, to increase the numbers of minority and women students attending MIT's graduate programs. This representation of students from diverse backgrounds contributes greatly to the richness of the MIT community and to the excellence of its graduate academic programs.

Graduate education at MIT places special emphasis on the relevance of science and technology to the complex problems of society. Such problems frequently require an interdisciplinary approach involving expertise in several different departments.

Extensive resources for graduate study have developed naturally at MIT from a long tradition of emphasis on contributions to new knowledge. The wealth and diversity of teaching and research resources are described in the departmental sections in Part 2.

Although most graduate students find their interests served by programs available within a single department, many elect to work in interdisciplinary fields (described in the sections on Interdisciplinary Graduate Programs and Interdisciplinary Research and Study in Part 3), which may reach into two or more departments and involve work in any of MIT's laboratories and centers. Special committees provide guidance in certain areas such as biomedical engineering, economics and urban studies, environmental engineering, instrumentation, management of technology, medical engineering, medical physics, operations research, technology and policy, and transportation. In other fields, interdepartmental programs are administered by ad hoc committees approved for each student and appointed by the dean for graduate education.

MIT's libraries are a major resource for graduate study. Comprehensive collections are available in fields where MIT concentrates its teaching and research efforts. Through participation in the Boston Library Consortium, graduate students, faculty members, and research staff have access to collections outside the Institute.

Another resource for graduate study is cross-registration in programs with Harvard University and Wellesley College, and joint degree programs with the Woods Hole Oceanographic Institution. Limited study opportunities are also available at Boston University, Brandeis University, Tufts University, and the Graduate Consortium in Women's Studies.

Graduate students are encouraged to use MIT's extensive athletic facilities. Teams comprised of both undergraduate and graduate students participate in intercollegiate competitions and the intramural athletic program.

Graduate students also share in the cultural and social activities and recreational facilities at MIT. Concerts and dramatic performances are frequently given by Institute groups and professional performers. Leaders in many fields give on-campus lectures and seminars, which are open to all members of the Institute community. MIT students also take advantage of the numerous cultural and intellectual opportunities in the Boston area, including free admission to the Boston Museum of Fine Arts and the Museum of Science. A more detailed description of campus activities can be found in the section on Campus Life in Part 1.

Independent Activities Period

During the January Independent Activities Period (IAP), graduate students may pursue their own interests, including thesis research and preparation for qualifying exams. They also may lead or participate in special activities during this four-week period.

Graduate students should read the section on Independent Activities Period in the Undergraduate Education portion of this catalog for details concerning academic credit and grades, and special-student status.

Office of the Dean for Graduate Education

The Institute has a single faculty that is responsible for both undergraduate and graduate instruction. The administration of graduate education rests with the president; the provost; the chancellor; the dean and senior associate dean for graduate education; and the Committee on Graduate Programs, a standing committee of the Faculty.

Each department exercises a large measure of autonomy for its graduate programs, under general guidelines established for the Institute as a whole. Each department has a departmental committee on graduate students, including one or more graduate registration officers, to administer department and Institute graduate procedures.

More detailed information about the organization, rules, regulations, and procedures of graduate education is given in the online publication, Graduate Policies and Procedures, at http://web.mit.edu/odge/gpp/.

Career Development

The Global Education and Career Development Center helps students to make informed decisions about career goals and to find opportunities related to their professional objectives. Graduate students are encouraged to begin their career by visiting the office during their first year to learn what career resources are available.

Further information may be obtained from the Global Education and Career Development Center, Room 12-170, 617-253-4733, fax 617-253-8457, or visit http://web.mit.edu/career/www/. See also the center’s description under Undergraduate Education in Part 1.

GENERAL DEGREE REQUIREMENTS

Graduate students may pursue work leading to any of the following degrees: Doctor of Philosophy (PhD), Doctor of Science (ScD), Engineer's degrees, Master of Science (SM), Master of Engineering (MEng), Master of Architecture (MArch), Master of Business Administration (MBA), Master
in City Planning (MCP), and Master of Finance (MFin). Graduate programs are described in individual department statements in Part 2, and in the Interdisciplinary Graduate Programs section in Part 3.

Each graduate student is officially enrolled in a degree program. The programs are not limited, however, to subjects offered in a single department. Subjects and research programs may be chosen from several departments, given the approval of the departmental faculty advisor to ensure that the overall program is integrated and well balanced with respect to a major field of study.

A student who expects to come to MIT for an advanced degree after earning an undergraduate degree elsewhere should give careful attention to undergraduate prerequisites as outlined by each department or program elsewhere in this catalog. For more specific information, a student should consult the department or program in which he or she wishes to enroll.

MIT degrees are “residence” degrees in the sense that a major portion of the work must be done on campus in association with the faculty, other graduate students, and the Institute community. The amount of time required to attain any one degree varies.

Master’s Degree

Master of Science With and Without Specification

For the degree of Master of Science, the student must have satisfactorily completed a program of study of at least 66 units of G- or H-level subjects, of which at least 42 units must be H-level, and a thesis, approved by the department in which he or she is enrolled. If 34 units of H-level subjects and the thesis are in a single approved program, as determined by a departmental committee on graduate students, the degree will be recommended with specification in this program; otherwise, the degree will be recommended without specification. The same high standard of academic performance in a program approved by a departmental committee on graduate students is required for either degree.

The choice of area of specialization must be approved by the committee on graduate students of the department in which the student is enrolled. Approval of the entire program must be obtained from this committee and from the student’s faculty advisor. A special interdepartmental committee, approved by the dean for graduate education, may be appointed to supervise a program in an interdepartmental field.

The satisfactory completion of the master’s degree requires the student to be in residence as a full-time regular graduate student for a minimum of four regular academic terms. A student who enters without previous experience in a department of architecture may take as long as seven academic terms to complete the degree.

Master of Business Administration

To be awarded the degree of Master of Business Administration through the two-year MBA program, the student must satisfactorily complete a program of study, including the first-term core classes and at least 144 units of G- or H-level subjects, acceptable to the Sloan School of Management (of which 42 units must be H-level). The candidate must also have been in residence for four consecutive regular academic terms.

To be awarded the MBA degree through the Sloan Fellows Program in Innovation and Global Leadership, the student must satisfactorily complete a program of study that includes a slate of core subjects, plus at least 48 units of G- or H-level subjects (of which 42 units must be H-level).

Master in City Planning

To be awarded the degree of Master in City Planning, the student must satisfactorily complete a minimum of 126 units, of which at least 42 units must be H-level subjects. The student must also complete a thesis acceptable to the Department of Urban Studies and Planning, and have been in residence for a minimum of two regular academic terms.

Master of Finance

To be awarded the Master of Finance degree, the student must satisfactorily complete a minimum of 66 units of graduate subjects (of which at least 42 units must be H-level) from within a program of study that includes a slate of required courses, restricted and general electives, and a seminar. The candidate must also have been in residence as a graduate student for at least two consecutive regular academic terms. In most cases, a summer term is also required.

Master of Science in Management Studies

To be awarded the degree of Master of Science in Management Studies through the one-year Master of Science in Management Studies Program, the student must satisfactorily complete a program of study that includes 66 units of G- or H-level subjects acceptable to the Sloan School of Management (of which 42 units must be H-level) and a 24-unit thesis. The candidate must also have been in residence for two consecutive regular academic terms.

Simultaneous Registration for Two Master’s Degrees

Single Thesis. This degree plan is intended for qualified graduate students who seek academic recognition in two professional fields that, although distinct, have a substantial intellectual connection. The degree plan
requires a balanced choice of academic subjects, made with the advice of each of two departments, and by selection of the thesis topic.

To satisfy the minimum requirements for the program, the student must complete (in addition to thesis units) at least 132 units of G- or H-level subjects, of which 66 units are unique to each department. At least 42 of each group of 66 units must be graduate H-level subjects. In those instances where, for a single regular master’s degree or program, a department or program has established unit requirements in excess of the foregoing minimums, the department or program requirements prevail. Such excess of units in one department may not be applied to the program in the other department.

A student pursuing a Master in City Planning in addition to a second master’s degree must have both programs approved in the usual way, but the subject units for the Master in City Planning can be lowered at the discretion of the Department of Urban Studies and Planning.

Individuals who wish to qualify for a Master of Science degree in Real Estate Development, in addition to a Master of Architecture or Master in City Planning degree, will be required to satisfy all the subject requirements of each program. Specifically, candidates for the Master of Architecture degree must take 164 subject units (of which 96 units must be H-level subjects), and Master in City Planning degree candidates must take 126 subject units (of which 42 units must be H-level subjects). Individuals who wish to qualify for the master’s degree in Real Estate Development also must take at least 66 subject units unique to this program, of which at least 42 units must be H-level subjects. Students may submit a single thesis provided it is acceptable to the graduate committees of each program. It is expected that such dual degree candidates will be in residence at least one term longer than expected if enrolled in a single degree program.

Participation in a dual degree program is limited to students who are already registered in one department and who meet the admissions criteria of the second department. At least two regular terms prior to completion of the program, the student must submit to each department a statement of educational objectives along with a detailed program plan that includes a description of the proposed thesis topic. The total program must meet with the approval of each department, and a petition approved by the dean for graduate education describing the program must be filed with the Registrar’s Office.

The thesis research must be conducted under the supervision of an approved member of one of the two participating departments, with the other department providing a thesis reader. The thesis must be of superior quality. The single thesis cannot be used to satisfy the thesis requirements of any additional graduate degree programs.

In special cases, the standing committee of an approved interdisciplinary program may act in lieu of one of the two participating departments.

Two theses. Occasionally an individual, already admitted for graduate study, may wish to pursue simultaneously two distinct master’s programs, fulfilling the thesis requirement with a separate thesis for each degree program. In such cases, the usual unit requirements for each program apply separately. Registration for two degrees is contingent upon approval by the second department of a request for admission. Such a request can be initiated by a petition approved by both departments and approved by the dean for graduate education.

Simultaneous Award of Bachelor’s and Master’s Degrees

An undergraduate student of the Institute who is enrolled as a candidate for the bachelor’s degree may be admitted by a department as a candidate for the master’s degree. Students must register as graduate students for at least one regular academic term (not the summer session) to be recommended for the simultaneous award of the bachelor’s and master’s degrees. The thesis submitted for the master’s degree may also be accepted by the department in fulfillment of the undergraduate thesis requirement, if any. A student wishing to pursue this type of academic program must apply for graduate admission in the usual way.

Engineer’s Degree

The program for an engineer’s degree requires more advanced and broader competence in engineering and science subjects than for the master’s degree, but with less emphasis on original research than a doctoral program. In general, the engineer’s degree requires two academic years beyond an undergraduate degree.

The following engineer’s degrees are awarded:

- Civil Engineer (CE)
- Electrical Engineer (EE)
- Engineer in Aeronautics and Astronautics (EAA)
- Engineer in Computer Science (ECS)
- Environmental Engineer (EnvE)
- Materials Engineer (MatE)
- Mechanical Engineer (MechE)
- Metallurgical Engineer (MetE)
- Naval Engineer (NavE)
- Nuclear Engineer (NuCL)

The requirement for such a degree is the satisfactory completion of a program of advanced study and research approved by the appropriate department or interdepartmental committee of the School of Engineering. The minimum program consists of at least 162 subject units (exclusive of thesis units) and the completion of an acceptable thesis. The candidate must also have been in residence for a minimum of two regular academic terms. Every degree candidate working on a thesis is expected to register for thesis in all periods during which the thesis research or writing is actually in progress and during the term his or her name appears on the degree list. A department may accept a master’s thesis of superior quality for the engineer’s degree only if the student intends to use that document to fulfill the requirements of a single master’s degree.

Doctoral Degree

Doctoral degrees are offered by various departments and programs within each of MIT’s five schools; see each school’s chapter in Part 2, Schools and Courses, for the lists of degrees. A list of the interdisciplinary graduate degrees offered at MIT, including those offered by the MIT-Harvard Division of Health Sciences and Technology and the Joint Program with Woods Hole Oceanographic Institution, is available in the section on Interdisciplinary Graduate Programs. MIT offers the degrees of Doctor of Science and Doctor of Philosophy interchangeably in the engineering and science departments.
(except biology and brain and cognitive sciences) and from the Whitaker College of Health Sciences and Technology. These degrees certify creditable completion of an approved program of advanced study in addition to a research dissertation of high quality based on original research.

The two Institute requirements for a doctorate are completion of a program of advanced study, including a general examination, and completion and oral defense of a thesis on original research.

The course of advanced study and research leading to the doctorate must be pursued under the direction of the departmental committee on graduate students for at least four academic terms. In some cases, the required period of residence may be reduced, but in no instance can it be reduced to less than two regular academic terms and one summer session.

A student is enrolled in a program of advanced study and research approved by the department. The thesis research is in this same area, but the program often includes subjects reaching into several departments. If the field requires substantial participation by two or more departments, an interdepartmental faculty committee, approved by the dean for graduate education, should be appointed to supervise the student’s program.

Each doctoral candidate must take a general examination in his or her program of study at such time and in such manner as the departmental or interdepartmental committee approves. This examination consists of both oral and written parts.

Nonresident Doctoral Thesis Research Status

Nonresident status is intended for doctoral students who have completed all requirements other than the thesis. These students have limited access to the facilities and academic life of the Institute and pay a substantially reduced tuition. They may receive payments from MIT for up to 5 percent of tuition for their first three nonresident terms; after that, they may not receive any graduate awards through MIT. Permission to become a nonresident doctoral candidate must be obtained from the dean for graduate education at least one month prior to Registration Day of the term during which the student wishes to register in this category. There is a $100 charge for late requests. Consult the Office of the Dean for Graduate Education for additional information on nonresident status.

Minor Program

Although there is no Institute requirement of a minor for the doctoral degree, certain departments require that candidates take a number of subjects outside their major field.

Language Proficiency

There is no Institute language requirement; however, several departments require that a candidate be able to read or speak one or two foreign languages with intermediate competence. A student may satisfy the requirement in one of three ways: by fulfilling the requirement before entrance by passing one or more intermediate or advanced subjects with a grade of C or better; through examination by the Foreign Languages and Literatures Section; or by taking a two-term subject in a language or languages offered by the Foreign Languages and Literatures Section. Depending on student demand, the section offers a choice of two-term language subjects, stressing the ability to read or speak in Chinese, French, German, Japanese, or Spanish. For the purpose of the second alternative, the section gives written examinations in Chinese, French, German, Japanese, and Spanish twice a year at the end of each term. Examinations in other approved languages are arranged individually upon request.

Other Institutions

Harvard University

A regular or special full-time graduate student at MIT may enroll to take subjects (exclusive of thesis) at Harvard (except Harvard Extension School and Harvard Summer School) without paying additional tuition, provided that this enrollment does not exceed one-half of the student’s total registration for the term. This cooperative arrangement is not applicable to the summer session.

Requests for cross-registration must be approved by the student’s MIT department of registration and should be confined to subjects that are not offered at MIT. Students will not be allowed to attend classes in which additional registrants put an undue load on the instructors. The procedures to be followed are available at http://web.mit.edu/registrar/reg/xreg/harvard.html. Grades earned in Harvard subjects appear on MIT transcripts as the closest equivalent MIT grade.

Wellesley-MIT Exchange

Graduate students are eligible to participate in the Wellesley-MIT Exchange Program. Wellesley courses are not considered graduate-level subjects, but may be accepted for graduate credit toward a student’s degree with the approval of the department. For details about the exchange, see the program description in the Undergraduate Education section of Part 1.

Boston University

An arrangement for cross-registration has been made between the MIT departments of Economics and Political Science and the African Studies Program of Boston University. Details of the procedures to be followed are similar to those for Harvard-MIT cross-registration.

Brandeis University

A cooperative arrangement exists between the MIT Department of Urban Studies and Planning and the Florence Heller Graduate School for Advanced Studies in Social Welfare at Brandeis University. Cross-registration is restricted to one or two subjects per term in the areas of social welfare at Brandeis and urban studies at MIT.

Tufts University

A cross-registration agreement exists between MIT and the School of Dental Medicine at Tufts University. The program is restricted to specific graduate subjects at each institution.

Graduate Consortium in Women’s Studies at MIT

Founded in 1993, the Graduate Consortium in Women’s Studies (GCWS) is a pioneering effort by faculty at six degree-granting institutions in the Boston area and MIT to advance women’s studies scholarship through
a series of ongoing team-taught interdisciplinary graduate seminars, curriculum development events, and an annual gender studies confer-
ence. Currently there are nine participating institutions, including Boston College, Boston University, Brandeis University, Harvard University, MIT, Northeastern University, Simmons College, Tufts University, and the University of Massachusetts Boston.

In keeping with the collaborative tradition of women's studies, GCWS offers seminars to students matriculated in graduate programs at our member institutions. GCWS faculty explicitly integrate gender analyses with issues of class, race, culture, ethnicity, and sexualities, and the practical and public-policy implications of feminist theory and scholarship are considered. Courses are designed not only to examine existing feminist scholarship, but to open paths to the creation of new knowledge. Graduate courses also provide crucial intellectual support for students pursuing feminist work within the framework of traditional disciplines. There is no fee for GCWS courses. Students are granted credit for participating by their home institutions. GCWS is currently administered at MIT.

Students in any discipline at MIT may register for GCWS seminars and receive graduate credit. Several seminars are offered per year; enrollment in each is limited. Graduate students interested in enrolling in GCWS seminars must complete a GCWS course application online; undergraduate students must first consult with the director of women's and gender studies at MIT. Admissions decisions are based on the student's background and brief statement of interest. The list of seminars offered and the online application are available at http://web.mit.edu/gcws/; for additional information, contact gcws@mit.edu.

ADMISSIONS

Regular Graduate Admissions
A regular graduate student is an individual who has been admitted to the Institute and who is registered for a program of advanced study and research leading to any of the post-baccalaureate degrees offered by MIT.

To be admitted as a regular graduate student, an applicant must normally have received a bachelor’s degree or its equivalent from a college, university, or technical school of acceptable standing. Applicants are evaluated by the department in which they propose to register on the basis of their prior performance and professional promise. These are evidenced by academic records, letters of evaluation from individuals familiar with the applicant’s capabilities, and any other pertinent data furnished by the applicant. While high academic achievement does not guarantee admission, such achievement, or other persuasive evidence of professional promise, is expected.

A student registered in a program of study leading to the simultaneous award of the bachelor's degree and master's degree must apply for graduate study and be registered as a graduate student for at least one academic term (not the summer session) of his or her program of study.

Some engineering departments require students seeking a doctoral degree to qualify first for a master’s degree.

Undergraduate Requirements for Advanced Degrees
In addition to preparation in the specific field of interest, most departments require significant work in mathematics and the physical sciences, but some require as little as a year of college-level work in these disciplines. Requirements of individual departments are given in Part 2 of this catalog. Students with minor deficiencies in preparation may be admitted for graduate study; however, deficiencies in prerequisite or general or professional subjects must be made up before the student can proceed with graduate work dependent on them.

Application Procedures
Students normally begin graduate study in September. However, in several departments, suitable programs can be arranged for students entering in June or February. Prospective applicants should check with individual departments about their dates for admission and matriculation. Application deadlines vary by department. Deadlines are noted in the graduate admissions application packet. Fees will not be returned to late applicants, but may be applied to an application considered in the next term. Candidates for admission who are also applicants for financial aid should observe the same deadlines.

All applicants are encouraged to apply online. The online and downloadable applications are available on the Graduate Admissions website, http://web.mit.edu/admissions/graduate/. Sloan School of Management application forms are available on the Sloan website, http://mitsloan.mit.edu/.

Inquiries about specific application and testing requirements, deadlines, and notification of decision for admission should be addressed to the appropriate graduate department.

International Graduate Admissions
Graduate student applicants who are citizens of countries other than the United States must have received a bachelor’s degree or its equivalent from a college, university, or technical institute of acceptable standing. The academic record and all credentials must indicate the ability of the candidate to complete the approved program of graduate study and research. Applicants are evaluated by the academic departments. Admission is granted on a competitive basis. Competence in written and spoken English is expected.

Students whose native language is not English and whose schooling has not been predominantly in English may be required to submit scores from the International English Language Testing System (IELTS) or the Test of English as a Foreign Language (TOEFL). Please check the Graduate Application for the requirements of your department. Students wishing to take the IELTS or the TOEFL should do so no later than December 31. Inquiries about specific testing requirements for admission should be addressed to the appropriate graduate department.

Special Graduate Student Admissions
A special graduate student is one whose intended program of study is essentially graduate in nature but who is not a candidate for an advanced degree. Normally, such a student will have received a bachelor’s degree. All applications are made through the Admissions Office. Applications for
the specific subjects will be evaluated and approved by the graduate committee of the appropriate department or departments. Admission is valid only for one term; a student must seek readmission each term to continue at the Institute. Those applying for special graduate student status for the first time must pay an application fee. A new fee is required after two sequential terms. To be allowed to continue as a special graduate student, satisfactory academic performance must be maintained. Admission as a special graduate student does not imply any commitment toward an individual’s admissibility to regular graduate student status. Students should visit the Special Student website, http://web.mit.edu/admissions/graduate/special_students/index.html, to download the Special Student application.

Deadlines for filing applications are August 1 for fall term, January 1 for spring term, and May 1 for summer term. Deadlines for international student applicants are June 1 for fall term, November 1 for spring term, and March 1 for summer term. International students living outside the United States are not permitted to apply for the summer term.

A student who is neither a United States citizen nor a United States Permanent Resident is considered an International Student. The form I-20 or DS 2019 will not be issued for subject registration of less than 36 units. Most subjects at MIT are either 9 or 12 units each. Detailed information about policies and procedures for international special students can be found at http://web.mit.edu/admissions/graduate/special_students/international_students.html. Detailed information and the downloadable application can be found on the Special Student website, http://web.mit.edu/admissions/graduate/special_students/index.html.

Graduate Student Status for Research Staff Members

In view of their full-time responsibilities on assigned research and their corresponding salary scales, Institute research staff or employees of the Lincoln Laboratory or the Charles Stark Draper Laboratory may not be full-time regular graduate students, but may, under certain conditions, be granted the status of special graduate student. However, a research staff appointee or an employee of the Lincoln Laboratory or the Draper Laboratory who desires to work for an advanced degree must be admitted as a regular graduate student and must complete the residency and other requirements of the degree program to which the individual has been accepted. This individual may not continue to hold a research staff appointment, nor include any work completed while employed as part of the thesis for an advanced degree.

Any research staff appointee and any employee of the Lincoln Laboratory or the Draper Laboratory may, by written permission from the director of the division (or his or her designate), apply for admission as a special graduate student for enrollment in one subject only per term (but not thesis), either as a listener or for academic credit.

Acceptance for such enrollment will be granted if, in the opinion of the instructor, the individual is qualified to undertake the subject and if section size permits. For this type of enrollment, the student will be assigned to an appropriate registration officer and will pay, whether as a student or listener, the fee established at the special student rate.

Other Employment

A graduate student may not interrupt an academic program to accept employment on the academic, administrative, or research staff, or as an hourly employee at MIT, the Lincoln Laboratory, or the Draper Laboratory either during the academic year or the summer, without the approval of the department head and the appropriate academic dean, and unless the work as an employee is unrelated to the student’s thesis research. A thesis release form indicating such approval must be submitted to the appropriate personnel officer to effect such employment. A graduate student may not include in his or her thesis any material based in whole or in part upon work done while holding an academic or research staff appointment.

COSTS

The basic tuition and fees at MIT for the academic year 2010–2011 (which are reviewed and likely to increase next year) are as follows:

- **Tuition** $38,940
- **Student Activity Fee** $272
- **MIT Student Extended Insurance Plan (optional)** $1,740

Payment of the tuition fee entitles all regular and special students to many health care services at MIT Medical (Building E23) at no charge.

The MIT Student Extended Insurance Plan covers hospitalization due to accidents or illness. The insurance is required for all students, unless they can demonstrate that they have comparable coverage through another insurance program. For further information, see the MIT Student Extended Insurance Plan in the section on Medical Requirements in this chapter, or visit http://web.mit.edu/medical/.

The tuition for all regular students, including graduate student staff, in the first and second terms is $19,470 per term, except for students entering the Sloan Master’s Program and the Leaders for Global Operations Program, for whom the tuition is $25,176 per term. Full tuition in either term of the current year covers the January Independent Activities Period. The minimum term tuition charge for registration for doctoral thesis upon readmission as a resident student is $29,205 if not registered during the preceding regular term.

The tuition for all regular graduate students, including fellows, trainees, and academic staff in the 2010 summer session was $12,975. Special tuition rates apply to other students in the summer session. These are published each year in the Summer Session Catalog, available in April.

Special students (except in the Sloan School of Management) are charged at the rate of $605 per unit whether taken for credit or not. This unit fee applies up to a maximum of $19,470 per term and is subject to the following minimum fees:

- **Members of the MIT community** $3,630
 (includes special students who are full-time employees of the Institute or who are dependents of full-time employees or regular students.)
- **Other special students** $5,445
Any resident graduate student making progress toward a degree is expected to register and is considered a full-time student. If a graduate student requires only part of a term to complete the thesis, full tuition for the term is charged, and adjustments to tuition are made at a later date. If the student was registered for thesis as a resident student in the immediately preceding term, regular or summer, tuition for thesis will be adjusted after acceptance by the department of the completed document on the basis of a charge of $1,620 per week from the starting date of the term, with a minimum of $1,620 for the master’s or engineer’s degree and $3,245 for the doctoral degree. If the immediately preceding term was the summer term and if the graduate student was not registered for thesis in that summer term, but was registered for thesis in residence in the previous second term, the minimum tuition for thesis is $9,735.

A student who continues to hold a fellowship, traineeship, or graduate staff appointment for the remainder of the term after delivery of the thesis continues to be regarded as a full-time student and the tuition will not be adjusted. In unusual circumstances, the dean for graduate education may set special tuition rates for graduate students.

Students who are permitted to undertake nonresident thesis research must register as nonresident doctoral candidates and, in the first three semesters of registration as a nonresident, pay tuition equal to approximately 5 percent of the regular full tuition ($970 per term for 2010–2011). For the fourth and subsequent semesters of registration as a nonresident, tuition will equal approximately 15 percent of the regular full tuition ($2,920 per term for 2010–2011). Following completion of the nonresident period, the student must return to resident status for completion and presentation of the doctoral thesis. If the student requires only part of this first term back in residence to complete the thesis, the tuition will be adjusted subject to a minimum of $9,735. Please consult Graduate Policies and Procedures (http://web.mit.edu/edge/gpp/) for additional information on nonresident status.

Cooperative and practice-school programs offered by MIT provide industrial and research experience through a series of work assignments interwoven with regular study at the Institute. The tuition fees for these programs are the same as those for regular graduate students:

- Chemical Engineering Practice School, Course 10-A
- Electrical Engineering and Computer Science, Course 6-A
- Materials Science and Engineering, Course 3-B

The tuition fee for special graduate students in the Sloan School of Management (except for employees of the Institute or their children) is $1,062 per unit of registration, with a minimum charge of $9,558. There is a maximum charge of $34,650 per term for full-time special graduate students enrolled in the program. Students interested in the Sloan Fellows Program for Innovation and Global Leadership should consult the Sloan School of Management with regard to fees.

A student withdrawing before the start of a term is not charged any tuition for that term and any tuition payments previously made for that term will be refunded. Students withdrawing during the fall or spring term are charged one-twelfth of the stated tuition for the term for each week from the starting date of the term, with a minimum two-week charge. A student must pay full tuition and fees at the beginning of the term. Any subsequent reduction in fees is based on the date that cancellation of a subject or withdrawal from the Institute is effected. At that time, any excess payments which the student has made will be refunded.

Graduate Living Costs
Living expenses for graduate students vary widely depending on such factors as marital status, availability of resources, interests, and tastes. Monthly living costs (housing, food, and personal expenses) are roughly $2,332 for a single graduate student. These cost estimates do not include tuition, books, or the Hospital and Accident Insurance Policy. Campus housing for graduate students is limited and less than half of the graduate student population can be accommodated in Institute housing. On-campus dining opportunities are available to graduate students.

Miscellaneous Fees
Miscellaneous fees include the following:

<table>
<thead>
<tr>
<th>Fee Description</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application for graduate admission</td>
<td>$75</td>
</tr>
<tr>
<td>Application for Master’s Program in Sloan School of Management</td>
<td>$250</td>
</tr>
<tr>
<td>Late submission of preregistration material</td>
<td>$50</td>
</tr>
<tr>
<td>Late initiation of registration process or very late registration, or late submission of application for nonresident doctoral status</td>
<td>$100</td>
</tr>
<tr>
<td>Late filing of degree application</td>
<td>$50</td>
</tr>
<tr>
<td>Late thesis title</td>
<td>$80</td>
</tr>
<tr>
<td>Processing of Registration Holds for next term resulting from prior term obligations that are not cleared at least two weeks prior to Registration Day of that next term</td>
<td>$100</td>
</tr>
<tr>
<td>Completing an Incomplete by a Not Registered Candidate (per subject)</td>
<td>$50</td>
</tr>
<tr>
<td>Library processing fees:</td>
<td></td>
</tr>
<tr>
<td>Doctoral theses</td>
<td>$115</td>
</tr>
<tr>
<td>All other theses for advanced degrees</td>
<td>$50</td>
</tr>
</tbody>
</table>

Processing Charges for Late Changes in Registration
A late change in registration, which requires a petition to the Office of the Dean for Graduate Education, is defined as adding a subject after the fifth week or dropping a subject during the last three weeks of a term. The processing charge for late changes is $50. There is an additional charge of $50 for a retroactive change after the end of the term.

The miscellaneous fees and processing charges listed above are nonrefundable, unless levied in error.

Payment of Tuition and Other Charges
An individual who registers as a student at MIT agrees to pay all charges on his or her account when due, and acknowledges that the Institute may
charge late charges (or finance charges for MIT Payment Plan accounts), suspend registration, revoke Institute services, and withhold the degree if these charges are not paid.

Student Financial Services (SFS) gathers, bills, and collects student charges and provides a student account statement of that activity. These charges originate in the offices from which the student receives Institute services. SFS bills by posting a monthly student account billing statement on MITPAY—a secure, paperless online billing and payment system. The statement is posted by the 10th of any month in which there’s a new charge or credit on the account. SFS sends courtesy email reminders to students each month to check the statement and pay any balance due. The statement includes charges (e.g., tuition, fees, housing, and library fees), payments (financial aid, tuition awards), additional amounts due, and payment deadlines. Visit http://web.mit.edu/sfs/bills/index.html for more information on getting and paying the student account bill.

Payment in full or a satisfactory arrangement for payment is due prior to the beginning of each term (July 1, August 1, and January 1). New charges and credits that occur after the initial statement will appear on a subsequent statement. If a student anticipates that he or she may not be able to pay the entire account by the July, August, or January deadlines, the MIT Payment Plan is available and should be considered.

Participation in the MIT Payment Plan allows an installment payment arrangement over four months each term (three months during the summer). The interest rate is currently 0.667 percent per month (8 percent annual percentage rate) and is assessed on the unpaid account balance (excluding extended student medical insurance). To sign up for the plan, download the appropriate form at http://web.mit.edu/sfs/forms_and_publications/index.html and return it to SFS.

SFS offers information on various loan programs as additional options, including federal and private programs. For more information, visit http://web.mit.edu/sfs/loans/get_a_loan.html.

If a student fails to make satisfactory arrangements for payment and has amounts outstanding after a payment due date, that balance will be subject to late fees of 1.5 percent per month (18 percent annual percentage rate). Outstanding balances at the end of a term will result in a hold on the student’s registration or graduation.

Student accounts unpaid after the student has left MIT for any reason may be reported to credit bureau agencies and/or sent to an outside collection agency and assessed additional fees of 33.3 percent of the outstanding balance.

Notifications to Graduate Students with Unpaid Balances

After the fifth week of the term, SFS will identify graduate students who have unpaid balances on their student accounts for the term and who have not made satisfactory arrangements for payment of those balances. SFS will notify these students—both through the regular monthly billing process and by email—informing them of the Institute’s policy regarding financial holds.

Graduate students who do not settle their prior term balances or who have not made efforts to resolve their financial problems will not be allowed to register for the subsequent term or receive credit retroactively.

SFS staff members are available to answer questions and offer assistance in resolving billing matters related to student accounts, payment options, billing sponsors, educational loans, refunds, and cash advances. Visit SFS in the Student Services Center, Room 11-120, or http://web.mit.edu/sfs/.

FINANCIAL AID

MIT makes financial support available to graduate students from a variety of sources and in several different forms—fellowships, scholarships, traineeships, teaching and research assistantships, on-campus employment, and federal loans. Many forms of support are granted solely on the basis of merit, while others are granted on the basis of financial need or a combination of merit and need.

Neither a department nor the Institute itself has the financial resources to provide support for all deserving students. Thus, it is important that prospective students explore all sources of aid available outside MIT to find means of financing their graduate programs.

Information on fellowships and other financial aid resources is available from individual departments and the Office of the Dean for Graduate Education, Room 3-138. Information on loans is available from Student Financial Services (SFS), Room 11-320, or at http://web.mit.edu/sfs/loans/.

Fellowships, Traineeships, and Scholarships

At MIT, fellowships and traineeships differ from scholarships. A fellowship award to a graduate student covers full or partial tuition, and also provides a stipend to help defray living expenses. In the context of graduate study, a scholarship covers full or partial tuition only. Although most awards are made on the basis of academic merit, financial need is a factor in some instances. Recipients must be enrolled as regular resident students.

Insofar as fellowships, scholarships, and research and teaching assistantships provide for tuition payments, these funds are nontaxable. When fellowships are less than tuition and an accompanying stipend exists, a portion of the stipend may be applied against the remaining tuition, and that portion excluded from taxable income (provided that the terms of the fellowship do not preclude this). Expenses for books, supplies, and equipment required for courses may also be excluded from taxable income. However, stipends accompanying teaching and research assistantships are taxable regardless of the amount of nontaxable tuition provided.

The Institute annually receives funds from individual and corporate donors for the support of fellowships and scholarships. In addition, government agencies and private foundations provide grants and fellowships—often directly to outstanding students for use at institutions of the student’s choice. But occasionally these funds are directed to MIT for Institute designation of recipients.

gGraduate Education

65
Applications to MIT graduate programs who seek financial support from any of the fellowships, traineeships, or scholarships administered by MIT, including those granted by national agencies and foundations for award by the Institute, should inform their academic department. Currently enrolled graduate students who seek financial support should consult with the appropriate departmental office.

Applications for fellowship aid for the academic year, beginning in June or September, must be filed by January 15. Applications for fellowship aid filed after this date will be considered only if funds are available. Final action on applications is taken on the recommendation of departments at the end of March, after the announcement of awards to applicants by the national agencies and foundations under their national competitive programs. A student who wins such a fellowship may be eligible for only a supplementary award in accordance with MIT’s guidelines. For further information on these guidelines, see Graduate Policies and Procedures.

In accordance with a resolution of the US Council of Graduate Schools (endorsed by most graduate schools), a student has until April 15 to accept or decline an offer. If a student does not reply to an offer by this date, it may be cancelled. Every student holding a fellowship, traineeship, or scholarship for graduate study at the Institute must register as a full-time regular graduate student for the period of the award. If a student withdraws from the Institute before tenure expires, the award must be relinquished, and the student will be required to refund any payment made in excess of tenure.

Teaching and Research Assistantships
MIT employs about 700 graduate students each year as part-time or full-time teaching assistants to assist the faculty in grading undergraduate quizzes, instructing in the classroom and laboratory, and conducting tutorials.

The departments regard seriously the benefits of a teaching assistantship as a preparation for a career in university teaching. Each year, the Institute offers a prize, the Goodwin Medal, for conspicuously effective teaching by a graduate student.

The units for which an instructor or teaching assistant may register as a student are determined by the department in light of the student’s assistantship duties, program of study, and compensation. Appointments to teaching assistantships are made upon recommendation of the head of a department. A student who wishes to be considered for a teaching appointment should write to the department. Only full-time graduate students who are candidates for advanced degrees may be appointed. A Free Application for Federal Student Aid (FAFSA) is required for all teaching assistants who are US citizens or permanent residents.

Each year about 2,500 graduate students at MIT hold appointments as research assistants. The principal duty of a research assistant is to contribute to a program of departmental or interdepartmental research. Most students welcome the opportunity to participate as a junior colleague of a faculty member in an ongoing research project that frequently influences their choice of thesis topic. Appointments to research assistantships are made by the department head to full-time students who are candidates for advanced MIT degrees.

The units for which a research assistant may register are determined by the department in light of duties and program of study. Research assistants are compensated on the basis of time devoted to their research. In all cases they must pay full tuition.

Teaching and research assistants receive stipends for the services that they provide; these stipends are taxable income that is subject to withholding tax. Teaching and research assistants also receive a nontaxable tuition scholarship. Students who are on visas should be aware of the US income tax regulations applicable to their visa status.

Students who receive financial support from other sources (fellowships, scholarships, etc.) may receive supplementary stipends as teaching or research assistants in accordance with Institute and departmental guidelines.

Loan Funds
A graduate student’s first recourse for loan assistance should be the Federal Direct Student Loan Program. To establish eligibility for this need-based loan, applicants must complete the Free Application for Federal Student Aid (FAFSA) online at http://www.fafsa.ed.gov/, and the MIT Graduate Loan Application, available on the web at http://web.mit.edu/sfs/forms_and_publications/. The maximum Federal Direct Subsidized Loan per year is $8,500 for first-time Direct Loan borrowers. Application forms and details of the application procedure may be obtained from SFS Financial Aid in Room 11-320, or http://web.mit.edu/sfs/financial_aid/.

Graduate students may be eligible for loans up to $8,000 from the Federal Perkins Loans program, based on information they provide on the FAFSA.

For costs of education remaining after the maximum subsidized Federal Direct Subsidized Loan has been obtained, the Federal Direct Unsubsidized Loan may be available (for a combined total of $20,500). In determining need for these programs, as well as the Federal Direct Loan Program, MIT compares student resources available, including assets, using appropriate student budgets. Loan eligibility is determined within limits based on those budgets.

Students who need additional funding (beyond the $20,500 available via the Federal Direct Loan and the $8,000 available via the Federal Perkins Loan) may want to consider securing either a Federal PLUS loan or another loan not based on financial need. The Federal PLUS Loan may be used to borrow the remainder of a student’s expenses, as may other programs offered by outside agencies.

International Students
Students who are not US citizens or who do not hold a permanent resident visa are not eligible for federal loans. International students must be prepared to meet their expenses without help from loans from the Institute. International Students may consider applying for private alternative loans. Most of these loans will require a US-based co-signer.

Student Employment
SFS Student Employment maintains listings of on-campus and off-campus job opportunities that are open to graduate students. Some positions are available directly through administrative offices on campus. Graduate students who hold full-time research or teaching assistantships or who receive full support on fellowships or traineeships usually are not eligible for such employment. The Office of the Dean for Graduate Education (http://web.mit.edu/edge/) should be consulted for approval before un-
dertaking such employment. For additional information, visit SFS Student Employment in Room 11-320 or http://web.mit.edu/sfs/jobs/.

Graduate students who complete the Free Application for Federal Student Aid (FAFSA) and are eligible for Federal Work-Study aid may do paid community service. Wages are subsidized for students performing direct community service at approved nonprofit agencies.

International students may only work on campus. Those considering off-campus employment must contact the International Students Office, Room 5-133, before accepting employment, or visit http://web.mit.edu/iso/.

Graduate Residents
Regular resident graduate students who have completed at least one graduate year at MIT or new students who have been MIT undergraduates may apply to Student Life Programs (http://web.mit.edu/slp/), Room W20-549, for positions as graduate resident tutors. Such positions provide room and board but no stipend.

Veterans’ Benefits
Students who are receiving veterans’ benefits need to verify their enrollment each year in order to be certified. Enrollment may be verified by submitting a copy of the approved registration form to the Veterans Administration (VA) coordinator, Liz Barnes (barnes@mit.edu) in Student Financial Services, Room 11-320. Students may also wait until registration information appears online, typically the second week of the term. VA regulations require that benefits stop between the spring and fall terms if the period is greater than 60 days. Students with questions should consult with the VA coordinator.

MEDICAL REQUIREMENTS

Medical Report
MIT requires that all incoming students submit a medical history, have a complete physical examination, and document immunity against certain infectious diseases. Medical Report forms need to be submitted before registering for classes. Specific deadlines for each term are listed on the form itself. More information and downloadable Medical Report forms may be found at http://medweb.mit.edu/howdoi/guides/undergraduate.html#medreq.

Registration will not be permitted for any student who has not complied with the Medical Report and/or immunization requirements stated above.

Health Insurance
All MIT students must have health insurance that meets the requirements for the Massachusetts Student Health Insurance Plan (SHIP). Students with J-1 visas under MIT sponsorship must have insurance that also meets US Department of State regulations for themselves and their spouses and children who accompany them. More information about Massachusetts health insurance requirements may be found at http://medweb.mit.edu/healthplans/student/waiver.html.

MIT Student Health Plan
The MIT Student Health Plan consists of two health plans, the MIT Student Medical Plan and the MIT Student Extended Insurance Plan.

The MIT Student Medical Plan covers a wide range of services provided at MIT Medical, including primary care, many medical specialties, urgent care seven days a week, mental health care, and other services (see Medical Services in Chapter 2). Registered MIT students paying tuition to MIT are automatically enrolled in the MIT Student Medical Plan as part of their tuition. Student partners and children of students may use MIT Medical on a fee-for-service basis for limited services, or by paying a Partner/Child MIT Student Medical Plan premium for comprehensive access. To enroll their families, students must complete the MIT Student Health Plan enrollment form annually during the fall enrollment period. Partners and children of students who purchase the MIT Student Medical Plan premium must also provide evidence that they are enrolled in a health insurance plan or may purchase the MIT Student Extended Insurance Plan.

If students wish to enroll their spouse (or spousal equivalent) or children, a new enrollment form must be submitted each academic year (September to August).

The MIT Student Extended Insurance Plan is designed to coordinate with the MIT Student Medical Plan and provides coverage for more extensive care, such as hospitalization, diagnostic tests, physical therapy, surgery, prescription medication, and obstetrical care. Since health insurance is mandatory under Massachusetts law, all regular students and special students (registered with 27 or more units), including students on a J-1 or F-1 visa, are automatically enrolled in the MIT Student Extended Insurance Plan. Prior to the beginning of each term, students may submit an online request to waive the Student Extended Insurance Plan if they already have coverage which meets the Massachusetts requirements for student health insurance. J-1 students under MIT visa sponsorship may waive the MIT Student Extended Insurance Plan only if their policies meet both the Massachusetts requirements and specified United States Information Agency (USIA) requirements. In order to demonstrate comparable coverage Massachusetts state law requires coverage through an insurance carrier based in the United States. New waiver forms must be filled out each academic year.

Special students taking two or more subjects, but registered at MIT with less than 27 units, are eligible to purchase the MIT Student Extended Insurance Plan, but are not enrolled automatically.

The deadline for submitting enrollment forms and waiver forms is September 30 for fall term, February 28 for spring term, and June 30 for summer term.

More information about the MIT Student Health Plans, including benefits, rates, and enrollment or waiver processes, may be found at http://medweb.mit.edu/healthplans/student/.

Please contact MIT Health Plans at stuplans@med.mit.edu with enrollment or waiver questions, or contact Claims and Member Service at mservices@med.mit.edu with any questions about benefits or claims.
What is MIT’s policy on grading? On plagiarism? On harassment? Does MIT disclose information about students to persons outside the Institute? Is there student parking? This section contains the essential rules and regulations that govern day-to-day operations at MIT.
Registration
Information on preregistration and registration procedures is available at http://web.mit.edu/registrar/reg/index.html.

Retaining Student Status
A person becomes an MIT student at the start of the term for which he or she is admitted or readmitted. Regular student status is retained until graduation, unless the student withdraws or is disqualified.

For the fall and spring terms, undergraduate and graduate students must complete the three steps listed below in order to continue student status during that term:

- Preregistration must be completed according to instructions issued by the Registrar’s Office.
- All Institute and Fraternity, Sorority, and Independent Living Group (FSILG) charges must be paid when due, or satisfactory alternative arrangements must be made with Student Financial Services or the FSILG.
- Registration Forms must be approved by the student’s advisor or registration officer, signed by the student, and returned to the Registrar’s Office.

Students who do not complete these steps by the published deadlines are subject to fines. Failure to pay charges and complete registration by the end of the second week of the term will result in the loss of student status.

International students are required by immigration regulations to be registered full-time when school is in session in order to maintain legal status in the US. Students should check with the International Students Office (http://web.mit.edu/iso/) for details.

Undergraduate and graduate students registered in the spring term who do not graduate or withdraw from MIT retain their student status through the following summer, whether or not they register for the summer session; they cease being students if they do not register in the fall (although the rules for student status with regard to loan repayment are somewhat different). Graduate students making progress toward a degree during the summer must register for the summer session in accordance with Office of the Dean for Graduate Education regulations.

Students do not have to register for the Independent Activities Period to retain student status between fall and spring terms.

If a student has begun the registration process but wishes to withdraw, he or she must notify Student Support Services if an undergraduate; his or her registration officer if a graduate student; and, in addition, the International Students Office if an international student.

A person wishing to be reinstated as an undergraduate must apply for readmission through Student Support Services. No application for readmission to the undergraduate program will be considered from any applicant who has received a bachelor’s degree or the equivalent from another institution. A person wishing to be reinstated as a graduate student must apply for readmission through the Admissions Office and the department. International students also need to be cleared by the International Students Office.

People on campus who are not registered during a term are not considered students and have no student privileges.

Prerequisites
Prerequisites are used to indicate the sequence in which subjects are to be taken and the base of knowledge on which a particular subject will build. Before taking a subject, a student should complete any prerequisite(s) listed in the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi, for that subject. (Corequisites, which are listed in italics, are to be taken concurrently.)

Once prerequisites and corequisites are included in a subject listing, it is the responsibility of the instructor to ensure that the subject is taught at the appropriate level. At the first class, instructors should reiterate the prerequisites and corequisites, and describe acceptable substitutions.

Students who do not have the stated prerequisites should obtain the permission of the instructor. Instructors may request that the Registrar’s Office identify students without prerequisites, and in some cases, screen them from the subjects.

If the instructor allows a student to waive or make a substitution for a prerequisite, it is then the student’s responsibility to master any missing background material in a timely fashion so that the content of the subject does not change for other students in the subject.

The instructor may determine that a student does not have the required preparation and knowledge to take a subject and may, with the help of the Registrar’s Office, exclude the student from the subject.

Some departments require students with a D-level performance in certain prerequisite subjects within the departmental program to do additional work or to retake the prerequisite before proceeding with the follow-on subject.

Credit Hours and Designations for Subjects
The credit hours (units) for each subject indicate the total number of hours spent each week in class and laboratory, plus the estimated time that the average student spends each week in outside preparation, for one regular term. Each subject is listed in the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi, with three credit numbers, showing in sequence the units allotted to class time (lecture and/or recitation); laboratory, design, or fieldwork; and preparation. Each unit represents about 14 hours of work per term. The total unit credit for a subject is obtained by adding together all the units shown. Additional information regarding subject designations may be found in the Explanatory Notes that introduce the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Advanced Standing Examinations for Undergraduates
Advanced standing examinations are given in August/September, December, January/February, and May. These examinations may be taken only by students who have never been registered for or attended class at MIT in the subject concerned. Special students are not eligible to take advanced standing examinations.

Except for entering freshmen and transfer students, who may take advanced standing examinations offered during orientation, students must
petition to take an advanced standing examination. The petition must be approved by the instructor in charge of the subject and the student’s advisor, and then submitted to the Schedules Office, Room 5-111, at least three weeks before the first day of the examination period.

Students interested in taking higher-level examinations should check in advance what preparation is required. The instructor may require evidence of competence in addition to the examination if the subject normally involves measures of student performance that are qualitatively different from the examination.

If a student fails an advanced standing examination, he or she may not retake the examination, but may register for the same subject in any subsequent term.

For more information, see the advanced standing examination procedures at http://web.mit.edu/registrar/classrooms/exams/ase_exams.html.

Term Regulations and Examination Policies

These term regulations and examination policies, available at http://web.mit.edu/faculty/teaching/termregs.html, derive from Rules and Regulations of the Faculty, available at http://web.mit.edu/faculty/governance/rules/. They apply to academic exercises during the fall and spring terms. Questions of interpretation and requests for exceptions to regulations should be referred to the Chair of the Faculty.

All Subjects

Class Times. Exercises should, in general, be held between 9 am and 5 pm, Monday through Friday. Exercises begin five minutes after and end five minutes before the scheduled hour or half-hour.

Beginning of Term. Early in the term, the faculty member should inform students of expectations regarding permissible academic conduct. Particular attention should be given to such questions as the extent of collaboration permitted or encouraged, and the use of prior years’ materials in completing problem sets, lab reports, and other assignments.

Scheduling Final Examinations. Final examinations are held during the final examination period at the end of each term, and are scheduled through the Schedules Office. A final examination should last at least one hour and not more than three hours. Final examinations may not be cancelled once they are announced, and, after the final examination schedule is published, the time of the final examination may not be changed.

Students are responsible for attending the final examinations in subjects for which they are registered. The schedule is issued several months before the examination period. Students are responsible for obtaining examination schedules. The Schedules Office will contact all students who have one or more conflicts; the conflict exam schedule will be published shortly after Drop Date.

After the Last Scheduled Class. No classes, examinations, or exercises of any kind may be scheduled after the last regular scheduled class in a subject except for final exams scheduled through the Schedules Office. Formal review should be held during regular class periods, but the rule does not exclude the possibility of sessions after the last day of classes at which the instructing staff is available to answer questions of students who choose to attend. (The architecture design reviews that occur during

finals week are considered to be equivalent to final examinations and are scheduled by the Department of Architecture.)

An instructor may give an extension to an individual student, but blanket extensions should not be given to the entire class.

Excused Absences from Final Examinations. A student may be excused from a scheduled final examination for reasons of illness or significant personal problems. Undergraduates should contact a dean in Student Support Services and graduate students should contact the dean for graduate education if they wish to seek an excused absence; faculty members with questions about this process should contact the appropriate office. See definition of “O” and “OX” under Grades.

The faculty member in charge of a subject may excuse a student from a final examination for such reasons as conflicts either between examinations or with religious holidays. In these cases, a mutually satisfactory agreement should be reached between the student and the faculty member, the agreement ratified in advance of the examination by the head of the department in which the subject is offered, and the faculty member prepared to submit a grade based on other evidence.

Undergraduate Subjects

Class Times. For undergraduate subjects, during the instructional period of the fall and spring terms, there should be no required academic exercises between 5 pm and 7 pm, Monday through Thursday, and between 5 pm Friday and 8 am Monday.

Beginning of Term. By the end of the first week of classes, the faculty member must provide:

- A clear and complete description of the required work including the number and kinds of assignments
- The approximate schedule of tests and due dates for major projects
- Whether or not there will be a final examination
- The grading criteria and procedures to be used

By the end of the third week, the faculty member must provide the precise schedule of tests and major assignments.

Tests and Academic Exercise Outside Scheduled Class Times. Tests, required reviews, and other academic exercises held outside scheduled class times should not be held on Monday nights.

In addition, tests should:

- Not exceed two hours in length
- Be scheduled through the Schedules Office
- Begin no earlier than 7:30 pm when held in the evening

A student who is unable to take the test owing to a conflict with a scheduled academic exercise or extracurricular activity must be allowed to do so at another time.

When a test is held outside scheduled class time, during that calendar week:

- A regularly scheduled class hour (lecture or recitation) should be cancelled, or
- No assignment should fall due
Final Examinations. In some undergraduate subjects, final examinations may be ex camera (out-of-room) examinations. Ex camera examinations are a different mode of testing intended to give students access to computers and libraries and evaluate their abilities to select resources and answer questions of an integrative nature. Ex camera final examinations are not intended as a way to increase the amount of material covered.

A faculty member must obtain the permission of the Chair of the Faculty to hold ex camera final examinations. Permission will be granted for no more than five years. The ex camera examination must:

• Be scheduled through the Schedules Office
• Be offered over the course of a single afternoon-starting at 1:30 pm and ending no later than 7:30 pm
• Permit students unrestricted use of resources

End-of-Term Tests and Assignments. The Friday preceding the start of the Reading Period is defined as the Last Test Date. No tests will be held after this date until the Final Examination Period.

If a subject has a final examination, no assignment may fall due after the Last Test Date.

If a subject does not have a final examination, at most one assignment may fall due between the Last Test Date and the end of the last scheduled class period in the subject. This single assignment may include both an oral presentation and a written report if the two derive from the same project.

Optional assignments between the Last Test Date and the last scheduled class period in the subject should be for self-study, and may not be used toward part of the grade in a subject, even for extra points or as substitutes for earlier assignments.

Graduate Subjects
Beginning of the Term. By the end of the third week, the faculty member must provide:

• A clear and complete description of the required work, including the number and kinds of assignments
• The schedule of tests and due dates for major projects
• Whether or not there will be a final examination
• The grading criteria and procedures to be used

Tests and Academic Exercise Outside Scheduled Class Times. A student who is unable to take a test that is held outside of scheduled class time owing to a conflict with another scheduled academic exercise or extracurricular activity must be allowed to do so at another time.

End-of-Term Tests and Assignments. For each subject with a final examination, no test should be given and no assignment, term paper, or oral presentation should fall due after the Friday preceding the start of the Reading Period.

For each subject without a final examination, at most, either one in-class test may be given, or one assignment, term paper, or oral presentation may fall due between the Friday preceding the start of the Reading Period and the end of the last regularly scheduled class in the subject. An in-class test given during this period is limited to one normal class period (or to one and one-half hours, whichever is shorter).

Policy for Emergency Closing during Final Exams or on Registration Day
Every effort must be made to give final exams as scheduled during the final examination period. Because students have included the final exam in their planning for the subject, faculty members may not choose to cancel exams; they must give the exam as scheduled, or as rescheduled in the event the Institute is closed because of snow or other emergency (see below).

• In case of inclement weather during exams, getting to MIT may be difficult for individuals involved with proctoring an exam. Thus, it is the responsibility of the department and the faculty member in charge to provide in advance for alternate staff who are physically at MIT and who have access to the written exam questions. Exam proctors will accommodate late student arrivals to the extent possible.

• In case of emergency closing or delayed opening during exams, students, faculty, and staff can call 617-258-8378 (617-258-TEST) or go to http://web.mit.edu/registrar/classrooms/exams/finals/index.html to get up-to-date information during exam week. Exam information is also available from the “snow” link that is provided on the MIT home page (http://web.mit.edu/) during emergencies. In the event of an emergency closing or delayed opening, callers receive specific instructions regarding rescheduled exam times and locations.

• If the Institute is closed, the exams scheduled during that period are postponed to the next available “contingency” exam periods, usually evenings 6–9 pm through the last day of the exam period, and either the second day of IAP (fall exams) or the day following the exam period (spring exams). If MIT has a delayed opening, for example, 10 am, then the starting time for exams is delayed. Details are given on the telephone line 617-258-TEST. A detailed schedule of postponement is available from the “snow” link that is provided on the MIT home page (http://web.mit.edu/registrar/classrooms/exams/finals/index.html).

• Students who miss exams given at the rescheduled times will be excused; faculty should submit the interim grade on which an “X” will be added routinely. These students will take a postponed final exam given near the beginning of the next regular term.

If the Institute is closed during part or all of Registration Day, students, faculty, and staff can call 617-258-8378 or go to http://web.mit.edu/registrar/ to get up-to-date information regarding rescheduled registration activities.

Student Absence for Religious Observances
Massachusetts state law regarding student absence due to religious beliefs has been adopted by the Institute as follows:

Any student who is unable to attend classes or participate in any examination, study, or work requirement on a particular day because of his or her religious beliefs is excused from any such activity. The student will be
given the opportunity to make up the work that was missed, provided that the makeup work does not create an unreasonable burden upon MIT.

The Institute will not levy fees or charges of any kind when allowing the student to make up missed work. In addition, no adverse or prejudicial effects will result because students have made use of these provisions.

For more information, visit http://web.mit.edu/registrar/calendar/religious.html.

Academic Performance and Grades
Undergraduate Academic Standards
The Committee on Academic Performance (CAP) ensures that the minimum academic standards proposed by the individual departments for undergraduate students are consistent throughout the Institute and conform to the rules and regulations approved by the faculty. In view of the individual nature of student academic performance, the CAP does not establish rigid standards of academic performance to be used throughout the Institute. The Institute generally expects undergraduate students to complete the requirements for a single SB degree in four years; the usual load of subjects is approximately 45–54 units of credit per term. Normally, however, the CAP accepts a minimum academic record of at least 36 units of credit with a term rating above 3.0 (on a 5.0 scale) at the end of any regular term, unless the Committee has specifically notified an individual student that a higher level of performance is required. (The latter would only occur as a result of previously poor performance.)

When these criteria are not met, the CAP considers each student’s academic performance on an individual basis. Consideration is given not only to the grades received in the various subjects for which the student is registered, but also to the total number of subject units, the nature of the subjects themselves, progress toward the degree, and those factors in the student’s own personal situation that may have affected his or her academic performance in a given term. The CAP website, http://web.mit.edu/acadinfo/cap/, gives more detailed information concerning end-of-term review procedures. For further information, contact the CAP Office, Room 7-104, 617-253-4164.

Per the Code of Federal Regulations (Title 34, Volume 3, Sec. 668.34) regarding satisfactory progress, a regular undergraduate student is eligible to receive Title IV, HEA program assistance if the student is enrolled at least half time per term and maintains satisfactory progress in his or her course of study. A grade point average of at least a C (3.0 on MIT’s 5.0 scale) or academic standing consistent with MIT’s requirement for graduation (not to exceed 150% of the published length of the program) is considered satisfactory progress for an undergraduate student. All undergraduates whose performance falls below this standard will be considered, for Title IV purposes, to be under CAP review during the subsequent term. A student under CAP review will be considered to be making satisfactory progress unless the CAP withdraws permission for the student to continue.

Grades
In determining a student’s grade, consideration is given for elegance of presentation, creativity, imagination, and originality where these may appropriately be called for. Grades at MIT are not rigidly related to any numerical scores or distribution function, that is, grades are not awarded solely according to predetermined percentages. As can be seen from the following grade descriptions, a student’s grade in a subject is related more directly to the student’s mastery of the material than to the relative performance of his or her peers.

Passing Grades. Undergraduate and graduate students who satisfactorily complete the work of a subject by the end of the term receive one of the following grades:

A Exceptionally good performance demonstrating a superior understanding of the subject matter, a foundation of extensive knowledge, and a skillful use of concepts and/or materials.
B Good performance demonstrating capacity to use the appropriate concepts, a good understanding of the subject matter, and an ability to handle the problems and materials encountered in the subject.
C Adequate performance demonstrating an adequate understanding of the subject matter, an ability to handle relatively simple problems, and adequate preparation for moving on to more advanced work in the field.

Graduate Academic Standards
It is the responsibility of the Graduate Academic Performance Group (GAPG) to monitor minimum academic standards for graduate students and special students in accordance with the rules and regulations of the faculty. Chaired by the dean for graduate education, the GAPG reviews the academic records of all graduate students at the end of each term (including the summer session), giving particular attention to students with cumulative ratings below 3.5 to 4.0. Consideration is given to low grades and factors affecting a student’s ability to meet the requirements for the degree program in which he or she is enrolled.

Recommendations for action by the GAPG are made by departmental graduate committees. Unless extenuating circumstances are found, students who are not making satisfactory progress towards a degree may be denied permission to continue or may be warned that without substantial improvement the following term, they may be refused further registration.

In order to receive federal financial aid under Title IV purposes, a graduate student is considered to be making satisfactory progress as long as his or her cumulative grade point average exceeds 4.0, and if the number of terms of enrollment does not exceed five for a master’s candidate or 10 for a PhD or ScD candidate. Graduate students whose performance falls below this standard will be considered, for Title IV purposes, to be under GAPG review during the subsequent term. A student under review will be considered to be making satisfactory progress if the GAPG does not withdraw permission for the student to continue.

The GAPG operates with the authority of the Committee on Graduate Programs (CGP). More detailed information concerning procedures followed by this standing faculty committee may be found in the online publication, Graduate Policies and Procedures, at http://web.mit.edu/edge/gpp/. It is also important for students to be informed about individual department requirements and expectations concerning academic performance.
Note that the MIT internal grading system includes plus (+) and minus (-) modifiers for use with the letter grades A, B, and C for all academic subjects (except advanced standing exams). These modifiers appear only on internal grade reports. They do not appear on transcripts and are not used in calculating term or cumulative grade-point averages. The MIT grading system for external purposes does not include modifiers.

D Minimally acceptable performance demonstrating at least partial familiarity with the subject matter and some capacity to deal with relatively simple problems, but also demonstrating deficiencies serious enough to make it advisable to proceed further in the field without additional work. Some departments require students with D-level performance in certain prerequisite subjects within the departmental program to do additional work, or to retake the prerequisite, before proceeding with the follow-on subject.

P When use of the passing grade P is authorized, it reflects performance at the level A, B, or C (A+ to C- with modifiers used within MIT), with the student graded on a P/D/F basis.

Non-Passing Grades. The grades and notations used for subjects not passed or not completed by the end of the term are as follows.

DN Signifies a D grade on Freshman Pass/No Record and ABC/No Record.
F Failed. This grade also signifies that the student must repeat the subject to receive credit.
FN Signifies an F grade on Freshman Pass/No Record and ABC/No Record.
O Absent. This grade indicates that the student was progressing satisfactorily during the term but was absent from the final examination, did not turn in the final paper or project, and/or was absent during the last two weeks of the term. Like an F grade, an O grade carries no credit for the subject, but the O grade can be converted to a grade of OX. Unsatisfactory performance because of absence throughout the term should be recorded as F.
OX Absence satisfactorily explained to and excused by the dean for undergraduate education in the case of an undergraduate student or by the dean for graduate education in the case of a graduate student. The faculty member in charge of the subject will be notified when an O is changed to an OX. An OX carries no credit for the subject. However, the faculty member in charge must provide the student the opportunity to receive a credit-carrying grade. This may be done with or without the instructor requiring a make-up final examination or other additional evaluation procedure.
I Incomplete. The grade I indicates that a minor part of the subject requirements has not been fulfilled and that a passing grade is to be expected when the work is completed. The grade I for the term remains permanently on the student’s record even when the subject is completed. The work should normally be completed before Add Date of the succeeding term of the regular academic year; however, the faculty member in charge, in negotiation with the student, has the right to set an earlier or later date for pedagogical reasons or extenuating circumstances.

Graduate students may extend the five-week deadline with the explicit approval of the faculty member in charge. To complete an Incomplete after the five-week deadline, graduate students must petition the dean for graduate education. A final grade will not be posted until an approved petition is received in the Registrar’s Office.

The instructor is required to submit an Instructor’s Report Form for a grade of I reported for an undergraduate. On the form, the instructor provides the date by which the outstanding work is to be completed and a default final grade. The default final grade represents the grade the student would have earned, using appropriately low scores for the missing work. If the subject has not been completed by Add Date of the succeeding regular term, the default final grade will be posted to the student’s record unless a later deadline has been specifically agreed upon by the instructor and the student.

No grade of I can be assigned to any undergraduate in the term in which he or she graduates. All grades of Incomplete must be resolved prior to graduation.

J Notation assigned for work such as thesis, UROP, Special Topics, or At Plant registration (internship or industrial practice), which has progressed satisfactorily, but has not been completed. Grade given upon completion of the work in a later term also covers this term. Faculty members must obtain approval from the Committee on Curricula or the Graduate Academic Performance Group to use the grade of J in subjects other than those mentioned above.

U Notation for thesis work that has not been completed and in which progress has been unsatisfactory. Grade given upon completion of the work in a later term also covers this term. Unless a student’s progress improves significantly, the student may expect that grade to be failing.

T Temporary notation. Used for subjects which cover the equivalent of one term’s work, but are scheduled over parts of two normal grading periods. Prior approval must have been obtained from the Committee on Curricula for undergraduate subjects or the Committee on Graduate Programs for graduate subjects. This notation is recorded only on the student’s internal record. A permanent grade must be assigned when the subject is finished.

Other Notations. The following notations are also used on the academic record.

S Notation for credit awarded for work done elsewhere.
SA Notation for satisfactorily completed doctoral thesis. Doctoral theses are not graded.
DR Notation used only on the student’s internal record for a subject dropped after the fifth week of the regular term.
LIS Notation used only on the student’s internal record for a subject the student registered for as a listener.
URN Notation for a subject in UROP taken for pay or as a volunteer rather than academic credit.
VIS Notation for a research subject taken as a non-degree visiting student.

Alternate Grades. When a significant disruption of academic activities is declared, as described in the Rules and Regulations of the Faculty at http://web.mit.edu/faculty/governance/rules/2.100.html, the use of the
grades below may be authorized. These grades are not included in the calculations of grade point averages.

PE Performance at any of the levels A, B, or C, under the circumstance of an Institute emergency closure.

NE Performance at the level of D or F for which no record will appear on the external transcript.

IE Incomplete. Indicates that a portion of the subject requirements has not been fulfilled, due to a major disruption of the Institute’s academic activities. A letter grade may be assigned if the work is subsequently completed. The grade IE remains permanently on the student’s record even when the subject is completed. To receive a letter grade, the work must be completed prior to a date set by the Chair of the Faculty. If the work is not completed prior to the established completion date, the grade will remain an IE on the student’s record and transcript. A grade of IE does not carry credit but need not be resolved prior to graduation.

Additional information regarding freshman grading, hidden grades, and the sophomore exploratory and junior-senior P/D/F grading options is available in the Undergraduate Education section.

Grade Reports and Transcripts
Students may view their internal grade reports on WebSIS. Students may request transcripts of their academic record at the Student Services Center, Room 11-120. Transcripts are available in an unofficial version free of charge or in an official version at a cost currently set at $8 per copy. For more information, see the Registrar’s Office website, http://web.mit.edu/registrar/records/index.html.

Graduation
Degrees are awarded by the Corporation of the Institute in September, February, and June upon recommendation of the Faculty. Favorable faculty action is based upon approval by the Committee on Academic Performance or the Committee on Graduate School Programs on recommendations from departmental committees.

Students must submit an online SB degree application or advanced degree application by the deadline for each regular term or the summer session, as established in the academic calendar. A degree will not be awarded unless all financial obligations to the Institute are clear and there are no pending disciplinary actions.

Institute Regulations

Policies and Procedures
MIT expects that all students come to the Institute for a serious academic purpose and expects them to be responsible individuals who conduct themselves with high standards of honesty and personal conduct.

Disappointments in this expectation have been rare. It is MIT’s policy to maintain rules and regulations consistent with efficient administration and the general welfare of the MIT community.

Fundamental to the principle of independent learning and professional growth is the requirement of honesty and integrity in conduct of one’s academic and nonacademic life. Maintenance of a healthy living and learning environment requires that all members of the community exercise due respect for the basic rights of one another.

Academic Integrity
Cheating, plagiarism, unauthorized collaboration, and other forms of academic dishonesty are considered serious offenses for which disciplinary penalties can be imposed.

Early in the term, the instructor should communicate specific expectations regarding academic conduct and collaboration in the subject. See the information on Term Regulations earlier in this section.

Some academic offenses by students can be handled directly between the faculty member and the students involved. In some cases, it may be necessary for the department head to review, or otherwise to assist in, the resolution of the matter. When a dispute cannot be resolved satisfactorily within the department, or if it seems appropriate, a complaint against a student can be brought to the Committee on Discipline as explained in the section on Complaint and Disciplinary Procedures.

The Academic Integrity Handbook, a guide for students published by the Office of the Dean for Undergraduate Education, contains additional information that may be helpful to students and faculty (http://web.mit.edu/academicintegrity/).

Institute Policy on Harassment
Harassment of any kind is not acceptable behavior at MIT; it is inconsistent with the commitment to community that characterizes MIT’s activities.

MIT is committed to creating an environment in which every individual can work, study, and live without being harassed. Harassment may therefore lead to sanctions up to and including termination of employment or student status.

Harassment is any conduct, verbal or physical, on or off campus, that has the intent or effect of unreasonably interfering with an individual’s or group’s educational or work performance at MIT or that creates an intimidating, hostile or offensive educational, work or living environment. Some kinds of harassment are prohibited by civil laws or by MIT policies on conflict of interest and nondiscrimination (see relevant sections of Policies and Procedures).

Harassment on the basis of race, color, gender, disability, religion, national origin, sexual orientation or age includes harassment of an individual in terms of a stereotyped group characteristic, or because of that person’s identification with a particular group.

Sexual harassment may take many forms. Sexual assault and requests for sexual favors that affect educational or employment decisions constitute sexual harassment. However, sexual harassment may also consist of unwanted physical contact, requests for sexual favors, visual displays of degrading sexual images, sexually suggestive conduct, or offensive remarks of a sexual nature.
The Institute is committed under this policy to stopping harassment and associated retaliatory behavior. All MIT supervisors have a responsibility to act to stop harassment in the areas under their supervision.

Any member of the MIT community who feels harassed is encouraged to seek assistance and resolution of the complaint. To implement the policy on harassment, MIT provides a variety of avenues by which an individual who feels harassed may proceed, so that each person may choose an avenue appropriate to his or her particular situation. Institute procedures are intended to protect the rights of both complainant and respondent, to protect privacy, and to prevent supervisory reprisal.

Institute Policy on Hazing

In accordance with Massachusetts state law (Chapter 269:17–19), the Institute has adopted the following policy statement on the crime of hazing:

The term ‘hazing’ shall mean any conduct or method of initiation into any student organization, whether on public or private property, which willfully or recklessly endangers the physical or mental health of any student or other person. Such conduct shall include whipping, beating, branding, forced calisthenics, exposure to the weather, forced consumption of any food, liquor, beverage, drug or other substance, or any other brutal treatment or forced physical activity which is likely to adversely affect the physical health of any student or other person, or which subjects such student or other person to extreme mental stress, including extended deprivation of sleep or rest or extended isolation.

Pursuant to the law, “any person who is identified as a principal organizer or participant in the crime of hazing shall be punished by a fine of not more than three thousand dollars or by imprisonment for not more than one year, or both.”

[Any person who] knows that another person is the victim of hazing as defined [above] and is at the scene of such crime shall, to the extent that such person can do so without danger or peril to himself or others, report such crime to [MIT Police or] an appropriate law enforcement official as soon as reasonably practicable. [Any student who] fails to report such crime shall be punished by a fine of not more than $1,000.

The Office of Student Life Programs or the Department of Athletics, Physical Education and Recreation will provide a copy of the law to the heads of all groups, teams and student organizations. Each group, team or organization shall distribute a copy of the law to each of its members, plebes, pledges or applicants for membership. It shall be the duty of each such group, team or organization, acting through its designated officer, to deliver annually to the Office of Student Life Programs (with exception of varsity teams and club sports, that may deliver acknowledgements to the Department of Athletics, Physical Education and Recreation) an acknowledgement stating that such group, team or organization has received a copy of the law, that each of its members, plebes, pledges, or applicants has received a copy of the law, and that such group, team or organization understands and agrees to comply with the provisions of this section and sections 17 and 18. Copies of the law are available at the Office of Student Life Programs and the Department of Athletics, Physical Education and Recreation.

MIT considers acts of hazing to be extremely serious offense to the community and will treat offenders accordingly. The Institute considers the practice of “showering,” in which students are placed in the shower against their will by other individuals, as a form of hazing; therefore, “showering” is prohibited.

Other Personal Conduct

All members of the MIT community are expected to conduct themselves with proper respect for one another and for each other’s property.

We expect that members of the MIT community will not engage in behavior that endangers their own sustained effectiveness or that has serious ramifications for their own safety, welfare, academic well-being, professional obligations, or that of others. In situations where an individual student’s physical illness or emotional difficulties affect not only the student, but also others in the community, it is our responsibility to consider the well-being of community as well as the individual in care decisions.

Improper use of Institute property or facilities, including keys, computers, telephones, and so forth, or misuse of MIT’s name, or violation of Institute regulations, may result in disciplinary proceedings within the Institute, or legal proceedings outside of MIT, or both.

Off-campus misconduct may be a basis for MIT action if the Institute considers that such misconduct impinges on the well-being or functioning of the Institute. The Institute reserves the right to determine its jurisdiction on a case-by-case basis. Student status in no sense renders an individual student immune from the jurisdiction of civil or criminal courts and other governmental authorities. MIT actions will take into account applicable law as well as the policies and procedures of the Institute and the standards of behavior expected of members of the educational community.

MIT handles internally some incidents that might give rise to civil or criminal liability. This is done with the understanding by the outside community that MIT deals seriously with such offenses. As is the case for many universities, local authorities often rely on MIT to resolve such issues as long as the internal policies and procedures are effective and adequate. MIT action by itself, however, does not preclude the possibility of other judicial remedy.

If an infraction causes a student to be involved both in Institute disciplinary proceedings and in criminal proceedings, and if an Institute decision might prejudice the court case, the Institute will usually hold its final decision in abeyance until after the criminal proceedings have been concluded.

For more information, contact the Office of Student Citizenship (OSC), Room W20-507, 617-253-7848.
Complaint and Disciplinary Procedures

Students who believe that they have been treated improperly for any reason are encouraged to raise their concerns. Difficulties with other students can be pursued within the living group, department head, other appropriate venues or groups, or the Office of Student Citizenship (OSC), Room W20-507, 617-253-7848. Students may also bring concerns to the attention of an ombudsperson in the Office of the President.

It is Institute policy that individuals will not be reprimanded or discriminated against for initiating an inquiry or complaint and that the rights of the individual against whom a complaint is made will be protected.

Anyone in the MIT community—including individual students, faculty members, and employees of the Institute—may bring a formal complaint against a student to the Committee on Discipline (COD). The COD reviews cases of academic offenses, violations of Institute regulations and standards, and other infractions alleged to have been committed by students.

A formal complaint against a student must be submitted in writing to OSC. The charge and its documentation are transmitted to the chair of the COD. After a review of the documentation, the chair will decide whether or not a hearing by the COD is warranted, and, if so, what the appropriate forum will be. The COD has the authority to impose any sanction it deems appropriate. Possible sanctions include placing a letter in a student’s disciplinary file, informal probation, formal probation, suspension, and expulsion. Sanctions may also include educational and/or restorative components meant to address the wrongdoing and serve the larger community. Detailed procedures are available at http://web.mit.edu/committees/cod/.

This procedure serves also as the grievance procedure for students as required by Title IX of the Higher Education Act of 1972 with regard to grievances arising out of alleged discrimination on the basis of sex, and for disabled students alleging failure to comply with Sections 503 and 504 of the Rehabilitation Act of 1973, and the Americans with Disabilities Act of 1990. Inquiries concerning the Institute’s policies and compliance with applicable laws, statutes, and regulations (such as Title IX and Section 504) may be directed to the vice president for human resources, Room E19-291, 617-253-6512.

A complaint against anyone employed by MIT may go to the immediate or higher supervisor of the apparent offender, or to the Human Resources Office on campus or at Lincoln Laboratory.

A description of the complaint procedures for persons employed at MIT is included in Policies and Procedures. Refer to the guide Dealing with Harassment at MIT for the rules and regulations of the COD as well as procedures for formal hearings of the Office of the Dean for Student Life. Both publications are available in the Information Center, Room 7-121, and on MIT’s website.

Voter Registration

Voter registration forms and instructions are available in the Student Services Center, Room 11-120, and at the registration location on fall and spring term Registration Day.

Privacy of Student Records

MIT’s Student Information Policy governs the circumstances under which, and the persons to whom, student information may be disclosed, as well as students’ rights to access their own records and to challenge their accuracy. As required by federal law, this policy includes the rights and privacy protections provided by the Family Educational Rights and Privacy Act (Title 20, US Code, section 1232g, often referred to as “FERPA” or the “Buckley Amendment”).

The following summarizes in general terms the major student rights under FERPA. For more detailed information, the policy in its entirety should be consulted. The full text of MIT’s Student Information Policy may be found on the web at http://web.mit.edu/policies/11/sip.html, or in printed form at the MIT Libraries and at the MIT Information Center, Room 7-121.

Education Records

Under FERPA, education records include most tangible materials, including computer records, maintained by MIT that relate directly to an identifiable student currently or formerly enrolled at MIT. These include admissions records, grades, most coursework, exams, UROP records, disciplinary records, and financial aid records, as well as gender, nationality, race, ethnicity, and identification photographs. Education records do not include directory information, as described below, or those records of Institute faculty and staff members that are made for, and restricted to, their personal use. Other kinds of information, such as medical and law enforcement records, are also excluded from the definition of education records. These are sometimes governed by other laws and/or policies.

Disclosure

Under FERPA, a student has the right to consent to disclosures of personally identifiable information contained in the student’s education records, except to the extent that it authorizes disclosure without consent.

Disclosure Within MIT. Under one FERPA exception, individually identifiable information contained in a student’s education records may, without the student’s consent, be disclosed within MIT to Institute officials with a legitimate educational interest, meaning officials who need that specific information in order to fulfill their professional responsibilities. A school official is a person employed by the Institute in an administrative, supervisory, academic, or research, or support staff position (including law enforcement unit personnel and health staff); a person or company with whom the Institute has contracted (such as an attorney, auditor, or collection agent); a person serving on the MIT Corporation; or a student serving on an official committee, or assisting other school officials in performing their tasks. In addition, victims of crimes of violence will be informed of the outcomes of disciplinary proceedings about those incidents.

Disclosure Outside MIT. As a general rule, individually identifiable information contained in a student’s education records may be disclosed to persons outside MIT only with the student’s prior, written consent. MIT discloses education records without a student’s consent to other schools in which the student seeks enrollment or is enrolled. The student has the right, upon request, to a copy of the records disclosed to another school. Although parents normally are not entitled to review students’ education records without the students’ consent, appropriate MIT representatives
may consult with parents and others in emergencies when health and
safety issues so require. Disclosure may also be made without consent to
government agencies or in accordance with legal process only to the extent
required by law.

Directory Information. A student’s name, term and permanent home
addresses, MIT office address, term phone number, term email address,
Course, year and registration type, degrees received, dates of attendance,
date of birth, honors and awards received, and for an intercollegiate athletic
team member, height and weight, is designated as a student’s “directory
information.” This information may be disclosed within and outside of MIT
without a student’s consent. Students have the right to require that some
or all of their directory information not be disclosed (except as otherwise
permitted under FERPA) by following the instructions on WebSIS. In order
to prevent publication in the printed Student Directory published each fall
this request must be made at the very beginning of the fall term.

Students’ Access to Their Own Records

A student has the right to review his or her own education records
within 45 days after making a written request to the department or unit
that maintains the records, to the registrar, to the Office of the Dean
for Undergraduate Education, or to the Office of the Dean for Graduate
Education, identifying the records the student wishes to inspect. The
appropriate MIT official will make arrangements for access and notify the
student of the time and place where the records may be inspected. If the
records are not maintained by the MIT official to whom the request was
submitted, that official shall advise the student of the correct official to
whom the request should be addressed. The right to access includes the
right to obtain copies. The right does not, however, extend to portions of a
student’s education records that relate to other identifiable students.

Correction of Records

A student has the right to request the amendment of information in his or
her education records that the student believes is inaccurate or misleading.
Such a request may be made to the custodian of the record, to the
Office of the Dean for Undergraduate Education, or to the Office of the
Dean for Graduate Education and should clearly identify the part of the re-
cord the student wants changed, and state why it is inaccurate or misleading.
If the requested amendment is not made, MIT will notify the student of
this decision and that the student has the right to a hearing concerning the
requested amendment. Additional information on the hearing procedures
will be provided to the student when he or she is notified of the right to a
hearing. If the correction is not made as a result of the hearing, the student
may include his or her own statement in the record. Because grades and
evaluations are the result of academic judgment, they are not subject to
this type of challenge.

Right to File Complaint

A student has the right to file a complaint with the US Department of
Education concerning alleged failures by MIT to comply with the require-
ments of FERPA. The name and address of the office that administers FERPA
is: Family Policy Compliance Office, US Department of Education, 400
Maryland Avenue, SW, Washington DC, 20202-5920.
Part 2

Schools and Courses
School of Architecture and Planning	80
Architecture	83
Media Arts and Sciences	91
Urban Studies and Planning	93
School of Engineering	100
Aeronautics and Astronautics	105
Biological Engineering	117
Chemical Engineering	123
Civil and Environmental Engineering	131
Electrical Engineering and Computer Science	140
Engineering Systems	150
Materials Science and Engineering	157
Mechanical Engineering	166
Nuclear Science and Engineering	181
School of Humanities, Arts, and Social Sciences	187
Anthropology	190
Comparative Media Studies	192
Economics	195
Foreign Languages and Literatures	199
History	202
Humanities	204
Linguistics and Philosophy	207
Literature	211
Music and Theater Arts	213
Political Science	216
Science, Technology, and Society	219
Writing and Humanistic Studies	222
MIT Sloan School of Management	225
Management	228
School of Science	236
Biology	239
Brain and Cognitive Sciences	244
Chemistry	249
Earth, Atmospheric, and Planetary Sciences	253
Mathematics	259
Physics	264
The School of Architecture and Planning is an extraordinarily complex, diverse, sometimes contentious, always evolving and transforming place. Some shared values, however, give the School its unique character. We are committed to sustaining and enhancing the quality of the human environment at all scales, from the personal to the global. We value design excellence, technological inventiveness, and imaginative scholarship. And we believe that design and policy interventions should be grounded in unwavering commitment to equity, social justice, and making a positive difference in the everyday lives of real people.
The School of Architecture and Planning is made up of five main divisions—the Department of Architecture, the Department of Urban Studies and Planning, the Media Laboratory, the Center for Real Estate, and the Program in Art, Culture and Technology.

The unifying theme of all our activities is design. Through the design of physical spaces, and through the design of policies and technologies that shape how those spaces are used, we aim to sustain and enhance the quality of the human environment at all scales, from the personal to the global.

We believe that design and policy interventions should be grounded in a commitment to improving individual human lives, equity and social justice, cultural enrichment, and the responsible use of resources through creative problem solving and project execution.

Students
The School of Architecture and Planning enrolls an average of 600 students a year in a collection of courses ranging from Renaissance architecture to the cities of tomorrow, digital fabrication, motion graphics, shape grammars, photography, and construction finance. By far the largest number of those students enter our graduate programs and many of them also pursue cross-disciplinary studies and dual degrees among those programs and others at the Institute.

Throughout the years, we have been noted for the diversity of our student body, drawing on candidates from around the world and from all walks of life. The Department of Architecture graduated its first woman, Sophia Hayden, in 1890, and three years later, Robert Taylor became the first African-American to graduate from an American architecture program—a tradition of inclusiveness that continues today.

Global Projects
One of MIT’s founding principles is the belief that professional competence is best fostered by focusing teaching and research on real problems in the real world, and at the School of Architecture and Planning we take that mandate very seriously.

Accordingly, a central aspect of our teaching and research is our ongoing participation in global initiatives—many of them collaborative undertakings among our five divisions, with other divisions of MIT, and with public and private institutions in the US and abroad.

As a result of this commitment, it is fair to say that the faculty and students of the school are truly citizens of the world—engaged in the problems facing countries at all stages of development, taking part in the public discussion of issues on a global scale, studying, developing and applying best practices all around the world.

To enhance collaboration among the School’s divisions and with other divisions at MIT, a major new facility was opened in the spring of 2010, designed by Fumihiko Maki, winner of the Pritzker Prize in 1993. Adjacent to and part of the School’s legendary Media Lab—designed by alumnus I. M. Pei (1940 BArch), also a Pritzker Prize winner—the facility houses an array of cutting-edge work in media, art, and technology, building on synergies among the building’s tenants.

History
Our history stretches back nearly a century and a half, providing our current students with a legacy and long tradition of pioneering excellence. The Department of Architecture was the first such department in the nation (1865) and became a leader in introducing Modernism to America. The program in city planning was the second of its kind in the country (1932), later evolving into the current Department of Urban Studies and Planning, the longest continuous planning program in the United States.

The Media Lab, the birthplace of multimedia computing (1985), has come to be known around the world as a world-class incubator of new design ideas; the Center for Real Estate established the nation’s first one-year graduate program in real estate development (1984); and the Center for Advanced Visual Studies (1967), now part of the new Program in Art, Culture and Technology, pioneered the use of technologies such as lasers, plasma sculptures, sky art, and holography as tools of expression in public and environmental art.

Resources
The Rotch Library is one of the nation’s premier resources in architecture and planning; Rotch Visual Collections, an adjacent branch library, holds 350,000 visual images, including the Aga Khan Visual Archive.

The School’s Wolk Gallery mounts several shows a year in its exhibition space, overseen by the curator of architecture and design at the MIT Museum. The PLAZMA Digital Gallery is an electronic showcase of work and events on display in the School’s public areas, featuring faculty and student work.

The School’s newsletter, PLAN, is published in print and online by the Dean’s Office, Room 7-231. The five divisions of the School can be contacted directly about their lineup of publications.
Degrees Offered in the School of Architecture and Planning

Architecture Course 4
- Bachelor of Science (BS): Art and Design (BSAD)
- Master of Architecture (MArch)
- Master of Architecture (MArchS)
- Master of Architecture (MArchT)
- Master of Architecture (MArchVisS)
- Doctor of Philosophy (PhD): Architecture: Building Technology
- Doctor of Philosophy (PhD): Architecture: Design and Computation
- Doctor of Philosophy (PhD): Architecture: History and Theory of Architecture
- Doctor of Philosophy (PhD): Architecture: History and Theory of Art

Media Arts and Sciences Course MAS
- Master of Science (SM): Media Technology
- Master of Arts (MA) in Media Arts and Sciences
- Doctor of Philosophy (PhD): Media Arts and Sciences

Urban Studies and Planning Course 11
- Bachelor of Science (BS): Planning
- Master of City Planning (MCP)
- Master of Urban Studies and Planning (SM)
- Doctor of Philosophy (PhD): Urban and Regional Planning
- Doctor of Philosophy (PhD): Urban and Regional Studies
- Dual Degrees: Urban Design, Environmental Planning

Center for Real Estate
- Master of Science in Real Estate Development (MSRED)

Notes
- Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.
- Several departments also offer undesignated degrees, which lead to the Bachelor of Science without departmental designation. The curricula for these programs offer students opportunities to pursue broader programs of study than can be accommodated within a four-year departmental program.
The Department of Architecture conceives of architecture as a discipline as well as a profession. Five semi-autonomous, graduate degree-granting “discipline groups” provide an architectural education that is as complex as the field itself. The discipline groups support one another, and all five contribute to a mutual enterprise. Students learn ways of working that draw upon the whole range of resources that architecture affords in finding and defining the expansive problems of building, as well as in proposing effective solutions. The groups are Architectural Design; Building Technology; Computation; History, Theory and Criticism of Architecture and Art (HTC); and the Program in Art, Culture, and Technology (ACT).

In the several disciplines of the department, there is a substantial body of research activity. Moreover, the department’s setting within MIT permits greater depth in such technical areas as computation, new modes of design and production, materials, structure, and energy as well as in the arts and humanities. The department builds on, and contributes to, such valuable institutional commitments.

The department offers six degree programs: the Bachelor of Science in Art and Design, Master of Architecture, Master of Science in Architecture Studies degrees, Master of Science in Building Technology, Master of Science in Visual Studies, and the Doctor of Philosophy.

Architectural Design is taught from a broad range of perspectives linking several common concerns: site and context, use and form, building methods and materials, and the role of the architect. Context is considered in terms of existing and historical physical form (natural and constructed) and sociological patterns of use. The architect is seen less as the sole creator of a completed building than as a participant with others in the shaping of our physical environment.

Diverse architectural design studios are offered. The undergraduate studio sequence begins with instruction in model building and drawing skills as applied to architectural design, and continues with projects of increasingly complex programs and sites. Entering graduate students enroll in a three-term core program that is tightly integrated with complementary courses in design skills, design precedents, and materials and construction. Advanced studios give graduate students the opportunity to sharpen their skills and to develop their own attitudes toward architecture. In thesis, a student will carry through a project independently, from strategy and concept to a comprehensive building/urban design, under the guidance of an advising committee.

Computer resources for educational purposes are distributed in the laboratories and studios of the department and overseen by the staff of the School of Architecture and Planning’s computer resources office. Students are required to learn the fundamentals of computer-aided visualization. Other computation subjects or studio work permit further experimentation with modeling techniques, graphic representations, design methods, technical analysis, prototyping, and assistance with the design process. Students may also participate in research work in these areas.

The work of the Architectural Design faculty extends beyond the studio. Workshops, lectures, seminars, and research engage the built environment, the forces that mold it, and the design process itself. The work of the faculty covers such areas as urbanism, climate change and sustainable design, computation and design, materials and fabrication, theoretical design research, and housing and settlements in the global context. Central to these topics is the role of the user as an active force in the development of environments and the role of the designer as an agent in the process of human habitation.

In the United States, most state registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency authorized to accredit US professional degree programs in architecture, recognizes three types of degrees—the Bachelor of Architecture, Master of Architecture, and Doctor of Architecture. A program may be granted a six-year, three-year, or two-year term of accreditation depending on the extent of its conformance with established educational standards.

Master’s degree programs may consist of a preprofessional undergraduate degree and a professional graduate degree, which, when earned sequentially, constitute an accredited professional education. However, the preprofessional degree is not, by itself, recognized as an accredited degree.

The Department of Architecture offers the Master of Architecture (MArch) degree in programs ranging from two and one-half to three and one-half years. These professional degrees are structured to educate those who aspire to registration and licensure as architects.

The undergraduate Bachelor of Science in Art and Design is a preprofessional degree program. It is useful for those wishing a foundation in the field of architecture as preparation for either continued education in a professional degree program or for employment options in architecturally related fields.

The Architecture Design area of study offers a concentration to undergraduates in Course 4 as well as Master of Architecture and Master of Science in Architecture Studies degrees.

Building Technology includes teaching and applications of the fundamentals of technology as well as research in technology for the next generation of buildings. Topics include building structures, materials, industrialized building systems, appropriate technology for developing countries, sustainable design, indoor air quality, daylighting, building ventilation, heating and cooling systems, energy use and material flows in urban areas, and development of computational methods for research and design through visualization of building performance in its many aspects. Through lecture courses, laboratories, workshops, and independent research projects, students may study problems of energy resources and technologies and use this knowledge to design physical environments or buildings for the next decade that embody current research concepts. Research facilities include a full-scale indoor environmental chamber, a daylighting laboratory, and computer workstations. Research facilities of other departments such as Mechanical and Civil and Environmental Engineering are also used in joint research projects.

This area of study offers a concentration to undergraduates in Course 4 as well as a Master of Science in Building Technology (SMBT) and a doctoral degree with emphasis on building technology.

The Computation group teaches diverse subjects dealing with theory, history, methods, and applications of computation and digital technology. The aim is to cover the many facets of a rapidly changing and growing area with in-depth, agenda-setting research and teaching.
Topics taught cover the description, generation, evaluation, and construction of architectural and urban design through computational means that include computer visualization and modeling, generative theories, software for design synthesis and analysis, and digital fabrication and construction processes and technologies. Students are encouraged to acquire both the technical skills and the theoretical and conceptual foundations to rethink and challenge the limits of current design processes and practices, and to consider the social and cultural implications of their positions.

This area of study offers a concentration to undergraduates in Course 4 as well as a concentration in the Master of Science in Architecture Studies (SMArchS) program, and a doctoral program. SMArchS and PhD students are encouraged to take subjects in other discipline areas as a means to explore and develop their interests.

The History, Theory, and Criticism of Architecture and Art group teaches subjects dealing with the history of art and architecture. Offerings range in content and method. Some study questions internal to the discipline of architecture, while others seek contexts in social, political, and intellectual history. Some are motivated by questions derived from the problems of contemporary practice. Others take their organization from a body of historical material investigated in ways that develop skills of analysis applicable to a wide range of topics. The group teaches subjects from the Renaissance forward in time, focusing on materials that are both abstract and concrete, with scales that range from the architectural drawing to the urban environment. There is a special emphasis on topics of modern art and architecture.

HTC offers a concentration to undergraduates in Course 4 and a HASS concentration and minor in the history of architecture to all MIT undergraduates. There is a doctoral program with emphasis on the history, theory, and criticism of art and architecture, and students in the Master of Science in Architecture Studies program may choose to concentrate in HTC.

The Aga Khan Program for Islamic Architecture (AKPIA) at MIT is a graduate program dedicated to the study of architecture, urbanism, architectural history, landscape, and conservation in the Islamic world. The program prepares students for careers in research, design, and

Bachelor of Science in Art and Design/Course 4

<table>
<thead>
<tr>
<th>General Institute Requirements (GIrS)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement (one subject can be satisfied by a subject in the Departmental Program)**</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| Total GIR Subjects Required for SB Degree | 17 | |

Communication Requirement		
The program includes a Communication Requirement of 4 subjects:		
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and		
2 subjects designated as Communication Intensive in the Major (CI-M).		

PLUS Departmental Program	Units	
Subject names below are followed by credit units, and by prerequisites if any (corequisites in Italics)		
Required Subjects	57–60	
4.111 Experienced Architecture Studio, 12		
4.112 Integrated Architecture Design Studio, 12; 4.111		
or 4.12A Integrated Architecture Design Intensive Studio, 9; 4.111		
4.302 Foundations in the Visual Arts and Design for Majors, 12, CI-M		
4.401 Architectural Building Systems, 12		
4.500 Introduction to Design Computing, 12		

Discipline Stream Subjects		
By the beginning of their junior year, students are expected to begin concentrating in one of the five discipline streams.		
Architectural Design Discipline Stream	114–117	
4.113 Applied Architecture Design Studio I, 15; 4.112		
4.114 Applied Architecture Design Studio II, 21, CI-M; 4.113, 4.302, 4.401, 4.500, 4.605		
4.115 Applied Architecture Design Studio III, 21; 4.114		
4.205 Analysis of Contemporary Architecture, 12, HASS-A		
4.440 Building Structural Design Systems I, 12, REST; Calculus II (GIR), 4.401*		
4.505 Introduction to the History and Theory of Architecture, 12, HASS-A		
4.116 Advanced Architecture Design Studio, 21; 4.115, 4.440		
or Two subjects from any one of the other four discipline streams		
Building Technology Discipline Stream	120	
4.411 Building Technology Laboratory, 12, LAB, Physics II (GIR), Calculus II (GIR)		
4.440 Building Structural Design Systems I, 12, REST; Calculus II (GIR), 4.401*		
4.505 Introduction to the History and Theory of Architecture, 12, HASS-A		
4.7THJ Thesis Research Design Seminar, 12, CI-M		
4.7THU Undergraduate Thesis, 12		
Four additional subjects in Building Technology One additional subject from any of the other four discipline streams		
Computation Discipline Stream	120	
4.501 Architectural Computing and Construction, 12, 4.500		
4.504 Design Scripting, 12; 4.500		
4.503 Advanced Visualization: Architecture in Motion Graphics, 12; 4.500*		
4.505 Computation Design Workshop, 12; 4.501, 4.502, 4.503		
4.505 Introduction to the History and Theory of Architecture, 12, HASS-A		
4.7THJ Thesis Research Design Seminar, 12, CI-M		
4.7THU Undergraduate Thesis, 12		
One additional subject in Computation One additional subject from any of the other four discipline streams		
History, Theory, and Criticism of Architecture and Art Discipline Stream	120	
4.601 Introduction to Art History, 12, HASS-A		
4.605 Introduction to the History and Theory of Architecture, 12, HASS-A		
4.602 Modern Art and Mass Culture, 12, HASS-A, CI-H		
or 4.641 19th-Century Art, 12, HASS-A		
4.551 Art Since 1940, 12, HASS-A		
teaching. Topics covered in its curriculum include critical study of the history and historiography of Islamic architecture; the interaction between architecture, society, and culture; strategies of urban and architectural preservation; and environmental and material-sensitive landscape and design research.

Established in 1979, AKPIA offers students a concentration in Islamic architecture and urbanism as part of the two-year Master of Science in Architectural Studies (SMArchS) degree and the PhD program in HTC. The program also has links with the City Design and Development Program, Department of Urban Studies and Planning, the Aga Khan Programs at Harvard, and ArchNet.

The Program in Art, Culture, and Technology offers a diverse range of subjects in artistic practice and operates as a critical production and education-based laboratory within the context of an advanced technological community. Students explore the role of art in society and consider artistic practice as knowledge production. Collaborative and individual investigations, artistic research, and transdisciplinary studies are structured in thematic clusters and realized through performance, sound and video, photography, and interrogative design as well as through experimental media and new genres. The program also emphasizes art that engages public spheres, the production of space, and networked cultures. ACT addresses context and display and questions the relationship of art to the environment, gender, and social stratification. Extracurricular activities include a cross-disciplinary lecture series, field trips, workshops, studio visits, and public presentations.

This area of study offers a Bachelor of Science in Art and Design (BSAD) concentration to undergraduates in Course 4, and a HASS minor and concentration in the visual arts to all undergraduates. It also offers a graduate major leading to a Master of Science in Visual Studies. Undergraduate and graduate subjects are also offered to students from other disciplines who would like to experience contemporary arts practice and its methods of investigation.

UNDERGRADUATE STUDY

The Department of Architecture offers two undergraduate courses of study. They provide a broad undergraduate education for students who have clear professional goals and for those who desire a solid foundation for a number of possible careers. Course 4 leads to the Bachelor of Science in Art and Design, and Course 4-B leads to the Bachelor of Science.

Bachelor of Science in Art and Design/ Course 4

Course 4 offers a flexible program for students in five possible discipline streams: visual arts; architectural design; building technology; computation; and history, theory, and criticism of architecture and art. Within a clear framework, students develop individual courses of study best suited to their needs and interests.

The requirements for the SB in Art and Design (BSAD) curriculum begin with an introductory subject, 4.111 Experiencing Architecture Studio, designed to be taken by freshmen and sophomores. The remaining core subjects include beginning work in the arts, computation, architectural design, building technology, and the history of architecture and art.

The department has a handout (also available on its website) that gives the subject requirements for each of its five discipline streams. Each area of concentration provides a variety of subjects from which to choose as well as an opportunity to get more deeply involved in a particular subfield. Students choose their discipline stream at the end of their sophomore year.

The majority of BSAD candidates choose the architectural design discipline stream, which includes sequential studios. The approach fosters investigation and discussion in the development of sensitivity to the built environment. These sensibilities are linked to values and responsibilities to the community at large. Students in design studios develop technical and analytical skills and learn synthesis and invention using the elements of architectural form: material,
structure, construction, light, sound, memory, and place.

Students who plan to continue their studies for the graduate degree in architecture must apply for admission to a Master of Architecture (MArch) program at MIT or elsewhere. Students who have fulfilled the requirements for the Architectural Design discipline stream of the Bachelor of Science in Art and Design may be able to satisfy the requirements for a MArch in two and one-half years rather than three and one-half if they are admitted with advanced standing.

Students who intend to continue with graduate studies in the visual arts, building technology, and history, theory, and criticism of architecture and art should consult with an appropriate faculty member to design a program of study that establishes the basis for graduate study.

The department offers a foreign exchange study program with Delft University of Technology and Hong Kong University for architecture design seniors in the fall term. A required senior thesis is taken in the final year in all of the discipline streams except for architecture design, for which it is optional.

Bachelor of Science/ Course 4-B

Course 4-B is offered for students who find that their basic intellectual commitments are to subjects within the Department of Architecture but whose educational objectives cut across departmental boundaries. These students may, with the approval of the department, plan a course of study that meets their individual needs and interests while including the fundamental areas within the department. For example, students might create a coherent program combining subjects in architecture with subjects in urban studies and planning, comparative media studies, systems analysis, acoustics, etc.

As early as possible, students should discuss their interests and intended programs with their advisor and departmental faculty members. A student who wishes to follow Course 4-B must initially register as a Course 4 major and take the expected sophomore subjects. By the end of the sophomore year, the student is expected to submit to the department a proposal that includes a statement of educational goals, a list of subjects to be taken to fulfill these goals (84 units), and a timetable of when the subjects will be taken. When the proposal is approved by the Department of Architecture Undergraduate Curriculum Committee, the student may officially switch to the 4-B major.

The Course 4-B curriculum is similar to Course 4 in that the six core subjects that are to be taken primarily in the freshman and sophomore years are 4.111, 4.112, 4.302, 4.401, 4.500, and 4.605. During the junior and senior years, the approved interdisciplinary course of study is pursued. A senior thesis, preceded by 4.THTJ Thesis Research Design Seminar, is required.

Minors

The requirements for a Minor in Architecture are as follows:

<table>
<thead>
<tr>
<th>Tier</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier I</td>
<td>Two subjects:</td>
</tr>
<tr>
<td></td>
<td>4.601 Introduction to Art History</td>
</tr>
<tr>
<td></td>
<td>4.602 Modern Art and Mass Culture</td>
</tr>
<tr>
<td></td>
<td>4.605 Introduction to the History and Theory of Architecture</td>
</tr>
<tr>
<td></td>
<td>4.614 Religious Architecture and Islamic Cultures</td>
</tr>
<tr>
<td>Tier II</td>
<td>Three subjects from the following list, with no more than two subjects from either the history of art or the history of architecture:</td>
</tr>
<tr>
<td></td>
<td>Civic Architecture in Islamic History</td>
</tr>
<tr>
<td></td>
<td>Renaissance Architecture</td>
</tr>
<tr>
<td></td>
<td>19th-Century Art</td>
</tr>
<tr>
<td></td>
<td>Selected Topics in Architecture: 1750–Present</td>
</tr>
<tr>
<td></td>
<td>Art Since 1940</td>
</tr>
<tr>
<td></td>
<td>Twentieth-Century Architecture and Critical Debate</td>
</tr>
<tr>
<td></td>
<td>Nationalism, Internationalism, and Globalism in Modern Art</td>
</tr>
<tr>
<td></td>
<td>Installation Art</td>
</tr>
<tr>
<td>Tier III</td>
<td>One subject:</td>
</tr>
<tr>
<td></td>
<td>4.609 Seminar in the History of Art and Architecture</td>
</tr>
<tr>
<td></td>
<td>or Other advanced seminar in the history of art and/or architecture, including offerings from Harvard or Wellesley, with permission of the HASS field advisor and the instructor.</td>
</tr>
</tbody>
</table>

The Minor in the History of Art and Architecture, considered a HASS minor, is designed to enable students to concentrate on the historical, theoretical, and critical issues associated with artistic and architectural production. Introductions to the historical framework and stylistic conventions of art and architectural history are followed by more concentrated study of particular periods and theoretical problems in visual culture and in cultural history in general.

The Minor in Visual Arts, considered a HASS minor, is designed to enable students to pursue study in hands-on artistic practice and critical debate. Undergraduates gain skills and critical understanding in new genre art, including time-based media, public art, interrogative design, photography, networked cultures, the production of space, artistic research, and transdisciplinary study.

The minor consists of six subjects arranged into three levels of study and chosen as follows:
Tier I

Two subjects:

- Introduction to Visual Arts

or

- Foundations in the Visual Arts and Design for Majors

and one from the following list:

- Introduction to Art History
- Modern Art and Mass Culture
- Nineteenth-Century Art
- Art Since 1940
- Nationalism, Internationalism, and Globalism in Modern Art
- Installation Art

Tier II

Two subjects:

- Introduction to Three-Dimensional Art Work
- Introduction to Networked Cultures and Participatory Media
- Introduction to Photography and Related Media
- Introduction to Video and Related Media

Tier III

Two subjects:

- Advanced Studio on the Production of Space
- Advanced Workshop in Artistic Practice and Transdisciplinary Research
- Advanced Seminar in Networked Cultures and Participatory Media
- Advanced Video and Related Media
- Advanced Projects in Visual Arts
- Studio Seminar in Public Art
- Interrogative Design Workshop

For a general description of minors, see Undergraduate Education in Part 1.

GRADUATE STUDY

The Department of Architecture offers five graduate degree programs—the Master of Architecture, Master of Science in Architecture Studies, Master of Science in Building Technology, Master of Science in Visual Studies, and the Doctor of Philosophy.

The Master of Architecture is awarded to students who complete a program, accredited by the National Architectural Accrediting Board, which is an essential step toward licensure for architectural practice.

The Master of Science in Architecture Studies program stresses research and inquiry in the built environment; the degree is meant both for students who already have their first professional architecture degree and those whose previous education orient them toward nonprofessional graduate study in architecture.

The Master of Science in Building Technology program is run jointly by the departments of Architecture, Civil and Environmental Engineering, and Mechanical Engineering. It is meant for students who intend to make a career in this field.

The Master of Science in Visual Studies focuses on the development of critical and visionary positions of artistic practice in the context of an advanced technological and scientific community. Central to the curriculum is the potential for creating links with programs in architecture, urbanism, technology, and media studies. Students are challenged to expand their artistic practice by questioning the historical, cultural, social and ethical implications of their work. Discussion in contemporary theory and criticism complements studio production.

The PhD program is an advanced degree program in the areas of History, Theory, and Criticism; Building Technology; and Design and Computation.

Master of Architecture

The Master of Architecture is awarded upon the satisfactory completion of an approved program of at least 164 units, of which 96 units must be in H-level subjects, and an acceptable thesis. Those who have not yet studied in a department of architecture require three and one-half academic years of residence to fulfill the requirements for the MArch degree.

Advanced standing is possible for students who have taken architectural design at an accredited school of architecture. Students who have majored in architectural design at a “4 plus 2” architecture school may be able to complete the program in two and one-half years depending on their academic experience and accomplishments.

The professional MArch program is seen as being diverse and open-ended with many views of appropriate research and practice of architecture available, yet with a general set of shared concerns. These include an interest in materials and technology, inquiry and criticism, and the relation between the built environment and institutions. They also include a commitment to design, a view of the environment as a living and developing phenomenon, a regard for the fabrication processes of building, a perspective on new technologies and their impact on practice, and a concern for the spatial and temporal contexts of buildings as well as social and urban issues. Given the varied perspectives from which the curriculum is conceived, an important aspect of the students’ development is to be able to establish links between different arenas of focus and its many disciplines.

Architectural design studios are the focus of the MArch degree program with the integration of supporting subjects central to the curriculum. While the professional curriculum specifies that a student study a range of subjects in several interrelated fields, students in the MArch program have some choice, and are required to develop a concentration in a self-determined area. Required and elective subjects taught by the various discipline groups within the department and in other related departments are offered as a way of charting multiple paths for future professional possibilities. Therefore, students are expected to assume much of the responsibility for structuring their own educational programs beyond the core curriculum toward the development of a thesis.

Master of Science in Architecture Studies

This program is designed to provide a climate for research and inquiry that stresses the investigative component of understanding the built environment. It is open to students with professional degrees in architecture and, more rarely, to other university graduates. The SMArchS degree is awarded upon satisfactory completion of an approved program of study of 96 units, 42 of which will be H-level subjects, and the completion of an acceptable thesis. The degree requires two full academic years of residency.

The program has a strong interest in the methods of inquiry, development and testing of knowledge, and the building and application of theory as it pertains to the built environment. It allows students to specialize in areas in which they wish to obtain particular abilities. There are several areas of study and interdisciplinary work is encouraged.
In Architecture and Urbanism, design is developed and evaluated as a means to demonstrate the hypothesis that the urban space can be effectively constructed, and made legible and civic, through architecture. Areas of faculty interest include theory of urban form and design, urban ecology, and landscape.

The Aga Khan Program for Islamic Architecture supports a small number of students interested in pursuing research on architecture and urbanism in the Islamic world. Faculty interests include Islamic architectural and urban history and historiography, strategies for landscape and urban preservation, and the critique of contemporary architecture in Islamic countries. The program is open to all students interested in issues related to Islamic architecture.

The Computation area of study provides opportunities to rethink digital applications and computational theories relevant to architectural and urban design, and to challenge the limits of current design processes and practices. Research focuses on new means for describing, representing, evaluating, and generating design; for modeling physical processes; and for fabrication.

Building Technology focuses on the intersection of design and technical issues for buildings that positively contribute to a more humane and environmentally responsible built world. Research within the group addresses innovative materials and assemblies, low-energy strategies, and structures.

Students in History, Theory, and Criticism work alongside doctoral students in the study of Western (19th and 20th centuries) architecture and methodological issues that inform or link historical and practical work.

In all these areas, related subjects are available in the Department of Urban Studies and Planning, in other departments at MIT, and at Harvard.

About half of the students in the SMArchS program come from outside the United States; this encourages the exchange of ideas across cultures. Students often use a site in their home countries as a base for their theses.

Simultaneous Master’s Degrees in Architecture and City Planning

Students who have been admitted to either the Department of Urban Studies and Planning or the Department of Architecture can propose a program of joint work in the two fields that will lead to the simultaneous awarding of two degrees. Degree combinations may be MArch/MCP or SMArchS/MCP. A student must apply by January 3 before beginning the last full year of graduate study for the first degree: SMArchS and MCP students must apply during the spring admissions process. SMArchS students must apply during their first term at MIT. MArch students must apply before or during their second year. Students are first approved by the Dual Degree Committee and then considered during the spring admissions process. All candidates for simultaneous degrees must meet the requirements of both degrees, but may submit a joint thesis.

Urban Design Certificate

Students in the MCP, MArch, or SMArchS programs who complete a specific curriculum in urban design are awarded a Certificate in Urban Design. The curriculum includes subjects in both Architecture and Planning. For further information, contact Sandra Elliott, Room 10-485, 617-253-5115.

Master of Science in Building Technology

This program provides a focus for graduate students interested in the development and application of advanced technology for buildings. Students in this program take relevant subjects in basic engineering disciplines along with subjects that apply these topics to buildings. The program is open to qualified students with a degree in engineering or in architecture with a substantial background in technology.

The program concentrates on the development of the next generation of technology for buildings as well as the innovative application of state-of-the-art concepts to building systems. Research programs, in many cases jointly carried out with faculty and students in the School of Engineering, include energy efficiency, sustainable building design, controls, natural ventilation and indoor air quality, innovative materials and structures, and computational simulation of building behavior.

The SMBT degree is generally completed in two years, requires 66 units of coursework (42 of which must be H-level graduate credit), and the completion of an acceptable thesis.

Master of Science in Visual Studies

The Program in Art, Culture and Technology awards a Master of Science in Visual Studies and operates as a critical production- and education-based laboratory focusing on artistic research, advanced visual studies, and transdisciplinary collaboration within the context of MIT’s technological community. The program explores the role of art, culture, and technology in society and considers artistic practice to be knowledge production. The emphasis is on how cultural and artistic practices critically engage science and technology and envision their transformation. The curriculum includes courses in the production of space, interrogative design, networked cultures, and contemporary curatorial practice, among others. Collaborative and individual investigations include performance, sound and video, photography, experimental media addressing context and display, and the interplay of old and new genres that intersect with technology. The exchange and collaboration with ACT faculty and research fellows is essential to the program and is supplemented by encounters with external reviewers and critics, conferences, workshops, screenings, and field trips. Students are challenged to explore the role of art in society and to expand their practice through an informed and articulate focus on the cultural, social, and ethical implications of collective and individual research projects. Regular SMVisS tutorials foster in-depth examination of student work in progress.

The SMVisS degree is completed in two years, requires 156 units of coursework (123 of which must be H-level graduate credit), and the completion of an acceptable thesis.

Doctor of Philosophy

The PhD in Architecture may be pursued in one of the following areas: History and Theory of Architecture/History and Theory of Art, Building Technology, or Design and Computation.

The PhD program in the area of History, Theory, and Criticism of Architecture and Art emphasizes the study of Western (19th and 20th centuries) and Islamic art, architecture and urbanism, and methodological issues that inform or link historical and practical work.

The doctoral program in Building Technology is interdepartmental, with important components in the Departments of Civil and Environ-
mental Engineering, Electrical Engineering and Computer Science, and Mechanical Engineering. Research programs include energy efficiency, sustainable building design, controls, natural ventilation and indoor air quality, daylighting, masonry structures, innovative materials and structures, material and energy flows in urban areas, and computational simulation of building behavior.

The PhD program in Design and Computation is broadly conceived around computational ideas and digital technologies as they pertain to the understanding, description, generation, and construction of architectural form. Research topics include the mathematical foundations of shape and shape representation; generative tools for design synthesis; advanced modeling and visualization techniques; rapid prototyping and CAD/CAM technologies for physical fabrication; and the analysis of the design process and its enhancement through supporting technologies and workspaces. The mission of the program is to enrich design from a computational perspective, with clear implications for teaching and practice.

Admission and degree requirements vary somewhat in the specific areas listed above, and may be obtained from the Department of Architecture website or in correspondence with the separate areas. The residency requirement for the PhD is a minimum of two full academic years. Completion of all of the requirements for the PhD—including the dissertation—is usually accomplished in five years.

Each student admitted to work in the doctoral program should consult closely with one principal professor in his or her area to develop a general plan of study. In all three areas, progress toward the PhD follows a sequence of required subject work, qualifying papers, general examinations, and dissertation research, writing, and defense. Students are encouraged to take subjects appropriate to their study plans in other departments at MIT, and at Harvard.

Inquiries
Further information concerning undergraduate and graduate academic programs in the department, admissions, financial aid, and assistantships may be obtained from the Department of Architecture, Room 7-337, 617-253-7387, or from http://architecture.mit.edu/.

FACULTY AND STAFF

Faculty and Teaching Staff
Nader Tehrani, MAUD
Professor of Architecture
Department Head
Leslie Keith Norford, PhD
Professor of Building Technology
MacVicar Faculty Fellow
Associate Department Head

Professors
Stanford Anderson, MArch, PhD
Professor of History and Architecture
Julian Beinart, MCP, MArch
Professor of Architecture
(On leave, fall)
Yung Ho Chang, MArch
Professor of Architecture
(On leave)
Michael Dennis, BArch
Professor of Architecture
Philip Freelon, MArch
Professor of the Practice of Architecture (Fall)
Leon R. Glicksman, PhD
Professor of Building Technology
Mark Jarzombek, DiplArch, PhD
Professor of the History and Theory of Architecture
Associate Dean, School of Architecture and Planning
Joan Jonas, MFA
Professor of Visual Arts Without Tenure (Retired)
Caroline Jones, PhD
Professor of the History of Art
Sheila Kennedy, MArch
Professor of the Practice of Architecture
Terry Knight, PhD
Professor of Design and Computation
Nasser Rabbat, MArch, PhD
Aga Khan Professor of the History of Architecture
Director, Aga Khan Program
Adèle Naudé Santos, MAUD, MArch, MCP
Professor of Architecture and Urban Planning
Dean, School of Architecture and Planning
Anne Whiston Spirn, PhD
Professor of Landscape Architecture and Planning
George Stiny, PhD
Professor of Design and Computation
(On leave, spring)
Jan Wampler, MArch
Professor of Architecture (Fall)
James Wescot, PhD
Aga Khan Professor
(On leave, spring)
Krzysztof Wodiczko, MFA
Professor of Visual Arts
(On leave)

Associate Professors
Ute Meta Bauer, Dipl. of Visual Communication
Associate Professor of Visual Arts
Director, Art, Culture, and Technology Program
Alexander D’Hooghe, MAUD, PhD
Associate Professor of Architecture and Urbanism
(On leave, spring)
Arindam Dutta, PhD
Associate Professor of the History of Architecture
John Fernandez, MArch
Associate Professor of Architecture and Building Technology and Engineering Systems
David Hodes Friedman, PhD
Associate Professor of the History of Architecture
(On leave)
Mark Goulthorpe, BArch
Associate Professor of Design
Takehiko Nagakura, MArch, PhD
Associate Professor of Design and Computation
John Ochsendorf, PhD
Associate Professor of Building Technology and Civil and Environmental Engineering
Lawrence Sass, PhD
Associate Professor of Computation and Design
Andrew Scott, BArch
Associate Professor of Architecture
Dennis Shelden, PhD
Associate Professor of the Practice of Computation (Spring)

Gediminas Urbonas, MFA
Associate Professor of Visual Arts

J. Meejin Yoon, MAUD
Associate Professor of Architecture

Assistant Professors

Ana Miljacki, MArch, PhD
Cecil and Ida Green Career Development Assistant Professor of Architecture
(On leave, spring)

William O’Brien, Jr., MArch
Assistant Professor of Architecture

Kristel Smentek, PhD
Assistant Professor of the History of Art

Visiting Professor
Antonio Muntadas, MA (Spring)

Senior Lecturer
Shun Kanda, BArch, MArch (Spring)

Lecturer
Andrea Frank, MFA

Technical Instructor
Christopher Dewart, BA

Research Staff

Principal Research Associate
Reinhard Goethert, MArch, PhD

Principal Research Scientist
Kent Larson, BArch

Research Scientist
Stephen Intille, PhD

Professors Emeriti
Wayne V. Andersen, PhD
Professor of the History of Art, Emeritus

John de Monchaux, MArch
Professor of Architecture and Urban Studies, Emeritus

Eric Dluhosch, MArch, PhD
Professor of Building Technology, Emeritus

Leon Bennett Groisser, ScD
Professor of Structures, Emeritus

N. John Habraken, Bl
Professor of Architecture, Emeritus

Edward Levine, MA, PhD
Professor of Visual Arts, Emeritus

John Randolph Myer, BArch
Professor of Architecture, Emeritus

Otto Piene, MA
Professor of Visual Design, Emeritus

William Lyman Porter, MArch, PhD
Professor of Architecture, Emeritus

Maurice Keith Smith, BArch
Professor of Architecture, Emeritus

Chester Lee Sprague, MArch
Associate Professor of Architecture, Emeritus

Waclaw Piotr Zalewski, DTechSci
Professor of Structures, Emeritus
The Program in Media Arts and Sciences (MAS) focuses on the invention, study, and creative use of new technologies that change how we express ourselves, how we communicate with each other, how we learn, and how we perceive and interact with the world. The field draws on a number of other disciplines, including computer science, cognitive sciences, communications, design, and the expressive arts. The program offers undergraduate and graduate subjects (listed under MAS in the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi) and a graduate program leading to master’s and doctoral degrees. Its academic programs are intimately linked with the research programs of the Media Laboratory.

UNDERGRADUATE STUDY

Most MAS undergraduate courses are project-oriented and relate to ongoing research within the Media Laboratory. Certain graduate subjects are open to advanced undergraduates (see the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi, for details). Undergraduate Research Opportunities Program (UROP) positions at the Media Lab are a major part of the MAS education offerings to undergraduates. First-year students participating in UROP are encouraged to register for MAS.111 Introduction to Research in Media Arts and Sciences.

The MAS Alternative Freshman Year Program emphasizes project-oriented work and connections to current research topics. Students in this program attend mainstream lectures for core freshman subjects but take recitations led by Media Laboratory researchers and participate in research through UROP positions at the Media Lab.

GRADUATE STUDY

Media Arts and Sciences offers a graduate program leading to master’s and PhD degrees. Graduate students work closely with a research advisor in an apprenticeship relationship. Students enter the program from a wide variety of backgrounds, including electrical engineering, physics, computer science, cognitive science, mechanical engineering, art and design, and the learning sciences.

For the master’s degree, students are required to spend at least four terms in residence (one of which may be a summer term) and to complete a satisfactory research thesis. Students wishing to pursue a PhD degree must demonstrate exemplary progress in the master’s program and gain approval from a departmental committee review. Requirements for the PhD degree include successful completion of MAS general exams, and successful completion and defense of a dissertation based on original and significant research within one of the Media Lab’s research groups.

Research Assistantships

The Program in Media Arts and Sciences offers financial assistance to all successful applicants in the form of research assistantships within the Media Laboratory, which are an important part of the educational program. Research assistants receive academic credit for part of their research activities.

Inquiries

Additional information about the programs in Media Arts and Sciences, graduate admissions, research programs, and research assistantships may be obtained from Aaron Solle, Room E15-401, 617-253-5114, fax 617-253-8542, mas@media.mit.edu.

FACULTY AND STAFF

Faculty and Teaching Staff

Mitchel Resnick, PhD
Professor of Media Arts and Sciences
LEGO Papert Career Development Professor of Learning Research Program Head
Patricia Maes, PhD
Associate Professor of Media Technology
Associate Program Head

Professors

Neil Gershenfeld, PhD
Professor of Media Arts and Sciences
Hiroshi Ishii, PhD
Muriel R. Cooper Career Development Professor of Media Arts and Sciences
Tod Machover, MM
Professor of Music and Media
Nicholas Negroponte, MArch
Professor of Media Technology
Alex Pentland, PhD
Toshiba Professor of Media Arts and Sciences
Rosalind Picard, ScD
Professor of Media Arts and Sciences
Barry Vercoe, DMA
Professor of Media Arts and Sciences

Associate Professors

Cynthia Breazeal, ScD
LG Career Development Associate Professor of Media Arts and Sciences
Hugh Herr, PhD
Associate Professor of Media Arts and Sciences
Joseph Jacobson, PhD
Associate Professor of Media Arts and Sciences
Patricia Maes, PhD
Hiroshi Ishii, PhD

Assistant Professors

Edward S. Boyden III, PhD
Assistant Professor of Media Arts and Sciences
Benesse Career Development Assistant Professor of Media and Learning Sciences
Leah Beuchley, PhD
AT&T Career Development Assistant Professor of Media Arts and Sciences
Deb Roy, PhD
Associate Professor of Media Arts and Sciences

Joseph Paradiso, PhD
Associate Professor of Media Arts and Sciences

Assistant Professors

Edward S. Boyden III, PhD
Assistant Professor of Media Arts and Sciences
Benesse Career Development Assistant Professor of Media and Learning Sciences
Leah Beuchley, PhD
AT&T Career Development Assistant Professor of Media Arts and Sciences
Deb Roy, PhD
Associate Professor of Media Arts and Sciences

Research Staff

Senior Research Scientists

Walter Bender, MSVS
Andrew Lippman, PhD
Professors Emeriti

Marvin Minsky, PhD
Professor of Media Arts and Sciences, Emeritus

Seymour Papert, PhD
Professor of Education and Media Technology, Emeritus
The Department of Urban Studies and Planning (DuSP) offers four degree programs: a Bachelor of Science in Planning; a two-year professional Master in City Planning (MCP); a one-year Master of Science in Urban Studies and Planning (usually reserved for mid-career students); and a PhD in Urban Studies and Planning. In addition, DuSP has three kinds of nondegree programs and affiliations; the Special Program in Urban and Regional Studies (for mid-career professionals from developing countries); the Community Innovators Lab (which engages mid-career professionals from communities of color in the United States and beyond); and the SENSEable City Lab, a research center concerned with the relationship between technology and cities. DuSP also offers special-student status for part-time mid-career professionals interested in taking individual subjects. Once students are admitted and enrolled at MIT, it is possible to apply for certificate programs in urban design (offered jointly with the Department of Architecture) or environmental planning.

City and regional planners in the United States and other parts of the world are involved not only in physical and economic development, but also in management of the environmental, social, and design consequences of development. They engage in a variety of activities aimed at shaping the pattern of human settlements, and at providing people with housing, public services, employment opportunities, and other crucial support systems that comprise a decent living environment. Planning encompasses not just a concern for the structure and experience of the built environment, but also a desire to harness the social, economic, political, and technological forces that give meaning to the everyday lives of men and women in residential, work, and recreational settings. Planners operate at the neighborhood, metropolitan, state, national, or international level, in both the public and the private sectors. Their tasks are the same: to help frame the issues and problems that receive attention; to formulate and implement projects, programs, and policies responsive to individual and group needs; and to work with and for various communities in allocating economic and physical resources most efficiently and most equitably.

Planners are often described as “generalists with a specialty.” The specialties offered at MIT include city design and development; housing, community, and economic development; international development; and environmental policy and planning, as well as cross-cutting opportunities to study urban information systems, regional planning, and transportation. These planning specializations can be distinguished by the geographic levels at which decision making takes place—neighborhood, city, regional, state, national, and global. Subspecialties have also been described in terms of the roles that planners are called upon to play, such as manager, designer, regulator, advocate, educator, evaluator, or futurist. The Department of Urban Studies and Planning is committed to educating planners who can advocate on behalf of underrepresented constituencies.

A focus on the development of practice-related skills is central to the department’s mission, particularly for students in the MCP professional degree program. Acquiring these skills and integrating them with classroom knowledge are advanced through the department’s field-based practicum subjects and research, and through internship programs. In fieldwork, students acquire competence by engaging in practice and then bringing field experiences back into the academic setting for reflection and discussion. Students may work with community organizations, government agencies, or private firms under the direction of faculty members involved in field-based projects with outside clients. In some cases, stipends may be available for fieldwork or internship programs.

During the month of January, the Department of Urban Studies and Planning offers a series of “mini-subjects” in specialized fields not covered by the regular curriculum, including both non-credit and for-credit offerings.

Specific opportunities for concentration and specialization available to students are detailed in the descriptions of the degree programs that follow.

Undergraduate Study

The Department of Urban Studies and Planning offers a Bachelor of Science in Planning, a HASS Minor in Urban Studies and Planning, a HASS Minor in Public Policy, and a variety of HASS concentrations. There is also an accelerated SB/MCP program which allows exceptional students to complete their undergraduate and master’s degree work in five years.

In addition, DuSP also hosts MIT’s Teacher Education Program (TEP), described in the section on Career and Professional Options in the Undergraduate Education chapter in Part 1. TEP provides an option for students interested in exploring new ideas in teaching and learning as applied to K–12 schools. Studies in TEP can also lead to licensure in math or science teaching at the high school or middle school levels.

Bachelor of Science in Planning/ Course 11

The Department of Urban Studies and Planning offers an interdisciplinary preprofessional undergraduate major designed to prepare students for careers in both the public and private sectors. The major also provides a foundation for students who are considering graduate work in law, public policy, international development, urban design, management, and planning. The subjects in the major teach students how the tools of economics, policy analysis, political science, and urban design can be used to solve social and environmental problems in the United States and abroad. In addition, students learn the skills and responsibilities of planners who seek to promote effective and equitable social change.

After satisfying the core requirements listed below, students must use their electives to pursue a specific track. We suggest one of the following, but will accept self-designed options to better meet a student’s interest: urban and environmental policy and planning; urban society, history, and politics; or urban and regional public policy. The required laboratory emphasizes urban information systems and offers skills for measurement, representation, and analysis of urban phenomena. In the laboratory subject, students also explore the ways emerging technology can be used to improve government decision making.

Students are encouraged to develop a program that will strengthen their analytic skills, broaden their intellectual perspectives, and test these insights in real-world applications. Students must complete a senior project that synthesizes what they have learned. This project may consist of an analysis of a public policy...
issue, a report on a problem-solving experience from an internship or other field experience, or a synthesis of research on urban affairs.

Five-Year SB-MCP Option
Undergraduate Course 11 majors may apply for admission to the department's Master in City Planning (MCP) program in their junior year. Students accepted into the five-year program receive both the Bachelor of Science and the MCP at the end of five years. Admission is limited to those undergraduates who have demonstrated exceptional professional promise. Students can obtain more information on the five-year program from Sandra Wellford, undergraduate administrator, Room 7-346A, 617-253-9403.

Minor in Urban Studies and Planning
The six-subject Minor in Urban Studies and Planning offers students the opportunity to explore issues in urban studies and planning in some depth. Students initially take two Tier I subjects that establish the political government, economic, and design contexts for local, urban, and regional decision making. Next, students choose three Tier II elective subjects, which provide an opportunity to focus on urban and environmental policy issues or to study urban problems and institutions. When undergraduate electives are unavailable in the student's field of interest, the student may choose from a variety of graduate courses, subject to the instructor’s permission. Finally, students take 11.123 Big Plans and Mega-Urban Landscapes, a subject that aims to synthesize past and present efforts to implement knowledge about large-scale projects and policies. Students are encouraged to craft a minor that reflects their own particular interests within the general parameters of the minor program requirements and in consultation with the minor advisor.

Tier I
Two subjects:
11.001J Introduction to Urban Design and Development
11.002J Making Public Policy

Tier II
Three subjects from the following:
11.005 Introduction to International Development
11.011 The Art and Science of Negotiation
11.013J American Urban History I

Bachelor of Science in Planning/Course 11

<table>
<thead>
<tr>
<th>General Institute Requirements (GIrS)</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [four subjects can be satisfied by subjects in the Departmental Program]</td>
<td>6</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 11.188 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLUS Departmental Program</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>57</td>
</tr>
<tr>
<td>11.001J Introduction to Urban Design and Development, 12, HASS-H</td>
<td></td>
</tr>
<tr>
<td>11.002J Making Public Policy, 12, HASS-S, CI-H</td>
<td></td>
</tr>
<tr>
<td>11.123 Big Plans and Mega-Urban Landscapes, 9, HASS-S</td>
<td></td>
</tr>
<tr>
<td>14.01 Principles of Microeconomics, 12, HASS-S</td>
<td></td>
</tr>
<tr>
<td>11.188 Urban Planning and Social Science Laboratory, 12, LAB, CI-M</td>
<td></td>
</tr>
<tr>
<td>Planned Electives</td>
<td>57</td>
</tr>
<tr>
<td>Majors in Course 11 are required to formulate or select one stream of coursework for concentration. They can select from the following recommended options or create their own stream tailored to a particular set of urban, policy, or planning concerns.</td>
<td></td>
</tr>
</tbody>
</table>

Urban and Environmental Policy and Planning
11.011J The Art and Science of Negotiation, 12, HASS-S
11.014J American Urban History I, 9, HASS-H
11.016J The Once and Future City, 12, HASS-H, CI-H
11.021J Environmental Law, Policy, and Economics: Pollution Prevention and Control, 12, HASS-S
11.026J Downtown, 9, HASS-H
11.122J Society and Environment, 12, HASS-S
11.162J Politics of Energy and the Environment, 12, HASS-E
11.165J Infrastructure in Crisis: Energy and Security Challenges, 12, HASS-S; 14.01*
11.168J Enabling an Energy-Efficient Society, 12
1.011J Project Evaluation, 9
1.041J Engineering System Design, 12; 1.011*

Urban Society, History, and Politics
11.013J American Urban History I, 9, HASS-H
11.014J American Urban History II, 9, HASS-H
11.015J Riots, Strikes, and Conspiracies in American History, 12, HASS-HF, CI-H
11.016J The Once and Future City, 12, HASS-H, CI-H
11.019J Migration and Immigration in US History, 12, HASS-S
11.026J Downtown, 9, HASS-H
11.150J Metropolis: A Comparative History of New York City, 12, HASS-H
11.163J Law and Society, 12, HASS-S, CI-H

Urban and Regional Public Policy
11.003J Methods of Public Policy Analysis, 12, HASS-S; 11.002J, 17.30J; 14.01
11.005 Introduction to International Development, 12, HASS-S
11.011J The Art and Science of Negotiation, 12, HASS-S
11.023J D-Lab: Development, 12, HASS-S
11.126J Economics of Education, 12, HASS-S; 14.01
11.152J The Ghetto: From Venice to Harlem, 12, HASS-S
11.164J Human Rights in Theory and Practice, 12, HASS-S; permission of instructor
11.166J Law, Social Movements, and Public Policy, 12, HASS-S; permission of instructor

Urban Field Experience
Declared majors are encouraged to take the optional urban field experience subject.
11.027J City to City: Comparing, Researching, and Writing about Cities (CI-M) is taught in the spring and includes a trip during spring break. This course may be taken multiple times, as the content differs each year, but may only be counted once as a planned elective.
Thesis

Majors are required to write a senior thesis or complete a senior project. The thesis/project writing process is accompanied by a required undergraduate thesis preparation seminar, which meets in the fall.

11.168 Thesis Research Design Seminar, 12, CI-M
11.160 Undergraduate Thesis Seminar and Thesis, 12; 11.16T

Departmental Program Units That Also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Unit Type</th>
<th>Required Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted Electives</td>
<td>30</td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Units Beyond the GIRs Required for SB Degree

- **Total Units Beyond the GIRs Required for SB Degree:** 180
- **No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student's departmental program will count toward one or the other, but not both.**

Notes

Alternate prerequisites and corequisites are listed in the subject description.
† Students who entered prior to fall 2010 may use this subject to satisfy the HASS-D requirement.
Course 11 majors are not permitted to have a HASS concentration in Urban Studies.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

HASS Concentrations

DUSP offers clusters of subjects that satisfy the Institute requirement. These three-subject clusters allow students either to develop competence within a specific discipline or to explore a particular policy problem. Six areas are suggested: designing the urban environment, environmental policy, urban history, policy analysis and urban problems, legal issues and social change, and education. Sample programs are available from Sandra Wellford, undergraduate administrator, Room 7-346A, 617-253-9403.

The DUSP concentration focusing on education can also lead to Massachusetts licensure in teaching math and science at the middle and high school levels. This requires taking 11.129, 11.130, and 11.131 in addition to the core subjects 11.124 and 11.125. More information is available from Eric Klopf, Room E15-301, 617-253-2025.

Graduates Study

The Department of Urban Studies and Planning offers graduate work leading to the Master in City Planning and the Doctor of Philosophy. In conjunction with the Center for Real Estate, the department also offers a Master of Science in Real Estate Development. These programs are open to students from a variety of backgrounds. Urban studies, city planning, architecture, urban design, environmental planning, political science, civil engineering, economics, sociology, geography, law, management, and public administration all offer suitable preparation.

For further information concerning academic programs in the department, application for admission, and financial aid, contact Graduate Admissions, Room 7-346, 617-253-9403.

Master in City Planning

The principal professional degree in the planning field is the Master in City Planning (MCP). The Department of Urban Studies and Planning provides graduate education for men and women who will assume professional roles in public, private, and nonprofit agencies, firms, and international institutions, in the United States and abroad. The department seeks to provide MCP students with the skills and specialized knowledge needed to fill traditional as well as emerging planning roles. The MCP is accredited by the American Planning Association.

The two-year Master in City Planning Program emphasizes mastery of tools for effective practice and is therefore distinct from undergraduate liberal arts programs in urban affairs or doctoral programs that emphasize advanced research skills. MCP graduates work in a broad array of roles, from “traditional” city planning to economic, social, and environmental planning. In addition to its basic core requirements, the program offers four areas of specialization: city design and development; environmental policy and planning; housing, community, and economic development; and international development. MCP students, in their application to the department, select one of these areas of specialization and, when applicable, indicate interest in the department programs in Transportation Policy and Planning, Urban Information Systems, and Regional Planning.
Each student’s plan of study in the MCP Program is set forth in a program statement developed jointly by the student and faculty advisor during the student’s first term. Linked to career development goals, the program statement describes the purposes and goals of study, the proposed schedule of subjects, the manner in which competence in a specialization is developed, and an indication of a possible thesis topic.

Degree Requirements. Students are expected to take a minimum of 36 credit units each term (at least three subjects, though more frequently four), yielding at least 126 total units, in addition to the thesis.

A collection of subjects and requirements to be taken during the student’s two years in the MCP program constitute a “core experience” viewed as central to the professional program. The core subjects and requirements include the following:

- An introductory subject in the chosen specialization area, taken in the first term of the first year
- At least one core practicum subject, selected from an approved list, during the two-year program
- A thesis preparation seminar in the area of specialization, taken during the second or third term of study

Students identified as having weaker writing skills are also encouraged to take a writing course.

All students are required to submit a thesis on a topic of their choice. The department encourages MCP students to avoid the traditional perception of the thesis as a “mini-dissertation,” and to think instead of a client-oriented, professional document that bridges academic and professional concerns. While most of the thesis work occurs during the last term of the second year, students are urged to begin the process of defining a thesis topic early in the second year through their participation in a required thesis preparation seminar.

Students in the MCP Program are encouraged to integrate fieldwork and internships with academic coursework. The Department of Urban Studies and Planning provides a variety of individual and group field placements involving varying degrees of faculty participation and supervision. Academic credit is awarded for field experience, although some students choose instead to participate in the work-study financial aid program. The department also sponsors a variety of seminars in which students have an opportunity to reflect on their field experiences.

The **City Design and Development** group is concerned with shaping the built and natural environment of cities and suburbs. Graduates work in a variety of private, public, and nonprofit roles: as urban designers, developers, planning and design consultants; municipal and regional planners; managers of public agencies to improve the environment; advocates of historic preservation, culture, and the arts; and planners of transportation systems. The group is closely associated with faculty and students in the Department of Architecture and the Center for Real Estate, and many subjects are cross-listed with these programs. While the educational offerings are diverse and every student can develop unique competence in the area, there are several areas of concentration in city design and development: *urban design*, for those who wish to be involved in shaping the form and function of cities; *landscape urbanism*, for those who wish to work at the intersection of cities and natural processes; *land use and community planning*, for those who wish to work as municipal planners or consultants; and *urban development*, for those who wish to manage development projects for private companies or public sector organizations.

Environmental Policy and Planning group emphasizes the study of the ways in which society conserves and manages its natural resources and works to promote sustainable development. Areas of concern include the role of science in environmental policy making; climate change, sustainable development and adaptive ecosystem management, environmental justice, global environmental treaty making, environmental regulation, energy efficiency and renewable energy, the role of private corporations in environmental management, and the mediation of environmental disputes. Students examine the interactions between built and natural systems: techniques for describing, modeling, forecasting, and evaluating changes in environmental quality, approaches to environmental policy analysis, strategies for stakeholder involvement in environmental planning, and mechanisms for assessing the choices posed by the environmental impacts of new technology in local, state, national, and international contexts.

The **Housing, Community, and Economic Development** (HCED) group’s mission is to prepare professionals with the skills and knowledge to be responsible leaders of nonprofit, governmental, and private sector organizations engaged in building equitable and sustainable urban communities, and to advance knowledge of effective and innovative policies and practices to build such communities. This mission is pursued through teaching and research based on collaboration with local people and institutions to take action to improve their communities. The planning focus encompasses the design, location, organization, and financing of housing, economic, and community development programs and the capital and labor markets that impact such development at the local level. The group is concerned with understanding how public policy and private markets affect housing, economic development, and the local economy; employing techniques for assessing community needs, including housing, community services facilities, and sources of jobs; and developing and implementing programs, policies, and strategies that are directed at meeting these needs. HCED places a strong emphasis on practice and effective action at the state, local, and neighborhood levels and emphasizes that strategic analysis of the institutional context within which action occurs is central to such effectiveness.

The **International Development Group** (IDG) draws on the experiences of developing and newly industrializing countries throughout the world as the basis for advice about planning at the local, regional, national, and global levels. IDG provides students with an integrated view of the institutional, legal, historical, economic, technological, and sociopolitical factors that have shaped successful planning experiences and how they translate into action. Class content and faculty expertise include economic devel-
Urban Information Systems (UIS) is a cross-cutting group that connects faculty, staff, and students who are interested in the ways information and communication technologies impact urban planning. Research topics include building neighborhood information systems to facilitate public participation in planning; exploring the complex relationships underlying urban spatial structure, land use, transportation, and the environment; modeling urban futures and metropolitan politics and policy; property rights, collective action, and common property issues (water, forestry, grazing, agriculture); human rights and development; conflict and social dynamics in cities; post-conflict development; and globalization and governance.

Urban Information Systems (UIS) is a cross-cutting group that connects faculty, staff, and students who are interested in the ways information and communication technologies impact urban planning. Research topics include building neighborhood information systems to facilitate public participation in planning; exploring the complex relationships underlying urban spatial structure, land use, transportation, and the environment; modeling urban futures and metropolitan politics and policy; property rights, collective action, and common property issues (water, forestry, grazing, agriculture); human rights and development; conflict and social dynamics in cities; post-conflict development; and globalization and governance.

Much of UIS’s work involves the development and use of planning-related software and the spatial analysis tools and systems (such as GIS and distributed geoprocessing) that are increasingly important parts of metropolitan information infrastructures. However, UIS interests go beyond the development and use of specific technologies and extend to an examination of the ripple effects of computing, communications, and digital spatial information on current planning practices and on the meaning and value of the impacted communities and planning institutions.

Simultaneous Master’s Degrees in City Planning and Architecture

Students who have been admitted to either the Department of Urban Studies and Planning or the Department of Architecture can propose a program of joint work in the two fields that will lead to the simultaneous awarding of two degrees. Degree combinations may be MCP/MArch or MCP/SMArchS. A student must apply by the January deadline prior to beginning the last full year of graduate study for the first degree: MCP and SMArchS. SMArchS students must apply during their first year at MIT (by the end of the first term); MArch students must apply during or before their second year. Students are first approved by the Dual Degree Committee and then considered during the spring admissions process. All candidates for simultaneous degrees must meet the requirements of both degrees, but may submit a joint thesis.

Simultaneous Master’s Degrees in City Planning and Transportation

Students who have been admitted to study for the Master in City Planning or the Master of Science in Transportation may apply to the other program during their first year of study and propose a program of joint work in the two fields that will lead to the simultaneous awarding of two degrees. Details of this program are provided under Interdepartmental Programs in the Civil and Environmental Engineering section.

Simultaneous Master’s Degrees in City Planning and Real Estate Development

Students who have been admitted to the Master in City Planning Program or the Master of Science in Real Estate Development Program may apply to the other program during their first year of study and propose a program of joint work in the two fields that will lead to the simultaneous awarding of two degrees. Students may submit a joint thesis.

Master of Science in Urban Studies and Planning

Under special circumstances, admission may be granted to candidates seeking a one-year Master of Science (SM) degree. The SM is intended for professionals with a number of years of distinguished practice in city planning or related fields who have a clear idea of the courses they want to take at MIT, the thesis they want to write, and the DuSP faculty member with whom they wish to work. That faculty member must be prepared to advise the candidate when at MIT and to submit a letter of recommendation so indicating as part of the candidate’s application. This process means that prior to submitting an application the candidate must contact the appropriate DuSP faculty member to establish such a relationship. The SM does not require the candidate to take the core courses, which are mandatory for MCP candidates. As indicated above, a thesis is required. For further information concerning the SM option, contact Graduate Admissions, Room 7-346, 617-253-9403.

Urban Design Certificate

Students in the MCP, MArch, or SMArchS programs who complete a specific curriculum of subjects in history and theory, public policy, development, studios and workshops, and a thesis in the field of urban design are awarded a Certificate in Urban Design by the school. For further information contact the Joint Program in City Design and Development office, Room 10-485, 617-253-5115.

Environmental Planning Certificate

Students in the MCP and PhD program who complete a prescribed set of subjects are awarded a Certificate in Environmental Planning. For further information contact the EPP office, Room 9-334, 617-253-1509.

Doctor of Philosophy

The PhD is the advanced research degree in urban planning or urban studies. Admission requirements are substantially the same as for the master’s degree, but additional emphasis is placed on academic preparation, professional experience, and the fit between the student’s research interests and the department’s research activities. Nearly all successful applicants have previously completed a master’s degree.

The doctoral program emphasizes the development of research competence and flexibility in exploring questions that no single academic discipline can answer. Examples include the role of institutions in economic development and
the rapid diffusion of information and communication technologies into urban planning and design. Students work under the mentorship of a faculty advisor. They may center their activities on any subfield in which the faculty have expertise.

After successful completion of coursework, students are required to take oral and written qualifying general exams in two fields: a broad intellectual discipline (city design and development, international development economics, public policy, planning information systems, urban and regional economics, or urban sociology) and a field to which this discipline is applied and which coincides with the student’s research interest and possible dissertation topic. Doctoral candidates are expected to complete the qualifying general examinations before beginning their third year of residence. Upon completing the qualifying general examination, a PhD candidate must write and successfully defend a doctoral dissertation that gives evidence of the capacity to do independent and innovative research.

A minimum of 72 units plus 36 units for the dissertation (a minimum of 108 units) is required for the PhD degree.

Interested and qualified students can undertake joint doctoral programs with the Department of Political Science, the Department of Economics, or the Department of Civil and Environmental Engineering.

Interdisciplinary Programs

Graduate Programs in Transportation

MIT provides a broad range of opportunities for transportation-related education. Courses and classes span the School of Engineering, the Sloan School of Management, and the School of Architecture and Planning, with many activities covering interdisciplinary topics that prepare students for future industry, government, or academic careers.

A variety of graduate degrees are available to students interested in transportation studies and research, including a Master of Science in Transportation and PhD in Transportation, described under Interdisciplinary Graduate Programs in Part 3.

Nondegree Programs

A limited number of nondegree students are admitted to the department each term. This special student status is especially designed for professionals interested in developing specialized skills, but is also available to others.

The Community Innovators Lab (CoLab) promotes social justice by expanding access to and engagement with the knowledge developed by people working on the ground in disenfranchised, low-income communities. CoLab aims to both empower and learn from those individuals who, in the face of injustice, inequality, and exclusion, have dedicated themselves to making their communities healthier and more vibrant places to live. The knowledge that is formed in the face of struggles to create lasting change, by those who are least served by society, is significant, sophisticated, and essential for framing and solving today’s most urgent social problems.

By focusing its efforts on helping community practitioners “know what they know,” CoLab has successfully supported resident-directed change in underserved communities across the United States since 1998. Today CoLab hosts a variety of projects and guides the community-based work of up to 20 fellows each year. CoLab advances the use of practitioner and community knowledge through three strategic pathways:

- Identifying, documenting, and organizing practitioner and community knowledge developed through on-the-ground social justice work.
- Building opportunities and practical methods for community practitioners to use to engage their peers and others they wish to influence with the knowledge arising from their community practice.
- Analyzing and communicating the value and merits of practitioner and community knowledge to broad audiences.

CoLab is located in Room 7-307. Further information can be found on the CoLab website at http://colab.mit.edu/, by emailing ruhfel@mit.edu, or calling 617-253-3216.

The Special Program for Urban and Regional Studies (SPURS) provides an opportunity for a small number of highly qualified mid-career professionals from developing countries. Fellows spend a year at MIT studying the problems of urban and regional change in the broad context of international development. SPURS is an intentionally flexible program, offering the option of a nondegree or an MS degree program. For further information contact Nimfa de Leon, Room 9-435, 617-253-5915 or visit http://web.mit.edu/spurs/www/.

Faculty and Teaching Staff

Faculty and Teaching Staff

Amy Glasmeier, PhD
Professor of Geography and Regional Planning
Department Head

Professors

Alice H. Amsden, PhD
Barton L. Weller Professor of Political Economy

Brian A. Ciocchetti, PhD
Professor of the Practice of Real Estate

Thomas G. Eastman Chair
Chairman, Center for Real Estate

Phillip Clay, PhD
Professor of Urban Studies and Planning

Chancellor

Diane E. Davis, PhD
Professor of Political Sociology

Joseph Ferreira, Jr., PhD
Professor of Urban Planning and Operations Research

Chair, Master in City Planning Program

Robert M. Fogelson, PhD
Professor of Urban Studies and History

Dennis Frenchman, MCP, MArch
Norman B. and Muriel Leventhal Professor of Urban Design

David Geltner, PhD
Professor of the Practice of Community Development

Barton L. Weller Professor of Political Economy

alice H. amsden, PhD
Professor of the Practice of Community Development

Special Program for Urban and Regional Studies (SPURS) provides an opportunity for a small number of highly qualified mid-career professionals from developing countries. Fellows spend a year at MIT studying the problems of urban and regional change in the broad context of international development. SPURS is an intentionally flexible program, offering the option of a nondegree or an MS degree program. For further information contact Nimfa de Leon, Room 9-435, 617-253-5915 or visit http://web.mit.edu/spurs/www/.

Faculty and Teaching Staff

Amy Glasmeier, PhD
Professor of Geography and Regional Planning
Department Head

Professors

Alice H. Amsden, PhD
Barton L. Weller Professor of Political Economy

Brian A. Ciocchetti, PhD
Professor of the Practice of Real Estate

Thomas G. Eastman Chair
Chairman, Center for Real Estate

Phillip Clay, PhD
Professor of Urban Studies and Planning

Chancellor

Diane E. Davis, PhD
Professor of Political Sociology

Joseph Ferreira, Jr., PhD
Professor of Urban Planning and Operations Research

Chair, Master in City Planning Program

Robert M. Fogelson, PhD
Professor of Urban Studies and History

Dennis Frenchman, MCP, MArch
Norman B. and Muriel Leventhal Professor of Urban Design

David Geltner, PhD
Professor of the Practice of Community Development

Barton L. Weller Professor of Political Economy

alice H. amsden, PhD
Professor of the Practice of Community Development

Special Program for Urban and Regional Studies (SPURS) provides an opportunity for a small number of highly qualified mid-career professionals from developing countries. Fellows spend a year at MIT studying the problems of urban and regional change in the broad context of international development. SPURS is an intentionally flexible program, offering the option of a nondegree or an MS degree program. For further information contact Nimfa de Leon, Room 9-435, 617-253-5915 or visit http://web.mit.edu/spurs/www/.

Faculty and Teaching Staff

Amy Glasmeier, PhD
Professor of Geography and Regional Planning
Department Head

Professors

Alice H. Amsden, PhD
Barton L. Weller Professor of Political Economy

Brian A. Ciocchetti, PhD
Professor of the Practice of Real Estate

Thomas G. Eastman Chair
Chairman, Center for Real Estate

Phillip Clay, PhD
Professor of Urban Studies and Planning

Chancellor

Diane E. Davis, PhD
Professor of Political Sociology

Joseph Ferreira, Jr., PhD
Professor of Urban Planning and Operations Research

Chair, Master in City Planning Program

Robert M. Fogelson, PhD
Professor of Urban Studies and History

Dennis Frenchman, MCP, MArch
Norman B. and Muriel Leventhal Professor of Urban Design

David Geltner, PhD
Professor of the Practice of Community Development

Barton L. Weller Professor of Political Economy

alice H. amsden, PhD
Professor of the Practice of Community Development

Special Program for Urban and Regional Studies (SPURS) provides an opportunity for a small number of highly qualified mid-career professionals from developing countries. Fellows spend a year at MIT studying the problems of urban and regional change in the broad context of international development. SPURS is an intentionally flexible program, offering the option of a nondegree or an MS degree program. For further information contact Nimfa de Leon, Room 9-435, 617-253-5915 or visit http://web.mit.edu/spurs/www/.
Karen R. Polenske, PhD
Peter deFlorez Professor of Regional Political Economy and Planning
Chair, PhD Program

Bishwapriya Sanyal, MCP, PhD
Ford International Professor of Urban and Regional Planning
Director, Special Program for Urban and Regional Studies in Developing Countries

Anne Spirn, MLA
Professor of Landscape Architecture and Planning

Lawrence E. Susskind, MCP, PhD
Ford Professor of Urban and Environmental Planning

Judith Tendler, PhD
Professor of Political Economy
(On leave)

Lawrence Vale, SMarchS, DPhil
Ford International Professor of Urban Design and Planning
(On leave, fall)

William C. Wheaton, PhD
Professor of Urban Economics

Eran Ben-Joseph, PhD
Associate Professor of Landscape Architecture and Planning

Alan Berger, MLA
Associate Professor of Urban Design and Landscape Architecture
(On leave, spring)

JoAnn Carmin, PhD
Associate Professor of Environmental Policy and Planning

Xavier de Souza Briggs, PhD
Associate Professor of Community Development and Public Policy
(On leave)

Lorlene Hoyt, PhD
Associate Professor of Technology and Planning

Annette Kim, PhD
Associate Professor of Urban and Regional Planning

Eric Klopfer, PhD
Associate Professor of Education
Director, Teacher Education Program

Judith Layzer, PhD
Associate Professor of Environmental Policy
(On leave, spring)

Balakrishnan Rajagopal, SJD
Associate Professor of Law and Development
(On leave, spring)

Carlo Ratti, PhD
Associate Professor of the Practice
Director, SENSEable City Lab

J. Phillip Thompson, PhD
Associate Professor of Urban Politics and Community Development

P. Christopher Zegras, PhD
Ford Career Development Associate Professor of Urban Planning and Transportation
(On leave, fall)

Michael Flaxman, PhD
Charles H. and Ann Spaulding Career Development Assistant Professor of Urban Technologies and Information Systems

Brent Ryan, PhD
Linde Career Development Assistant Professor of Urban Design and Public Policy
(On leave, fall)

Sam Bass Warner, PhD
Visiting Professor of Urban History

Terry Szold, MRP
Adjunct Professor of Land Use Planning

Karl Seidman, MPP
(On leave, fall)

Cherie Abbanat, MCP
James Buckley, PhD
Ezra Glenn, MA, AICP
Christopher Gordon, MS
YuHung Hong, PhD

John Kennedy, MS
W. Tod McGrath, MBA
Jonathan Raab, PhD
Peter Roth, MSRED, MArch
Gloria Schuck, PhD
Susan Silberberg-Robinson, MCP (On leave)
Yanni Tsiplis, MS

Thomas Piper, MArch

Harvey Michaels, MCP

John de Monchaux, MArch
Professor of Architecture and Planning, Emeritus

Ralph Gakenheimer, MRP, PhD
Professor of Urban Planning, Emeritus

Gary Hack, MArch, MUP, PhD
Professor of Urban Design, Emeritus

Frank Jones, MBA
Ford Professor of Urban Affairs, Emeritus

Langley C. Keyes, PhD
Ford Professor of City and Regional Planning, Emeritus

Melvin H. King, MEd
Adjunct Professor of Urban Studies and Planning, Emeritus

Tunney F. Lee, BArch
Professor of Architecture and Urban Studies and Planning, Emeritus

Gary Marx, PhD
Professor of Sociology, Emeritus

Lisa Redfield Peattie, PhD
Professor of Urban Anthropology, Emerita

Martin Rein, MSW, PhD
Professor of Social Policy, Emeritus

Clarence G. Williams, PhD
Adjunct Professor of Urban Studies and Planning, Emeritus
The School of Engineering aims to educate and prepare men and women for leadership in industry, government, and educational institutions; to advance the knowledge base of the engineering professions; and to influence the future directions of engineering education and practice.

The School’s educational programs emphasize the understanding of fundamental principles; facility with experimental, computational, and analytical methods; and versatility of mind that prepare the individual for a lifetime of learning and professional growth.
Technology’s enormous influence on society has created a large demand for engineering graduates, not only in the professional practice of engineering, but also in bringing the strengths of an engineering education to related fields such as law, medicine, management, and government. Never have the challenges and opportunities for careers in engineering been more exciting or more critical to the long-term well-being of society than they are today.

By creating, developing, organizing, and managing complex technologies and products, engineers play a crucial role in contributing to the betterment of humanity and in shaping our world. Seeking solutions to the most difficult challenges of our day in the context of physical, economic, human, political, legal, and cultural realities makes engineering a tremendously rewarding endeavor. In a world increasingly influenced by scientific and technological innovation, engineers can provide important leadership to society.

The first-year curriculum for undergraduates includes physics, chemistry, mathematics, biology, and the humanities, arts, and social sciences. An undergraduate student normally becomes affiliated with a particular department at the beginning of sophomore year and works closely with an advisor from that department or program. A student who would like to explore engineering as a major is encouraged to become involved with one of the engineering departments as early as freshman year. Nearly every engineering department offers exciting subjects that introduce freshmen to engineering. Freshman Advising Seminars bring students together in small groups with engineering faculty. Undergraduate Research Opportunities Projects (UROPs) are a great way to delve into cutting-edge engineering research. Extracurricular clubs offer students hands-on experiences.

Once a student chooses an undergraduate major, there are many opportunities for individual initiatives. For example, a significant number of students combine their primary undergraduate major with a second undergraduate major in another area, such as management, political science, economics, one of the sciences, or another area of engineering. Others organize their programs so they can receive undergraduate and graduate degrees simultaneously. A series of minor programs from across the Institute is also available.

Pioneering Programs in Engineering Education

Engineering education has been at the core of the Institute’s mission since its founding in 1861. MIT created the contemporary model of engineering education grounded in a dynamic, changing base of science. It pioneered the modern model of the research university, with externally sponsored research programs and a matrix of academic departments and research laboratories working across disciplines. MIT also created entire new fields, for example, chemical engineering, sanitary engineering, naval architecture and marine engineering, and the first course in aeronautical engineering. More recently, the School of Engineering has responded with new degree programs that have made biology a foundational science for engineering, and it has created a new, flexible degree option in which students can create or pursue concentrations in broad, interdisciplinary areas such as energy, transportation, computational engineering, or the environment.

The School has distinguished itself as a leader in engineering education, where the teaching of applied, hands-on engineering is of the utmost importance. In 1916, it created one of the first industrial internship programs, now the David H. Koch School of Chemical Engineering Practice. Over the last several decades, the School of Engineering has launched numerous pioneering programs, many with industry, such as Leaders for Global Operations, formerly Leaders for Manufacturing (1988); System Design and Management (1997); the Deshpande Center for Technological Innovation and the Undergraduate Practice Opportunities Program (both in 2001); and the Bernard M. Gordon—MIT Engineering Leadership Program (2008).

The School of Engineering is constantly innovating in engineering education, developing novel pedagogical approaches, designing new subject offerings that strengthen current programs, and creating new disciplines, fields of study, majors, and graduate programs. Today, the School offers nearly 20 exciting engineering degree programs for undergraduates. Two examples are the SB in Chemical-Biological Engineering—MIT’s first undergraduate engineering degree with modern molecular biology as its core science; and, begun in 2005—2006, the SB in Biological Engineering. A number of other new degree programs have been launched in the past decade: the SB in Mechanical and Ocean Engineering, MEng in Manufacturing, SM in Computation for Design and Optimization, PhD in Computational and Systems Biology, PhD in Engineering Systems, and the SB in Engineering degree in either Mechanical Engineering or Aeronautics.

The School of Engineering also offers a range of co-curricular activities designed to enhance students’ academic and non-academic experiences at MIT. The Bernard M. Gordon—MIT Engineering Leadership Program seeks to train tomorrow’s engineering leaders through project-based learning, extensive interaction with industry leaders, hands-on product development, engineering leadership labs, and authentic leadership challenges and exercises. The Undergraduate Practice Opportunities Program (UPOP) is an innovative sophomore program that provides opportunities for students to learn first-hand about engineering practice outside the academic context through internships and intensive experiential-learning workshops that emphasize development of professional abilities and attitudes required in engineering work.

Because of its unique role in technological innovation, the School of Engineering is also the home of the Lemelson-MIT Program. Established in 1994, the program is an educational initiative whose mission is to recognize outstanding inventors as role models, encourage sustainable new solutions to real-world problems, and enable and inspire youth to pursue creative lives and careers through invention. It accomplishes this through annual awards, grants, and outreach activities, including the prestigious $500,000 Lemelson-MIT Prize, $100,000 Lemelson-MIT Award for Sustainability, and $30,000 Lemelson-MIT Student Prize. Lemelson-MIT InvenTeams is the program’s national initiative to inspire a new generation of inventors among high school students through grants that support a noncompetitive, team-based approach to learning and problem solving.

The School of Engineering is generally ranked at the top of its fields by third-party rankings and surveys. US News and World Report has placed the School at the top of its engineering rankings every year they have run their survey; all of the School’s graduate programs rank at or near the top of their most recent rankings as well. The School’s eight academic depart-
ments and one division are home to 371 faculty members, one third of the Institute’s total faculty. Among the most distinguished in the nation, nearly one third of the School’s current and emeritus faculty and research staff have been inducted into the National Academy of Engineering.

Almost 60 percent of MIT undergraduates with declared majors and more than 45 percent of all graduate students are in the School of Engineering.

Interdepartmental Research Programs

Within the School of Engineering, a student may develop a program that satisfies his or her own intellectual and professional objectives. A student interested in an interdepartmental program should study the departmental descriptions and Part 3, Interdisciplinary Programs, for opportunities that combine disciplines from MIT’s four other schools with those of the School of Engineering.

While the School’s academic departments and divisions provide continuity and stability for the basic engineering disciplines, they increasingly share interests in the way their individual disciplines are applied. Interdepartmental centers, laboratories, and programs provide opportunities for faculty, students, and research staff to undertake collaborative research and engage in educational programs dealing with these and other interdisciplinary applications of importance to society.

Interdisciplinary centers and laboratories that reside in the School of Engineering include the following:

- Center for Computational Engineering
- Center for Technology, Policy, and Industrial Development
- Center for Transportation and Logistics
- Computer Science and Artificial Intelligence Laboratory
- Deshpande Center for Technological Innovation
- Laboratory for Information and Decision Systems
- Laboratory for Manufacturing and Productivity
- Materials Processing Center
- Microsystems Technology Laboratories
- Transportation@MIT

School of Engineering faculty members also participate in the activities of other research centers and laboratories that are administered outside the School of Engineering. For more information, see the section on Interdisciplinary Research and Study in Part 3.

School-Wide Electives

The School of Engineering also offers a set of School-Wide Elective (SWE) subjects. An SWE subject may integrate knowledge from several disciplines and illustrate the commonality of the intellectual underpinnings of the departments in the School of Engineering. An SWE subject may also be the interface between an academic program in the School of Engineering and a program in another School at MIT; it may be a service subject to engineering students and other students; and it may be germane to many engineering students without being central to any one departmental program. Please note that registration for SWE subjects takes place through one of the departmental numbers. For complete subject descriptions and a list of the departmental numbers for each SWE subject, refer to the SWE subject listings in the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Office of the Dean

Subra Suresh, ScD
Vannever Bush Professor of Engineering
Professor of Materials Science and Engineering, Mechanical Engineering, and Biological Engineering
Affiliated Faculty, Harvard-MIT Division of Health Sciences and Technology
Dean

Cynthia Barnhart, PhD
Professor of Civil and Environmental Engineering and Engineering Systems
Director, Transportation@MIT
Associate Dean for Academic Affairs

Karen Gleason, PhD
Alexander and I. Michael Kasser Professor of Chemical Engineering
Associate Dean for Research

Dedric Carter, PhD
Assistant Dean for Development and Strategic Initiatives

Eileen Ng-Ghavidel, MBA
Assistant Dean for Finance and Personnel

Donna R. Savicki, MA
Assistant Dean for Administration

Deborah Cohen, MS
Senior Development Officer

Chad Galts, MA
Director of Communications

Barbara Masi, PhD
Director of Education Innovation and Assessment

Brian Tavares, BSBA
Senior Financial Officer

School Professors

Nicholas A. Ashford, JD, PhD
Professor of Technology and Policy

Timothy Berners-Lee
3Com Founders Professor of Engineering
Degrees Offered in the School of Engineering

Aeronautics and Astronautics Course 16
- **SB** Aerospace Engineering
- **SB** Aerospace Engineering with Information Technology
- **SB** Engineering
- **SM** Aeronautics and Astronautics
- **SM/MBA** Engineering/Management—dual degree with Leaders for Global Operations Program

Biological Engineering Course 20
- **SB** Biological Engineering
- **SM** Toxicology
- **SM/MBA** Engineering/Management—dual degree with Leaders for Global Operations Program

Chemical Engineering Course 10
- **SB** Chemical Engineering
- **SM** Chemical Engineering Practice
- **SM/MBA** Engineering/Management—dual degree with Leaders for Global Operations Program

Civil and Environmental Engineering Course 1
- **SB** Civil Engineering
- **SM** Civil and Environmental Engineering
- **SM/MBA** Engineering/Management—dual degree with Leaders for Global Operations Program

Mechanical Engineering Course 2
- **SB** Engineering
- **SM** Mechanical Engineering
- **SM/MBA** Engineering/Management—dual degree with Leaders for Global Operations Program

Computation for Design and Optimization
- **SM** Computation for Design and Optimization

Computational and Systems Biology Course CSB
- **PhD** Computational and Systems Biology (jointly offered with the School of Science)

Electrical Engineering and Computer Science Course 6
- **SB** Computer Science and Engineering
- **SB** Electrical Engineering and Computer Science
- **SM** Electrical Engineering and Computer Science

Engineering Systems Course ESD
- **SM** Engineering Systems
- **SM** Technology and Policy

Materials Science and Engineering Course 3
- **SB** Archaeology and Materials
- **SM** Materials Science and Engineering

Mechanical Engineering Course 2
- **SM** Manufacturing

Mathematical Engineer
- **PhD, ScD** Mechanical Engineering
- **PhD, ScD** Naval Architecture and Marine Engineering
- **PhD, ScD** Ocean Engineering
Microbiology
PhD Microbiology

Nuclear Science and Engineering Course 22
SB Nuclear Science and Engineering
SM Nuclear Science and Engineering
Nuclear Engineer Nuclear Science and Engineering
PhD, ScD Nuclear Science and Engineering

Polymer Science and Technology
PhD Polymer Science and Technology

Transportation
SM Transportation
PhD Transportation

Notes
Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.
Several departments also offer undesignated degrees, which lead to the Bachelor of Science without departmental designation. The curricula for these programs offer students opportunities to pursue broader programs of study than can be accommodated within a four-year departmental program.

See Interdisciplinary Graduate Programs section in Part 3.
The students, faculty, and staff in the Department of Aeronautics and Astronautics (AeroAstro) share a passion for air and space vehicles, the technologies that enable them, and the missions they fulfill.

Aerospace is an intellectually challenging, economically important, and exciting field, offering unique opportunities for students and researchers to contribute to the future of exploration, transportation, communication, and security. The department’s mission is to prepare engineers for success and leadership in the conception, design, implementation, and operation of aerospace and related engineering systems. It achieves this through its commitment to educational excellence, and to the creation, development, and application of the technologies critical to aerospace vehicle and information engineering, and the architecture and engineering of complex high-performance systems.

The department has a tradition of both strong scholarship and of contributing to the solution of “industrial-strength” problems. Its reach within aerospace extends to high levels of policy and practice. The AeroAstro community includes a former space shuttle astronaut, a former secretary of the Air Force, two former NASA associate administrators, three former Air Force chief scientists, 12 members of the National Academy of Engineering, and 16 fellows of the American Institute of Aeronautics and Astronautics. Members of the department have served as executives in the aerospace industry and are the founders of aerospace and other companies.

Several years ago, working closely with its student, alumni, industry, government, and academic stakeholders around the world, AeroAstro developed and implemented a landmark educational initiative for its degree programs, known as CDIO. The CDIO initiative reflects the department’s belief that its graduates must be knowledgeable in all phases of the aerospace system life cycle: conceiving, designing, implementing, and operating. The department adopted a new form of undergraduate engineering education, motivating its students to master a deep working knowledge of the technical fundamentals while giving them the skills, knowledge, and attitudes necessary to lead in the creation and operation of products, processes, and systems. In addition, it reformed its teaching methods, redesigned its curriculum, and performed a $20 million state-of-the-art reconstruction of its teaching laboratories. AeroAstro’s academic program and facilities now serve as models for more than 30 engineering schools on four continents.

The reconstruction of the teaching laboratories was manifested in the creation of the Learning Laboratory for Complex Systems. The Learning Laboratory provides enhanced opportunities for hands-on learning experiences closely integrated with the department’s curriculum. The Learning Lab’s Arthur Gelb Laboratory features a modern machine shop, composites fabrication facility, electronics design lab, and large team projects area with equipment for student projects. The Robert C. Seams Jr. Laboratory is a community study area with meeting and discussion rooms, an extensively IT-equipped design/conference room, and a comprehensive aerospace library. The Design Studio, which replicates facilities at major aerospace companies, provides IT and software resources to support concurrent team engineering sessions and distance learning. The Gerhard Neumann Hangar includes low-speed and supersonic wind tunnels, computers equipped with flight simulation applications, engineering hardware displays, and workspace for large-scale student projects.

AeroAstro students, faculty, and staff work with each other, with colleagues across MIT, and with institutions around the world. These linkages enable them to tackle challenging multidisciplinary problems and to amplify their contributions. As a result, the department is connected, busy, global, hectic, open, collegial, and fun. Faculty and students are engaged in hundreds of research projects under the auspices of the department’s laboratories and centers. Many research activities in other MIT laboratories and centers are open to AeroAstro students as well. See the Research Laboratories and Activities section below for more information.

Graduates with an aerospace engineering degree find careers in commercial and military aircraft and spacecraft engineering, space exploration, air- and space-based telecommunication industries, teaching, research, military service, and related technology-intensive fields such as transportation, information, and the environment. The comprehensive technical education, with its strong emphasis on understanding complex systems, is also excellent preparation for careers in business, law, medicine, and public service.

In looking toward future challenges and opportunities in the aerospace field, the department has identified eight areas in which it is committed to building and strengthening its ability to make important contributions: space exploration; autonomous systems; environment; communications and networks; computation, design, and simulation; air transportation; large-scale complex systems; and advancing engineering education. By striving for excellence in the underlying core disciplines and emphasizing the collaborative problem solving required for tackling the complex, multidisciplinary problems that characterize this industry, AeroAstro is positioning itself to respond to these and future opportunities and challenges.

Sectors of Instruction
The department’s faculty are organized into three sectors of instruction. Typically, a faculty member teaches both undergraduate and graduate subjects in one or more of the sectors.

Information Sector
Most of the aerospace systems of the future will either revolve around or critically depend upon information technology, and all will exploit IT to an increasing extent. The missions of many aerospace systems are fundamentally centered on gathering, processing, and transmitting information. Examples where information technology is central include communication satellites, surveillance and reconnaissance aircraft and satellites, planetary rovers, global positioning satellites, the air transportation system, and integrated defense systems. Other aerospace systems also must rely on information technology-intensive subsystems to provide important onboard functions, including fly-by-wire flight control, autonomous or semi-autonomous guidance and control, cooperative action (including flight in formations or swarms), and health monitoring systems. Furthermore, almost every aircraft or satellite is one system within a larger system. Information plays a central role in the interoperability of systems.

Faculty members in the Information Sector teach and perform research on a broad range of areas, including guidance, navigation, control, autonomy, communication, networks, and real-
time mission-critical software and hardware. In many instances, the functions provided by aerospace information systems are critical to life or mission success. The complex nature of an aerospace system can either be simplified by the use of information technologies or can become significantly more complicated through the misuse of information technologies. Hence, safety, fault-tolerance, verification, and validation are significant areas of inquiry. Ongoing research in this sector includes command and control of multiple unmanned/autonomous vehicles, space and airborne communication systems and networks, and software development methods for flight and mission-critical systems, investigation of air traffic management, and application of control to smart systems.

The Information Sector has strong linkages to the department’s Aerospace Systems Sector, particularly on issues related to how humans interact with aerospace vehicles. Other common interests include the safety aspects of large, mission-critical software systems, the design and operation of air transportation systems, and the design and operation of satellite systems. The sector also has linkages with the Vehicles Technology Sector. Current interests include research on unmanned aerial vehicles and smart structures. Moreover, the sector maintains linkages to the Electrical Engineering and Computer Science Department and the Engineering Systems Division through joint teaching and collaborative research in communication, networks, control, robotic systems, optimization, numerical techniques, and algorithms.

Aerospace Systems Sector

This sector is responsible for instruction and research in systems engineering, a discipline that denotes the methodologies used in the architcting, design, manufacture, and operation of the highly complex and demanding systems in the field of aeronautics and astronautics. The sector consists of faculty members with research specialties in this area, as well as faculty affiliates who contribute to the full disciplinary strength of the department.

The systems approach considers all factors important to the performance, economic viability, manufacture, acceptability, and operation of engineering systems—technical, social, environmental, production, financial, and safety aspects—and attempts to find optimal or best-value trade-offs among them while considering risk and uncertainty. The systems engineer must deal simultaneously with these factors, whether the objective is the transport of passengers in commercial aircraft, orbital communications, or the exploration of space, among others.

This sector addresses issues related to how humans interact with aerospace vehicles, including information-related and life-support aspects. Safety, fault-tolerance, verification, and validation are significant areas of inquiry. Ongoing research in the sector includes investigation of air traffic management, distributed satellite systems, enterprise architecture, integrated design of space-based optical systems, micro-gravity research into human physiology and technology maturation, and software development methods for flight and mission-critical systems.

Students interested in systems engineering should develop a strong background in some of the disciplines that support systems analysis, such as probability, statistics, optimization, operations research, manufacturing, and economics. Research labs associated with the activities of this sector include the Man Vehicle Laboratory, Space Systems Laboratory, Lean Advancement Initiative, International Center in Air Transportation, Operations Research Center, and Complex Systems Research Laboratory. Many of the department faculty in this sector are also associated with the Engineering Systems Division.

Vehicle Technologies Sector

The faculty in this sector are responsible for teaching and research in the fields of computation, fluid mechanics, propulsion, materials, and structures—technologies needed for the design of aerospace vehicles. Although these can be considered disciplinary fields, the faculty emphasize interdisciplinary approaches in their teaching and research.

The intellectual breadth of the sector spans activities ranging from fundamental engineering science to design techniques, measurement technology, and detailed engineering of complex vehicle components and systems. Topics of interest include the computational design of fluid, material, and structural systems; heat transfer, aerodynamics, and fluid dynamics; reduced order modeling of unsteady fluid flows and structures; structural dynamic analysis and control; turbomachinery; robust design of propulsion and energy system components; electric and chemical space propulsion; gas turbine engine design; advanced composites, including nanoscale synthesis, characterization, and modeling; propulsion system integration; aerospace noise, emissions, and environmental impact; microelectromechanical systems and materials; multiscale modeling and simulation of advanced materials: engineered materials, failure mechanisms, and structural health monitoring; and biofluid mechanics.

Research laboratories and large interdisciplinary projects affiliated with the sector include the Aerospace Computational Design Laboratory; FAA/NASA Center of Excellence: Partnership for Air Transportation Noise and Emissions Reduction; Gas Turbine Laboratory; Nano-Engineered Composite Aerospace Structures Consortium; Space Propulsion Laboratory; and Technology Laboratory for Advanced Materials and Structures.

UNDERGRADUATE STUDY

Undergraduate study in the department leads to the Bachelor of Science in Aerospace Engineering (Course 16-1), the Bachelor of Science in Aerospace Engineering with Information Technology (Course 16-2), or the Bachelor of Science in Engineering (Course 16-ENG) at the end of four years.

Bachelor of Science in Aerospace Engineering/Course 16-1 or Aerospace Engineering with Information Technology/Course 16-2

This program is designed to prepare the graduate for an entry-level position in aerospace and related fields and for further education at the master’s level. The program includes an opportunity for a year’s study abroad.

The formal learning in the program builds a conceptual understanding in the foundational engineering sciences and professional subjects that span the topics critical to aerospace. This learning takes place within the engineering context of conceiving-designing-implementing-operating (CDIO) aerospace and related complex high-performance systems and products. The
skills and attributes emphasized go beyond the formal classroom curriculum and include: modeling, design, the ability for self education, computer literacy, communication and teamwork skills, ethics, and—underlying all of these—an appreciation for and understanding of interfaces and connectivity between various disciplines. Opportunities for formal and practical (hands-on) learning in these areas are integrated into the departmental subjects through examples set by the faculty, subject content, and the ability for substantive engagement in the CDIO process in the department’s Learning Laboratory for Complex Systems.

The curriculum includes the General Institute Requirements described in the section on Undergraduate Education in Part 1 and the departmental program. The departmental program includes a fall-spring-fall sequence of subjects called Unified Engineering; subjects in dynamics, and principles of automatic control; a probability systems analysis subject and a subject in computers and engineering problem solving; professional area subjects; an experimental projects laboratory; and a capstone design subject. The program also includes the subject Differential Equations.

Unified Engineering is offered in sets of two 12-unit subjects in two successive terms. These subjects are taught cooperatively by several faculty members. Their purpose is to introduce new students to the disciplines and methodologies of aerospace engineering at a basic level, with a balanced exposure to analysis, empirical methods, and design. The areas covered include statics, materials, and structures; thermodynamics and propulsion; fluid mechanics; and signals and systems. Several laboratory experiments are performed and a number of systems problems tying the disciplines together and exemplifying the CDIO process are included.

Unified Engineering is usually taken in the sophomore year and the subjects Dynamics and Principles of Automatic Control in the first term of the junior year. Introduction to Computers and Engineering Problem Solving can be taken at any time, starting in the freshman year, but the fall term of the sophomore year is recommended.

The professional area subjects treat more completely and in greater depth the material to which the student is introduced in the core. In both degree programs, students take four general courses: Aerodynamics, Fluid Mechanics, Propulsion, and Computational Tools. The remaining advanced subject courses include topics such as Thermodynamics, Materials and Structures, and Introduction to Propulsion Systems. The curriculum also includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M). See the Laboratory and Capstone section below for specific options.
Laboratory and Capstone Subjects

One of the following two subjects:
16.82 Flight Vehicle Engineering, 12, CI-M; permission of department
16.83 Space Systems Engineering, 12, CI-M; permission of department

Plus one of the following three sequences:
Experimental Projects
16.621 Experimental Projects I, 6; 16.606*
16.622 Experimental Projects II, 12, LAB, CI-M; 16.621; 6.041
or Flight Vehicle Development
16.821 Flight Vehicle Development, 18, LAB, CI-M; 16.82
or Space Systems Development
16.831 Space Systems Development I, 12, LAB, CI-M; 16.83
16.832 Space Systems Development II, 6, LAB; 16.831

Departmental Program Units That Also Satisfy the GIRs

Unrestricted Electives (36)

Total Units Beyond the GIRs Required for SB Degree 198

No subject can be counted both as part of the 17-subject GIRs and as part of the 198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

* Alternate prerequisites and corequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

subjects (48 units) from among the professional area subjects, with subjects in at least three areas. In Course 16-1, students must take at least two subjects designated as Aerospace Engineering. In Course 16-2, the student must take at least three subjects from among the Aerospace Information Technology list.

The subjects listed as Aerospace Engineering represent the advanced aerospace disciplines encompassing the design and construction of airframes and engines. This includes fluid mechanics, aerodynamics, heat and mass transfer, computational mechanics, flight vehicle aerodynamics, solid mechanics, structural design and analysis, the study of engineering materials, structural dynamics, and propulsion and energy conversion from both fluid/thermal (gas turbines and rockets) and electrical devices.

The subjects listed as Aerospace Information Technology are in the broad disciplinary area of information, which plays a dominant role in modern aerospace systems. This includes feedback, control, estimation, control of flight vehicles, software engineering, human factors engineering, aerospace communications and digital systems, the way in which humans interact with the vehicle through manual control and supervisory control of telerobotic processes (e.g., modern cockpit systems and human centered automation), and how planning and real-time decisions are made by machines.

Subjects in aerospace information technology are taught in both the departments of Aeronautics and Astronautics and Electrical Engineering and Computer Science.

The capstone subjects serve to integrate the various disciplines and emphasize the CDIO context of the AeroAstro curriculum. They also satisfy the Communication Requirement as Communication-Intensive in the Major (CI-M) subjects. The vehicle and system design subjects (16.82 and 16.83) require student teams to apply their undergraduate knowledge to the design of an aircraft or spacecraft system. One of these two subjects is required and is typically taken in the second term of the junior year or in the senior year. The rest of the capstone requirement is met by one of three 18-unit subject sequences: 16.621 and 16.622 Experimental Projects I and II; or 16.821 Flight Vehicle Development; or 16.831 and 16.832 Space Systems Development I and II. These sequences satisfy the Institute Laboratory Requirement. In 16.821 and 16.831/16.832 students build and operate the vehicles or systems developed in 16.82 and 16.83. In 16.621/16.622, students conceive, design, and execute an original experimental research project in collaboration with a partner and a faculty advisor.

To take full advantage of the General Institute Requirements and required electives, the department recommends the following: 3.091 for the chemistry requirement; the ecology option of the biology requirement; a subject in economics (e.g., 14.01) as part of the HASS Requirement; and elective subjects such as 16.00 Introduction to Aerospace and Design, a mathematics subject (e.g., 18.06, 18.075, or 18.085), and additional professional area subjects in the departmental program. Please consult the department’s Academic Programs Office (Room 33-208) for other elective options.

Bachelor of Science in Engineering/ Course 16-ENG

Course 16-ENG is an engineering degree program designed to offer flexibility within the context of aerospace engineering and is a complement to our aerospace engineering degree programs (16-1 and 16-2). The program leads to the Bachelor of Science in Engineering as Recommended by the Department of Aeronautics and Astronautics. (The department will be seeking accreditation by the Accreditation Board of Engineering and Technology as an engineering degree.) Depending on their interests, Course 16-ENG students can develop a deeper level of understanding and skill in a field of engineering that is relevant to multiple disciplinary areas (e.g., robotics and control, computational engineering, mechanics, or engineering management), or a greater understanding and skill in an interdisciplinary area (e.g., energy, environment and sustainability, or transportation). This is accomplished first through a rigorous foundations within core aerospace engineering disciplines, followed by a six-subject concentration tailored to the student’s interests, and completed with hands-on aerospace engineering lab and capstone design subjects.

The core of our 16-ENG degree is very similar to the core of our 16-1 and 16-2 degrees, specifically including 16.001-16.004 Unified Engineering (described above), 18.03/18.034 Differential Equations, the programming subject 1.00 Introduction to Computers and Engineering Problem

Part 2

108
Solving, and either 16.06 Principles of Automatic Control or 16.07 Dynamics.

A significant part of the 16-ENG curriculum consists of electives (72 units) chosen by the student to provide in-depth study of a field of the student’s choosing. A wide variety of concentrations are possible in which well-selected academic subjects complement a foundation in aerospace engineering and General Institute Requirements. Potential concentrations include computational engineering, energy, engineering management, environment, robotics and control, and space exploration. The AeroAstro faculty have developed specific recommendations in these areas; details are available from the AeroAstro Undergraduate Office and on the departmental website. However, concentrations are not limited to those listed above. Students are encouraged to design and propose technically oriented concentrations that reflect their own needs and those of society.

The student’s overall program must contain a total of at least one and one-half years of engineering content (144 units) appropriate to his or her field of study. The required core, lab, and capstone subjects include 102 units of engineering topics. Thus, concentrations must include at least 42 more units of engineering topics. In addition, each concentration must include 12 units of mathematics or science.

The culmination of the 16-ENG degree program is our aerospace laboratory and capstone subject sequences. The capstone subjects serve to integrate the various disciplines and emphasize the CDIO context of our engineering curriculum. They also satisfy the Communication Requirement as CI-M subjects. The specific options available to students are identical to the 16-1 and 16-2 degree programs (see the description of those programs for additional details on the laboratory and capstone sequences).

Double Major

Students may pursue two majors under the Double Major Program outlined in the section on Undergraduate Education in Part I. In particular, some students may wish to combine a professional education in aeronautics and astronautics with a liberal education that links the development and practice of science and engineering to their social, economic, historical, and cultural contexts. For them, the Department

Bachelor of Science in Engineering/Course 16-ENG

General Institute Requirements (GIrs)

<table>
<thead>
<tr>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Restricted Electives in Science and Technology (REST) Requirement

[1.00; 18.03 or 18.034; and 16.001 in the Departmental Program]

Laboratory Requirement

[can be satisfied by 16.621, 16.821, or 16.831/16.832 in the Departmental Program]

Total GIR Subjects Required for SB Degree

17

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

See the Laboratory and Capstone section below for specific options.

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departmental Core (Required for students in both degree programs)</td>
</tr>
<tr>
<td>16.001 Unified Engineering I, 12, REST; Physics II (GIR), 18.03*; Chemistry (GIR)</td>
</tr>
<tr>
<td>16.002 Unified Engineering II, 12; Physics II (GIR); 18.03*, Chemistry (GIR)</td>
</tr>
<tr>
<td>16.003 Unified Engineering III, 12; 16.001, 16.002</td>
</tr>
<tr>
<td>16.004 Unified Engineering IV, 12, 16.001, 16.002</td>
</tr>
<tr>
<td>1.00 Introduction to Computers and Engineering Problem Solving, 12, REST; Calculus I (GIR)</td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST; Calculus II (GIR) or 18.034 Differential Equations, 12, REST; Calculus II (GIR)</td>
</tr>
<tr>
<td>16.06 Principles of Automatic Control, 12; 16.004</td>
</tr>
<tr>
<td>16.07 Dynamics, 12; 16.004</td>
</tr>
</tbody>
</table>

Concentration Subjects

These electives define a concentrated area of study and must be chosen with the written approval of the AeroAstro Undergraduate Office. A minimum of 42 units of engineering topics and a minimum of 12 units of mathematics or science topics must be included in the 72 units of concentration electives. In all cases, the concentration subjects must be clearly related to the theme of the concentration.

Laboratory and Capstone Subjects

One of the following two subjects:

- 16.82 Flight Vehicle Engineering, 12, CI-M; permission of department
- 16.83 Space Systems Engineering, 12, CI-M; permission of department

Plus one of the following three sequences:

Experimental Projects

- 16.621 Experimental Projects I, 6; 16.06* |
- 16.622 Experimental Projects II, 12, LAB, CI-M; 16.621; 6.041 |

Flight Vehicle Development

- 16.821 Flight Vehicle Development, 18, LAB, CI-M; 16.82 |

Space Systems Development

- 16.831 Space Systems Development I, 12, LAB, CI-M; 16.83 |
- 16.832 Space Systems Development II, 6, LAB; 16.831 |

Departmental Program Units That Also Satisfy the GIRs

36

Unrestricted Electives

48

Total Units Beyond the GIRs Required for SB Degree

198

Notes

* Alternate prerequisites and corequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
of Aeronautics and Astronautics and the Program in Science, Technology, and Society offer a double major program that combines majors in both fields. For a detailed description of that integrated degree program, refer to the description of the Program in Science, Technology, and Society in Part 2.

Undergraduate Opportunities
The following programs exist to broaden the opportunities available to undergraduate students.

Undergraduate Research Opportunities Program
To take full advantage of the unique research environment of MIT, undergraduates are encouraged to become involved in the research activities of the department through the Undergraduate Research Opportunities Program (UROP).

Many of the faculty actively seek undergraduates to become a part of their research teams. Specific areas of research opportunity are outlined in the section Research Laboratories and Activities below. For more information, contact Marie Stuppard in the AeroAstro Academic Programs Office, Room 33-208, 617-253-2279, mas@mit.edu.

Undergraduate Practice Opportunities Program
The Undergraduate Practice Opportunities Program (UPOP) is a program sponsored by the School of Engineering and administered through the Office of the Dean of Engineering. Open to all School of Engineering sophomores, this program provides students an opportunity to develop engineering and business skills while working in industry, nonprofit organizations, or government agencies. UPOP consists of three parts: an intensive one week engineering practice workshop offered during IAP, 10–12 weeks of summer employment, and a written report and oral presentation in the fall. Students are paid during their periods of residence at the participating companies and also receive academic credit in the program. There are no obligations on either side regarding further employment. For more information, contact Marie Stuppard in the AeroAstro Academic Programs Office, Room 33-208, 617-253-2279, mas@mit.edu.

Summer Internship Program
The Summer Internship Program provides undergraduates in the department the opportunity to apply the skills they are learning in the classroom in paid professional positions with employers throughout the United States. Through the MIT Career Development Center, students are offered individual career advising as well as seminars on resume writing, interviewing, and the job-search process. Some students may receive academic credit for their work experience by participating in a three-part educational process including preparation activity, the work experience, and reflection/evaluation activities when they return to school in the fall. For more information, contact Marie Stuppard in the AeroAstro Academic Programs Office, Room 33-208, 617-253-2279, mas@mit.edu.

Year Abroad Program
Through the MIT Global Education Office, students can apply to spend the junior year abroad. In particular, the department participates in the Cambridge University-MIT Undergraduate Exchange (CME) program. In any year-abroad experience, students enroll in the academic cycle of the host institution and take courses in the local language. They plan their course of study in advance; this includes securing credit commitments in exchange for satisfactory performance abroad. A grade average of B or better is normally required of participating AeroAstro students. For more information, contact Marie Stuppard (mas@mit.edu). Also refer to Undergraduate Education in Part 1 for detailed information on the CME program.

Massachusetts Space Grant Consortium
MIT leads the NASA-supported Massachusetts Space Grant Consortium (MASGC) in partnership with Amherst College, Boston University, Harvard University, College of the Holy Cross, Framingham State College, Holyoke Community College, Mount Holyoke College, Northeastern University, Olin College of Engineering, Roxbury Community College, Smith College, Tufts University, University of Massachusetts (Amherst and Dartmouth), Wellesley College, Williams College, Worcester State College, Worcester Polytechnic Institute, Boston Museum of Science, the Christa McAuliffe Center, the Clay Observatory, and many aerospace companies and laboratories throughout the United States. The program has the principal objective of stimulating and supporting student interest, especially that of women and underrepresented minorities, in space engineering and science at all educational levels, primary through graduate. The program offers a number of activities to this end, including sponsorship of undergraduate research projects, support for student travel to present conference papers, a January internship at the Kennedy Space Center, a spring undergraduate seminar on modern space science and engineering, an annual public lecture by a distinguished member of the aerospace community, and summer workshops for precollege teachers. An important function of the program is coordinating placement of students in summer positions in industry and at NASA centers for summer academies and research opportunities. MASGC also participates in a number of public outreach and education policy initiatives in Massachusetts to increase public awareness and inform legislators about the importance of science, technology, engineering, and math education in the state. For more information, contact the program coordinator, Massachusetts Space Grant Consortium, Room 33-208, 617-258-5546, masgc@mit.edu.

Inquiries
For additional information concerning academic and research programs in the department, suggested four-year undergraduate programs, and interdisciplinary programs, please contact the Department of Aeronautics and Astronautics Academic Programs Office, Room 33-208, 617-253-2279, mas@mit.edu.

Graduate Study
Graduate study in the Department of Aeronautics and Astronautics includes graduate-level subjects in Course 16 and others at MIT, and research work culminating in a thesis. Degrees are awarded at the master’s, engineer’s, and doctoral levels. The range of subject matter is described in the section Sectors of Instruction; subjects are listed in the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi. The section Research Laboratories
and Activities provides an overview of research interests. Detailed information may be obtained from the Department Academic Programs Office or from individual faculty members.

Entrance Requirements

In addition to the general requirements for admission to the Graduate School, applicants to the Department of Aeronautics and Astronautics should have a strong undergraduate background in the fundamentals of aerospace engineering and mathematics as described in the section Undergraduate Study. In some cases, unfulfilled entrance requirements may also be satisfied during the first year of admission to the graduate program.

International students whose language of instruction has not been English in their primary and secondary schooling must pass the Test of English as a Foreign Language (TOEFL) with a minimum score of 250/600 to be considered for admission to this department. TOEFL waivers are not accepted. No other exam fulfills this requirement.

All applicants to the graduate program in Aeronautics and Astronautics also must submit the Graduate Record Examination (GRE) test results.

New graduate students are normally admitted as candidates for the degree of Master of Science. Admission to the doctoral program is offered to students who have been accepted for graduate study through a three-step process:

1. **Passing performance on the field exam (FE).** The standard for passing the FE is the demonstration of superior intellectual ability through skillful use of concepts, including synthesis of multiple concepts, in foundational, graduate-level material in a field of aerospace engineering.

2. **Passing performance on the research evaluation (RE).** The standard for passing the RE is the demonstration of a superior ability to solve research-oriented problems, with guidance, in a field relevant to aerospace engineering.

3. **Granting of admission to the doctoral program through a faculty review consisting of an examination of the student’s achievements, including an assessment of the quality of past research work and evaluation of the student’s academic record in light of the performance on the FE and RE.**

 The FE and RE examination is offered once each year, during the January Independent Activities Period. Students who wish to be considered for the doctoral program must take the FE and RE before the fourth term following initial registration in the graduate program.

 The Department of Aeronautics and Astronautics requires that all entering graduate students demonstrate satisfactory English writing ability by taking the Technical Writing Diagnostic Examination offered by the Program in Writing and Humanistic Studies. The examination is usually administered during the week after the initial date of registration in graduate school, and all entering candidates must take the examination at that time. Students with deficient skills must complete remedial training specifically designed to fulfill their individual needs. The remedial training prescribed by the Writing Program must be completed by the end of the first Independent Activities Period following initial registration in the graduate program or, in some cases, in the spring term of the first year of the program.

 All incoming graduate students whose native language is not English are required to take the Department of Humanities English Evaluation Test (EET) offered at the start of each regular term. This test is a proficiency examination designed to indicate areas where deficiencies may still exist and recommend specific language subjects available at MIT.

Degree Requirements

All entering students are provided with additional information concerning degree requirements, including lists of recommended subjects, thesis advising, research and teaching assistantships, and course and thesis registration.

Degrees Offered

Master of Science in Aeronautics and Astronautics

The Master of Science (SM) degree is a one- to two-year graduate program with a beginning research or design experience represented by the SM thesis. This degree prepares the graduate for an advanced position in the aerospace field, and provides a solid foundation for future doctoral study.

The general requirements for the Master of Science degree are cited in the section on General Degree Requirements for graduate students in Part 1. The specific departmental requirements include at least 66 subject units, typically in graduate subjects relevant to the candidate’s area of technical interest. Of the 66 units, 42 units must be in H-level subjects, of which at least 21 units must be in departmental subjects. To be credited toward the degree, graduate subjects that are not H-level must carry a grade of B or better. In addition, a 24-unit thesis is required beyond the 66 units of coursework.

Full-time students normally must be in residence one full academic year. Special students admitted to the SM program in this department must enroll in and satisfactorily complete at least two graduate H-level subjects while in residence (i.e., after being admitted as a degree candidate) regardless of the number of subjects completed before admission to the program. Students holding research assistantships typically require a longer period of residence.

In addition, the department’s SM program requires one graduate-level mathematics subject. The requirement is satisfied only by graduate-level subjects on the list approved by the department graduate committee. The specific choice of math subject is arranged individually by each student in consultation with their faculty advisor.

Doctor of Philosophy and Doctor of Science

AeroAstro offers doctoral degrees (PhD and ScD) that emphasize in-depth study, with a significant research project in a focused area. The admission process for the department’s doctoral program is described previously in this section under Entrance Requirements. The doctoral degree is awarded after completion of an individual course of study, submission and defense of a thesis proposal, and submission and defense of a thesis embodying an original research contribution.

The general requirements for this degree are given in the section on General Degree Requirements for graduate education in Part 1. A detailed description of the program require-
ments are outlined in a booklet entitled The Doctoral Program, available on the department website. After successful admission to the doctoral program, the doctoral candidate selects a field of study and research in consultation with the thesis supervisor and forms a doctoral thesis committee, which assists in the formulation of the candidate’s research and study programs and monitors his or her progress. Demonstrated competence for original research at the forefront of aerospace engineering is the final and main criterion for granting the doctoral degree. The candidate’s thesis serves in part to demonstrate such competence and, upon completion, is defended orally in a presentation to the faculty of the department, who may then recommend that the degree be awarded.

Interdisciplinary Programs
The department participates in several interdisciplinary fields at the graduate level, which are of special importance for aeronautics and astronautics in both research and the curriculum.

Biomedical Engineering
This program is available to students interested in biomedical instrumentation and physiological control systems where the disciplines involved in aeronautics and astronautics are applied to biology and medicine. Graduate study combining aerospace engineering with biomedical engineering may be pursued through the Biomedical Engineering PhD program offered as part of the Medical Engineering and Medical Physics PhD program in the Harvard-MIT Division of Health Sciences and Technology (HST) or in conjunction with the PhD and MEng programs in the Department of Biological Engineering (BE). Students wishing to pursue a degree through HST or BE must apply to those graduate programs. At the master’s degree level, students in the department may specialize in biomedical engineering research, emphasizing space life sciences and life support, instrumentation and control, or in human factors engineering and in instrumentation and statistics. Most biomedical engineering research in the Department of Aeronautics and Astronautics is conducted in the Man Vehicle Laboratory.

Computation for Design and Optimization
The Computation for Design and Optimization (CDO) program offers a master’s degree to students interested in the analysis and application of computational approaches to designing and operating engineered systems. The curriculum is designed with a common core serving all engineering disciplines and an elective component focusing on specific applications. Current MIT graduate students may pursue a CDO master’s degree in conjunction with a department-based master’s or PhD program. For more information, see the full program description under Interdisciplinary Graduate Programs in Part 3 or visit http://web.mit.edu/cdo-program/index.html.

Flight Transportation
For students interested in a career in flight transportation, a program is available that incorporates a broader graduate education in disciplines such as economics, management, and operations research than is normally pursued by candidates for degrees in engineering. Graduate research emphasizes one of the four areas of flight transportation: airport planning and design; air traffic control; air transportation systems analysis; and airline economics and management, with subjects selected appropriately from those available in the departments of Aeronautics and Astronautics, Civil and Environmental Engineering, Economics, and the interdisciplinary Master of Science in Transportation (MST) program. Doctoral students may pursue a PhD with specialization in air transportation in the Department of Aeronautics and Astronautics or in the interdisciplinary PhD program in transportation or in the PhD program of the Operations Research Center (see Interdisciplinary Graduate Programs in Part 3).

Leaders for Global Operations
The 24-month Leaders for Global Operations (LGO) program combines graduate education in engineering and management for those with two or more years of full-time work experience who aspire to leadership positions in manufacturing or operations companies. A required 6-5-month internship provides opportunity to complete a research project on site at one of LGO’s partner companies. The internship leads to a dual-degree thesis, culminating in two master’s degrees—an SM in management or an MBA, and an SM from a participating engineering department. The program is offered jointly through the MIT Sloan School of Management and the School of Engineering. For more information, see the program description under Engineering Systems Division or visit http://lgo.mit.edu/.

System Design and Management
The System Design and Management (SDM) program is a partnership among industry, government, and the university for educating technically grounded leaders of 21st-century enterprises. Jointly sponsored by the School of Engineering and the Sloan School of Management, it is MIT’s first degree program to be offered with a distance learning option in addition to a full-time in-residence option. For more information, see the program description under Engineering Systems Division or visit http://sdm.mit.edu/.

Technology and Policy
The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description under Engineering Systems Division or visit http://web.mit.edu/tpp/.

Fellowships, Research and Teaching Assistantships
Financial assistance for graduate study may be in the form of fellowships or research or teaching assistantships. Both fellowship students and research assistants work with a faculty supervisor on a specific research assignment of interest, which generally leads to a thesis. Teaching assistants are appointed to work on specific subjects of instruction. A special relationship exists between the department and the Charles Stark Draper Laboratory. This relationship affords fellowship
opportunities for SM and PhD candidates who perform their research as an integral part of ongoing projects at the Draper Laboratory. Faculty from the department maintain close working relationships with researchers at Draper, and thesis research at Draper performed by Draper fellows can be structured to fulfill MIT residency requirements. Further information on the Draper Laboratory can be found in the section on Interdisciplinary Research and Study in Part 3.

Inquiries
For additional information concerning admissions, financial aid and assistantships, and academic, research, and interdisciplinary programs in the department, contact Beth Marois, bethamar@mit.edu.

RESEARCH LABORATORIES AND ACTIVITIES

The department’s faculty, staff, and students are engaged in a wide variety of research projects. Graduate students participate in all the research projects. Projects are also open to undergraduates through the Undergraduate Research Opportunities Program (UROP). Some projects are carried out in an unstructured environment by individual professors working with a few students. Most projects are found within the departmental laboratories and centers listed below. Faculty also undertake research in the Computer Science and Artificial Intelligence Laboratory, Draper Laboratory, Laboratory for Information and Decisions Systems, Lincoln Laboratory, Operations Research Center, Research Laboratory of Electronics, and the Program in Science, Technology, and Society, as well as in interdisciplinary laboratories and centers listed in the introduction to the School of Engineering. Refer to the section on Interdisciplinary Research and Study in Part 3 for more detailed descriptions.

Aerospace Computational Design Laboratory
The mission of the Aerospace Computational Design Laboratory (ACDL) is to improve the design of aerospace systems through the advancement of computational methods and tools which incorporate multidisciplinary analysis and optimization, probabilistic and robust design techniques, and next-generation computational fluid dynamics. The laboratory studies a broad range of topics which focus on the design of aircraft and aircraft engines.

Aerospace Controls Laboratory
The Aerospace Controls Laboratory (ACL) researches topics related to autonomous systems and control design for aircraft, spacecraft, and ground vehicles. Theoretical research is pursued in areas such as decision making under uncertainty; path planning, activity, and task assignment; estimation and navigation; sensor network design; and robust control, adaptive control, and model predictive control. A key part of ACL is RAVEN (Real-time Indoor Autonomous Vehicle Test Environment), a unique experimental facility that uses motion-capture sensing to enable rapid prototyping of flight controllers for helicopters and aircraft; robust coordination algorithms for multiple helicopters; and vision-based sensing algorithms for indoor flight.

Complex Systems Research Lab
Increasing complexity and coupling as well as the introduction of new digital technology are introducing new challenges for engineering, operations, and sustainment. We are designing system modeling, analysis, and visualization theory and tools to assist in the design and operation of safer systems with greater capability. To accomplish these goals, we apply a system’s approach to engineering that includes building technical foundations and knowledge and integrating these with the organizational, political and cultural aspects of system construction and operation.

While our main emphasis is aerospace systems and applications, our research results are applicable to complex systems in such domains as transportation, energy, and health. Current research projects include accident modeling and design for safety; model-based system and software engineering; reusable, component-based system architectures; interactive visualization; human-centered system design; system sustainment; and organizational factors in engineering and project management.

Gas Turbine Laboratory
Research at the Gas Turbine Laboratory is focused on advanced propulsion systems and turbomachinery with activities in computational, theoretical, and experimental study of: loss mechanisms and unsteady flows in turbomachines, compression system stability and active control, heat transfer in turbomachinery, gas turbine engine noise reduction and aero-acoustics, pollutant emissions and community noise, small-scale high-power-density engines, and analysis of advanced propulsion system and aircraft configurations. Past research projects include “micro engines” and millimeter-diameter gas turbine engines with blading fabricated using microfabrication techniques. Another project, the Silent Aircraft Initiative, was a collaboration with Cambridge University, Boeing, Rolls Royce, and other industrial partners to dramatically reduce aircraft noise. Current research includes work on instabilities in centrifugal compressors, aero-acoustics of counter-rotating propan engines, design and assessment of hybrid-wing body aircraft configurations and embedded propulsion systems, acoustic propagation of fan noise in S-shaped inlet ducts, demonstration of small-scale turbomachinery for portable power, and novel aircraft configurations with reduced environmental impact.

Humans and Automation Laboratory
The Humans and Automation Laboratory (HAL) focuses on the multifaceted interactions of human and computer decision making in complex sociotechnical systems.

With the explosion of automated technology, the need for humans as supervisors of complex automatic control systems has replaced the need for humans in direct manual control. A consequence of complex, highly automated domains in which the human decision maker is more “on-the-loop” than “in-the-loop” is that the level of required cognition has moved from that of well-rehearsed skill execution and rule following to higher, more abstract levels of knowledge synthesis, judgment, and reasoning.

Employing human-centered design principles to human supervisory control problems, and identifying ways in which humans and computers can leverage the strengths of the other to achieve superior decisions together is the central focus of HAL. Current research projects include collaborative human-computer decision making for command and control domains, investigating human understanding of multi-
variable optimization algorithms and visualization of cost (objective functions); the need for bounded collaboration, design of complex acquisition displays, human supervisory control of multiple heterogeneous unmanned vehicles; and developing and applying metrics for human supervisory systems.

International Center for Air Transportation
The mission of ICAT is to contribute to improving the safety, efficiency, environmental performance, and effectiveness of air transportation worldwide by education and the use of information technologies. Current areas of research interest include: advanced Air Traffic Control and Management (ATM, ATC) systems; satellite based Communication, Navigation, and Surveillance (CNS) systems in mature and developing world regions; advanced flight information systems; airline management; and operations (both flight operations and operations research). ICAT works closely with the Engineering Systems Division, the Center for Transportation and Logistics, and the Operations Research Center.

Lean Advancement Initiative
The Lean Advancement Initiative (LAI) at MIT, together with its Educational Network, offers its 63 organizational members from industry, government, and academia the newest and best thinking, products, and tools related to lean enterprise transformation. A unique and powerful research consortium, LAI provides a neutral forum for sharing research findings, lessons learned, and best practices. LAI’s work is designed to enable enterprises to effectively, efficiently, and reliably create value in complex and rapidly changing environments. LAI enables the focused and accelerated transformation of complex enterprises through collaborative stakeholder engagement in developing and institutionalizing principles, processes, behaviors, and tools for enterprise excellence. For more information about LAI, see Interdisciplinary Research and Study in Part 3.

Man Vehicle Laboratory
The laboratory’s goal is to optimize human-vehicle system effectiveness by improving our understanding of human physiological and cognitive capabilities with particular emphasis on human spaceflight. Research is interdisciplinary, utilizing techniques from manual and supervisory control, estimation, signal processing, robotics, biomechanics, cognitive psychology, artificial intelligence, sensory-motor physiology, human factors, and biostatistics. The laboratory has several experiments in development for the International Space Station, and other ground-based projects sponsored by NASA and the National Space Biomedical Institute. Research focuses on control of posture and locomotion in partial gravity, spatial orientation in both real and virtual environments, aircraft cockpit displays and controls, and physiological and human factors aspects of EVA and artificial gravity systems, and design of exploration class missions.

Partnership for Air Transportation Noise and Emissions Reduction
The Partnership for Air Transportation Noise and Emissions Reduction is an AeroAstro-led FAA/NASA/Transport Canada-sponsored Center of Excellence. PARTNER research fosters breakthrough technological, operational, policy, and workforce advances for the betterment of mobility, economy, national security, and the environment. PARTNER combines the talents of nine universities, three federal agencies, and more than 50 advisory board members, the latter spanning a range of interests from local government, to industry, to citizens’ community groups.

In addition to managing PARTNER, AeroAstro is active in PARTNER research such as mitigating aviation environmental impacts via the use of alternative fuels for aircraft; studies of aircraft particulate matter microphysics and chemistry; and studies of aircraft, airport, and airspace operational changes.

AeroAstro’s most prominent role within PARTNER is developing research tools that provide rigorous guidance to policy-makers who must decide among alternatives to address aviation’s environmental impact. The MIT researchers collaborate with an international team in developing aircraft-level and aviation system–level tools to assess the costs and benefits of different policies and R&D investment strategies.

Space Systems Laboratory
The Space Systems Laboratory’s (SSL) mission is to develop the technology and systems analysis associated with small spacecraft, precision optical systems, and International Space Station technology research and development. The laboratory encompasses expertise in structural dynamics, control, thermal, space power, propulsion, software development, and systems. Major activities include the development of small spacecraft thruster systems and the examination of issues associated with the distribution of function among satellites. In addition, technology is being developed for spaceflight validation in support of a new class of space-based telescope which exploits the physics of interferometry to achieve dramatic breakthroughs in angular resolution. The objective of the laboratory is to explore innovative concepts for the integration of future space systems and to train a generation of researchers and engineers conversant in this field.

Technology Laboratory for Advanced Materials and Structures
The Technology Laboratory for Advanced Materials and Structures (TELAMS), formerly known as TELAC, has provided leadership in advancing the knowledge and capabilities of the composites and structures community through education of students, original research, and interaction with the community at large. The laboratory’s emphasis on composite materials has led to research topics ranging from a basic understanding of composite materials to their behavior in specific structural configurations, with the ultimate objective of gaining a sufficient understanding of their properties and how those properties interact to determine the behavior of laminates and structures. This includes multiscale modeling and simulation of the mechanics of advanced materials used in the aerospace industry. A good part of the current focus of the laboratory reflects its broadening into other areas, including nano-engineered hybrid advanced composite design, fabrication, and testing; carbon-nanotube–based nanocomposite synthesis, characterization, and modeling; and design, fabrication, and testing of microelectromechanical systems together with their associated materials and processes. This broadening is manifested in TELAMS being the home of MIT’s Nano-Engineered Composite Aerospace Structures Consortium.
Wright Brothers Wind Tunnel
The largest on the MIT campus, this wind tunnel has a 7x10-foot cross-section, and is capable of steady flow speeds up to 200 mph. The facility is used for graduate and undergraduate instruction and research, as well as testing for outside companies. Active research and educational programs include aerodynamics of airplanes and space vehicles and the simulation of wind loads on architectural structures. Recently, the tunnel has been involved in aerodynamic test programs for Olympic athletes and sporting equipment such as bicycles and skis.

FACULTY AND STAFF

Faculty and Teaching Staff
Ian Anton Waitz, PhD
Jerome C. Hunsaker Professor of Aeronautics and Astronautics
MacVicar Faculty Fellow
Department Head

David Louis Darmofal, PhD
Professor Aeronautics and Astronautics
MacVicar Faculty Fellow
Associate Department Head

Professors
Edward Francis Crawley, ScD
Ford Professor of Aeronautics and Astronautics and Engineering Systems
Director, Bernard M. Gordon–MIT Engineering Leadership Program

Mark Drela, PhD
Professor of Aeronautics and Astronautics
Terry J. Kohler Professor of Fluid Dynamics

Steven Dubowsky, ScD
Professor of Mechanical Engineering and Aeronautics and Astronautics

Edward Marc Greitzer, PhD
H. N. Slater Professor of Aeronautics and Astronautics

Steven Ray Hall, ScD
Professor of Aeronautics and Astronautics
MacVicar Faculty Fellow

Robert John Hansman, Jr., PhD
T. Wilson Professor of Aeronautics and Astronautics and Engineering Systems

Wesley L. Harris, PhD
Charles Stark Draper Professor of Aeronautics and Astronautics
Associate Provost for Faculty Equity

Daniel Edgar Hastings, PhD
Professor of Aeronautics and Astronautics and Engineering Systems
Dean for Undergraduate Education

Jeffrey Alan Hoffman, PhD
Professor of the Practice of Aeronautics

Jonathan Patrick How, PhD
Richard Cockburn MacAulaurin Professor of Aeronautics and Astronautics

Paul Alfred Lagacé, PhD
Professor of Aeronautics and Astronautics and Engineering Systems

Nancy Gail Leveson, PhD
Professor of Aeronautics and Astronautics and Engineering Systems

Robert Liebeck, PhD
Professor of the Practice of Aerospace Engineering

Manuel Martínez-Sánchez, PhD
Professor of Aeronautics and Astronautics

David A. Mindell, PhD
Dibner Professor of the History of Engineering and Manufacturing
Professor of Aeronautics and Astronautics
MacVicar Faculty Fellow
Director, Program in Science, Technology and Society

David W. Miller, ScD
Professor of Aeronautics and Astronautics

Dava Jean Newman, PhD
Professor of Aeronautics and Astronautics and Engineering Systems
Director, Technology and Policy Program

Deborah J. Nightingale, PhD
Professor of the Practice of Aeronautics and Astronautics

Emilio Frazzoli, PhD
Associate Professor of Aeronautics and Astronautics

Paul Cesar Lozano, PhD
Associate Professor of Aeronautics and Astronautics

Eytan Modiano, PhD
Associate Professor of Aeronautics and Astronautics

Raul Alberto Radovitzky, PhD
Associate Professor of Aeronautics and Astronautics

Nicholas Roy, PhD
Associate Professor of Aeronautics and Astronautics

Zoltan Sandor Spakovszky, PhD
Associate Professor of Aeronautics and Astronautics

Sheila Evans Widnall, ScD
Professor of Aeronautics and Astronautics and Engineering Systems
Institute Professor

Brian Charles Williams, PhD
Professor of Aeronautics and Astronautics

Laurence Retman Young, ScD
Apollo Program Professor of Astronautics
Professor of Heath Sciences and Technology

Associate Professors
M. L. Cummings, PhD
Associate Professor of Aeronautics and Astronautics and Engineering Systems

Olivier Ladislas de Weck, PhD
Associate Professor of Aeronautics and Astronautics and Engineering Systems

Emilio Frazzoli, PhD
Associate Professor of Aeronautics and Astronautics

Eytan Modiano, PhD
Associate Professor of Aeronautics and Astronautics

Raul Alberto Radovitzky, PhD
Associate Professor of Aeronautics and Astronautics

Nicholas Roy, PhD
Associate Professor of Aeronautics and Astronautics

Zoltan Sandor Spakovszky, PhD
Associate Professor of Aeronautics and Astronautics

Brian L. Wardle, PhD
Associate Professor of Aeronautics and Astronautics

Karen Elizabeth Willcox, PhD
Associate Professor of Aeronautics and Astronautics

Codirector, Center for Computational Engineering

Moe Win, PhD
Associate Professor of Aeronautics and Astronautics
Assistant Professors
Hamsa Balakrishnan, PhD
Assistant Professor of Aeronautics and Astronautics and Engineering Systems
Steven R. H. Barrett, PhD
Charles Stark Draper Assistant Professor of Aeronautics and Astronautics
Youssef Marzouk, PhD
Boeing Assistant Professor of Aeronautics and Astronautics
Qi Qi Wang, PhD
Charles Stark Draper Assistant Professor of Aeronautics and Astronautics
Annalisa Lynn Weigel, PhD
Assistant Professor of Aeronautics and Astronautics and Engineering Systems

Visiting Scientist/Engineer
Boo Cheong Khoo, PhD

Senior Lecturers
Richard Horace Battin, PhD
Fredric Franklin Ehrich, ScD
Rudrapatna V. Ramnath, PhD

Lecturers
Peter Paul Belobaba, PhD
Brian N. Nield, MS
John Tylko, BS

Academic Staff
Doris R. Brodeur, PhD
Diane Hauer Soderholm, PhD

Technical Instructors
Todd R. Billings
Richard Frank Perdicizzi
David Robertson

Research Staff

Senior Research Engineers
Charles McMaster Oman, PhD
Choon Sooi Tan, PhD

Principal Research Engineers
Robert Haimes, MS
James Hileman, PhD

Principal Research Scientist
Peter Paul Belobaba, PhD

Research Engineers
Elena De La Rosa Blanco, PhD
Thomas G. Reynolds, PhD
William Swelbar, MBA

Research Scientists
Andrew Liu, PhD
Alan Natapoff, PhD
Ngoc-Cuong Nguyen, PhD
Alvar Saenz-Otero, PhD

Research Specialists
Paul Henry Bauer, BS
John J. Kane, Jr., BS
James M. Letendre

Postdoctoral Associates
Douglas Allaire, PhD
Luca Bertuccelli, PhD
Philippe Bonnefoy, PhD
Gergana Bouanova, PhD
Marcelo Buffoni, PhD
Lucy E. Cohan, PhD
Sonjoy Das, PhD
Tarek El Moselhy, PhD
Michalis Frangos, PhD
Roberto Guzmán de Villoria, PhD
Stephen Lukachko, PhD
Aleksandra L. Mozdzanowska, PhD
Claudio Pita, PhD
Julian Rimoli, PhD
Christoph Wollersheim, PhD

Professors Emeriti
Eugene Edzards Covert, ScD
T. Wilson Professor of Aeronautics and Astronautics, Emeritus
John Jacob Deyst, Jr., ScD
Professor of Aeronautics and Astronautics, Emeritus
John Dugundji, ScD
Professor of Aeronautics and Astronautics, Emeritus
Alan Harry Epstein, PhD
Professor of Aeronautics and Astronautics, Emeritus
Shaoul Ezekiel, ScD
Professor of Aeronautics and Astronautics and Electrical Engineering, Emeritus
Robert Louis Halfman, SM
Professor of Aeronautics and Astronautics, Emeritus
Walter Mark Hollister, ScD
Professor of Aeronautics and Astronautics, Emeritus
Jack Leo Kerrebrock, PhD
Professor of Aeronautics and Astronautics, Emeritus
Yao Tzu Li, ScD
Professor of Aeronautics and Astronautics, Emeritus
James Wah Mar, ScD
Professor of Aeronautics and Astronautics, Emeritus
Winston Roscoe Markey, ScD
Professor of Aeronautics and Astronautics, Emeritus
Earl Morton Murman, PhD
Ford Professor of Engineering, Emeritus
Professor of Aeronautics and Astronautics and Engineering Systems, Emeritus
Thomas Brown Sheridan, ScD, D (hon)
Professor of Aeronautics and Astronautics and Engineering and Applied Psychology, Emeritus
Robert Warren Simpson, PhD
Professor of Aeronautics and Astronautics, Emeritus
Leon Trilling, PhD
Professor of Aeronautics and Astronautics, Emeritus
Wallace Earl Vander Velde, ScD
Professor of Aeronautics and Astronautics, Emeritus
Harold Yehuda Wachman, PhD
Professor of Aeronautics and Astronautics, Emeritus
Emmett Atlee Witmer, ScD
Professor of Aeronautics and Astronautics, Emeritus
The mission of the Department of Biological Engineering (BE) is to educate next-generation leaders and to generate and translate new knowledge in a new bioscience-based engineering discipline fusing engineering analysis and synthesis approaches with modern molecular-to-genomic biology. Combining quantitative, physical, and integrative principles with advances in mechanistic molecular and cellular bioscience, biological engineering increases understanding of how biological systems function as both physical and chemical mechanisms; how they respond when perturbed by factors such as medical therapeutics, environmental agents, and genetic variation; and how to manipulate and construct them toward beneficial use. Through this understanding, new technologies can be created to improve human health in a variety of medical applications, and biology-based paradigms can be generated to address many of the diverse challenges facing society across a broad spectrum, including energy, the environment, nutrition, and manufacturing.

The department’s premise is that the science of biology is as important to the development of technology and society in the 21st century as physics and chemistry were in the 20th century, and that an increasing ability to measure, model, and manipulate properties of biological systems at the molecular, cellular, and multicellular levels will continue to shape this development. A new generation of engineers and scientists is learning to address problems through their ability to measure, model, and rationally manipulate the technological and environmental factors affecting biological systems. They are applying not only engineering principles to the analytical understanding of how biological systems operate, especially when impacted by genetic, chemical, physical, infectious, or other interventions; but also a synthetic design perspective to creating biology-based technologies for medical diagnostics, therapeutics, and prosthetics, as well as for applications in diverse industries beyond human health care.

UNDERGRADUATE STUDY

Bachelor of Science in Biological Engineering

The Department of Biological Engineering offers an undergraduate curriculum emphasizing quantitative, engineering-based analysis, design, and synthesis in the study of modern biology from the molecular to the systems level. Completion of the curriculum leads to the Bachelor of Science in Biological Engineering and prepares students for careers in diverse fields ranging from the pharmaceutical and biotechnology industries to materials, devices, ecology, and public health. Graduates of the program will be prepared to enter positions in basic research or project-oriented product development, as well as graduate school or further professional study.

The required core curriculum includes a strong foundation in biological and biochemical sciences, which are integrated with quantitative analysis and engineering principles throughout the entire core. Students who wish to pursue the Bachelor of Science in Biological Engineering are encouraged to complete the Biology General Institute Requirement during freshman year and may delay completion of Physics II until the fall term of sophomore year if necessary. The optional subject Introduction to Biological Engineering Design, offered during the spring term of freshman year, provides a framework for understanding the Biological Engineering SB program.

Students are encouraged to take the sophomore fall-term subject 20.110 Thermodynamics of Biomolecular Systems. This subject also fulfills an SB degree requirement in Biology. Alternatively, sophomores, or freshmen with advanced standing may take the spring-term 20.111 Physical Chemistry of Biomolecular Systems. Students are also encouraged to take Organic Chemistry I and Differential Equations during their sophomore year in order to prepare for the introductory biological engineering laboratory subject 20.109 that provides context for the lecture subjects and a strong foundation for subsequent undergraduate research in biological engineering through Undergraduate Research Opportunities Program projects or summer internships.

The advanced subjects required in the junior and senior years introduce additional engineering skills through lecture and laboratory subjects and culminate in a senior design project. These advanced subjects maintain the theme of molecular to systems–level analysis, design, and synthesis based on a strong integration with biology fundamentals. They also include a variety of restricted electives that allow students to develop expertise in one of four thematic areas: systems biology, pharmacology/toxicology, cell and tissue engineering, and microbial systems. Many of these advanced subjects are jointly taught with other departments in the School of Engineering or School of Science and may fulfill degree requirements in other programs.

Minor in Biomedical Engineering

An interdepartmental Minor in Biomedical Engineering is available to all undergraduate students outside the BE (Course 20) major. See Interdisciplinary Undergraduate Programs and Minors in Part 3 for detailed information.

Minor in Toxicology and Environmental Health

The Department of Biological Engineering offers an undergraduate Minor in Toxicology and Environmental Health. The goal of this program is to meet the growing demand for undergraduates to acquire the intellectual tools needed to understand and assess the impact of new products and processes on human health, and to provide a perspective on the risks of human exposure to synthetic and natural chemicals, physical agents, and microorganisms.

Given the importance of environmental education at MIT, the program is designed to be accessible to any MIT undergraduate. The program consists of three required didactic core subjects and one laboratory subject, as well as one restricted elective. The prerequisites for the core subjects are 5.111 / 5.112 Principles of Chemical Science or 3.091 Introduction to Solid State Chemistry plus 7.012 / 7.013 / 7.014 Introductory Biology.

Core Subjects

- 20.102 Macroepidemiology and Population Genetics
- 20.104 Environmental Risks for Common Diseases
- 20.106 Systems Microbiology
Bachelor of Science in Biological Engineering/Course 20

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 20.109]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Course 20 Program

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Core Subjects</td>
<td>159</td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>20.110J Thermodynamics of Biomolecular Systems, 12, REST; Calculus II (GIR), Chemistry (GIR)</td>
<td></td>
</tr>
<tr>
<td>20.111J Physical Chemistry of Biomolecular Systems, 12; Calculus II (GIR), Chemistry (GIR), Physics I (GIR), Physics II (GIR)</td>
<td></td>
</tr>
<tr>
<td>5.12 Organic Chemistry, 12, REST; Chemistry (GIR)</td>
<td></td>
</tr>
<tr>
<td>20.109 Laboratory Fundamentals in Biological Engineering, 15, LAB, CI-M; Biology (GIR), Chemistry (GIR), 6.00, 18.03; 20.110</td>
<td></td>
</tr>
<tr>
<td>7.03 Genetics, 12, REST; Biology (GIR)</td>
<td></td>
</tr>
<tr>
<td>6.00 Introduction to Computer Science and Programming, 12, REST</td>
<td></td>
</tr>
<tr>
<td>5.07J Biological Chemistry I, 12, REST; 5.12</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>7.05 General Biochemistry, 12, REST; 5.12*</td>
<td></td>
</tr>
<tr>
<td>7.06 Cell Biology, 12; 7.03, 7.05</td>
<td></td>
</tr>
<tr>
<td>20.310J Molecular, Cellular, and Tissue Biomechanics, 12; 2.370*, 18.03*, Biology (GIR)</td>
<td></td>
</tr>
<tr>
<td>20.320 Analysis of Biomolecular and Cellular Systems, 12; 20.110, 18.03, 6.00; 5.07</td>
<td></td>
</tr>
<tr>
<td>20.330J Fields, Forces, and Flows in Biological Systems, 12; 2.005*</td>
<td></td>
</tr>
<tr>
<td>20.390J Instrumentation and Measurement for Biological Systems, 12; Biology (GIR), Physics II (GIR), 6.00, 18.03; 2.001*; or permission of instructor; 20.330</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives (Tracks TBD) 21–24

Departmental Program Units That Also Satisfy the GIRs (36)

Unrestricted Electives 48

Total Units Beyond the GIRs Required for SB Degree 192–195

No subject can be counted both as part of the 17-subject GIRs and as part of the 192 units required beyond the GIRs. Every subject in the student’s Departmental Program will count toward one or the other, but not both.

Notes

For an explanation of credit units, or hours, please refer to the online help in the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
the Division of Comparative Medicine, and the Synthetic Biology Engineering Research Center. These opportunities include collaboration with faculty in the Schools of Engineering and Science, the Koch Institute for Integrative Cancer Research, the Whitehead Institute for Biomedical Research, and the Broad Institute, along with the Harvard University School of Medicine, Harvard University School of Dental Medicine, Harvard School of Public Health, and Boston University School of Medicine.

For both tracks, the written part of the doctoral qualifying examinations—centered on the respective core curriculum—is taken after the second term. The students select a research advisor and begin research before the end of the first year. The oral part of the doctoral qualifying examinations, which focuses on the student’s area of research, is taken during the second year. A total of approximately five years in residence is needed to complete the doctoral thesis and other degree requirements.

Bioengineering Track

Students admitted to the bioengineering track typically have a bachelor’s or master’s degree in engineering. During that first year, students pursue a unified core curriculum, in which engineering approaches are used to analyze biological systems and technologies over a wide range of length and time scales. The three core bioengineering subjects are:

- 20.420J Biomolecular Kinetics and Cellular Dynamics
- 20.430J Fields, Forces, and Flows in Biological Systems
- 20.440 Analysis of Biological Networks

These subjects bring central engineering principles to bear on the operation of biological systems from molecular to cell to tissue/organ/device systems levels. Foundational coursework in biochemistry and molecular cell biology is required, either before admission or during the first year of graduate study.

To enhance depth and breadth, the core subjects are supplemented by electives in the biological sciences and engineering. For doctoral candidates, two of these must be graduate-level biology subjects. The student will be expected to have biochemistry and cell biology as prerequisites and then select two graduate-level subjects in biological science. If cell biology has not been taken previously, it must be selected as one of these two graduate-level subjects. If biochemistry has not been taken previously, it must be taken as a remedial undergraduate subject before selecting the two graduate-level subjects.

In addition, one graduate-level subject from a restricted set of Biological Engineering offerings beyond the core classes, and one additional engineering or science graduate-level subject, are required as electives. The student selects a research advisor and begins research before the end of the first year. The oral part of the doctoral qualifying exams, which focuses on the student’s area of research, is taken during the second year. Approximately five years of total residence are needed to complete the doctoral thesis and other degree requirements.

The bioengineering track educates students to use engineering principles in the analysis and manipulation of biological systems, allowing them to solve problems across a spectrum of important applications. The curriculum is inherently interdisciplinary in that it brings together engineering and biology as fundamentally as possible and cuts across the boundaries of the traditional engineering disciplines.

The faculty members associated with this track possess a wide range of research interests within bioengineering. Areas in which students may specialize include systems and synthetic biology, biological and physiological transport phenomena; biological imaging and functional measurement; biomolecular engineering; cell and tissue engineering; computational modeling of biological and physiological systems; bioinformatics; design, discovery and delivery of molecular therapeutics; molecular, cell, and tissue biomechanics; and new tools for genomics, proteomics, and glycomics.

Applied Biosciences Track

Students admitted to the applied biosciences track typically have a bachelor’s or master’s degree in chemistry, biology, physics, or a related field. During the first year, students pursue a unified core curriculum, in which basic science approaches are applied to problems in the health and disease aspects of biomedical science. The three core subjects are:

- 20.420J Biomolecular Kinetics and Cellular Dynamics
- 20.440 Analysis of Biological Networks
- 20.450 Molecular and Cellular Pathobiology

These subjects bring central scientific principles to bear on the operation of biological systems from molecular to cell to tissue to organismal levels. Foundational coursework in physics, calculus, organic chemistry, biochemistry, physical chemistry/biophysics/engineering, and cell biology/molecular biology/genetics is required, either before admission or during the first year of graduate study.

To enhance depth and breadth, the core subjects are supplemented by elective subjects. Doctoral candidates are expected to take elective subjects in biological science. The student will be expected to have biochemistry and cell biology as prerequisites and then select two graduate-level subjects in biological science. If cell biology has not been taken previously, it must be selected as one of these two graduate-level subjects. If biochemistry has not been taken previously, it must be taken as a remedial undergraduate subject before selecting the two graduate-level subjects. In addition, one graduate-level subject from a restricted set of Biological Engineering offerings beyond the core classes, and one additional engineering or science graduate-level subject, are required as electives.

The applied biosciences track complements the bioengineering track by focusing on understanding the interactions of organisms with chemical, biological, and physical agents from the molecular to the systems level. The goal here is to apply systems approaches to studying the chemical and molecular pathways by which exogenous and endogenous agents induce toxicity and cause disease in humans; to establishing the molecular mechanisms of drug actions, with the longer-term aim of developing improved therapeutics; to establishing mechanisms of microbial pathogenesis; and to understanding and manipulating immune function.

Systems biology is an emerging field that involves quantitative study of biological processes as integrated systems rather than as isolated parts. This goal of defining the behavior of the myriad of individual molecules requires...
quantitative models to unify the individual disciplines of physical chemistry, biochemistry, molecular biology, and cell physiology, as well as new tools for the simultaneous measurement of biological components, including small molecules, proteins, nucleic acids and complex carbohydrates.

The applied biosciences track provides rigorous training in the basic sciences, with application of chemistry, mathematics, biochemistry, molecular biology, cell biology, genetics, toxicology, and pharmacology to problems in human health and disease. Students receive preparation for careers in academic institutions, government agencies, and industry involving the application of modern methods of chemical, molecular, biological, and genetic analysis to the characterization of health risks.

Areas of research specialization within the program include systems and synthetic biology, development of in vitro models of the immune system and lymphoid tissue; development of molecular methods for direct measurement of mutations in humans; metabolism of foreign compounds; genetic toxicology; the molecular aspects and dosimetry of interactions between mutagens and carcinogens with nucleic acids and proteins; molecular mechanisms of DNA damage and repair; design and mechanisms of action of chemotherapeutic agents; environmental carcinogenesis and epidemiology; molecular mechanisms of carcinogenesis; cell physiology; extracellular regulation and signal transduction; and molecular and pathologic interactions between infectious microbial agents and carcinogens. Interdisciplinary in nature, the program and other programs and departments share an interest in human pathophysiology, molecular pharmacology, and environmental health.

Master of Engineering in Biomedical Engineering

The Master of Engineering in Biomedical Engineering (MEBE) program is a five-year program leading to a bachelor’s degree in a science or engineering discipline along with a Master of Engineering in Biomedical Engineering. The program emphasizes the fusion of engineering with modern molecular-to-genomic biology, as in our SB and PhD degree programs. Admission to the MEBE program is open only to MIT undergraduate students, and requires candidates to demonstrate adequate quantitative and engineering credentials through their undergraduate coursework.

In addition to satisfying the requirements of their departmental program, candidates also are expected to complete subjects in differential equations (18.03); one engineering transport or systems subject (e.g., 2.005, 3.185, 6.002, 10.310); organic chemistry (5.12); biochemistry (7.05 or 5.07); and two of the core subjects from the Biomedical Engineering Minor.

Applications to the MEBE program are accepted from students in any of the departments in the School of Engineering or School of Science. Students interested in applying to the MEBE program should submit a standard MIT graduate application by the end of their junior year and are informed of the decision by the end of that summer.

Additional information on application procedures, objectives, and program requirements can be obtained by contacting Professor Jongyoon Han, jyhan@mit.edu; Professor Darrell Irvine, djirvine@mit.edu; or the BE Academic Office, Room 56-651, 617-253-1712.

Program Requirements

In addition to thesis credits, at least 66 units of coursework are required. At least 42 of these subject units must be from H-level graduate subjects. The remaining units may be satisfied with G-level subjects, or in some cases, with advanced undergraduate subjects. Of the 66 units, a minimum distribution in each of three categories is specified below.

Bioengineering Core

24 units selected from:
20.410 Molecular, Cellular, and Tissue Biomechanics
20.420 Biomolecular Kinetics and Cellular Dynamics
20.430 Fields, Forces, and Flows in Biological Systems

Biomedical Engineering Electives

Twenty-four units from A selection of G- or H-level subjects from various departments in the School of Engineering and HST. A list of suggested subjects is available from the BE Academic Office, Room 56-651.

Bioscience Elective

One biological science subject in addition to organic chemistry and biochemistry. This must be a laboratory subject if one was not taken as part of the student’s undergraduate curriculum.

Thesis

The student is required to complete a thesis that must be approved by the program director. The thesis is an original work of research, design, or development. If the supervisor is not a member of the Department of Biological Engineering, a reader who belongs to the BE faculty must also approve and sign the thesis. The student submits a thesis proposal by the end of the fourth year.

Inquiries

For further information on the graduate programs, please visit the Biological Engineering website at http://web.mit.edu/be/ or contact the BE Academic Office, Room 56-651, 617-253-1712.

Leaders for Global Operations Program

The 24-month Leaders for Global Operations (LGO) program combines graduate education in engineering and management for those with two or more years of full-time work experience who aspire to leadership positions in manufacturing or operations companies. A required 6.5-month internship provides opportunity to complete a research project on site at one of LGO’s partner companies. The internship leads to a dual-degree thesis, culminating in two master’s degrees—an SM in management or an MBA, and an SM from a participating engineering department. The program is offered jointly through the MIT Sloan School of Management and the School of Engineering. For more information, see the program description under Engineering Systems Division or visit http://lgo.mit.edu/.
FACULTY AND STAFF

Faculty and Teaching Staff
Douglas A. Lauffenburger, PhD
Ford Professor of Biological Engineering, Biology, and Chemical Engineering
Associate Member, Broad Institute
Department Head
Bruce Tidor, PhD
Professor of Biological Engineering and Electrical Engineering and Computer Science
Associate Department Head

Professors
Angela M. Belcher, PhD
Germeshausen Professor of Materials Science and Engineering and Biological Engineering
Arup Chakraborty, PhD
Haslam Professor of Chemical Engineering, Chemistry, and Biological Engineering
Peter C. Dedon, PhD, MD
Underwood-Prescott Professor of Toxicology and Biological Engineering
Deputy Director, Center for Environmental Health Sciences
Edward F. DeLong, PhD
Professor of Environmental and Biological Engineering
Associate Member, Broad Institute
C. Forbes Dewey, Jr., PhD
Professor of Mechanical Engineering and Biological Engineering
John Martin Essigmann, PhD
Professor of Chemistry, Toxicology, and Biological Engineering
James G. Fox, DVM
Professor of Biological Engineering
Director, Division of Comparative Medicine
Linda Griffith, PhD
SEI Professor of Biological and Mechanical Engineering
Director, Biotechnology Process Engineering Center
Alan J. Grodzinsky, PhD
Professor of Electrical, Mechanical, and Biological Engineering
Director, Center for Biomedical Engineering
Roger D. Kamm, PhD
Germeshausen Professor of Biological and Mechanical Engineering
Alexander M. Klibanov, PhD
Novartis Professor of Chemistry and Biological Engineering
Robert S. Langer, ScD
Professor of Chemical and Biomedical Engineering
Institute Professor
Harvey F. Lodish, PhD
Professor of Biology and Biological Engineering
Associate Member, Broad Institute
Member, Whitehead Institute for Biomedical Research
Leona D. Samson, PhD
American Cancer Society Professor
Professor of Toxicology and Biological Engineering
Associate Member, Broad Institute
Director, Center for Environmental Health Sciences
Ram Sasiszekharan, PhD
Taplin Professor of Biological Engineering and Health Sciences and Technology
Director, Harvard-MIT Division of Health Sciences and Technology
Peter T. So, PhD
Professor of Mechanical and Biological Engineering
Steven R. Tannenbaum, PhD
Underwood-Prescott Professor of Toxicology and Chemistry
William G. Thilly, ScD
Professor of Toxicology
K. Dane Wittrup, PhD
Mares Professor of Chemical Engineering and Biological Engineering
Michael B. Yaffe, PhD
Professor of Biology and Biological Engineering
Jacquelyn C. Yanch, PhD
Professor of Nuclear Science and Engineering and Biological Engineering
Ioannis V. Yannas, PhD
Professor of Mechanical and Biological Engineering

Associate Professors
Christopher B. Burge, PhD
Whitehead Associate Professor of Biology and Biological Engineering
Associate Member, Broad Institute
Bevin P. Engelward, DSc
Associate Professor of Biological Engineering
Jongyoon Han, PhD
van Tassel Associate Professor of Electrical and Biological Engineering
Darrell J. Irvine, PhD
Associate Professor of Biological Engineering and Materials Science
Howard Hughes Medical Institute Investigator
Alan P. Jasanoff, PhD
Associate Professor of Nuclear Science and Engineering, Biological Engineering, and Brain and Cognitive Sciences
Scott R. Manalis, PhD
Associate Professor of Biological and Mechanical Engineering, and Media Arts and Sciences
Associate Member, Broad Institute
Krystyn Van Vliet, PhD
Associate Professor of Materials Science and Engineering and Biological Engineering
Ron Weiss, PhD
Associate Professor of Biological Engineering
Forest White, PhD
Associate Professor of Biological Engineering

Assistant Professors
Eric Alm, PhD
Assistant Professor of Biological and Environmental Engineering
Associate Member, Broad Institute
Mark Bathe, PhD
Assistant Professor of Biological Engineering
Edward Boyden, PhD
Assistant Professor of Media Arts and Sciences and Biological Engineering
Ernest Fraenkel, PhD
Assistant Professor of Biological Engineering
Kimberly Hamad-Schifferli, PhD
Edgerton Assistant Professor of Mechanical and Biological Engineering
Jacquin C. Niles, PhD, MD
Assistant Professor of Biological Engineering
Katharina Ribbeck, PhD
Assistant Professor of Biological Engineering

Visiting Professors
Peter K. Sorger, PhD
Visiting Professor of Biological Engineering
Matthew Meselson, PhD
Visiting Professor of Biological Engineering

Lecturers and Instructors
Noubar Afeyan, PhD
V. A. Shiva Ayyadurai, PhD
Laura C. Green, PhD
Natalie Kuldell, PhD
Jan Lammerding, PhD
Steven Nagle, PhD
Agi Stachowiak, PhD
Nathan Tedford, PhD
Steve Wasserman, SM
Alexander Wood, PhD

Research Staff

Senior Research Scientist
John S. Wishnok, PhD

Principal Research Scientist
Paul L. Skipper, PhD

Principal Research Engineer
Randall Rettberg, MS

Research Scientists
Robert G. Croy, PhD
Michael DeMott, PhD
Elena Gostjova, PhD
Ramesh Indrakanti, PhD
Vera Kaledova, PhD
Rosa Liberman, PhD
Nathan Tedford, PhD

Postdoctoral Associates
Neda Bagheri, PhD
Salmaan Baxamusa, PhD
Michael Beste, PhD
Viral Brahmbhatt, PhD
Marina Caldara, PhD
Wan Chan, PhD
Ming Wei Chao, PhD
Rajdeep Chowdhury, PhD
David Clarke, PhD
Liang Cui, PhD
Ajit Dash, PhD
Amanda Del Rosario, PhD
Bogdan Fedeles, PhD
Jeanette Fiala, PhD
Luiz Godoy, PhD
Jun He, PhD
Hannah Johnson, PhD
Pilsoo Kang, PhD
Do-Nyun Kim, PhD
Orsolya Kiraly, PhD
Daniel Kirouac, PhD
Scott Knudsen, PhD
Sarah Kolitz, PhD
Elma Kurtagic, PhD
Jungchul Lee, PhD
Taekwan Lee, PhD
Victor Lelyveld, PhD
Deyu Li, PhD
Oliver Lieleg, PhD
Kok Seong Lim, PhD
Pallavi Lonkar, PhD
Geeta Mehta, PhD
Shmuel Motola, PhD
Laura Riva, PhD
Ujjal Sarkar, PhD
Daniel Sears, PhD
Yang Shen, PhD
Lianrong Wang, PhD
Yu Wang, PhD
Courtney Williams, PhD
Wenjie Ye, PhD
Yu Zeng, PhD

Postdoctoral Fellows
Shannon Alford, PhD
Samuel Inman, PhD
Tatjana Degenhardt, PhD
Philipp Diesinger, PhD
Nicole Iverson, PhD
Charles Knutson, PhD
Fengping Li, PhD
Aprotim Mazumder, PhD
Jason Neil, PhD
Werner Olipitz, PhD
Shelly Peyton, PhD
Erin Prestwich, PhD
Vipender Singh, PhD
Leslie Woo, PhD

Visiting Scientists
Luis Alvarez, PhD
Nicole Doyle, PhD
Steven Jay, PhD
Matthew Lim, PhD
Elba Serrano, PhD

Professor Emeritus
Gerald N. Wogan, PhD
Professor of Chemistry and Biological Engineering, Emeritus
Chemical engineering encompasses the translation of molecular information into discovery of new products and processes. It involves molecular transformations—chemical, physical, and biological—with multi-scale description from the submolecular to the macroscopic, and the analysis and synthesis of such systems. The chemical engineer is well prepared for a rewarding career in a strikingly diverse array of industries and professional arenas. Whether these industries are at the cutting edge—e.g., nanotechnology or biotechnology—or traditional, they depend on chemical engineers to make their products and processes a reality. The effectiveness of chemical engineers in such a broad range of areas begins with foundational knowledge in chemistry, biology, physics, and mathematics. From this foundation, chemical engineers develop core expertise in engineering thermodynamics, transport processes, and chemical kinetics, creating a powerful and widely applicable combination of molecular knowledge and engineering problem solving. To cope with complex, real-world problems, chemical engineers develop strong synthetic and analytic skills. Through creative application of these chemical engineering principles, chemical engineers create innovative solutions to important industrial and societal problems in areas such as development of clean energy sources, advancement of life sciences, production of pharmaceuticals, sustainable systems and responsible environmental stewardship, and discovery and production of new materials.

The Department of Chemical Engineering at MIT offers three undergraduate programs. Course 10 leads to the Bachelor of Science in Chemical Engineering through a curriculum accredited by the Accreditation Board for Engineering and Technology (ABET). Course 10-B leads to the Bachelor of Science in Chemical-Biological Engineering, which includes the basic engineering core from the Course 10 degree and adds material in basic and applied biology. This degree is also accredited by ABET. Course 10-C leads to the Bachelor of Science without specification; this is not accredited and requires fewer chemical engineering subjects. Many undergraduates take advantage of graduate-level subjects in their upperclass years. Undergraduate students are also encouraged to participate in research through the MIT UROP program.

The department offers a broad selection of graduate subjects and research topics leading to advanced degrees in chemical engineering. Multidisciplinary approaches are highly valued, leading to strong ties with other MIT departments. In addition, the department maintains alliances, arrangements, and connections with institutions and industries worldwide. Areas for specialization include, but are not limited to: biochemical engineering, biomedical engineering, biotechnology, chemical catalysis, chemical process development, environmental engineering, fuels and energy, polymer chemistry, surface and colloid chemistry, systems engineering, and transport processes. Additional information may be found under Graduate Study below and on the department’s website.

The School of Chemical Engineering Practice (described below), leading to five-year bachelor’s and master’s degrees, involves one term of work under the direction of an Institute staff member resident at Practice School sites. This program provides students with a unique opportunity to apply basic professional principles to the solution of practical industrial problems.

UNDERGRADUATE STUDY

The undergraduate curriculum in chemical engineering provides basic studies in physics, biology, and mathematics, advanced subjects in chemistry or biology, and a strong core of chemical engineering. The four-year undergraduate programs provide students with the fundamentals of the discipline and allow some room for focus in subdisciplines or subjects that strengthen their preparation for advanced work.

In addition to science and engineering, students take an integrated sequence of subjects in the humanities and social sciences. Specific course selection allows students to meet individual areas of interest. The curriculum provides a sound preparation for jobs in industry or government, and for graduate work in chemical engineering.

Chemical engineering also provides excellent preparation for careers in medicine and related fields of health science and technology. The department’s strong emphasis on chemistry and biology provides excellent preparation for medical school. Students interested in medical school work with their faculty and premedical advisor to create the best program. A minor in biomedical engineering is also available.

Bachelor of Science in Chemical Engineering/Course 10

This degree is intended for the student who seeks a broad education in the application of chemical engineering to a variety of specific areas, including energy and the environment, nanotechnology, polymers and colloids, surface science, catalysis and reaction engineering, systems and process design, and biotechnology. The degree requirements include the core chemical engineering subjects with a chemistry emphasis, and the opportunity to add subjects in any of these application areas.

Bachelor of Science in Chemical-Biological Engineering/Course 10-B

This degree is intended for the student who is specifically interested in the application of chemical engineering in the areas of biochemical and biomedical technologies. The degree requirements include core chemical engineering subjects and additional subjects in biological sciences and applied biology. This degree is excellent preparation for students also considering the biomedical engineering minor or medical school.

Students who decide early to major in either Course 10 or Course 10-B are encouraged to take subjects such as 5.111/5.112 Principles of Chemical Science, 5.12 Organic Chemistry I, and 10.10 Introduction to Chemical Engineering in their freshman year. Then 5.60, 18.03, 7.012/7.013/7.014, 10.213, and 10.301 may be taken in the sophomore year. The student is then well positioned for more in-depth and specialized subjects in the third and fourth years.

Some students may wish to defer choice of a major field or exercise maximum freedom during the first two years. If the Restricted Electives in Science and Technology (REST) Requirement subjects chosen in the second year include 18.03 and two subjects in the fields of fluid mechanics, thermodynamics, chemistry, biology, or chemical engineering, students can generally complete the requirements for a degree in chemical engineering in two more years. Students are advised to discuss their proposed program with a Course 10 faculty advisor as soon as they become interested in a degree in chemi-
Bachelor of Science/Course 10-C

The curriculum for students in Course 10-C involves basic subjects in chemistry and chemical engineering. Instead of continuing in depth in these areas, students can add breadth by study in another field, such as another engineering discipline, biology, biomedical engineering, economics, or management. Course 10-C is attractive to students who wish to specialize in an area such as those cited above while simultaneously gaining a broad exposure to the chemical engineering approach to solving problems.

Departmental requirements for Course 10-C are:

- 5.60, 10.10, 10.213, 10.301, 10.302, and 18.03
- plus one subject from the following:
 - 3.014, 3.155J/6.152J, 5.36, 7.02/10.702, 10.26, 10.28 or 10.28L, 10.29, or 10.467;
- and an additional subject from the above list or the following:
 - 6.021J, 6.033, 6.111, 6.805, 14.05, 15.279, or 15.301

All of the above restricted elective subjects satisfy the Institute CI-M requirement. Students must also complete 180 units beyond the GIRs; subjects chosen to complete these units must form a coherent program, and any subject chosen from the last list must be part of this coherent program.

Students planning to follow this curriculum should discuss their interests with their faculty advisor in the department at the time they decide to enter the Course 10-C program, and submit to Dr. Barry S. Johnston in the department’s Undergraduate Office a statement of goals and a coherent program of subjects no later than the spring term of junior year. Please direct questions about this program to Dr. Johnston.

Bachelor of Science in Chemical Engineering/Course 10

General Institute Requirements (GIRs)

Science Requirement

- 5.12 Organic Chemistry I, 12, REST; Chemistry (GIR)
- 5.07 Biological Chemistry I, 12, REST; 5.12 or 7.05 General Biochemistry, 12, REST; 5.12*
- 5.310 Laboratory Chemistry, 12, LAB; 5.12
- 5.60 Thermodynamics and Kinetics, 12, REST; Calculus II (GIR), Chemistry (GIR)
- 10.10 Introduction to Chemical Engineering, 12; Physics I (GIR), Calculus I (GIR), Chemistry (GIR)
- 10.213 Chemical and Biological Engineering Thermodynamics, 12; 5.60, 10.10

Restricted Electives

One of the following three subjects:

- 10.26 Chemical Engineering Projects Laboratory, 15, CI-M; 10.213; 10.302; 10.702*
- 10.28 Chemical-Biological Engineering Laboratory, 15, CI-M; 7.05; 10.702*; or permission of instructor
- 10.29 Biological Engineering Projects Laboratory, 15, CI-M; 10.213; 10.302; 10.702*

Plus Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)

Units

Required Subjects

- 162
- 5.12 Organic Chemistry I, 12, REST; Chemistry (GIR)
- 5.07 Biological Chemistry I, 12, REST; 5.12 or 7.05 General Biochemistry, 12, REST; 5.12*
- 5.310 Laboratory Chemistry, 12, LAB; 5.12
- 5.60 Thermodynamics and Kinetics, 12, REST; Calculus II (GIR), Chemistry (GIR)
- 10.10 Introduction to Chemical Engineering, 12; Physics I (GIR), Calculus I (GIR), Chemistry (GIR)
- 10.213 Chemical and Biological Engineering Thermodynamics, 12; 5.60, 10.10

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

Total GIR Subjects required for SB Degree

- 17

Unrestricted Electives

- 48
Five-Year Programs and Joint Programs

In addition to offering separate programs leading to the Bachelor of Science and Master of Science in Chemical Engineering, the department offers a program leading to the simultaneous award of both degrees at the end of five years. A detailed description of this program is available from the Graduate Student Office. Students in the five-year program normally enroll in the School of Chemical Engineering Practice.

For chemical engineering students interested in nuclear applications, the Department of Chemical Engineering and the Department of Nuclear Engineering offer a five-year program leading to the joint Bachelor of Science in Chemical Engineering and Master of Science in Nuclear Engineering. Such programs are approved on an individual basis between the registration officers of the two departments.

Inquiries

Additional information concerning undergraduate academic and research programs may be obtained by writing to Dr. Barry S. Johnston, undergraduate officer, Department of Chemical Engineering, Room 66-368, 617-258-7141, fax 617-258-0546. For information regarding admissions and financial aid, contact the Admissions Office, Room 3-108, 617-253-4791.

GRADUATE STUDY

Graduate study provides both rigorous training in the fundamental core discipline of chemical engineering and the opportunity to focus on specific subdisciplines. In addition to completing the four core subject requirements in thermodynamics, reaction engineering, numerical methods, and transport phenomena, students select a research advisor and area for specialization, some of which are discussed below.

Thermodynamics and Molecular Computation. Thermodynamics is a cornerstone of chemical engineering. Processes as diverse as chemical production, bioreaction, creation of advanced materials, protein separation, and environmental treatment are governed by thermodynamics. The classical concepts of equilibrium, reversibility, energy, and entropy are basic to the analysis and design of these processes. The extension of classical thermodynamics to molecular scales by use of statistical mechanics has made molecular simulation an increasingly valuable tool for the chemical engineer. Prediction of macroscopic behavior from molecular computations is becoming ever more feasible. This venerable field continues to yield fruitful areas of inquiry.

Opportunities in the department for graduate study in this field include predicting properties of materials and polymers from molecular structure, applying quantum mechanics to catalyst design, supercritical fluid processing, the behavior of complex fluids with environmental and biomedical applications, phase equilibrium with simple and complex molecular species, immunology, protein stabilization, nucleation and crystallization of polymer and pharmaceuticals, and many other areas of classical and statistical thermodynamics.

Transport Processes. A fluid deforming and flowing as forces are imposed on it, its temperature varying as heat is transferred through it, the interdiffusion of its distinct molecular species—these are examples of the processes of transport. These transport processes govern the rates at which velocity, temperature, and composition vary in a fluid; chemical engineers study transport to be able to describe, predict, and manage these changes. Research includes experimental testing and analytical and computational modeling; its applications range among an enormous variety of mechanical, chemical, and biological processes.

Current work includes the study of polymer molecular theory and polymer processing, transport and separations in magnetorheological fluids, membrane separations, diffusion in complex fluids, defect formation and evolution in near-crystalline materials, microfluidics, fluid instability, transport in living tissue, numerical solution of field equations, and many other areas of transport phenomena.

Catalysis and Chemical Reaction Engineering. A simple chemical reaction—the rearrangement of electrons and bonding partners—occurs between two small molecules. From understanding the kinetics of the reaction, and the equilibrium extent to which it can proceed, come applications: the network of reactions during combustion, the chain reactions that form polymers, the multiple steps in the synthesis of a complex pharmaceutical molecule, the specialized reactions of proteins and metabolism. Chemical kinetics is the chemical engineer’s tool for understanding chemical change.

A catalyst influences the reaction rate. Catalysts are sought for increasing production, improving the reaction conditions, and emphasizing a desired product among several possibilities. The challenge is to design the catalyst, to increase its effectiveness and stability, and to create methods to manufacture it.

A chemical reactor should produce a desired product reliably, safely, and economically. In designing a reactor, the chemical engineer must consider how the chemical kinetics, often modified by catalysis, interacts with the transport phenomena in flowing materials. New microreactor designs are expanding the concept of what a reactor may do, how reactions may be conducted, and what is required to scale a process from laboratory to production.

Research is being conducted in the department at the forefront of catalyst design, complex chemical synthesis, bioreactor design, surface- and gas-phase chemistry, miniaturization of reactors, mathematical modeling of chemical reaction networks, and many other areas of
Bachelor of Science in Chemical-Biological Engineering/Course 10-B

General Institute Requirements (GIRs)
Subjects	Units
Science Requirement | 6
Humanities, Arts, and Social Sciences Requirement | 8
Restricted Electives in Science and Technology (REST) Requirement [can be satisfied from among 5.07, 5.12, 5.60, 7.03, 7.05, 10.301, and 18.03 or 18.034 in the Departmental Program] | 2
Laboratory Requirement [can be satisfied by 7.02 or 10.702] | 1
Total GIR Subjects Required for SB Degree | 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Units
Required Subjects	186
5.12 Organic Chemistry I, 12; REST; Chemistry (GIR)
5.60 Thermodynamics and Kinetics, 12; REST; Calculus II (GIR), Chemistry (GIR)
10.702 Introduction to Experimental Biology and Communication, 18, CI-M, LAB; Biology (GIR)
7.03 Genetics, 12; REST; Biology (GIR)
7.05 General Biochemistry, 12; REST; 5.12*
or
5.07 Biological Chemistry I, 12; REST; 5.12
7.06 Cell Biology, 12; 7.03; 7.05
10.10 Introduction to Chemical Engineering, 12; Physics I (GIR), Calculus I (GIR), Chemistry (GIR)
10.213 Chemical and Biological Engineering Thermodynamics, 12; 5.60, 10.10
10.28 Chemical-Biological Engineering Laboratory, 15, CI-M; 7.05; 10.702*; or permission of instructor
or
10.29 Biological Engineering Projects Laboratory, 15, CI-M; 10.213; 10.302; 10.702*
10.301 Fluid Mechanics, 12, REST; 18.03; 10.10
10.302 Transport Processes, 12; 5.60, 10.301, 10.213; or permission of Instructor
plus
10.37 Chemical Kinetics and Reactor Design, 9; 5.60, 10.301
10.490 Integrated Chemical Engineering I, 8; 10.37
10.491 Integrated Chemical Engineering II, 8; 10.490
plus two of the following three subjects:
10.492 Integrated Chemical Engineering III, 4; 10.490*
10.493 Integrated Chemical Engineering IV, 4; 10.490*
10.494 Integrated Chemical Engineering V, 4; 10.490*
18.03 Differential Equations, 12, REST; Calculus II (GIR)
or
18.034 Differential Equations, 12, REST; Calculus II (GIR)

Departmental Program units that also satisfy the GIRs | (36)
Unrestricted Electives | 48

Total Units Beyond the GIRs Required for SB Degree | 198
No subject can be counted both as part of the 17-subject GIRs and as part of the 198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
*Alternate prerequisites are listed in the subject description.
For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
fundamental and applied. In the department, materials research includes studies in plasma etching, thin-film chemical vapor deposition, crystal growth, nano-crystalline structure, molecular simulation, scaffolds for bone and soft tissue regeneration, biocompatible polymers, and many other areas of materials engineering.

Surfaces and Nanostructures. In many arrangements of matter, the interfaces between phases—more than their bulk compositions—are critical to the material structure and behavior. The surfaces of solids offer a platform for functional coating; coatings may be deposited from vapor, applied as a volatile liquid, or assembled from solution onto the solid, in a pattern determined by the molecular properties. This self-assembly tendency may be exploited to arrange desired patterns that have operational properties. Interfacial effects are also responsible for stable dispersions of immiscible phases, leading to fluids with complex microstructure. Other structured fluids arise from large molecules whose orientation in the solvent is constrained by molecular size and properties. In solids, tight control of pore size, grain size, chemical composition, and crystal structure offer a striking range of catalytic, mechanical, and electromagnetic properties. The understanding of gas-solid kinetics is crucial to the study of heterogeneous catalysis and integrated circuit fabrication. Structure is the basis for function, and by manipulating tiny length scales, the resulting nanostructure makes available new capabilities, and thus new technologies and products. Graduate study in surfaces and nanostructures may include studies of colloids, emulsions, surfactants, and other structured fluids with biological, medical, or environmental applications. It also encompasses thin films, liquid crystals, sol-gel processing, control of pharmaceutical morphology, nanostructured materials, carbon nanotubes, surface chemistry, surface patterning, and many other areas of nanotechnology and surface science.

Biological Engineering. Chemical engineering thermodynamics, transport, and chemical kinetics, so useful for manufacturing processes, are fruitful tools for exploring biological systems as well. Biological engineering research may be directed at molecular-level processes, the cell, tissues, the organism, and large-scale manufacturing in biotech processes. It may be applied to producing specialized proteins, genetic modification of cells, transport of nutrients and wastes in tissue, therapeutic methods of drug delivery, tissue repair and generation, purification of product molecules, and control strategies for complex bioproduction plants. Its methods include analytical chemistry and biochemistry techniques, bioinformatic processing of data, and computational solution of chemical reaction and transport models. Biological engineering is an extraordinarily rich area for chemical engineers, and its consequences—theoretical, medical, commercial—will be far-reaching.

Opportunities in the department for graduate study in biological engineering include manipulation and purification of proteins and other biomolecules, research into metabolic processes, tissue regeneration, gene regulation, bioprocesses, bioinformatics, drug delivery, and biomaterials, to name a few. Both experimental and computational methods are used, including statistical mechanics and systems theory. Chemical engineering faculty are also involved in the Center for Biomedical Engineering, created to enhance interdisciplinary research and education at the intersection of engineering, molecular and cell biology, and medicine. The Novartis-MIT Center for Continuous Manufacturing, another center of research activity involving chemical engineers, promises to revolutionize the chemical processing of pharmaceuticals.

Energy and Environmental Engineering. Making energy available to society requires finding and producing a range of fuels, improving the efficiency of energy use under the ultimate limits imposed by thermodynamics, and reducing the effects of these processes on the environment. The widespread use of fossil fuels increases the amount of carbon dioxide in the atmosphere, leading to concerns about global warming. Other sustainability indicators also suggest that we now need to transform our energy system to a more efficient, lower-carbon future. This transformation provides many opportunities for chemical engineers to evaluate and explore other energy supply options such as renewable energy from solar, biomass, and geothermal resources, nonconventional fuels from heavy oils, tar sands, natural gas hydrates, and oil shales. Developing technologies for transporting and storing thermal and electrical energy over a range of scales are also of interest.

Further environmental distress can result from manufacturing processes and society’s use of the manufactured products. The traditional response of treating process wastes is still useful, but there is growing emphasis on designing new processes to produce less waste. This might be done by improving catalysts to decrease unwanted by-products, finding alternatives to volatile solvents, and developing more effective separation processes. Chemical engineers are at work in all these areas, as well as developing alternative energy sources and assessing the effects of pollutants on human health.

In the department, students will find expertise in combustion, chemical reaction networks, renewable energy and upgrading of nonconventional fuels, carbon dioxide capture and sequestration, water purification and catalytic treatment of pollutants, global air pollution modeling, design of novel energy conversion processes, energy supply chains, and many other areas of energy and environmental engineering. Faculty in the department are actively involved in the MIT Energy Initiative.

Systems Design and Simulation. From early in the development of chemical engineering, processes were represented as combinations of unit operations. This concept was useful in analyzing processes, as well as providing a library of building blocks for creating new processes. Process and product design are imaginative activities, an artful blend of intuition and analysis. Design is aided by mathematical tools that simulate the behavior of the process or product and seek optimum performance. Effective use of simulation and optimization tools allows unexpected pathways to be explored, dangerous operating regions to be identified, and transient and accident conditions to be tested. Process and product systems engineering brings it all together, placing the technical features of a process or product in the context of operations, economics, and business. The end result is improved economy, reliability, and safety. Methodologies for process and product modeling and simulation, computer-aided engineering, operations research, optimization theory and algorithms, process and product design strategy, treatment of uncertainty, multiscale systems engineering, and many other areas of systems engineering are being developed in the Department of Chemical Engineering. Such research
leads to new prototypes for process systems, design of new molecules with desired properties, and processes with better operability, control, safety, and environmental performance.

School of Chemical Engineering Practice

Since 1916, the David H. Koch School of Chemical Engineering Practice has been a major feature of the graduate education in the department. In this unique program, students receive intensive instruction to broaden their education not only in the technical aspects of the profession, but also in communication skills and human relations, which are frequently decisive factors in the success of an engineering enterprise. The Practice School program stresses problem solving in an engineering internship format, where students undertake projects at industrial sites under the direct supervision of resident MIT faculty. Credit is granted for participation in the Practice School in lieu of preparing a master’s thesis.

The operation of the Practice School is similar to that of a small consulting company. The resident staff work closely with the technical personnel of the host companies in identifying project assignments with significant educational merit, and with solutions that make important contributions to the operation of the company.

During Practice School, students work on three or four different projects. Groups and designated group leaders change from one project to another, giving every individual an opportunity to be a group leader at least once.

Students in the Practice School program are required to demonstrate proficiency, or take one graduate subject, in each of the following areas: thermodynamics, heat and mass transfer, applied process chemistry, kinetics and reactor design, systems engineering, and applied mathematics.

Master of Science in Chemical Engineering

Programs for the Master of Science in Chemical Engineering usually are arranged as a continuation of undergraduate professional training, but at a greater level of depth and maturity. The general requirements for a master’s program are given in the section on Graduate Education in Part 1. To complete the requirement of at least 66 subject units, of which 42 units must be in H-level subjects, together with an acceptable thesis, generally takes four terms.

Master of Science in Chemical Engineering Practice

The unit requirements for the Master of Science in Chemical Engineering Practice (Course 10-A) are the same as those for the Master of Science in Chemical Engineering, except that 48 units of Practice School experience replace the master’s thesis.

In some cases, Bachelor of Science graduates of this department can meet the requirements for the Master of Science in Chemical Engineering Practice (Course 10-A) in two terms. Beginning in September following graduation, students complete the required coursework at the Institute. The spring semester is spent at the Practice School field stations. Careful planning of the senior year schedule is important.

For students who have graduated in chemical engineering from other institutions, the usual program of study for the Master of Science in Chemical Engineering Practice involves two terms at the Institute followed by the field station work in the Practice School. Graduates in chemistry from other institutions normally require an additional term.

Master of Science in Technology and Policy

The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description under Engineering Systems Division or visit http://web.mit.edu/tpp/.

Leaders for Global Operations Program

The 24-month Leaders for Global Operations (LGO) program combines graduate education in engineering and management for those with two or more years of full-time work experience who aspire to leadership positions in manufacturing or operations companies. A required 6.5-month internship provides opportunity to complete a research project on site at one of LGO’s partner companies. The internship leads to a dual-degree thesis, culminating in two master’s degrees—an SM in management or an MBA, and an SM from a participating engineering department. The program is offered jointly through the MIT Sloan School of Management and the School of Engineering. For more information, see the program description under Engineering Systems Division or visit http://lgo.mit.edu/.

Doctor of Science or Doctor of Philosophy

Doctoral candidates are required to pass a written general examination early in their program of study. Given in January and May, the written examination is usually taken at the end of the first term in residence as a graduate student. There is also an oral general examination, which consists of the presentation of a thesis proposal to a faculty committee; this is normally done during the second year of residence. Completing a master’s degree is not a prerequisite for entering the doctoral program or obtaining a doctoral degree.

The requirements for the doctoral degree include a program of advanced study, a minor program, a biology requirement, and a thesis. The program of advanced study and research is normally carried out in one of the fields of chemical engineering under the supervision of one or more faculty members in the Department of Chemical Engineering. A thesis committee of selected faculty monitors the doctoral program of each candidate.

Doctor of Philosophy in Chemical Engineering Practice

This degree program provides educational experience that combines advanced work in manufacturing, independent research, and management. The program is built on the outstanding research programs within the department,
the unique resources of the David H. Koch School of Chemical Engineering Practice, and the world-class resources of the Sloan School of Management. Students are prepared for a rapid launch into positions of leadership in industry and provided with a foundation for completion of an MBA degree.

The program consists of three major parts: the first year is devoted to coursework and the Practice School, the two middle years are devoted to research, and the final year is completed in the Sloan School of Management. In addition, an integrative project combines the research and management portions of the program.

Students in the PhD in Chemical Engineering Practice (PhDCEP) program must pass the department’s written and oral examinations. The progress of their research is monitored by a faculty committee, and the final thesis document is defended in a public forum. The normal completion time should be four calendar years for the PhDCEP program.

Other Graduate Opportunities

The Program in Polymer Science and Technology is intended for students who seek a Doctor of Science or Doctor of Philosophy degree with a focus on macromolecular science and engineering. This program is described under Interdisciplinary Graduate Programs in Part 3.

Financial Support

The department has a wide variety of financial support options for graduate students, including teaching and research assistantships, fellowships, and loans. Information about financial assistance may be obtained by writing to the Graduate Student Office, but consideration for awards cannot be given before admissions decisions have been made.

Inquiries

For additional information concerning graduate programs, admissions, financial aid, and assistantships, contact the Graduate Student Office, Department of Chemical Engineering, Room 66-366, 617-253-4579, chemegrad@mit.edu.

Faculty and Staff

Faculty and Teaching Staff

Klavs Flemming Jensen, PhD
Warren K. Lewis Professor of Chemical Engineering
Department Head

Paula Therese Hammond, PhD
Bayer Professor of Chemical Engineering
Executive Officer

Professors

Robert C. Armstrong, PhD
Chevron Professor of Chemical Engineering
Professor of Chemical Engineering
Deputy Director, MIT Energy Initiative

Paul I. Barton, PhD
Lammot du Pont Professor of Chemical Engineering

Daniel Blankschtein, PhD
Professor of Chemical Engineering

Arun K. Chakraborty, PhD
Robert T. Haslam Professor of Chemical Engineering
Professor of Chemistry and Biological Engineering

Robert E. Cohen, PhD
Raymond A. and Helen E. St. Laurent Professor of Chemical Engineering

Clark K. Colton, PhD
Professor of Chemical Engineering

Charles L. Cooney, PhD
Robert T. Haslam Professor of Chemical and Biochemical Engineering
Faculty Director, Deshpande Center for Technological Innovation

William M. Deen, PhD
Carbon P. Dubbs Professor of Chemical Engineering
Graduate Officer

Karen K. Gleason, PhD
Alexander and I. Michael Kasser Professor of Chemical Engineering
Associate Dean for Research, School of Engineering

William H. Green, PhD
Hoyt C. Hottel Professor of Chemical Engineering

T. Alan Hatton, PhD
Ralph Landau Professor of Chemical Engineering Practice
Director, David H. Koch School of Chemical Engineering Practice

Robert Samuel Langer, ScD
David H. Koch Institute Professor

Douglas A. Lauffenburger, PhD
Whitaker Professor of Biological Engineering, Chemical Engineering, and Biology
Associate Member, Broad Institute
Head, Biological Engineering Department

Gregory C. Rutledge, PhD
Lammot du Pont Professor of Chemical Engineering

George Stephanopoulos, PhD
Arthur Dehon Little Professor of Chemical Engineering

Gregory Stephanopoulos, PhD
Herbert H. Dow Professor of Chemical Engineering

Bernhardt L. Trout, PhD
Professor of Chemical Engineering
Director, Concourse
Director, Novartis-MIT Center for Continuous Manufacturing
Cochair, Singapore-MIT Alliance, Chemical and Pharmaceutical Engineering

Daniel I. C. Wang, PhD
Institute Professor

Karl D. Wittrup, PhD
Carbon T. Dubbs Professor of Chemical Engineering and Biological Engineering

Associate Professors

Martin Z. Bazant, PhD
Associate Professor of Chemical Engineering and Mathematics

Patrick S. Doyle, PhD
Associate Professor of Chemical Engineering

Michael S. Strano, PhD
Charles and Hilda Roddey Associate Professor of Chemical Engineering

Preetinder S. Virk, ScD
Associate Professor of Chemical Engineering
Assistant Professors
Jesse H. Kroll, PhD
Assistant Professor of Civil and Environmental Engineering and Chemical Engineering
J. Chris Love, PhD
Texaco-Mangelsdorf Assistant Professor of Chemical Engineering
Associate Member, Broad Institute
Narendra Maheshri, PhD
Assistant Professor of Chemical Engineering
Bradley D. Olsen, PhD
Raymond A. and Helen St. Laurent Assistant Professor of Chemical Engineering
Kristala J. Prather, PhD
Assistant Professor of Chemical Engineering
Yuriy Roman-Leshkov, PhD
Assistant Professor of Chemical Engineering
Hadley D. Sikes, PhD
Joseph R. Mares Assistant Professor of Chemical Engineering

Adjunct Professor
Jackie Y. R. Ying, PhD
Adjunct Professor of Chemical Engineering

Senior Lecturers
Robert Fisher, PhD
Barry S. Johnston, PhD
Undergraduate Officer
Claude Lupis, PhD

Lecturers
Bonnie D. Burrell, BA
William H. Dalzell, PhD

Research Staff

Research Engineers
Jean-François P. Hamel
Peter Kracke

Research Scientists
Luis Perez-Breva
Lev E. Bromberg
Mao Wang

Technical Assistants
Marta Byrska-Bishop
Adrian A. Fay
Daniel Y. Kim
Randolph H. Li
Kevin T. Love
Joanna Read

Visiting Scientists
Leon M. Bellan
Melik C. Demirel
Akihiko Kusanagi
Russell P. Lachance
Yushi Suzuki
Yujun Wang
Lingling Zhao

Professors Emeriti
Raymond F. Baddour, ScD
Professor of Chemical Engineering, Emeritus
János M. Beér, ScD
Professor of Chemical and Fuel Engineering, Emeritus
Howard Brenner, EngScD
Willard Henry Dow Professor of Chemical Engineering, Emeritus
Robert A. Brown, PhD
Warren K. Lewis Professor of Chemical Engineering, Emeritus
Marcus Karel, PhD
Professor of Chemical and Food Engineering, Emeritus
Gregory J. McRae, PhD
Hoyt C. Hottel Professor of Chemical Engineering, Emeritus
Edward W. Merrill, ScD
Professor of Chemical Engineering, Emeritus
Adel F. Sarofim, ScD
Professor of Chemical Engineering, Emeritus
Charles N. Satterfield, PhD
Professor of Chemical Engineering, Emeritus
Herbert H. Sawin, PhD
Professor of Chemical and Electrical Engineering, Emeritus
Kenneth A. Smith, ScD
Edwin R. Gilliland Professor of Chemical Engineering, Emeritus
Jefferson W. Tester, PhD
Herman P. Meissner Professor of Chemical Engineering, Emeritus
James Wei, ScD
Professor of Chemical Engineering, Emeritus
The Department of Civil and Environmental Engineering focuses on interactions between human activities and the natural environment. Its mission is to use science, engineering, and policy to improve quality of life. This includes intelligent use of natural resources such as the raw materials, energy, and ecosystems needed to sustain modern society. It also includes the design of functional and environmentally compatible facilities and infrastructure. Within this broad context, the Department of Civil and Environmental Engineering is especially concerned with:

- Understanding of natural cycles, systems, and processes relevant to human activities
- Use of natural analogs to help design new materials, industrial processes, and infrastructure
- Development of new building and transportation technologies
- Advances in information infrastructure and logistics
- Creation of attractive and sustainable physical environments

An education in civil and environmental engineering provides an excellent foundation for careers in fields as diverse as engineering design, education, law, medicine, and public health, as well as for graduate study in engineering and science. Our graduates teach and carry out research in universities, work for large firms, start their own businesses, and take positions in government and nonprofit organizations. As pressures on limited natural resources grow, there will be increasing demand for engineers who understand how to make best use of these resources in the products and services they design. The department's undergraduate program recognizes this need by providing background in science and engineering fundamentals while also emphasizing hands-on design projects and case studies that provide context and motivation. Students are taught how to combine theory, measurement, and modeling to develop a good understanding of the problem at hand and to point the way to desirable solutions.

The department offers two designated undergraduate degrees accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET). The Bachelor of Science in Civil Engineering provides a solid foundation for practice in both classical and newly developing areas of civil engineering, including structural analysis and design, engineering materials, geotechnical analysis and design, sustainable built environments, and transportation and logistics. The Bachelor of Science in Environmental Engineering Science emphasizes the fundamental physical, chemical, and biological processes necessary for understanding the interactions between man and the environment. Issues considered include the provision of clean and reliable water supplies, flood forecasting and protection, development of renewable and nonrenewable energy sources, causes and implications of climate change, and the impact of human activities on natural cycles. Both programs provide awareness of the socio-political context in which civil and environmental engineering problems are solved. Premedical students may satisfy medical school entrance requirements while earning the accredited degree in environmental engineering science with proper planning of their program. A third degree is offered for students who want more flexibility. Typical examples are students who will pursue careers in medicine, law, or scientific research.

The undergraduate programs in civil engineering and environmental engineering science share a common sophomore year that emphasizes mathematics, mechanics, ecology, and design. The ecology sequence begins by considering how natural systems work and then turns to a consideration of interactions between these systems and human activities. This sequence provides a scientific context for a consideration of sustainable design in subsequent subjects. Sophomore students from all programs work together in teams on design projects that synthesize concepts taught in the core subjects. In the junior and senior years, students from the two programs concentrate on disciplinary subjects that provide depth in each specialty. During the final term of the senior year, all students come together again in an advanced design subject that integrates lessons learned throughout the undergraduate education. There is ample room in the program for electives and minors that can be used to tailor each student's program to individual needs.

The department offers advanced degrees within the broadly defined areas of environmental science and engineering (which includes environmental chemistry, environmental fluid mechanics and coastal engineering, environmental microbiology, and hydrology and hydroclimatology), geotechnical engineering and geomechanics, mechanics of materials and structures, and transportation. The depth and breadth of coursework and research required differ for each degree program.

The degrees offered are Master of Engineering (MEng), Master of Science in Transportation (MST), Master of Science (SM), Civil Engineer’s degree, Doctor of Philosophy (PhD), and Doctor of Science (ScD).

Undergraduate Study

The Department of Civil and Environmental Engineering offers three undergraduate programs: Course 1-C, leading to the Bachelor of Science in Civil Engineering, Course 1-E, leading to the Bachelor of Science in Environmental Engineering Science, and Course 1-A, leading to the Bachelor of Science as Recommended by the Department of Civil and Environmental Engineering.

Each of these programs is flexible enough to allow students to pursue special interests by taking subjects in the Department of Civil and Environmental Engineering and in other departments. Undergraduates are encouraged to participate in the research activities of the department and in many cases obtain degree credit for such work.

In general, students find advantages in planning their programs for the third and fourth years so that they dovetail with possible graduate study, including the department’s Master of Engineering degree. This is readily accomplished by those students who embark on the departmental program in their second year. Under certain circumstances, students are permitted to work toward receiving simultaneous undergraduate and graduate degrees.

Bachelor of Science in Civil Engineering/Course 1-C

The 1-C curriculum helps students develop abilities in problem formulation, problem solving, and decision making in civil engineering. Education towards this goal involves learning fundamentals, exercising creativity, and gaining hands-on experience. Specifically, the program
Bachelor of Science in Civil Engineering/Course 1-C

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 1.00, 1.008], 1.050, and 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 1.101 and 1.102 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement
The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>159</td>
</tr>
<tr>
<td>1.010</td>
<td>Project Evaluation, 9</td>
</tr>
<tr>
<td>1.035</td>
<td>Mechanics of Structures and Soils, 18; 1.050, 18.03</td>
</tr>
<tr>
<td>1.036</td>
<td>Structural and Geotechnical Engineering Design, 12; 1.035</td>
</tr>
<tr>
<td>1.044</td>
<td>Engineering System Design, 12; 1.011*</td>
</tr>
<tr>
<td>Laboratory</td>
<td>12</td>
</tr>
<tr>
<td>1.101</td>
<td>Introduction to Civil & Environmental Engineering Design I, 6, 1/2 LAB; 1.018, 1.050</td>
</tr>
<tr>
<td>1.102</td>
<td>Introduction to Civil & Environmental Engineering Design II, 6, 1/2 LAB; 1.060, permission of instructor</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>12</td>
</tr>
<tr>
<td>One advanced subject from the following list:</td>
<td></td>
</tr>
<tr>
<td>1.095</td>
<td>Design of Electromechanical Robotic Systems, 12, 1/2 LAB; 2.003, 2.671, 2.005*</td>
</tr>
<tr>
<td>1.092</td>
<td>Geomaterials and Geomechanics, 12; 1.010, 1.011, 1.035, 1.036</td>
</tr>
<tr>
<td>1.052</td>
<td>Mechanics of Structures, 12; 1.050*</td>
</tr>
<tr>
<td>1.054</td>
<td>Mechanics and Design of Concrete Structures, 12; 1.035</td>
</tr>
<tr>
<td>1.064</td>
<td>Software and Computation for Simulation, 12; 1.06*</td>
</tr>
<tr>
<td>1.200</td>
<td>Transportation Systems Analysis: Performance and Optimization, 12; 1.010, permission of instructor</td>
</tr>
<tr>
<td>1.205</td>
<td>Transportation Systems Analysis: Demand and Economics, 12, permission of instructor</td>
</tr>
<tr>
<td>1.252</td>
<td>Urban Transportation Planning, 12, permission of instructor</td>
</tr>
<tr>
<td>1.260</td>
<td>Logistics Systems, 12; permission of instructor</td>
</tr>
<tr>
<td>1.573</td>
<td>Structural Mechanics, 12; 2.002*</td>
</tr>
<tr>
<td>Departmental Program Units That Also Satisfy the GIRs</td>
<td>(36)</td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>48</td>
</tr>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>183</td>
</tr>
</tbody>
</table>

Notes
* Alternate prerequisites and corequisites are listed in the subject description.
For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Bachelor of Science in Environmental Engineering Science/Course 1-E
The 1-E option is designed for students who wish to gain an in-depth understanding of the physical, chemical, and biological processes that control the natural environment and its interactions with human activities. Subjects in environmental transport and hydrology share a laboratory that emphasizes both hands-on skills and the use of measurements to test hypotheses. The environmental chemistry and biology subject is also accompanied by a laboratory. Concepts learned in these subjects are applied to questions of human health in an advanced upper-class subject. Unrestricted electives and advanced restricted electives are typically used to build depth in particular areas.

The 1-E program provides the education necessary for careers in environmental engineering and science, as well as in many other fields. It also provides a solid foundation for graduate study and research in both basic and applied environmental disciplines. The 1-E program is ABET accredited.

Bachelor of Science as Recommended by the Department of Civil and Environmental Engineering/Course 1-A
The degree of Bachelor of Science as Recommended by the Department of Civil and Environmental Engineering (Course 1-A) is provided for those students who are drawn to the core features of our curriculum but want to design individualized programs to meet particular...
edcational objectives. For example, a student interested in medicine may need more room in the curriculum in order to complete all the subjects required for medical school admission. Other students interested in research careers in fields such as environmental biology, chemistry, or oceanography may want more time for advanced subjects in those fields. Such students may benefit from a Civil and Environmental Engineering 1-A degree, since they do not need ABET accreditation but do need flexibility. Students should speak with a faculty advisor about the advantages and limitations of a 1-A degree before making a final decision.

There are seven required 1-A subjects that coincide with the sophomore core of the 1-C and 1-E programs. In addition, 1-A students must select a coherent set of seven electives that meet a well-defined educational goal (e.g. a premedical sequence). The planned electives are developed in consultation with and are approved by a member of the departmental faculty who serves as the student’s academic advisor. Planned electives may be selected from subjects within the Department of Civil and Environmental Engineering or outside the department. In addition, students may write an undergraduate thesis in lieu of one or more of the planned electives. To satisfy the CI-M component of the Communication Requirement, students must take the department’s two CI-M subjects (1.013 and 1.018J) or, if appropriate, take one Course 1 CI-M subject and petition the Subcommittee on the Communication Requirement to substitute one CI-M from another science or engineering field. The outside CI-M must fit into the coherent program of electives approved by the student's academic advisor. The remaining part of the 1-A program consists of unrestricted electives to bring the total to 180 units beyond the General Institute Requirements.

Undergraduate Summer Internship Program
Sophomores and juniors majoring in civil and environmental engineering may apply to participate in the Undergraduate Summer Internship Program, coordinated by the Department of Civil and Environmental Engineering. The internship program helps MIT students find summer employment opportunities in civil and environmental engineering. The department works with

Bachelor of Science in Environmental Engineering Science/Course 1-E

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement(^{(ii)})</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [one subject can be satisfied by 1.801J, 11.002, 11.122, or 14.01 in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 1.018J, 1.050, and 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 1.101 and 1.102 in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement
The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>168</td>
</tr>
<tr>
<td>1.018J Ecology I: The Earth System, 12, REST, CI-M</td>
<td></td>
</tr>
<tr>
<td>1.020 Ecology II: Engineering for Sustainability, 12; Physics I (GIR), 18.03*</td>
<td></td>
</tr>
<tr>
<td>1.050 Environmental Mechanics I, 12, REST; Physics I (GIR), Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>1.060 Environmental Mechanics II, 12; permission of instructor*</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>1.013 Senior Civil and Environmental Engineering Design, 12, CI-M; permission of instructor</td>
<td></td>
</tr>
</tbody>
</table>

One of the following two subjects:
- 1.00 Introduction to Computers and Engineering Problem Solving, 12, REST; Calculus I (GIR) |
- 1.010 Uncertainty in Engineering, 12; Calculus II (GIR) |

Environmental Engineering Science
- 1.061 Transport Processes in the Environment, 12; 1.060 |
- 1.070J Introduction to Hydrology, 12; 1.060, 1.061, 1.106 |
- 1.080 Environmental Chemistry and Biology, 12; Chemistry (GIR), Biology (GIR) |
- 1.083 Environmental Health Engineering, 12; 1.061* |
- 1.106 Environmental Fluid Transport Processes and Hydrology Laboratory, 6, 1/2 LAB; 1.061, 1.070 |
- 1.107 Environmental Chemistry and Biology Laboratory, 6, 1/2 LAB; 1.080 |

Economics and Public Policy
One of the following four subjects:
- 1.801 Environmental Law, Policy, and Economics: Pollution Prevention & Control, 12; HASS-S |
- 11.002J Making Public Policy, 12; HASS-S, CI-H |
- 11.122 Society and Environment, 12; HASS-S |
- 14.01 Principles of Microeconomics, 12; HASS-S |

Laboratory
- 1.101 Introduction to Civil and Environmental Engineering Design I, 6, 1/2 LAB; 1.018, 1.105 |
- 1.102 Introduction to Civil and Environmental Engineering Design II, 6, 1/2 LAB; 1.060, permission of instructor |

Restricted Elective
One advanced subject from the following list:
- 1.071 Global Change Science, 12; 18.03, 5.60 |
- 1.64 Physical Limnology, 12; 1.060, 1.061 |
- 1.69 Introduction to Coastal Engineering, 12; 1.061 |
- 1.72 Groundwater Hydrology, 12; 1.061 |
- 1.731 Water Resource Systems, 12; 1.070* |
- 1.77 Water Quality Control, 12; 1.060 |
- 1.83 Environmental Organic Chemistry, 12; 5.60, 18.03 |
- 1.89 Environmental Microbiology, 12; 10.04 |

Departmental Program Units That Also Satisfy the GIRs
<table>
<thead>
<tr>
<th>Unrestricted Electives</th>
<th>(48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
* Alternate prerequisites and corequisites are listed in the subject description.
\(^{(ii)}\) Any of the subjects that fulfill the Institute Chemistry Requirement is satisfactory, though 5.111 or 5.112 is recommended.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
Bachelor of Science as Recommended by the Department of Civil and Environmental Engineering/Course 1-A

### General Institute Requirements (GIRs)	Subjects	Units
Science Requirement | 6
Humanities, Arts, and Social Sciences Requirement | 8
Restrictive Electives in Science and Technology (REST) Requirement [can be satisfied by 1.018J, 1.050, and 18.03 in the Departmental Program] | 2
Laboratory Requirement [can be satisfied by 1.101 and 1.102 in the Departmental Program] | 1

Total GIR Subjects Required for SB Degree | 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).

Required Subjects
- **Core**
 - 1.018J Ecology I: The Earth System, 12, REST, CI-M
 - 1.020 Ecology II: Engineering for Sustainability, 12;Physics I (GIR), 18.03*
 - 1.046 Engineering Mechanics I, 12, REST; Physics I (GIR), Calculus II (GIR)
 - 1.060 Engineering Mechanics II, 12; permission of instructor*
 - 18.03 Differential Equations, 12, REST; Calculus II (GIR)

- **One of the following two subjects:**
 - 1.00 Introduction to Computers and Engineering Problem Solving, 12, REST; Calculus I (GIR)
 - 1.020 Uncertainty in Engineering, 12; Calculus II (GIR)

- **Laboratory**
 - 1.101 Introduction to Civil and Environmental Engineering Design I, 6, 1/2 LAB; 1.018, 1.050
 - 1.102 Introduction to Civil and Environmental Engineering Design II, 6, 1/2 LAB; 1.060, permission of instructor

Restricted Electives
- Students are required to take a coherent set of seven full subjects that meet a well-defined educational goal. These may be from within or outside the Department of Civil and Environmental Engineering. The electives must be approved by the student’s academic advisor and the undergraduate officer of the department.

Units | 84

Departmental Program Units That Also Satisfy the GIRs | (36)

Unrestricted Electives | 48

Total Units Beyond the GIRs Required for SB Degree | 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
- * Alternate prerequisites and corequisites are listed in the subject description.
- **To satisfy the CI-M component of the Communication Requirement, students must take the department’s two CI-M subjects 1.013 and 1.018J or, if appropriate, take one Course 1 CI-M subject and petition the Subcommittee on the Communication Requirement to substitute one CI-M from another science or engineering field. The outside CI-M must fit into the coherent program of electives approved by the student’s academic advisor.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
Minors
The Minor in Civil Engineering consists of the following subjects:

1.050 Engineering Mechanics I
1.060 Engineering Mechanics II
1.101 Introduction to Civil and Environmental Engineering Design I
1.102 Introduction to Civil and Environmental Engineering Design II
1.035 Mechanics of Structures and Soils
1.041 Engineering System Design
1.036 Structural and Geotechnical Engineering Design

The Minor in Environmental Engineering Science consists of the following subjects:

1.018J Ecology I: The Earth System
1.020J Ecology II: Engineering for Sustainability
1.101J Introduction to Civil and Environmental Engineering Design I
1.102J Introduction to Civil and Environmental Engineering Design II
1.080J Environmental Chemistry and Biology Laboratory
1.107J Environmental Chemistry and Biology Laboratory and one of the following four subjects:
1.801J Environmental Law, Policy, and Economics: Pollution Prevention and Control
1.002J Making Public Policy
1.122J Society and Environment
14.01J Principles of Microeconomics

Substitution of equivalent subjects offered by other departments is allowed, with permission of the minor advisor. However, at least three full subjects (12 units) must be Course 1 subjects.

For a general description of the minor program, see Undergraduate Education in Part 1.

GRADUATE STUDY
The Department of Civil and Environmental Engineering grants the following advanced degrees: Master of Engineering in Civil and Environmental Engineering, Master of Science in Transportation, Master of Science, Master of Science in Civil and Environmental Engineering, Civil Engineer, Doctor of Science, and Doctor of Philosophy. The institute's general requirements for these degrees are described under Graduate Education in Part 1. Detailed information on the departmental requirements for each degree may be obtained from the Academic Programs Office, Room 1-281.

Master of Engineering
The Department of Civil and Environmental Engineering's Master of Engineering (MEng) is a nine-month program that provides a practice-oriented education. Designed for people with a bachelor's degree in engineering (or related field) who want to enter or return to professional practice, the program prepares students for real-world engineering challenges. Our graduates routinely join leading engineering design firms, consulting companies, and government agencies. Some go on to pursue a PhD.

MEng students specialize in one of four tracks: environmental and water quality engineering, geotechnology, high-performance structures, or transportation.

All students, independent of specialty area, take 1.133 Concepts of Engineering Practice, during the fall term. In this subject, participants work in teams to develop and present solutions to realistic professional problems, which include project management and evaluation, negotiation, business development, and ethics. In addition, each specialty area has three suggested core subjects, two planned electives, and one free elective.

The distinctive element of the program is a professional practice experience comprising a group project and an individual, practice-oriented thesis.

Because of their intensive coursework, MEng students do not have time to work as full-time research or teaching assistants. Some engage in part-time work, but we urge caution as this can drain time away from academic work. A limited number of partial-tuition fellowships are awarded on a merit basis.

Admission standards are the same as for the Master of Science degree. MIT undergraduates may apply to the program at the end of their third year. Strong communication skills are expected.

For more information, see the Master of Engineering program description on the department's website at http://cee.mit.edu/.

Master of Science and Doctoral Degrees
Programs of graduate study are available in the following areas: environmental chemistry, environmental fluid mechanics and coastal engineering, environmental microbiology, geotechnical engineering and geomechanics, hydrology, the mechanics of materials and structures, and transportation.

The program in environmental chemistry focuses on processes governing natural and man-made ecosystems. An understanding of the mechanisms that regulate the flow of energy and cycling of materials through natural and man-made ecosystems is essential to address and avoid environmental problems. Water and air are two key media through which elements are transported within and between ecosystems, and are important vehicles for the transport of anthropogenic toxic chemicals.

Graduate study in environmental fluid mechanics and coastal engineering offers education and research opportunities in many physical processes of water motion essential to the understanding, protection and improvement of the environment. The program emphasizes theoretical and experimental inquiries in both the laboratory and the field, and the development of models and strategies for practice. The interaction of physical processes with chemical and biological processes is also stressed.

Environmental microbiology focuses on microbial properties and processes that define the structure and function of natural and man-made ecosystems. Since the flow of energy and matter through the environment is often governed by microbial activities, it is essential to understand, predict and leverage those activities to both address and avoid environmental problems. Water is a key medium through which energy and elements are transported within and between ecosystems, and it is also a conduit for the...
transport of anthropogenic materials and waste. Because microorganisms are the primary living constituents of aquatic ecosystems and mediate globally important processes, we focus on environmental microbiology. The foundation of our studies is grounded in microbial physiology, ecology, evolution and environmental science and engineering.

Geotechnical engineering and geomechanics addresses a wide range of problems posed by the spatial variability and complex material properties of soils and rocks. Geotechnical engineers have historically dealt with natural hazards from landslides to earthquakes, and the design and construction of major infrastructure projects ranging from earth dams to offshore structures. Geoenvironmental problems of subsurface waste containment, groundwater contamination and site remediation are now also a major focus of the profession, as are problems related to resource extraction, including engineered geothermal systems. The graduate program includes core courses in soil mechanics; engineering geology and groundwater hydrology; application subjects involving geotechnical and geoenvironmental problems; and specialized subjects in geomaterial (soil and rock) behavior, theoretical and experimental methods, and underground construction.

Graduate study in hydrology and hydroclimatolgy considers all aspects of the hydrologic cycle, with an emphasis on better understanding the physical, chemical and biological processes associated with the movement of water. Our goal is to give students the knowledge they need to address important environmental and resource challenges and to develop informed solutions that improve quality of life. Hydrologic education and research are inherently multidisciplinary and typically involve integration of theory, data analysis, and modeling. Students develop expertise in the basic sciences, applied mathematics and, depending on their research topic, in laboratory and field research, mathematical modeling, economics, and public policy.

The graduate program in the mechanics of materials and structures seeks to advance fundamental understanding and develop innovative approaches to structural engineering problems. This includes assessing and upgrading aging infrastructure, developing and using better construction materials, and designing for increased performance by improving safety, lowering costs, and reducing the impact on the environment. The program also emphasizes the mechanical behavior of construction materials and mechanics of materials at scales ranging from nano to macro, relating the continuum scale to the atomistic scale.

Graduate study in transportation examines all major forms of transportation, including passenger and freight systems, as well as the increasing demand for transportation systems at the local, regional and international levels and the critical issues involved in meeting transportation needs in a sustainable way without negative impact on future generations. The Transportation program in CEE emphasizes the complexity of transportation and its dependence on the interaction of technology, operations, planning, management, and policy making. Our focus includes study of the interactions of transportation infrastructure and operations, urban spatial structure and land use, economic growth, resource and energy use, and environmental impacts at various spatial and temporal scales.

Entrance Requirements for Graduate Study

Applicants do not need to have an undergraduate degree in civil engineering.

Numerous opportunities for graduate education in civil and environmental engineering exist for students with backgrounds in other branches of engineering, science, and certain social sciences. These arise through the growth of interdepartmental research and degree programs that bring people of diverse backgrounds together in search of solutions to major societal problems. Graduate students and faculty in the department have experience, for example, in economics, political science, sociology, architecture, urban and regional planning, management, biology, geology, chemistry, physics, computer science, and oceanography.

The primary requirements for graduate study are a keen intellect and the capability and interest to pursue rigorous approaches to real problems. Students may make up deficiencies in prerequisites while pursuing a program of graduate study. Prerequisites for each subject are given in the subject descriptions.

All applicants are required to submit scores from the GRE Aptitude Test. With some exceptions, applicants whose first language is not English are required to submit scores from either the International English Language Testing System (IELTS), the preferred exam, or the Test of English as a Foreign Language (TOEFL). More information about individual graduate programs can be obtained at http://cee.mit.edu/, or by writing to cee-admissions@mit.edu.

Financial Assistance

The research of the department is an integral part of the graduate program, and approximately 120 graduate students each year receive appointments as research or teaching assistants. Most of these appointments fully cover tuition, individual health insurance, and reasonable living expenses in the Boston area.

Applicants are also encouraged to apply for traineeships and fellowships offered nationally by the National Science Foundation, NASA, DOE, and other governmental agencies that traditionally support students in the department. For an extensive list of such opportunities, visit the Office of the Dean for Graduate Education website, http://web.mit.edu/odje/.

Interdisciplinary Programs

Through its interdisciplinary programs, the Department of Civil and Environmental Engineering brings together the science, technology, systems, and management skills necessary to deal with the important engineering problems of the future.

Graduate Programs in Transportation

MIT provides a broad range of opportunities for transportation-related education. Courses and classes span the School of Engineering, the Sloan School of Management, and the School of Architecture and Planning, with many activities covering interdisciplinary topics that prepare students for future industry, government, or academic careers.

A variety of graduate degrees are available to students interested in transportation studies and research, including a Master of Science in Transportation and PhD in Transportation, described under Interdisciplinary Graduate Programs in Part 3.
Leaders for Global Operations Program

The 24-month Leaders for Global Operations (LGO) program combines graduate education in engineering and management for those with two or more years of full-time work experience who aspire to leadership positions in manufacturing or operations companies. A required 6.5-month internship provides opportunity to complete a research project on site at one of LGO’s partner companies. The internship leads to a dual-degree thesis, culminating in two master’s degrees—an SM in management or an MBA, and an SM from a participating engineering department. The program is offered jointly through the MIT Sloan School of Management and the School of Engineering. For more information, see the program description under Engineering Systems Division in Part 2 or visit http://lgo.mit.edu/.

Joint Program with the Woods Hole Oceanographic Institution

The Joint Program with the Woods Hole Oceanographic Institution is intended for students whose primary career objectives are in the field of oceanography or oceanographic engineering. The program is described under Interdisciplinary Graduate Programs in Part 3.

Inquiries

Detailed information about the academic policies and programs of the department may be obtained by writing to or visiting the Academic Programs Office, Room 1-281, 617-253-9723, fax 617-258-6775, cee-apo@mit.edu, http://cee.mit.edu/.

Research Laboratories and Activities

The Department of Civil and Environmental Engineering occupies two buildings on the MIT campus: Building 1 (the Pierce Laboratory) and Building 48 (the Ralph M. Parsons Laboratory for Environmental Science and Engineering). These buildings contain specialized research and teaching facilities. In addition, the department collaborates interdepartmentally with other laboratories described below.

Ralph M. Parsons Laboratory for Environmental Science and Engineering

Located on the east campus, the Ralph M. Parsons Laboratory for Environmental Science and Engineering is a recently renovated four-story structure containing about 31,000 square feet of classrooms, teaching and research laboratories, machine shops, computer facilities, and offices. Approximately 18 faculty members, 70 graduate students, and 31 postdocs have offices on the premises. Facilities exist for hydrodynamic studies involving flow through vegetation, free surface flows, and flows in porous media. The latest in laser-Doppler instrumentation is available. Complete and modern laboratories facilitate research in inorganic chemistry, organic chemistry, molecular biology, genomics, microbial ecology, and biochemistry. Especially notable instrumentation includes several GCs, a GC-MS, LC-MS, and several HPLCs, two flame AAs, a graphite furnace AA, alpha and gamma spectrometry counting systems, scintillation counters, several flow cytometers, a laser light scattering instrument, and incubators, a cold room, and several −80°C freezers. One laboratory, recently renovated, is a dedicated teaching facility for environmental engineering and aquatic chemistry and biology. Equipment is available for instruction in a wide range of field sampling methods, biological and microbiological evaluations, and instrumental chemical analyses of natural waters. A new, state-of-the-art inductively coupled plasma spectrometer and new Auto Analyzer were recently acquired. Computer facilities include a 100-processor Beowulf (parallel computing) cluster, among other computer clusters.

Pierce Laboratory

Located in one of MIT’s original buildings, this civil and environmental engineering facility overlooks the Charles River and includes over 40,000 square feet of classrooms, teaching and research laboratories, and offices for approximately 90 graduate students and 20 faculty members and research staff.

Research activities focus on three major areas: geotechnical engineering and geomechanics, the mechanics of materials and structures, and transportation. Among the classrooms is the state-of-the-art Bechtel Lecture Hall. The facilities include a recently renovated undergradu-
particular among the leaders of tomorrow’s science and technology communities. The program cultivates the capacity of learners at all levels to both understand and respond effectively to the challenges of sustainability.

Center for Environmental Health Sciences
Historically, the Department of Civil and Environmental Engineering has had strong ties to the Center for Environmental Health Sciences in teaching and research activities related to understanding the role of chemical and biological agents in the environment as causes of human disease. More information about the center is available under Interdisciplinary Research and Study in Part 3.

Earth System Initiative
The Earth System Initiative (ESI) fosters exploration of the intimately interrelated physical, chemical, biological, and geological processes that shape our global ecosystem. By involving faculty, staff, and students across the spectrum of environmentally oriented disciplines, ESI brings the widest variety of scientific perspectives and methods to bear in understanding how the Earth system functions and how we can be better stewards of our planet. For more information, see the ESI website at http://web.mit.edu/esi/.

Center for Global Change Science
The Center for Global Change Science (CGCS) seeks to better understand the natural mechanisms in ocean, atmosphere, and land systems that together control the Earth’s climate, and to apply improved knowledge to problems of predicting climate changes. The center utilizes theory, observations, and numerical models to investigate climate phenomena, the linkages among them, and their potential feedbacks in a changing climate. The CGCS provides opportunities for close cooperation in education and research between faculty, research scientist staff, and students in the Department of Civil and Environmental Engineering, the Department of Earth, Atmospheric and Planetary Sciences, MIT’s Energy Initiative, and other MIT departments. The major research initiatives in the CGCS are the MIT Climate Modeling Initiative, the Advanced Global Atmospheric Gases Experiment, and the Joint Program on the Science and Policy of Global Change. More information about the center is available under Interdisciplinary Research and Study in Part 3 or at the CGCS website, http://mit.edu/cgcs/.

Faculty and Staff

Faculty and Teaching Staff
Andrew J. Whittle, PhD
Edmund K. Turner Professor of Civil and Environmental Engineering
Department Head

Professors
Cynthia Barnhart, PhD
Professor of Civil and Environmental Engineering and Engineering Systems
Associate Dean for Academic Affairs, School of Engineering
Moshe Emanuel Ben-Akiva, PhD
Edmund K. Turner Professor of Civil and Environmental Engineering
Rafael Luis Bras, ScD
Professor of Civil and Environmental Engineering (On leave)
Oral Buyukozturk, PhD
Professor of Civil and Environmental Engineering
Sallie W. Chisholm, PhD
Lee and Geraldine Martin Professor of Environmental Studies
Professor of Civil and Environmental Engineering and Biology
Jerome Joseph Connor, Jr., ScD
Professor of Civil and Environmental Engineering
Edward F. DeLong, PhD
Professor of Civil and Environmental Engineering and Biological Engineering
Richard Lawrence de Neufville, PhD
Professor of Civil and Environmental Engineering and Engineering Systems
Herbert Heinrich Einstein, ScD
Professor of Civil and Environmental Engineering
Elfatih A. B. Eltahir, ScD
Professor of Civil and Environmental Engineering
Dara Entekhabi, PhD
Bacardi and Stockholm Water Foundation Professor
Professor of Civil and Environmental Engineering
Loma Jane Gibson, PhD
Matoula S. Salapatas Professor of Materials Science and Engineering
Professor of Civil and Environmental Engineering and Mechanical Engineering
Philip Michael T. Gschwend, PhD
Ford Professor of Engineering
Professor of Civil and Environmental Engineering
Harold Field Hemond, PhD
William E. Leonhard Professor of Engineering
Professor of Civil and Environmental Engineering
Patrick Jaillet, PhD
Professor of Civil and Environmental Engineering and Electrical Engineering and Computer Science
Hamlin M. Jennings, PhD
Professor of the Practice of Civil and Environmental Engineering
Eduardo Kausel, PhD
Professor of Civil and Environmental Engineering
Ole Secher Madsen, ScD
Donald and Martha Harleman Professor
Professor of Civil and Environmental Engineering
David Hunter Marks, PhD
Morton and Claire Goulder Family Professor
Professor of Civil and Environmental Engineering and Engineering Systems
Dennis B. McLaughlin, PhD
H. M. King Bhumipol Professor
Professor of Civil and Environmental Engineering
Chiang Chung Mei, PhD
Ford Professor of Civil and Environmental Engineering
Fred Moavenzadeh, PhD
James Mason Crafts Professor
Professor of Civil and Environmental Engineering and Engineering Systems
(On leave)
Heidi M. Nepf, PhD
Professor of Civil and Environmental Engineering
MacVicar Faculty Fellow
Assistant Professors
Eric J. Alm, PhD
Assistant Professor of Civil and Environmental Engineering and Biological Engineering
Ruben Juanes, PhD
Atlantic Richfield Career Development Professorship
Assistant Professor of Civil and Environmental Engineering
Jesse Kroll, PhD
Assistant Professor of Civil and Environmental Engineering
Pedro M. Reis, PhD
Assistant Professor of Civil and Environmental Engineering and Mechanical Engineering
Janelle Thompson, PhD
Henry L. and Grace Doherty Assistant Professor of Civil and Environmental Engineering

Senior Lecturers
E. Eric Adams, PhD
John T. Germaine, PhD
George Kocur, PhD
Susan Murcott, MS
Frederick P. Salvucci, MS
Peter Shanahan, PhD

Lecturers
Charles C. Caldart, JD
Christopher Cassa, PhD
Sheila Frankel, MA
V. Judson Harward, PhD
Lucy Jen, PhD
Paul Kassabian, MS
Mikel Murga, MS
Lisa J. O’Donnell, MS
Derish Wolf, MBA

Research Staff
Senior Research Engineer
E. Eric Adams, PhD

Senior Research Associate
John T. Germaine, PhD

Principal Research Engineer
Earle Williams, PhD

Research Engineer
John Eppley, PhD
John MacFarlane, SM

Research Associates
John P. Attanucci, SM
Sheila L. Frankel, MA

Research Scientists
Katherine Huang, SM
Asunción Martínez, PhD
Marcia Osbourne, PhD

Professors Emeriti
Peter Sturges Eagleson, ScD
Edmund K. Turner Professor of Civil and Environmental Engineering, Emeritus
Lynn Walter Gelhar, PhD
Professor of Civil and Environmental Engineering, Emeritus
Robert Joseph Hansen, ScD
Professor of Civil and Environmental Engineering, Emeritus
Charles Cushing Ladd, ScD
Edmund K. Turner Professor of Civil and Environmental Engineering, Emeritus
Thomas William Lambe, ScD
Edmund K. Turner Professor of Civil and Environmental Engineering, Emeritus
Robert Daniel Logcher, ScD
Professor of Civil and Environmental Engineering, Emeritus
Frank Edward Perkins, ScD
Professor of Civil and Environmental Engineering, Emeritus
Robert Van Duyne Whitman, ScD
Professor of Civil and Environmental Engineering, Emeritus
Electrical engineers and computer scientists are everywhere—in industry and research areas as diverse as computer and communication networks, electronic circuits and systems, lasers and photonics, semiconductor and solid-state devices, nanoelectronics, biomedical engineering, computational biology, artificial intelligence, robotics, design and manufacturing, control and optimization, computer algorithms, games and graphics, software engineering, computer architecture, cryptography and computer security, power and energy systems, financial analysis, and many more. The infrastructure and fabric of the information age, including technologies such as the internet and the web, search engines, cell phones, high-definition television, and magnetic resonance imaging, are largely the result of innovations in electrical engineering and computer science. The Department of Electrical Engineering and Computer Science at MIT and its graduates have been at the forefront of a great many of these advances. Current work in the department holds promise of continuing this record of innovation and leadership, in both research and education, across the full spectrum of departmental activity.

The career paths and opportunities for EECS graduates cover a wide range and continue to grow: fundamental technologies, devices, and systems based on electrical engineering and computer science are pervasive and essential to improving the lives of people around the world and managing the environments they live in. The basis for the success of EECS graduates is a deep education in engineering principles, built on mathematical, computational, physical, and life sciences, and exercised with practical applications and project experiences in a breadth of areas. Our graduates have also demonstrated over the years that EECS provides a strong foundation for those whose work and careers develop in areas quite removed from their origins in engineering.

Undergraduate students in the department take two core subjects that introduce electrical engineering and computer science, and then systematically build up broad foundations and depth in selected intellectual theme areas that match their individual interests. Laboratory subjects, independent projects, and research provide engagement with principles and techniques of analysis, design, and experimentation in a variety of fields. The department also offers a range of programs that enable students to gain experience in industrial settings, ranging from collaborative industrial projects done on campus to term-long experiences at partner companies.

Graduate study in the department moves students toward mastery of areas of individual interest, through coursework and significant research, often defined in interdisciplinary areas that take advantage of the tremendous range of faculty expertise in the department and, more broadly, across MIT.

More information about the Department of Electrical Engineering and Computer Science and its programs can be obtained from the department’s website at http://www-eecs.mit.edu/.

Professional and Preprofessional Programs

For MIT undergraduates, the Department of Electrical Engineering and Computer Science offers programs leading to the Bachelor of Science and the Master of Engineering degrees. Three accredited preprofessional four-year Bachelor of Science programs are available. One (6-1) is for students specializing in electrical science and engineering, a second (6-3) for those specializing in computer science and engineering, and a third (6-2) for those whose interests cross this traditional boundary. For interested and qualified students, the master’s program (6-P) leads directly, through a seamless five-year course of study, to the simultaneous awarding of the Master of Engineering and one of the three bachelor’s degrees. The 6-P program is intended to provide the depth of knowledge and the skills needed for advanced graduate study and for professional work, as well as the breadth and perspective essential for engineering leadership in an increasingly complex technological world.

The 6-A Master of Engineering Thesis Program with Industry combines the professional Master of Engineering academic program with periods of industrial practice at affiliated companies. An undergraduate wishing to pursue the Master of Engineering degree should initially register for one of the three bachelor’s programs.

The bachelor’s programs build on the General Institute Requirements in science and the humanities, and are structured to provide early, hands-on engagement with ideas, activities, and learning that allow students to experience the range and power of electrical engineering and computer science in an integrated way. The required introductory core subjects, 6.01 followed by 6.02, both involve substantial work in the laboratory, and each carries six units of Institute Lab credit. These are complemented by two mathematics subjects (6.041 or 6.042, also 18.03 or 18.06) and followed by a choice of three or four foundation courses (depending on which bachelor’s program is selected) from a set of subjects that provide the basis for subsequent specialization. Students define their specialization by selecting three header subjects, a department laboratory subject, and two advanced undergraduate subjects from a quite extensive set of possibilities, and also carry out an advanced undergraduate project. Combining these with the four free electives permits students considerable latitude in shaping their program to match diverse interests, while ensuring depth and mastery in a few selected areas.

The master’s program provides additional depth in a selected field of concentration, through coursework and a substantial thesis. The student selects (with departmental review and approval) 42 units of advanced graduate (H-level) subjects; these subjects, considered along with the two advanced undergraduate subjects from the bachelor’s program, must include at least 36 units in an area of concentration. A further 24 units of electives are chosen from a restricted departmental list of mathematics, science, and engineering subjects.

The Master of Engineering degree also requires completion of 24 units of thesis credit under 6.ThM. While a student may register for more than this number of thesis units, only 24 units count toward the degree requirement. Theses based on group projects in which each participant has an identified responsibility are encouraged.

Recipients of a Master of Engineering degree normally receive a Bachelor of Science degree simultaneously. No thesis is explicitly required for the preprofessional Bachelor of Science degree. However, every program must include a major project experience at an advanced level, culmi-
nating in written and oral reports. Normally, the thesis for the Master of Engineering degree will provide this experience for students receiving both degrees simultaneously.

Much flexibility is built into the elective structure for the department’s programs. Some further variations in requirements are routinely permitted, while still others will be considered on an individual basis. Approval of requests for substantial changes may be granted to well-prepared students whose proposed programs provide an integrated approach to a well-defined educational objective and are comparable with the listed curricula in breadth and depth. Changes affecting the required core portion of each curriculum, however, are rarely approved.

Programs leading to the professional five-year Master of Engineering degree or to the professional four-year Bachelor of Science degrees can easily be arranged to be identical through the junior year. At the end of the junior year, students with strong academic records will be offered the opportunity to continue through the five-year master’s program. A student in the Master of Engineering program must be registered as a graduate student for at least one regular (non-summer) term. To remain in the program and to receive the Master of Engineering degree, students will be expected to maintain strong academic records. Admission to the Master of Engineering program is open only to undergraduate students who have completed their junior year in the Department of Electrical Engineering and Computer Science at MIT. Students with other preparation seeking a master’s level experience in eeCS at MIT should see the Master of Science program described later in this section.

The fifth year of study toward the Master of Engineering degree can be supported by a combination of personal funds, participation in the 6-A Master of Engineering Thesis Program with Industry described later in this section, an award such as a National Science Foundation Fellowship, a fellowship, or a graduate assistantship. Assistantships require participation in research or teaching in the department or in one of the associated laboratories. Full-time assistants may register for no more than two scheduled classroom or laboratory subjects during the term, but may receive academic credit for their participation in the teaching or research

| Bachelor of Science in Electrical Science and Engineering/Course 6-1
| Bachelor of Science in Electrical Engineering and Computer Science/Course 6-2
| Bachelor of Science in Computer Science and Engineering/Course 6-3

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [satisfied by the mathematics requirement in the Departmental Program]</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement [satisfied by 6.01 and 6.02 together in the Departmental Program]</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLUS Departmental Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject names below are followed by credit units and by prerequisites, if any (corequisites in italics).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.01 Introduction to EECS I, 12, 1/2 LAB; Physics II (GIR)</td>
</tr>
<tr>
<td>6.02 Introduction to EECS II, 12, 1/2 LAB; 6.01, 18.03*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restricted Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Two mathematics subjects (also satisfies REST requirement): (a) Either 18.03 or 18.06 (alternatively 18.700) and (b) Either 6.041 (alternatively 18.440) or 6.042. Students in Course 6-1 must select 6.041 (or 18.440); students in Course 6-2 must select 6.042.</td>
</tr>
<tr>
<td>2. One department laboratory: One subject selected from the undergraduate laboratory subjects 6.100–6.182 or a departmental list of CS laboratory subjects; students in Course 6-3 must select a CS laboratory subject. Students in Course 6-1 or 6-2 who take both 6.022J and 6.022J may use 6.022J to satisfy the laboratory department requirement.</td>
</tr>
<tr>
<td>3. Three/four foundation subjects: (a) Students in Course 6-1 must take three subjects from the EE foundation list: 6.002, 6.003, 6.004, 6.007. (b) Students in Course 6-2 must take three subjects in the CS foundation list: 6.004, 6.005, 6.006. (c) Students in Course 6-2 must take four subjects from the EECS foundation list (6.002–6.007), with two chosen from the EE foundation list and two from the CS foundation list (6.004 may be counted under either EE or CS).</td>
</tr>
<tr>
<td>4. Three core subjects: (a) Students in Course 6-1 must take three subjects from the EE header list: 6.011, 6.012, 6.013, 6.021. (b) Students in Course 6-2 must take the three subjects in the CS header list: 6.033, 6.034, 6.046. (c) Students in Course 6-2 must take from the EECS header list (6.011, 6.012, 6.013, 6.021, 6.033, 6.034, 6.046), with at least one chosen from the EE header list and at least one from the CS header list.</td>
</tr>
<tr>
<td>5. Two subjects from a departmental list of advanced undergraduate subjects.</td>
</tr>
</tbody>
</table>

To complete the required Communication-Intensive subjects in the major, students must take one of the following CI-M subjects as a restricted elective in categories 2 or 4 above by the end of the third year: 6.021J, 6.033, 6.101, 6.111, 6.115, 6.121, 6.141J, 6.152J, 6.161, 6.163, 6.173, 6.182, or 6.805. 6.141J, 6.152J constitutes the second CI-M.

Departmental Program Units That Also Satisfy the GIRs	(36)
Unrestricted Electives	48
Total Units Beyond the GIRs Required for SB Degree	180–192

No subject can be counted both as part of the 17-subject GIRs and as part of the 180–192 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

*Alternate prerequisites are listed in the subject descriptions.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
program. Support through an assistantship may extend the period required to complete the Master of Engineering program by an additional term or two. Support is granted competitively to graduate students and will not be available for all of those admitted to the Master of Engineering program. If provided, department support for Master of Engineering candidates is normally limited to the first three terms as a graduate student, unless the Master of Engineering thesis has been completed or the student has served as a teaching assistant or has been admitted to the doctoral program, in which cases a fourth term of support may be permitted.

Additional information about the department's professional and preprofessional programs may be obtained from the EECS Undergraduate Office, Room 38-478, 617-253-7329, ug@eecs.mit.edu.

6-A Master of Engineering Thesis Program with Industry

The 6-A Master of Engineering Thesis Program with Industry enables students to combine classroom studies with practical experience in industry through a series of supervised work assignments at one of the companies or laboratories participating in the program, culminating with a Master of Engineering thesis performed at a 6-A member company. Collectively, the participating companies provide a wide spectrum of assignments in the various fields of electrical engineering and computer science, as well as an exposure to the kinds of activities in which engineers are currently engaged. Since a continuing liaison between the companies and faculty of the department is maintained, students receive assignments of progressive responsibility and sophistication that are usually more professionally rewarding than typical summer jobs.

The 6-A program is primarily designed to work in conjunction with the department's five-year Master of Engineering degree program. Internship students generally complete three assignments with their cooperating company—usually two summers and one regular term. While on 6-A assignment, students receive pay from the participating company as well as academic credit for their work. During their graduate year, 6-A students generally receive a 6-A fellowship or a research or teaching assistantship to help pay for the graduate year.
DOCTORAL AND PREDOCTORAL PROGRAMS

The programs of education offered by the Department of Electrical Engineering and Computer Science at the doctoral and predoctoral level have three aspects. First, a variety of classroom subjects in physics, mathematics, and fundamental fields of electrical engineering and computer science is provided to permit students to develop strong scientific backgrounds. Second, more specialized classroom and laboratory subjects and a wide variety of colloquia and seminars introduce the student to the problems and techniques that may be useful in attacking them. Third, each student conducts research under the direct supervision of a member of the faculty and reports the results in a thesis.

Three advanced degree programs are offered in addition to the Master of Engineering program described above. A well-prepared student with a bachelor's degree in an appropriate field from some school other than MIT (or from another department at MIT) normally requires about one and one-half to two years to complete the formal studies and the required thesis research in the Master of Science degree program. (Students who have been undergraduates in Electrical Engineering and Computer Science at MIT and who seek opportunities for further study must complete the Master of Engineering rather than the Master of Science degree program.) With an additional year of study and research beyond the master's level, a student in the doctoral or predoctoral program can complete the requirements for the degree of Electrical Engineer or Engineer in Computer Science. The doctoral program usually takes about four to five years beyond the master's level.

There are no fixed programs of study for these doctoral and predoctoral degrees. Each student plans a program in consultation with a faculty advisor. As the program moves toward thesis research, it usually centers in one of a number of areas, each characterized by an active research program. Areas of specialization in the department that have active research programs and related graduate subjects include communications, control, signal processing, and optimization; computer science; artificial intelligence, robotics, computer vision, and graphics; electronics, computers, systems, and networks; electromagnetics and electrodynamics; optics, photonics, and quantum electronics; energy conversion devices and systems; power engineering and power electronics; materials and devices; VLSI system design and technology; nanoelectronics; bioelectrical engineering; and computational biology.

In addition to graduate subjects in electrical engineering and computer science, many students find it profitable to study subjects in other departments such as Biology, Economics, Linguistics and Philosophy, Management, Mathematics, Physics, and Brain and Cognitive Sciences.

The informal seminar is an important mechanism for bringing together members of the various research groups. Numerous seminars meet every week. In these, graduate students, faculty, and visitors report their research in an atmosphere of free discussion and criticism. These open seminars are excellent places to learn about the various research activities in the department.

Research activities in electrical engineering and computer science are carried on by students and faculty in laboratories of extraordinary range and strength, including the Laboratory for Information and Decision Systems, Research Laboratory of Electronics, Computer Science and Artificial Intelligence Laboratory, Center for Materials Science and Engineering, Laboratory for Energy and the Environment (see MIT Energy
Experimental aspects of electrical engineering or emphasizing one or more of the theoretical or technological laboratories. Descriptions of many of these laboratories may be found under Interdisciplinary Research and Study in Part 3.

Because the backgrounds of applicants to the department’s doctoral and predoctoral programs are extremely varied, both as to field (electrical engineering, computer science, physics, mathematics, biomedical engineering, etc.) and as to level of previous degree (bachelor’s or master’s), no specific admissions requirements are listed. All applicants for any of these advanced programs will be evaluated in terms of their potential for successful completion of the department’s doctoral program. Superior achievement in relevant technical fields is considered particularly important.

Master of Science in Electrical Engineering and Computer Science
The general requirements for the degree of Master of Science are given in Graduate Education in Part 1. The department requires that the 66-unit program consist of at least four H-level subjects which must include a minimum of 42 H-level units. In addition, a 24-unit thesis is required beyond the 66 units. Students working full-time for the Master of Science degree may take as many as four classroom subjects per term. The subjects are wholly elective and are not restricted to those given by the department. The program of study must be well balanced, emphasizing one or more of the theoretical or experimental aspects of electrical engineering or computer science.

Electrical Engineer or Engineer in Computer Science
The general requirements for an engineer’s degree are given under Graduate Education in Part 1. These degrees are open to those able students in the doctoral or predoctoral program who seek more extensive training and research experiences than are possible within the master’s program. Admission to the engineer’s program depends upon a superior academic record and outstanding progress on a thesis. The course of studies consists of at least 162 units, 90 of which must be graduate H-level, and the thesis requirements for a master’s degree.

Doctor of Philosophy or Doctor of Science
The general requirements for the degree of Doctor of Philosophy or Doctor of Science are given under Graduate Education in Part 1. Doctoral candidates are expected to participate fully in the educational program of the department and to perform thesis work that is a significant contribution to knowledge. As preparation, MIT students in the Master of Engineering in Electrical Engineering and Computer Science program will be expected to complete that program. Students who have received a bachelor’s degree outside the department, but who have not completed a master’s degree program, will normally be expected to complete the requirements for the Master of Science degree described earlier, including a thesis. Students who have completed a master’s degree elsewhere without a significant research component will be required to register for and carry out a research accomplishment equivalent to a master’s thesis before being allowed to proceed in the doctoral program.

Details of how students in the department fulfill the requirements for the doctoral program are spelled out in an internal memorandum. The department does not have a foreign language requirement, but does require an approved minor program.

Graduate students enrolled in the department may participate in the interdisciplinary centers described in Part 3, such as the Center for Biomedical Engineering and the Operations Research Center.

Fellowships and Research and Teaching Assistantships
Studies toward an advanced degree can be supported by personal funds, by an award such as the National Science Foundation Fellowship (which the student brings to MIT), by a fellowship or traineeship awarded by MIT, or by a graduate assistantship. Assistantships require participation in research or teaching in the department or in one of the associated laboratories. Full-time assistants may register for no more than two scheduled classroom or laboratory subjects during the term, but may receive additional academic credit for their participation in the teaching or research program.

Inquiries
Additional information concerning graduate academic and research programs, admissions, financial aid, and assistantships may be obtained from the Electrical Engineering and Computer Science Graduate Office, Room 38-444, 617-253-4605, or http://www-eecs.mit.edu/.

Other Degree Programs
Joint Program with the Woods Hole Oceanographic Institution/Course 6-W
The Joint Program with the Woods Hole Oceanographic Institution is intended for students whose primary career objective is oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. The program is described in more detail under Interdisciplinary Graduate Programs in Part 3.

Computation for Design and Optimization
The Computation for Design and Optimization (CDO) program offers a master’s degree to students interested in the analysis and application of computational approaches to designing and operating engineered systems. The curriculum is designed with a common core serving all engineering disciplines and an elective component focusing on specific applications. Current MIT graduate students may pursue a CDO master’s degree in conjunction with a department-based master’s or PhD program. For more information, see the full program description under Interdisciplinary Graduate Programs in Part 3 or visit http://web.mit.edu/cdo-program/index.html.

Master of Science in Engineering and Management
The System Design and Management (SDM) program is a partnership among industry, government, and the university for educating technically grounded leaders of 21st-century enterprises. Jointly sponsored by the School of En-
Engineering and the Sloan School of Management, it is MIT’s first degree program to be offered with a distance learning option in addition to a full-time in-residence option. For more information, see the program description under Engineering Systems Division or visit http://sdm.mit.edu/.

Leaders for Global Operations Program
The 24-month Leaders for Global Operations (LGO) program combines graduate education in engineering and management for those with two or more years of full-time work experience who aspire to leadership positions in manufacturing or operations companies. A required 6.5-month internship provides opportunity to complete a research project on site at one of LGO’s partner companies. The internship leads to a dual-degree thesis, culminating in two master’s degrees—an SM in management or an MBA, and an SM from a participating engineering department. The program is offered jointly through the MIT Sloan School of Management and the School of Engineering. For more information, see the program description under Engineering Systems Division or visit http://lgo.mit.edu/.

Master of Science in Technology and Policy
The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description under Engineering Systems Division or visit http://web.mit.edu/tpp/.

Faculty and Staff

Faculty and Teaching Staff
- William Eric Leifur Grimsson, PhD
- Bernard M. Gordon Professor of Medical Engineering
- Department Head
- Duane S. Boning, PhD
- Professor of Electrical Engineering and Computer Science
- Associate Department Head
- Srinivas Devadas, PhD
- Professor of Electrical Engineering and Computer Science
- Associate Department Head
- Dennis M. Freeman, PhD
- Professor of Electrical Engineering
- MacVicar Faculty Fellow
- Education Officer
- Christopher J. Terman, PhD
- Senior Lecturer
- Associate Director, Computer Science and Artificial Intelligence Laboratory
- Undergraduate Officer
- Terry Philip Orlando, PhD
- Professor of Electrical Engineering
- Graduate Officer
- Markus Zahn, ScD
- Thomas and Gerd Perkins Professor of Electrical Engineering
- Director, 6-A Internship Program

Professors
- Harold Abelson, PhD
- Professor of Computer Science and Engineering
- Anant Agarwal, PhD
- Professor of Computer Science and Engineering
- Akintunde I. Akinwande, PhD
- Professor of Electrical Engineering
- Saman P. Amarasinghe, PhD
- Professor of Computer Science and Engineering
- Dimitri A. Antoniadis, PhD
- Ray and Maria Stata Professor of Electrical Engineering
- Arvind, PhD
- Charles W. and Jennifer C. Johnson Professor of Computer Science and Engineering
- Arthur B. Baggeroer, ScD
- Professor of Mechanical, Ocean, and Electrical Engineering
- Ford Professor of Engineering, Emeritus
- Hari Balakrishnan, PhD
- Professor of Computer Science and Engineering
- Timothy Berners-Lee
- 3COM Founders Professor of Engineering
- Abraham Bers, ScD
- Professor of Electrical Engineering
- Dimitri P. Bertsekas, PhD
- McAfee Professor of Electrical Engineering
- Robert Cregar Berwick, PhD
- Professor of Computer Science and Engineering and Computational Linguistics
- Sangeeta Bhatia, MD, PhD
- Professor of Electrical Engineering and Health Sciences and Technology
- Howard Hughes Medical Investigator
- Associate Member, Broad Institute
- Louis Benjamin Daniel Braida, PhD
- Henry Ellis Warren Professor of Electrical Engineering and Health Sciences and Technology
- Rodney Allen Brooks, PhD
- Panasonic Professor of Computer Science and Engineering
- Vladimir Bulovic, PhD
- Professor of Electrical Engineering
- MacVicar Faculty Fellow
- Vincent W. S. Chan, PhD
- Joan and Irwin M. Jacobs Professor of Electrical Engineering
- Anantha P. Chandrakasan, PhD
- Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
- Director, Microsystems Technology Laboratories
- Isaac L. Chuang, PhD
- Professor of Electrical Engineering
- Munther A. Dahleh, PhD
- Professor of Electrical Engineering
- Associate Director, Laboratory for Information and Decision Systems
- Randall Davis, PhD
- Professor of Computer Science and Engineering
Ronald Richard Parker, PhD
Professor of Electrical Engineering and Nuclear Science and Engineering
Pablo Parrilo, PhD
Finmeccanica Career Development Professor of Electrical Engineering and Computer Science
William Tower Peake, ScD
Professor of Electrical and Bioengineering
Paul Livingstone Penfield, Jr., ScD
Professor of Electrical Engineering
Rajeev J. Ram, PhD
Professor of Electrical Engineering
MacVicar Faculty Fellow
Associate Director, Research Laboratory of Electronics
L. Rafael Reif, PhD
Fariborz Maseeh Professor of Emerging Technology Provost
Martin C. Rinard, PhD
Professor of Computer Science and Engineering
Ronald Linn Rivest, PhD
Andrew and Erna Viterbi Professor of Computer Science and Engineering
James Kerr Roberge, ScD
Professor of Electrical Engineering
Ronitt Rubinfeld, PhD
Professor of Computer Science and Engineering
Daniela L. Rus, PhD
Professor of Computer Science and Engineering Associate Director, Computer Science and Artificial Intelligence Laboratory
Herbert H. Sawin, PhD
Professor of Chemical Engineering and Electrical Engineering
Joel E. Schindall, PhD
Bernard M. Gordon Professor of the Practice Associate Director, Research Laboratory of Electronics
Martin A. Schmidt, PhD
Professor of Electrical Engineering Associate Provost
Jeffrey Howard Shapiro, PhD
J. A. Stratton Professor of Electrical Engineering Director, Research Laboratory of Electronics
Henry I. Smith, PhD
Professor of Electrical Engineering
Charles G. Sodini, PhD
Clarence Joseph LeBel Professor of Electrical Engineering
David Hudson Staelin, ScD
Professor of Electrical Engineering
Kenneth Noble Stevens, ScD
Professor of Electrical Engineering and Health Sciences
Madhu Sudan, PhD
Fujitsu Professor of Computer Science and Engineering
Gerald Jay Sussman, PhD
Panasonic Professor of Electrical Engineering
Peter Szolovits, PhD
Professor of Computer Science and Engineering and Health Sciences and Technology
Seth Teller, PhD
Professor of Computer Science and Engineering
Bruce Tidor, PhD
Professor of Electrical Engineering and Computer Science, and Biological Engineering
Donald Eugene Troxel, PhD
Professor of Electrical Engineering
John N. Tsitsiklis, PhD
Clarence Joseph LeBel Professor of Electrical Engineering and Computer Science Associate Director, Laboratory for Information and Decision Systems
George C. Verghese, PhD
Professor of Electrical Engineering
Stephen Ashley Ward, PhD
Professor of Computer Science and Engineering
Cardinal Warde, PhD
Professor of Electrical Engineering
Jacob K. White, PhD
Cecil H. Green Professor of Electrical Engineering
Alan Steven Willinsky, PhD
Edward S. Webster Professor of Electrical Engineering Director, Laboratory for Information and Decision Systems
Patrick Henry Winston, PhD
Ford Professor of Engineering
Gregory W. Wornell, PhD
Professor of Electrical Engineering
John L. Wyatt, Jr., PhD
Professor of Electrical Engineering
Victor W. Zue, ScD
Delta Electronics Research Professor of Electrical Engineering and Computer Science
Director, Computer Science and Artificial Intelligence Laboratory

Associate Professors
Scott Aaronson, PhD
TIBCO Associate Professor of Electrical Engineering and Computer Science
Elfar Adalsteinsson, PhD
Associate Professor of Electrical Engineering and Computer Science and Health Sciences and Technology
Marc A. Baldo, PhD
Associate Professor of Electrical Engineering
Regina A. Barzilay, PhD
Associate Professor of Computer Science and Engineering
Karl K. Berggren, PhD
Emanuel E. Landsman Associate Professor of Electrical Engineering and Computer Science
Michael J. Collins, PhD
Associate Professor of Computer Science and Engineering
Luca Daniel, PhD
Emanuel E. Landsman Career Development Associate Professor of Electrical Engineering
Joel L. Dawson
Mark Hyman, Jr. Career Development Associate Professor of Electrical Engineering
Erik D. Demaine, PhD
Associate Professor of Computer Science and Engineering
Frederic P. Durand, PhD
Associate Professor of Computer Science and Engineering
Polina Golland, PhD
Distinguished Alumnus 1964 Career
Development Associate Professor of Computer Science and Engineering

Vivek K. Goyal, PhD
Esther and Harold Edgerton Career Development
Associate Professor of Electrical Engineering and Computer Science

Peter L. Hagelstein, PhD
Associate Professor of Electrical Engineering

Jongyoon Han, PhD
Associate Professor of Electrical Engineering and Biological Engineering

Dina Katabi, PhD
Class of 1947 Career Development Associate Professor of Computer Science and Engineering

Manolis Kellis, PhD
Van Tassel Career Development Associate Professor of Electrical Engineering and Computer Science

Jing Kong, PhD
ITT Career Development Associate Professor of Electrical Engineering

Samuel R. Madden, PhD
Associate Professor of Computer Science and Engineering

Robert C. Miller, PhD
NBX Career Development Associate Professor of Computer Science and Engineering

Asuman E. Ozdaglar, PhD
Associate Professor of Electrical Engineering

Tomás Palacios, PhD
Associate Professor of Electrical Engineering

Li-Shiuan Peh, PhD
Associate Professor of Electrical Engineering and Computer Science

David J. Perreault, PhD
Associate Professor in Power Engineering

Rahul Sarapeshkar, PhD
Associate Professor of Electrical Engineering

Devavrat Shah, PhD
Jamieson Career Development Associate Professor of Electrical Engineering and Computer Science

Vladimir M. Stojanovic, PhD
Associate Professor of Electrical Engineering and Computer Science

Collin M. Stultz, PhD, MD
W. M. Keck Career Development Associate Professor of Electrical Engineering and Computer Science, and Health Sciences and Technology

Russell L. Tedrake, PhD
X-Consortium Associate Professor of Computer Science and Engineering

Antonio Torralba, PhD
Associate Professor of Electrical Engineering and Computer Science

Joel Voldman, PhD
Associate Professor of Electrical Engineering

Ron Weiss, PhD
Associate Professor of Computer Science and Biological Engineering

Mehmet Fatih Yanik, PhD
Robert J. Shillman Career Development Associate Professor of Electrical Engineering Associate Member, Broad Institute

Lizhong Zheng, PhD
Steven and Renee Finn Associate Professor of Electrical Engineering

Konstantinos Daskalakis, PhD
Assistant Professor of Computer Science and Engineering

Willem Wang, PhD
Assistant Professor of Electrical Engineering and Computer Science

Hadar Dana Moshkovitz, PhD
Assistant Professor of Electrical Engineering and Computer Science

Armando Solar-Lezama, PhD
Assistant Professor of Computer Science and Engineering

Michael R. Watts, PhD
Assistant Professor of Electrical Engineering and Computer Science

Dana Weinstein, PhD
Assistant Professor of Electrical Engineering

Nikolai Zeldovic, PhD
Douglas T. Ross Career Development Assistant Professor of Computer Science and Engineering

G. David Forney, PhD
Adjunct Professor of Electrical Engineering

Butler W. Lampson, PhD
Adjunct Professor of Computer Science and Engineering

Michael Stonebraker, PhD
Adjunct Professor of Computer Science and Engineering

Vincent Blondel, PhD
Professor of Electrical Engineering

Yin Mun Edmund Lam, PhD
Associate Professor of Electrical Engineering

Tony Eng, PhD
Senior Lecturer

Dedric A. Carter, PhD
Sanjoy Mahajan, PhD
Lecturers

Gim Hom, EE
Lourenço R. Pires, BS
Scott J. Poesse, AS

Research Staff

David D. Clark, PhD
Thomas Frederic Knight, Jr., PhD
Senior Research Scientists

Michael Athans, PhD
Professor of Electrical Engineering, Emeritus

Amar Gopal Bose, ScD
Professor of Electrical Engineering, Emeritus
James Donald Bruce, ScD
Professor of Electrical Engineering, Emeritus

Fernando José Corbató, PhD
Professor of Computer Science and Engineering, Emeritus

Jack Bonnell Dennis, ScD
Professor of Computer Science and Engineering, Emeritus

Murray Eden, PhD
Professor of Electrical Engineering, Emeritus

Shaoul Ezekiel, ScD
Professor of Aeronautics and Astronautics and Electrical Engineering, Emeritus

Robert Mario Fano, ScD
Ford Professor of Engineering, Emeritus

Lawrence Samuel Frishkopf, PhD
Professor of Electrical and Bioengineering, Emeritus

Harry Constantine Gatos, PhD
Professor of Molecular Engineering and Electronic Materials, Emeritus

Leonard A. Gould, ScD
Professor of Electrical Engineering, Emeritus

Carl Eddie Hewitt, PhD
Associate Professor of Computer Science and Engineering, Emeritus

Robert Spayde Kennedy, ScD
Professor of Electrical Engineering, Emeritus

Francis Fan Lee, PhD
Professor of Electrical Engineering and Computer Science, Emeritus

Jerome Ysrael Lettvin, MD
Professor of Electrical and Bioengineering and Communications Physiology, Emeritus

Alan Louis McWhorter, ScD
Professor of Electrical Engineering, Emeritus

Frederic Richard Morgenthaler, PhD
Professor of Electrical Engineering, Emeritus

Walter E. Morrow, Jr., MS
Professor of Electrical Engineering, Emeritus

George Woodman Pratt, Jr., PhD
Professor of Electrical Engineering, Emeritus

Jack Philip Ruina, DEE
Professor of Electrical Engineering, Emeritus

Jerome H. Saltzer, ScD
Professor of Computer Science and Engineering, Emeritus

Campbell Leach Searle, SM
Professor of Electrical Engineering, Emeritus

Stephen David Senturia, PhD
Professor of Electrical Engineering, Emeritus

William McConway Siebert, ScD
Ford Professor of Engineering, Emeritus

Richard Douglas Thornton, ScD
Professor of Electrical Engineering, Emeritus

Thomas Fischer Weiss, PhD
Professor of Electrical and Bioengineering, Emeritus

David Calvin White, PhD
Ford Professor of Engineering, Emeritus

Gerald Loomis Wilson, ScD
Vannevar Bush Professor of Electrical and Mechanical Engineering, Emeritus
The MIT Engineering Systems Division (ESD) tackles complex, large-scale problems utilizing faculty from most academic departments in the School of Engineering, as well as faculty from all five MIT schools. The mission of ESD is to solve previously intractable engineering systems problems by integrating approaches based on engineering, management, and the social sciences, using new framing and modeling methodologies. MIT established the division in 1998 with the charter to develop academic and research programs that educate future leaders in our technological age; to serve as a model to broaden engineering education generally; and to expand the scope and practice of engineering. To help accomplish these goals, ESD actively develops innovative relationships with industry and government through collaborative global research projects and long-distance educational programs. Particular emphasis is placed on the following domains: extended enterprises, critical infrastructures, energy and sustainability, and health care delivery.

Designing engineering systems is increasingly difficult as they increase in size, scope, and complexity. The rate of change is increasing, often due to forces of globalization, new technological capabilities, rising consumer expectations, and increasing social awareness. Purely technical approaches to analysis and design of these systems often lead to failure, as a more comprehensive approach is required. Consequently, knowledgeable development of engineering systems calls for new frameworks of analysis and design that are broader than those of the traditional single-discipline paradigms of individual engineering departments. The effective design of engineering systems requires a more integrative approach in which engineering systems professionals view the technological system as part of a larger whole. While the ESD approach is broader, it must also retain the depth associated with the traditional single-discipline approach. ESD is founded on the recognition that new approaches, frameworks, and theories—both broad and deep—must be developed to analyze and design these systems.

The Engineering Systems Division encompasses five master’s programs: the Technology and Policy Program, the MIT Supply Chain Management Program, the Leaders for Global Operations program, the System Design and Management program, and a Master of Science in Engineering Systems. The core educational and research activity of ESD is the doctoral program in engineering systems, which prepares students for careers in academia, industry, and government.

ESD initiates research focused on important national and international issues that have science and technology components. These build upon the existing research programs in the Center for Transportation and Logistics, the Center for Engineering Systems Fundamentals, and the MIT Portugal Program.

ESD’s educational and research programs are deeply involved with industry, government, and engineering practice in general. Units within ESD have many, often novel, relationships with industry. Examples include: consortia formed around the International Motor Vehicle and the Lean Advancement programs in the Center for Engineering Systems Fundamentals; the Center for Transportation and Logistics’ Supply Chain Exchange, the Integrated Supply Chain Management Program, and the Agelab; and corporate partnerships of the Leaders for Global Operations and the System Design and Management programs.

Application forms for all programs can be accessed from http://web.mit.edu/admissions/graduate/. Applicants whose first language is not English must offer evidence of written and oral proficiency in English by registering at http://www.ielts.org/ for the International English Language Testing System (IELTS) exam, academic format, and achieving a score of 7.5 or better. Information about the Graduate Record Examinations (GRE) and Graduate Management Admissions Test (GMAT) is available at gre-info@ets.org and gmat@ets.org. Applicants should refer to the details of each program concerning specific requirements for admission. Links to all of the programs can be found at http://esd.mit.edu/.

For details, please refer to ESD’s Academic Office (esgrad@mit.edu) and to the MIT Sloan School of Management for programs offering joint degrees.

Master’s Programs

Master of Science in Technology and Policy

The Technology and Policy Program (TPP) educates students seeking leadership roles in the constructive development and use of technology—an area that is not well served by the traditional education of technical or social science specialists. TPP focuses on meeting the need for engineering leaders who are capable of dealing effectively with core technical issues in their full economic, political, and administrative contexts.

TPP educates “leaders who are engineers and scientists”—persons who have strong technical foundations as well as the skills and ability to deal with important strategic issues concerning the intelligent and effective development of technology.

The Master of Science in Technology and Policy is an engineering research degree with a focus on the increasingly central role of technology in the framing, formulation, and resolution of policy problems. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning.

TPP’s coursework provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. All students must complete a satisfactory research thesis that has a substantial technology and policy component. In order to prepare students for effective professional practice, TPP stresses leadership and communication. It also encourages students to participate in TPP’s summer internship program, which places students in government and industry in the US and around the world.

The TPP curriculum consists of three blocks of subjects and a research thesis. The first block is a required integrative subject in technology and policy and a set of program seminars focusing on leadership and presentation skills. The second block focuses on training in formal frameworks for policy development and consists of restricted electives in microeconomics, politi-
The Master of engineering in logistics (Mlog) is a master's degree program for technical professionals who seek to build upon their backgrounds and experience in order to advance to positions of leadership in their profession.

The SDM program offers the degree of Master of Science in Engineering and Management. Students take subjects drawn from three areas: systems (systems engineering, architecture, and optimization), management, and a technical area of the student's choosing.

SDM provides both on-campus instruction for resident degree students and distance learning instruction for technical professionals who are continuing in their positions at remote locations while enrolled in the program. The 13-month full-time program that begins in January requires 11 courses, 3 electives, a thesis seminar, and a thesis. The distance learning program requires 24 months to complete, with an initial January on campus followed by five semesters of distance education classes; students spend one semester in residence at MIT, and the total course requirements, including thesis, are the same as for the full-time, 13-month program.

The required courses span a combination of engineering and management topics, with leadership and teamwork modules interwoven in the curriculum. Core subjects include ESD.34J System Architecture, ESD.33J Systems Engineering, and ESD.36J System and Project Management. The remainder of the required subjects are one quantitative methods course (typically ESD.721 Engineering Risk-Benefit Analysis), ESD.762 Systems Optimization, one product development course (typically ESD.40 Product Design and Development), 15.381 The Human Side of Technology, ESD.763 Operations and Supply Chain Management or another operations course, 15.969 User-centered Innovation in the Internet Age, 15.905 Technology Strategy for SDM, and 15.514 Financial and Managerial Accounting.

All required subjects are taught on campus and via distance education. Elective selection is driven by the student's career objectives in consultation with the SDM program executive director. Students take one engineering and one management elective, and one design or product development elective, in addition to selected courses to fill the leadership requirement.

The ideal applicant for the SDM program will have a master's degree in engineering or the equivalent and three or more years as a product...
development professional, including experience as a team leader. Students with a bachelor’s degree and five years of professional experience, including leadership experience, are encouraged to apply.

The SDM program begins in January. Potential student fellows may apply via the web at http://sdm.mit.edu/apply.html. For additional information contact the SDM Program Office in Room E40-315, 617-253-1055, sdm@mit.edu, or visit http://sdm.mit.edu/.

Leaders for Global Operations
An active partnership among the School of Engineering, the Sloan School of Management, and 18 corporations, the MIT Leaders for Global Operations (LGO) program develops world-class leaders for manufacturing and operations. LGO focuses on theory and global practice from concept development through product delivery, including challenges faced on factory floors and in global supply chains. Corporate partners provide generous fellowships for all students.

The LGO program leads to two MIT master’s degrees, an SM from ESD (or another participating engineering department) and an MBA or SM from the MIT Sloan School of Management. In addition to ESD, seven engineering master’s programs participate in LGO: Aeronautics and Astronautics, Biological Engineering, Chemical Engineering, Civil and Environmental Engineering, Electrical Engineering and Computer Science, Materials Science and Engineering, and Mechanical Engineering.

The 24-month, dual-degree LGO program integrates engineering and management disciplines and emphasizes leadership, teamwork, management of change processes, and learning by doing. The rigorous curriculum is developed and taught by faculty from both schools. It includes a 6.5-month internship on site research. The coursework and research culminate in a single thesis.

DOCTORAL PROGRAM
ESD’s doctoral students are leaders in the evolution of engineering systems approaches—committed to thinking imaginatively about ways to broaden engineering’s scope to solve complex problems. In the course of their studies, students acquire broad knowledge of the field of engineering systems and deep knowledge of a domain and of a methodology. By the time a student defends her thesis, she has conducted original scholarship on complex technical systems, advancing either theory, policy, or practice.

As with the Engineering Systems Division as a whole, the research done by students in the doctoral program can generally be categorized into several broad areas. Students do work in the domains of energy and sustainability, extended enterprises, health care delivery, and critical infrastructures. Students use approaches that examine the interface of humans and technology or that measure, model, and mitigate the effects of uncertainty. Students work to improve the design and implementation of large, complex systems. Students deploy network models to understand complexly related social, technical, and managerial entities.

To accommodate the diversity of domains and approaches, ESD doctoral programs are highly individualized. PhD students and their committees construct programs that “go deep” in the domains and methodologies a student’s research requires. Breadth of knowledge about the field of engineering systems is also essential. Alongside domain and methodology requirements, all students must take ESD.83 Doctoral Seminar in Engineering Systems, ESD.86 Models, Data and Inference for Socio-Technical Systems, ESD.87 Social Science Concepts and Methods, and an applied engineering systems subject. For details on the program, see http://esd.mit.edu/academics/phd.html.

Admission to the ESD PhD program is based upon outstanding academic performance in engineering or applied science, GRE scores, demonstrated fluency in English, deep interest in engineering systems as a field of study, and letters of recommendation. Admissions decisions are made once a year. Applications are due December 15.
December 15. For additional information, please visit the Frequently Asked Questions about Admissions at http://esd.mit.edu/academics/phd_admissions.html.

Human-Systems Engineering Track
The human-systems engineering (HSE) track within ESD focuses on the characteristics of people—including organizational, social, and cognitive—throughout the system conception, development, validation, and operation processes.

Areas of focus in the HSE track include human interaction with transportation systems (rail, aviation, automobile), human interaction with robotic/autonomous systems, process control, and heterogeneous systems which contain elements of more than one system (such as network-centric operations). Example domains include air traffic control, military command and control of manned and/or unmanned systems, first responder systems, and driving interactions.

The HSE track fits within the already established SM and PhD programs for ESD and TPP. It is a two-year program at the SM level, and three or more years beyond the SM for the PhD program. The core classes remain the same as already established for ESD students with the following changes:

Either
ESD.756) Statistical Methods in Experimental Design
or
ESD.86 Models, Data and Inference for Socio-Technical Systems
and
ESD.774) Human Supervisory Control of Automated Systems

For more information visit http://esd.mit.edu/hse/ or contact Missy Cummings at missyc@mit.edu.

OTHER INTERDISCIPLINARY PROGRAMS

Graduate Programs in Transportation
MIT provides a broad range of opportunities for transportation-related education. Courses and classes span the School of Engineering, the Sloan School of Management, and the School of Architecture and Planning, with many activities covering interdisciplinary topics that prepare students for future industry, government, or academic careers.

A variety of graduate degrees are available to students interested in transportation studies and research, including a Master of Science in Transportation and PhD in Transportation, described under Interdisciplinary Graduate Programs in Part 3.

RESEARCH CENTERS

Center for Engineering Systems Fundamentals
ESD’s center for Engineering Systems Fundamentals (CESF) was founded in September 2005 to conduct research on the fundamentals and cross-cutting issues in engineering systems.

CESF is engaged in several areas, among them developing seminars and other mechanisms to discuss engineering systems fundamentals; collaborating with faculty to bring in resources for CESF and shape its relationships with ESD’s other research centers, including the Center for Technology, Policy, and Industrial Development and the Center for Transportation and Logistics; and sponsoring an engineering systems book series and a biannual international symposium on engineering systems fundamentals. CESF seeks to establish cross-cutting research projects on problems of national significance that require integration of the methods of engineering, management, and the social sciences. Through the interdisciplinary framing, formation, and solution of socio-technical systems problems, this process should lead to the creation of engineering systems fundamentals.

Center for Technology, Policy, and Industrial Development
MIT’s Center for Technology, Policy, and Industrial Development (CTPID) is an interdisciplinary research and educational center addressing global technology and policy issues through sustained partnerships with industry, government, and academia. These partnerships are aimed at supporting global economic growth and advancing policies that preserve the environment and benefit society at large.

Center programs include the Ford-MIT Alliance, IMVP, Lean Advancement Initiative, Lean Sustainment Initiative, Information Quality Program (MIT IQ), Materials Systems Laboratory, and the Technology and Law Program.

For further information on CTPID and its programs, see Interdisciplinary Research and Study in Part 3.

Center for Transportation & Logistics
For more than 35 years, the MIT Center for Transportation & Logistics (MIT CTL) has been a world leader in supply chain management and transportation education and research. MIT CTL engages in three principal activities: research, outreach, and education.

Research
The center’s world-renowned research programs directly involve over 75 faculty and research staff from a wide range of academic disciplines, as well as researchers in various affiliate organizations around the world. MIT CTL has three main research programs: supply chain management and logistics, transportation, and the impact of aging on mobility, health, and wellness.

In the field of supply chain management and logistics, MIT CTL has made major knowledge contributions and helped numerous companies gain competitive advantage from its cutting-edge research. Research projects include:

- AgeLab
- Carbon Efficient Supply Chains
- Demand Management
- FreightLab
- Healthcare Supply Chain
- Scenario Planning
- Strategy Alignment
- Supply Chain 2020: The Future of the Supply Chain
Part 154

Centers program administered by the US Department of Transportation and the Federal Region I of the University Transportation Logistics and Supply Chain Management as well. Programs earlier in this chapter.

The SCM program is described under Master's degrees and executive-level programs are unsurpassed for quality and market relevance.

The MIT Supply Chain Management (SCM) program attracts business professionals from across the globe to participate in its intensive logistics and supply chain management program. The SCM program is described under Master's Programs earlier in this chapter.

An ESD doctoral program can be focused on logistics and supply chain management as well.

Through MIT CTL, MIT is the lead university in Federal Region I of the University Transportation Centers program administered by the US Department of Transportation. Through this program, full and partial fellowships are awarded to graduate students in transportation. Research and teaching assistantships also are available through this and other programs. Undergraduates also may participate in sponsored research through the Undergraduate Research Opportunities Program.

Students interested in studying supply chain management and logistics, or in learning more about the center and its educational programs, should write to Dr. Jarrod Goentzel, MIT Center for Transportation and Logistics, Room E40-359, goentzel@mit.edu, or visit http://scm.mit.edu/.

Students interested in the Master of Science in Transportation program administered through the Department of Civil and Environmental Engineering should contact Nigel Wilson, Room 1-238, nhmw@mit.edu. Several departments offer both master's and doctoral degrees that allow a focus on transportation, including Aeronautics and Astronautics, Civil and Environmental Engineering, the Engineering Systems Division, and Urban Studies and Planning.

Outreach

The gateway to the center's research is MIT CTL's Corporate Outreach Program. Through this multifaceted program, industry and MIT CTL collaborate to turn innovative research into market-winning commercial applications. The center currently has more than 45 corporate partners worldwide who participate in its events, interact with its researchers, and contribute to and help steer its research projects.

Education

In education, MIT is consistently ranked first among business programs in logistics and supply chain management. MIT CTL graduate degrees and executive-level programs are unsurpassed for quality and market relevance.

The MIT Supply Chain Management (SCM) program attracts business professionals from across the globe to participate in its intensive logistics and supply chain management program. The SCM program is described under Master's Programs earlier in this chapter.

An ESD doctoral program can be focused on logistics and supply chain management as well.

Through MIT CTL, MIT is the lead university in Federal Region I of the University Transportation Centers program administered by the US Department of Transportation. Through this program, full and partial fellowships are awarded to graduate students in transportation. Research and teaching assistantships also are available through this and other programs. Undergraduates also may participate in sponsored research through the Undergraduate Research Opportunities Program.

Students interested in studying supply chain management and logistics, or in learning more about the center and its educational programs, should write to Dr. Jarrod Goentzel, MIT Center for Transportation and Logistics, Room E40-359, goentzel@mit.edu, or visit http://scm.mit.edu/.

Students interested in the Master of Science in Transportation program administered through the Department of Civil and Environmental Engineering should contact Nigel Wilson, Room 1-238, nhmw@mit.edu. Several departments offer both master's and doctoral degrees that allow a focus on transportation, including Aeronautics and Astronautics, Civil and Environmental Engineering, the Engineering Systems Division, and Urban Studies and Planning.

FACULTY AND STAFF

Faculty and Teaching Staff

Yossi Sheffi, PhD
Elisha Gray II Professor of Engineering Systems
Professor of Civil and Environmental Engineering
Director, MIT Center for Transportation and Logistics

Olivier L. de Weck, PhD
Associate Professor of Aeronautics and Astronautics and Engineering Systems
Associate Director

Professors

Thomas J. Allen, PhD
Howard W. Johnson Professor of Management, Emeritus
Professor of Engineering Systems, Emeritus

George E. Apostolakis, PhD
Korea Electric Power Professor of Nuclear Science and Engineering
Professor of Engineering Systems

Cynthia Barnhart, PhD
Professor of Civil and Environmental Engineering and Engineering Systems
Codirector, Operations Research Center
Associate Dean for Academic Affairs, School of Engineering

John Carroll, PhD
Morris A. Adelman Professor of Management
Professor of Engineering Systems
Codirector, Lean Advancement Initiative

Joel Philip Clark, ScD
Professor of Materials Systems and Engineering Systems

Edward F. Crawley, ScD
Ford Professor of Aeronautics and Astronautics and Engineering Systems
Director, Bernard M. Gordon–MIT Engineering Leadership Program

Michael Cusumano, PhD
Sloan Management Review Distinguished Professor of Management
Professor of Engineering Systems

Richard de Neufville, PhD
Professor of Civil and Environmental Engineering and Engineering Systems

Thomas Waddy Eagar, ScD
Thomas Lord Professor of Materials Engineering and Engineering Systems

Steven D. Eppinger, ScD
General Motors Leaders for Global Operations
Professor of Management Science
Professor of Engineering Systems
Codirector, System Design and Management Program

Charles Fine, PhD
Chrysler Leaders for Global Operations Professor of Management
Professor of Engineering Systems

David Geltner, PhD
Professor of Real Estate Finance and Engineering Systems

Stephen C. Graves, PhD
Abraham J. Siegel Professor of Management
Professor of Engineering Systems

Outreach

The gateway to the center’s research is MIT CTL’s Corporate Outreach Program. Through this multifaceted program, industry and MIT CTL collaborate to turn innovative research into market-winning commercial applications. The center currently has more than 45 corporate partners worldwide who participate in its events, interact with its researchers, and contribute to and help steer its research projects.

Education

In education, MIT is consistently ranked first among business programs in logistics and supply chain management. MIT CTL graduate degrees and executive-level programs are unsurpassed for quality and market relevance.

The MIT Supply Chain Management (SCM) program attracts business professionals from across the globe to participate in its intensive logistics and supply chain management program. The SCM program is described under Master’s Programs earlier in this chapter.

An ESD doctoral program can be focused on logistics and supply chain management as well.

Through MIT CTL, MIT is the lead university in Federal Region I of the University Transportation Centers program administered by the US Department of Transportation. Through this program, full and partial fellowships are awarded to graduate students in transportation. Research and teaching assistantships also are available through this and other programs. Undergraduates also may participate in sponsored research through the Undergraduate Research Opportunities Program.

Students interested in studying supply chain management and logistics, or in learning more about the center and its educational programs, should write to Dr. Jarrod Goentzel, MIT Center for Transportation and Logistics, Room E40-359, goentzel@mit.edu, or visit http://scm.mit.edu/.

Students interested in the Master of Science in Transportation program administered through the Department of Civil and Environmental Engineering should contact Nigel Wilson, Room 1-238, nhmw@mit.edu. Several departments offer both master’s and doctoral degrees that allow a focus on transportation, including Aeronautics and Astronautics, Civil and Environmental Engineering, the Engineering Systems Division, and Urban Studies and Planning.

FACULTY AND STAFF

Faculty and Teaching Staff

Yossi Sheffi, PhD
Elisha Gray II Professor of Engineering Systems
Professor of Civil and Environmental Engineering
Director, MIT Center for Transportation and Logistics

Olivier L. de Weck, PhD
Associate Professor of Aeronautics and Astronautics and Engineering Systems
Associate Director

Professors

Thomas J. Allen, PhD
Howard W. Johnson Professor of Management, Emeritus
Professor of Engineering Systems, Emeritus

George E. Apostolakis, PhD
Korea Electric Power Professor of Nuclear Science and Engineering
Professor of Engineering Systems

Cynthia Barnhart, PhD
Professor of Civil and Environmental Engineering and Engineering Systems
Codirector, Operations Research Center
Associate Dean for Academic Affairs, School of Engineering

John Carroll, PhD
Morris A. Adelman Professor of Management
Professor of Engineering Systems
Codirector, Lean Advancement Initiative

Joel Philip Clark, ScD
Professor of Materials Systems and Engineering Systems

Edward F. Crawley, ScD
Ford Professor of Aeronautics and Astronautics and Engineering Systems
Director, Bernard M. Gordon–MIT Engineering Leadership Program

Michael Cusumano, PhD
Sloan Management Review Distinguished Professor of Management
Professor of Engineering Systems

Richard de Neufville, PhD
Professor of Civil and Environmental Engineering and Engineering Systems

Thomas Waddy Eagar, ScD
Thomas Lord Professor of Materials Engineering and Engineering Systems

Steven D. Eppinger, ScD
General Motors Leaders for Global Operations
Professor of Management Science
Professor of Engineering Systems
Codirector, System Design and Management Program

Charles Fine, PhD
Chrysler Leaders for Global Operations Professor of Management
Professor of Engineering Systems

David Geltner, PhD
Professor of Real Estate Finance and Engineering Systems

Stephen C. Graves, PhD
Abraham J. Siegel Professor of Management
Professor of Engineering Systems
John Hansman, PhD
Professor of Aeronautics and Astronautics and Engineering Systems
Head, Division of Humans and Automation
Director, International Center for Air Transportation

David Edgar Hardt, PhD
Ralph E. and Eloise F. Cross Professor of Mechanical Engineering
Professor of Engineering Systems

Daniel Hastings, PhD
Professor of Aeronautics and Astronautics and Engineering Systems
Dean for Undergraduate Education

Thomas Anton Kochan, PhD
George Maverick Bunker Professor of Management
Professor of Engineering Systems

Paul A. Lagacé, PhD
Professor of Aeronautics and Astronautics and Engineering Systems
MacVicar Faculty Fellow

Richard Larson, PhD
Mitsui Professor of Engineering Systems
Director, Center for Engineering Systems Fundamentals

Donald Lessard, PhD
EPOCH Foundation Professor of International Management
Professor of Engineering Systems

Nancy Leveson, PhD
Professor of Aeronautics and Astronautics and Engineering Systems

Seth Lloyd, PhD
Professor of Mechanical Engineering and Engineering Systems

Stuart Madnick, PhD
John Norris Maguire Professor of Information Technology and Engineering Systems
Codirector, PROFIT Program

David Hunter Marks, PhD
Morton and Claire Goulder Family Professor of Civil and Environmental Engineering and Engineering Systems

David A. Mindell, PhD
Frances and David Dibner Professor of the History of Engineering and Manufacturing (STS)
Professor of Engineering Systems
MacVicar Faculty Fellow
Director, Science, Technology, and Society Program

Sanjoy Mitter, PhD
Professor of Electrical Engineering and Engineering Systems

Fred Moavenzadeh, PhD
James Mason Crafts Professor
Professor of Civil and Environmental Engineering and Engineering Systems
Director, Technology and Development Program (On leave)

Ernest Moniz, PhD
Cecil and Ida Green Professor of Physics and Engineering Systems
Director, Laboratory for Energy and the Environment
Director, MIT Energy Initiative

Joel Moses, PhD
Professor of Computer Science and Engineering Systems
Institute Professor
Acting Director, Center for Technology, Policy, and Industrial Development

Dava J. Newman, PhD
Professor of Aeronautics and Astronautics and Engineering Systems
MacVicar Faculty Fellow
Director, Technology and Policy Program

Daniel Roos, PhD
Japan Steel Industry Professor of Civil and Environmental Engineering and Engineering Systems
Director, MIT Portugal Program

Anthony Sinskey, ScD
Professor of Biology, Health Sciences and Technology, and Engineering Systems

John Sterman, PhD
Jay W. Forrester Professor of Management
Professor of Engineering Systems
Director, Systems Dynamics Group

Joseph Martin Sussman, PhD
JR East Professor of Civil and Environmental Engineering and Engineering Systems

James Utterback, PhD
David J. McGrath, Jr. (1959) Professor of Management and Innovation
Professor of Engineering Systems

Eric von Hippel, PhD
T. Wilson (1953) Professor of Management
Professor of Engineering Systems

David R. Wallace, PhD
Professor of Mechanical Engineering and Engineering Systems
MacVicar Faculty Fellow
Codirector, MIT CADlab

Roy Welsch, PhD
Professor of Statistics and Management Science and Engineering Systems

Sheila Widnall, ScD
Professor of Aeronautics and Astronautics and Engineering Systems
Institute Professor

John Williams, PhD
Professor of Civil and Environmental Engineering and Engineering Systems
Director, Information Engineering, Auto-ID Laboratory

Associate Professors
Mary L. Cummings, PhD
Associate Professor of Aeronautics and Astronautics and Engineering Systems

John Fernandez
Associate Professor of Building Technology and Engineering Systems

Daniel D. Frey, PhD
Associate Professor of Mechanical Engineering and Engineering Systems
Kenneth Oye, PhD
Associate Professor of Political Science and Engineering Systems

Assistant Professors
Hamsa Balakrishnan, PhD
Assistant Professor of Aeronautics and Astronautics and Engineering Systems
Marta C. González, PhD
Assistant Professor of Civil and Environmental Engineering and Engineering Systems
Noelle Eckley Selin, PhD
Assistant Professor of Engineering Systems and Atmospheric Chemistry
Jessika Trancik, PhD
Assistant Professor of Engineering Systems
Mort Webster, PhD
Assistant Professor of Engineering Systems
Annalisa Weigel, PhD
Jerome C. Hunsaker Assistant Professor of Aeronautics and Astronautics and Engineering Systems
Maria Yang, PhD
Assistant Professor of Mechanical Engineering and Engineering Systems
Christopher Zegras, PhD
Ford Career Development Assistant Professor of Transportation and Urban Planning

Professors of the Practice
Christopher Magee, PhD
Professor of the Practice of Engineering Systems and Mechanical Engineering
Deborah Nightingale, PhD
Professor of the Practice of Aeronautics and Astronautics and Engineering Systems
Codirector, Lean Advancement Initiative

Senior Lecturers
Jonathan Byrnes, DBA
Senior Lecturer, Engineering Systems
Christopher Caplice, PhD
Senior Lecturer, Engineering Systems
Executive Director, Center for Transportation and Logistics

Joseph Coughlin, PhD
Senior Lecturer, Engineering Systems
Director, AgeLab and New England University Transportation Center, Center for Transportation and Logistics

Frank R. Field III, PhD
Senior Research Associate, Center for Technology, Policy, and Industrial Development
Senior Research Engineer, Materials Systems Laboratory
Director of Education, Technology and Policy Program

Patrick Hale, PhD
Senior Lecturer, Engineering Systems
Director, System Design and Management Program

Donna Rhodes, PhD
Senior Lecturer, Engineering Systems
Principal Research Scientist, Center for Technology, Policy, and Industrial Development

Donald B. Rosenfield, PhD
Senior Lecturer, Sloan School of Management
Director, Leaders for Global Operations Program

Shalom Saar, PhD
Senior Lecturer, Engineering Systems

Daniel Whitney, PhD
Senior Lecturer, Engineering Systems and Mechanical Engineering
Senior Research Scientist, Center for Technology, Policy, and Industrial Development

Lecturer
Jhonatan Rotberg
Lecturer, Engineering Systems
Director, NextLab Program, Center for Transportation and Logistics

Research Staff

Research Associate
Edgar Blanco, PhD
Lisa D’Ambrosio, PhD
Jarrod Goentzel, PhD
Qi D. Van Eikema Hommes, PhD
Roberto Perez-Franco, PhD
Mahender Singh, PhD

Senior Research Scientist
Stan N. Finkelstein, MD
Senior Research Scientist, Engineering Systems and Health Sciences and Technology

Principal Research Scientist
Randolph Kirchain, PhD
Materials science and engineering is a field broadly based in chemistry, physics, and the engineering sciences. The field is concerned with the design, manufacture, and use of all classes of materials (including metals, ceramics, semiconductors, polymers, and biomaterials), and with energy, environmental, health, economic, and manufacturing issues relating to materials. Materials science and engineering is a field critical to our future economic and environmental well-being.

Materials science emphasizes the study of the structure of materials and of processing-structure-property relations in materials. Almost all the properties of importance to an engineer are structure-sensitive—that is, they can be modified in significant ways by changing the chemical composition, the arrangement of the atoms or molecules in crystalline or amorphous configurations, and the size, shape, and orientation of the crystals or other macroscopic units of a solid. To understand how the useful properties of a material can be modified, it is necessary to understand the fundamental relationships between structure and properties and how the structure can be changed and controlled by the various chemical, thermal, mechanical, or other treatments to which a material is subjected during manufacture and in use. The fundamental understanding of materials developed through materials science has replaced empiricism as the basis for discovery of new materials. Whole classes of new materials such as semiconductors, superconductors, and high-temperature alloys have their roots in modern materials science.

Recent achievements in materials have depended as much on advances in materials engineering as they have on materials science. When developing engineering processes for preparation and production of materials, and when designing materials for specific applications, the materials engineer must understand fundamental concepts such as thermodynamics, and heat and mass transfer and chemical kinetics, and must also have a proper concern for economic, social, and environmental factors. Today’s materials scientists and engineers are well equipped to address some of the key challenges facing humanity, including energy generation and storage and the environmental impact of human activities, and to improve human health and well-being.

Materials engineering and materials science are interwoven in the department. There are some subjects that all students of materials should know: thermodynamics, kinetics, materials structure, electronic and mechanical properties of materials, bio- and polymeric materials, and materials processing. Core subjects in these areas are offered at the undergraduate and graduate levels. In addition, elective subjects covering a wide range of topics are offered. Lectures are complemented by a variety of laboratory experiences. By selecting appropriate subjects, the student can follow many different paths with emphasis on engineering, science, or a mixture of the two. In addition, students may pursue a path in archaeology and archaeological science by selecting subjects that focus on archaeological materials research within the Department of Materials Science and Engineering and the Center for Materials Research in Archaeology and Ethnology. This curriculum is unique within departments of anthropology, archaeology, and engineering.

Materials engineers and materials scientists, whether generalists or specialists in a particular class of material, are in continually high demand by industry and government for jobs in research, development, production, and management. They find challenging opportunities in diverse important positions in companies working on energy and the environment, in the electronics industry, in the aerospace industry, in consumer industries, and in biomaterials and medical industries. A large number of DMSE alumni are faculty of leading universities.

The department has modern undergraduate materials teaching laboratories containing a wide variety of materials processing and characterization equipment. The undergraduate teaching laboratory on the Infinite Corridor includes facilities for biomaterials research, chemical synthesis, and physical and electronic properties measurement. In fall 2009, the new laboratory will be completed. It will contain new characterization equipment for scanning acoustical microscopy, 3-D x-ray microtomography, and multiprobe. Other departmental facilities include those for preparation and characterization of thin films, ceramics and glasses, metallic and nonmetallic crystals, biomaterials, and polymers. Equipment is available for the study of mechanical properties in the Nanomechanics Laboratory, and for metal casting and joining in the foundry. Materials are characterized by optical, electron (TEM, SEM), and scanning probe (AFM, STM) microscopy, and there is equipment for a wide range of electrical optical, magnetic, and mechanical property measurements.

UNDERGRADUATE STUDY

The Department of Materials Science and Engineering offers three undergraduate degree programs:

- Course 3, leading to the Bachelor of Science in Materials Science and Engineering, is taken by the majority of undergraduates in the department, and is accredited by the Accreditation Board for Engineering and Technology (ABET).
- Course 3-A, leading to the Bachelor of Science without specification, provides greater flexibility to the student in designing his or her professional program, and is often taken by pre-med, pre-law, or pre-MBA students.
- Course 3-C provides a Bachelor of Science in Archaeology and Materials.

The department also offers research and educational specialization in a large number of industrially and scientifically important areas leading to master’s and doctoral degrees.

Bachelor of Science in Materials Science and Engineering/Course 3

The undergraduate program serves the needs of students who intend to pursue employment in materials-related industries immediately upon graduation, as well as those who will do graduate work in the engineering or science of materials. The program is designed to be started at the beginning of the sophomore year, although it can be started in the spring term of the sophomore year or in the junior year with some loss of scheduling flexibility. The first four academic terms of the program contain required core subjects that address the fundamental relations between processing, microstructure, properties, and applications of modern materials. The core subjects are followed by a sequence of restricted electives that provide more specialized coverage of the major
Bachelor of Science in Materials Science and Engineering/Course 3

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 3.012 and 3.021] in the Departmental Program</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 3.014 in the Departmental Program]</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication Requirement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The program includes a Communication Requirement of 4 subjects:</td>
<td></td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and</td>
<td></td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in the Major (CI-M).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLUS Departmental Program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).</td>
<td></td>
</tr>
<tr>
<td>Required Subjects</td>
<td>Units</td>
</tr>
<tr>
<td>3.014 Materials Laboratory, 12, LAB, CI-M</td>
<td></td>
</tr>
<tr>
<td>One of the following three subjects:</td>
<td></td>
</tr>
<tr>
<td>3.016 Mathematical Methods for Materials Scientists and Engineers, 12; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST: Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>18.034 Differential Equations, 12, REST: Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>One of the following four subjects:</td>
<td></td>
</tr>
<tr>
<td>3.021 Introduction to Modeling and Simulation, 12, REST: 18.03*</td>
<td></td>
</tr>
<tr>
<td>1.00 Introduction to Computers and Engineering Problem Solving, 12, REST: Calculus I (GIR)</td>
<td></td>
</tr>
<tr>
<td>3.016 Mathematical Methods for Materials Scientists and Engineers, 12; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>3.022 Microstructural Evolution in Materials, 12; 3.012</td>
<td></td>
</tr>
<tr>
<td>3.024 Electronic, Optical, and Magnetic Properties of Materials, 12; 3.012</td>
<td></td>
</tr>
<tr>
<td>3.032 Mechanical Behavior of Materials, 12; Physics I (GIR), 3.016*</td>
<td></td>
</tr>
<tr>
<td>3.034 Organic and Biomaterials Chemistry, 12; 3.012</td>
<td></td>
</tr>
<tr>
<td>3.042 Materials Project Laboratory, 12, CI-M; 3.014*</td>
<td></td>
</tr>
<tr>
<td>3.044 Materials Processing, 12; 3.012, 3.022</td>
<td></td>
</tr>
<tr>
<td>3.ThU Thesis, 9 (1)</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>3.930 Industrial Practice, 6</td>
<td></td>
</tr>
<tr>
<td>plus</td>
<td></td>
</tr>
<tr>
<td>3.931 Industrial Practice, 6</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives (2)</td>
<td>48</td>
</tr>
<tr>
<td>3.016 Mathematical Methods for Materials Scientists and Engineers, 12; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>3.021 Introduction to Modeling and Simulation, 12, REST: 18.03*</td>
<td></td>
</tr>
<tr>
<td>3.046 Thermodynamics of Materials, 12, REST: 18.03*</td>
<td></td>
</tr>
<tr>
<td>3.046 Advanced Materials Processing, 12; 3.022, 3.044</td>
<td></td>
</tr>
<tr>
<td>3.052 Materials for Biomedical Applications, 12; Chemistry (GIR)*</td>
<td></td>
</tr>
<tr>
<td>3.052 Nanomechanics of Materials and Biomaterials, 12; 3.012*</td>
<td></td>
</tr>
<tr>
<td>3.053 Molecular, Cellular, and Tissue Biomechanics, 12; 18.03*, Biology (GIR), 2.370*</td>
<td></td>
</tr>
<tr>
<td>3.065 Polymer Physics, 12; 3.012</td>
<td></td>
</tr>
<tr>
<td>3.064 Polymer Engineering, 12; 3.032, 3.044</td>
<td></td>
</tr>
<tr>
<td>3.07 Introduction to Ceramics, 12; 3.012</td>
<td></td>
</tr>
<tr>
<td>3.072 Symmetry, Structure, and Tensor Properties of Materials, 12; 3.016*</td>
<td></td>
</tr>
<tr>
<td>3.073 Diffraction and Structure, 12; 18.03, 3.024</td>
<td></td>
</tr>
<tr>
<td>3.074 Imaging of Materials, 12; 3.024*</td>
<td></td>
</tr>
<tr>
<td>3.080 Economic and Environmental Materials Selection, 12; 3.012*</td>
<td></td>
</tr>
<tr>
<td>3.14 Physical Metallurgy, 12; 3.012, 3.022, 3.032</td>
<td></td>
</tr>
<tr>
<td>3.15 Electrical, Optical, and Magnetic Materials and Devices, 12; 3.024</td>
<td></td>
</tr>
<tr>
<td>3.153 Nanoscale Materials, 12; 3.024</td>
<td></td>
</tr>
<tr>
<td>3.155 Micro/Nano Processing Technology, 12, CI-M; permission of instructor</td>
<td></td>
</tr>
</tbody>
</table>

| Departmental Program Units That Also Satisfy the GIRs | (39) |
| Unrestricted Electives | 48 |
Students earn a salary during their work periods and also receive academic credit.

Bachelor of Science/Course 3-A

Some students may be attracted to the many opportunities available in the materials discipline, but also have special interests that are not satisfied by the Course 3 program. For instance, some students may wish to take more biology and chemistry subjects in preparation for medical school, or more management subjects prior to entering an MBA or law program. In these cases, the 3-A program may be of value as a more flexible curriculum in which a larger number of elective choices is available.

The curriculum requirements for Course 3-A are similar to, but more flexible than, those for Course 3. Five subjects chosen from the core (3.012; 3.016, 18.03, or 18.034; 3.021), 3.016, 1.00, or 6.01; 3.022; 3.024; 3.032; 3.034; 3.042; and 3.044) and one laboratory subject (3.014) are required, along with any three additional subjects (36 units) selected from the list of Restricted Electives shown under Course 3. In addition to these nine subjects, the student should develop a program of six planned elective subjects appropriate to the student’s stated goals. CI-M designated subjects for Course 3-A include 3.014, 2.009, 2.671, 3.042, 3.155J, 5.36, 5.38, 6.021/2.791/20.370L, and 7.02.

As an example of a 3-A program, a student planning a career in medicine might select the following subjects in addition to the above requirements in order to satisfy the premedical requirements recommended by the MIT Global Education and Career Development Center: 7.02, 5.12, 5.13, 5.310, 7.05.

Students considering the 3-A program should contact the departmental advisor (Professor David Roylance, roylance@mit.edu), who will counsel the student more fully on the academic considerations involved. Under his guidance, the student will prepare a complete plan of study which must be approved by the departmental Undergraduate Committee. This approval must be obtained no later than the beginning of the student’s junior year. Students are then expected to adhere to this plan unless circumstances require a change, in which case a petition for a modified program must be submitted to the Undergraduate Committee. The department does not seek ABET accreditation for the 3-A program.

Bachelor of Science in Archaeology and Materials as Recommended by the Department of Materials Science and Engineering/Course 3-C

Students who have a specific interest in archaeology and archaeological science may choose Course 3-C. The 3-C program is designed to afford students broad exposure to fields that contribute fundamental theoretical and methodological approaches to the study of ancient and historic societies. The primary fields include anthropological archaeology, geology, and materials science and engineering. The program enriches knowledge of past and present-day nonindustrial societies by making the natural and engineering sciences part of the archaeological tool kit.

The program’s special focus is on understanding prehistoric culture through study of the structure and properties of materials associated with human activities. Investigating peoples’ interactions with materials, the objects that such interactions produced, and the related environmental settings, leads to a fuller analysis of the physical, social, cultural, and ideological world in which people function. These are the goals of anthropological archaeology, goals that are reached, in part, through science and engineering perspectives.

Participation in laboratory work by undergraduates is an integral part of the curriculum. The program requires that all students take a materials laboratory subject. Many of the archaeology subjects are designed with a laboratory component; such subjects meet in the Archaeology and Materials Laboratory. Undergraduate students also have access to the extensive CMRAE facilities for research in archaeological materials as part of UROP and thesis projects. Such projects may include archaeological fieldwork during IAP or the summer months.

The HASS Concentration in Archaeology and Archaeological Science provides concentrators with a basic knowledge of the field of archaeology, the systematic study of the human past. Students pursuing the SB in 3-C may not also concentrate in this area. The archaeology and archaeological science concentration consists of four subjects: 3.986, 3.985J, and two other HASS electives from among those currently offered in this subject area: 3.094, 3.982J, 3.983, 3.987, 3.988, 3.993. The department does not seek ABET accreditation for the 3-C program. Students may contact Professor Heather N. Lechtman for more information.

Minors

The Minor in Materials Science and Engineering consists of six undergraduate subjects totalling at least 72 units from the list of Required Subjects and Restricted Electives in the departmental program, with at least one of these taken from the list of Restricted Electives. With the approval of the minor advisor, it may be possible to substitute one subject taken outside the department for one of the Course 3 subjects in the minor program, provided that the coverage of the substituted subject is similar to one of those in the departmental program.

The department’s minor advisor, Professor David Roylance, will ensure that individual minor programs form a coherent group of subjects.
Because of the breadth of the undergraduate program in the department, and the variety of possibilities for specialization, the minor program is flexible in its composition. Examples of minor programs in materials science and engineering with specializations in the areas of biomaterials, ceramics, electronic materials, metallurgy, and polymers can be obtained from the department. Other suitable programs may be composed through consultation between students, the minor advisor, and the Undergraduate Committee.

The Minor in Archaeology and Materials (3-C) consists of six undergraduate subjects totaling 72 units. The five required subjects are 3.012 Fundamentals of Materials Science and Engineering, 3.014 Materials Laboratory, 3.022 Microstructural Evolution in Materials, 3.986 The Human Past: Introduction to Archaeology (HASS-S), and 3.985 Archaeological Science (HASS-S). The sixth subject is an elective from the Archaeology and Archaeological Science subject listings. With the approval of the minor advisor, it may be possible to substitute one subject taken outside the Course 3 program provided the coverage is equivalent. The department’s 3-C minor advisor, Professor Heather Lechtman, will ensure that the minor program forms a coherent group of subjects.

A general description of the minor program at MIT may be found under undergraduate education in Part 1.

Inquiries
Additional information regarding undergraduate programs may be obtained from Professor Lionel Kimerling, Room 13-4118, 617-253-5383, lckim@mit.edu, or from the Academic Office, Room 6-107, 617-258-5816.

GRADUATE STUDY
The Department of Materials Science and Engineering offers the degrees of Doctor of Philosophy and Doctor of Science in Materials Science and Engineering. It offers the degrees of Master of Science in Materials Science and Engineering, and Master of Engineering.

Bachelor of Science in Archaeology and Materials as Recommended by the Department of Materials Science and Engineering/Course 3-C

<table>
<thead>
<tr>
<th>General Institute Requirements (GIrs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Requirement [can be satisfied by 3.014 or 12.119 in the Departmental Program]</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 3.012, 3.021] or 12.001 in the Departmental Program</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [can be satisfied by 3.986, 3.987, 3.985J, and 21A.100; and 3.982, 3.983, or 3.988 in the Departmental Program]</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>152–162</td>
</tr>
<tr>
<td>3.012 Fundamentals of Materials Science and Engineering, 15, REST; 18.03*</td>
<td></td>
</tr>
<tr>
<td>3.014 Materials Laboratory, 12, LAB, CI-M</td>
<td></td>
</tr>
<tr>
<td>One of the following three subjects:</td>
<td></td>
</tr>
<tr>
<td>3.016 Mathematical Methods for Materials Scientists and Engineers, 12; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>18.034 Differential Equations, 12, REST; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>One of the following three subjects:</td>
<td></td>
</tr>
<tr>
<td>3.022 Introduction to Modeling and Simulation, 12, REST; 18.03*</td>
<td></td>
</tr>
<tr>
<td>3.004 Introduction to Computers and Engineering Problem Solving, 12, REST; Calculus I (GIR)</td>
<td></td>
</tr>
<tr>
<td>6.01 Introduction to EECS 1, 12, 1/2 LAB; Physics II (GIR)</td>
<td></td>
</tr>
<tr>
<td>3.022 Microstructural Evolution in Materials, 12; 3.012</td>
<td></td>
</tr>
<tr>
<td>3.032 Mechanical Behavior of Materials, 12; Physics I (GIR), 3.016*</td>
<td></td>
</tr>
<tr>
<td>or 3.044 Materials Processing, 12; 3.012, 3.022</td>
<td></td>
</tr>
<tr>
<td>3.ThU Thesis, 9</td>
<td></td>
</tr>
<tr>
<td>3.985J Archaeological Science, 9, HASS-S; Chemistry (GIR)*</td>
<td></td>
</tr>
<tr>
<td>3.986 The Human Past: Introduction to Archaeology, 12, HASS-S, CI-H</td>
<td></td>
</tr>
<tr>
<td>3.987 Human Origins and Evolution, 9, HASS-S</td>
<td></td>
</tr>
<tr>
<td>3.990 Seminar in Archaeological Method and Theory, 9, CI-M; 3.986, 3.985J, 21A.100</td>
<td></td>
</tr>
<tr>
<td>12.001 Introduction to Geology, 12, REST</td>
<td></td>
</tr>
<tr>
<td>12.110 Sedimentary Geology, 12; 12.001</td>
<td></td>
</tr>
<tr>
<td>or 12.129 Analytical Techniques for Studying Environmental and Geologic Samples, 12, LAB</td>
<td></td>
</tr>
<tr>
<td>21A.100 Introduction to Anthropology, 12, HASS-S</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives
One subject from the following list:
3.07 Introduction to Ceramics, 12; 3.012
3.14 Physical Metallurgy, 12; 3.012, 3.022, 3.032
3.051 Materials for Biomedical Applications, 12; Chemistry (GIR)*
3.052 Nanomechanics of Materials and Biomaterials, 12; 3.032*

One subject from the following list:
3.982 The Ancient Andean World, 9, HASS-S
3.983 Ancient Mesoamerican Civilization, 9, HASS-S
3.984 Materials in Ancient Societies: Ceramics, 12; permission of instructor
3.988 Africa—Past and Present: An Archaeological and Ethnographic Materials Perspective, 9, HASS-S

Departmental Program Units That Also Satisfy the GIRs (90)
Unrestricted Electives 97
Doctoral Degree

The doctoral degree fields are described briefly below. Subject descriptions appropriate to the degree requirements in each of these fields are provided in the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi. The subjects 3.20 Materials at Equilibrium, 3.21 Kinetic Processes in Materials, 3.22 Mechanical Properties of Materials, and 3.23 Electrical, Optical, and Magnetic Properties of Materials are basic to all doctoral degree programs and constitute a required core for all graduate students enrolled in doctoral programs in the department. The general written examination covers material in the doctoral core.

The department’s doctoral programs are organized into four main academic fields: electronic, photonic, and magnetic materials; bio- and polymer materials; structural and environmental materials; and emerging, fundamental, and computational studies in materials science. The academic fields are not rigidly defined. Each member of the departmental faculty works in at least two of these fields and a number of subjects appear in common on the lists of elective subjects in each academic field; there is a great deal of interaction between the fields. The graduate fields are also coupled with other activities on materials within the Institute. Faculty from other departments participate in the departmental teaching and research in these fields. Subjects offered by other departments are, wherever appropriate, included in the recommended electives, and many departmental students participate in multidisciplinary research projects with students and faculty from various parts of the Institute.

Students are expected to learn the fundamentals of their chosen field and to develop a deep understanding of one or more of its significant aspects. Students are required to take further subjects designated by their academic program. A full range of advanced-level subjects is offered in each graduate field, and arrangements can be made for individually planned study of any topic. The oral examinations in the academic programs for the doctoral degree are designed accordingly. In addition, students are required to take a two- or three-subject minor program and two additional thesis-related subjects as approved by a student’s thesis committee.

A large and active research program on the structure and properties, preparation, and processing of materials, with emphasis on ceramics, electronic materials, metals, polymers, and biomaterials, is conducted in the department. Graduate research is an important part of the educational process, and emphasis is placed on the research thesis. Students choose research projects from the many opportunities that exist within the department, and work closely with an individual faculty member. The results of the thesis must be of sufficient significance to warrant publication in the scientific literature.

The department maintains a large number of well-equipped research laboratories, and there is significant interaction between them, including the sharing of experimental facilities and equipment. Most department members are also members of the Center for Materials Science and Engineering, which provides and maintains excellent central facilities, or the Materials Processing Center. Both centers provide interdisciplinary research opportunities as described in Interdisciplinary Research and Study in Part 3.

Electronic, Photonic, and Magnetic Materials

This program includes the science and technology of materials for electrical, magnetic, and optical device applications. It is concerned with the design and fabrication of useful materials and devices through understanding and control of the interplay between electronic, magnetic and optical properties, the micro- and nanostructure of materials (atomic arrangements, defects, interfaces, phase constitution, and morphology), and processing methods. Research within this field includes materials processing in bulk and thin-film form; device fabrication; characterization of the semiconducting, dielectric, optical, and magnetic properties of materials and devices; and theoretical study of the characteristics of bulk materials, thin-film materials and interfaces and their implications for devices.

Bio- and Polymeric Materials

This program concentrates on the science and technology of synthetic and natural materials characterized by carbon-bonded, long chain molecules of seemingly limitless architectural diversity, and their composites with inorganic materials. Polymer and nanocomposite processing by molecular-level assembly, self-assembly, and field-directed approaches are employed to create new materials displaying a wide range of structure and properties. Materials science and engineering principles are applied to the development of new products and therapies including photonic devices, battery electrolytes, organic LEDs, filtration membranes, highly recyclable plastics, resorbable implants, biosensors, and drug delivery devices.

Structural and Environmental Materials

The program on structural and environmental materials encompasses the study of the mechanical response of materials to internal and external stimuli, as well as the design and use of materials to minimize environmental impact. Research topics in the area of structural materials include microelectromechanical systems (MEMS), nanomechanics, functionally graded materials, superalloys, ceramic turbine blades, polymers, biomimicking of natural structural materials, and mechanics of cellular materials. Topics in environmental materials include materials
processing to minimize environmental impact, recycling of materials, materials for energy conversion and storage (e.g., advanced battery systems, fuel cells, solar photovoltaics, smart windows, hydrides), and sensors and actuators for environmental monitoring and control.

Emerging, Fundamental, and Computational Studies in Materials Science

This program encompasses the study of fundamental and emerging concepts and technologies in materials science and engineering. The common principles that underlie the structure and properties of materials are those associated with electronic structure and bonding, atomic arrangement, phase stability, and the role of imperfections and microstructure. Fundamental phenomena considered include structural and phase transformations, reactivity, mass and charge transport, and the optical, electronic, and mechanical response to internal and external stimuli. Tools of study include theory, computer modeling, and experimental characterization methods such as TEM and diffraction. This program also stimulates the integration of important developments from other fields such as mathematics, biology, physics, and economics into materials science and engineering, and allows students to propose relevant interdisciplinary course programs that may lead to emerging disciplines in materials science and engineering.

Interdisciplinary Doctoral Program in Archaeological Materials

The Department of Materials Science and Engineering offers an interdisciplinary doctoral program for individuals who wish to consider the study of archaeological and materials science and pursue research in the field of archaeological materials. Admission to the program is through the department. The program requires four core subjects—half in materials science and engineering, half in archaeology—and six additional subjects. Many of the subject requirements may be met with coursework in the Architecture; Civil and Environmental Engineering; Earth, Atmospheric, and Planetary Sciences; Mechanical Engineering; and Urban Studies and Planning departments; or additionally in the Technology and Policy Program; the Program in Science, Technology, and Society; and the Anthropology Department at Harvard University. Field research opportunities are available, most notably in Mesoamerica and South America.

Interdisciplinary Doctoral Program for Polymer Science and Technology

See Interdisciplinary Graduate Programs in Part 3 for information on this program.

Master of Science in Materials Science and Engineering

The department offers a Master of Science degree in materials science and engineering, which may be taken simultaneously with other departmental or interdepartmental offerings, such as the Leaders for Global Operations program. The general requirements for the master’s degree are described under Graduate Education in Part 1.

The coherent program of subjects (34 units, though not necessarily all Course 3 subjects) must be approved by one of the Master’s Degree Registration Officers in Course 3. Of the 66 total units required for the master’s degree, 42 graduate degree credits are required to be in Course 3 subjects at graduate H-level. The thesis must have significant materials research content and an internal departmental thesis reader is required if the student’s advisor is outside Course 3. Subjects 3.577 and 3.801, may not be used to satisfy the departmental requirement that students earn 42 graduate H-level credits in Course 3 subjects.

The department may also recommend awarding a master’s degree without departmental specification; the general requirements are described under Graduate Education in Part 1. The thesis must be materials-related, and an internal departmental thesis reader is required if the thesis advisor is outside Course 3.

Master of Engineering Program

The department’s Master of Engineering (MEng) program covers the fundamentals of the engineering discipline and provides exposure to the tools and experience of engineering practice. This program differs significantly from the research-based SM and PhD degrees. MEng students are not eligible for research assistant support, and teaching assistant support for MEng students is rare.

The MEng program targets two categories of students: experienced professionals who are returning for “retooling” for a new career or job and experienced professionals who are sent at company expense to prepare for new or increased job responsibilities. Students are not required to have an undergraduate degree in materials science and engineering, but a strong engineering background is expected.

The program begins in the fall and has a fixed duration of 12 months. In the fall, students take two overview subjects, 3.205 and 3.225, designed for the MEng program. These subjects distill to 24 units the essential features of the 54-unit doctoral core, providing coverage of the basics of thermodynamic, kinetics, and properties of materials. These subjects offer adequate preparation for most of the department’s advanced graduate subjects but cannot substitute for the core curriculum requirements in the PhD program.

In the fall term, students take 3.206, a subject that surveys materials engineering practice, and 3.57 Materials Selection, Design, and Economics. The subject on engineering practice includes presentations by a large cross-section of the department faculty. During this first term, students and faculty also develop proposals for projects to be carried out either at a company site or on campus, in the spring (including January). Project proposals are reviewed and approved by a committee of faculty and non-faculty experts who also serve as a policy committee for the program. Projects are completed during the spring and summer terms.

In the fall or spring, students are also expected to take an advanced graduate subject from a set of restricted electives that focus on materials processing, as well as two elective graduate courses. For further information, see the MEng web page at http://dmse.mit.edu/academics/graduate/programs/meng.html.

Joint Program with the Leaders for Global Operations Program

Students planning to apply their materials science and engineering education to a career in the manufacturing industry may apply for the Leaders for Global Operations (LGO) program. The 24-month LGO program combines graduate education in engineering and management for those with two or more years of full-time work.
experience who aspire to leadership positions in manufacturing or operations companies. A required 6.5-month internship provides opportunity to complete a research project on site at one of LGs partner companies. The internship leads to a dual-degree thesis, culminating in two masters degrees—an SM in management or an MBA, and an SM from a participating engineering department. The program is offered jointly through the MIT Sloan School of Management and the School of Engineering. For more information, see the program description under Engineering Systems Division or visit http://lg.mit.edu/.

Joint Program with the Technology and Policy Program

The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description under Engineering Systems Division or visit http://web.mit.edu/tpp/.

Simultaneous Award of Two Master of Science Degrees for Students from Other Departments

Graduate students may seek two Master of Science degrees simultaneously or in sequence, one awarded by the student’s home department and the other by the Department of Materials Science and Engineering. The rules governing dual degrees are found in the section detailing degree requirements under Graduate Education in Part 1. Additional information on requirements that must also be met to obtain the Master of Science degree from the Materials Science and Engineering Department is available from the department.

Entrance Requirements for Graduate Study

General admissions requirements are described under Graduate Education in Part 1. Programs are arranged on an individual basis depending upon the preparation and interests of the student. Those who have not studied some thermodynamics and kinetics at the undergraduate level are advised to take 3.012 Fundamentals of Materials and 3.022 Microstructural Evolution.

Requirements for Completion of Graduate Degrees

The general requirements for completion of graduate degrees are also described under Graduate Education in Part 1. Students completing a Master of Science or a Master of Engineering degree are required to present a seminar summarizing the thesis. The department requires that candidates for the doctoral degrees go through a qualifying procedure and pass Institute-mandated general written and oral examinations before continuing with their programs of study and research, and that they satisfy a minor requirement. Information on the qualifying procedure and on the subject areas covered by the general examinations is available from the chairman of the Departmental Committee on Graduate Students.

Teaching/Research Assistantships and Fellowships

The Department of Materials Science and Engineering offers assistantships and fellowships for graduate study. Research and teaching assistantships are available in the fields in which the department is active.

Inquiries

Additional information regarding graduate programs, admissions, and financial aid may be obtained by writing to the Academic Office, Room 6-107, 617-253-3302.

Faculty and Staff

Faculty and Teaching Staff

- Edwin L. Thomas, PhD
- Morris Cohen Professor of Materials Science and Engineering
- Department Head
- Lionel Cooper Kimerling, PhD
- Thomas Lord Professor of Materials Science and Engineering
- Undergraduate Officer
- Harry Louis Tuller, EngScD
- Professor of Ceramics and Electronic Materials
- Director, Crystal Physics and Optical Electronics Laboratory
- Admissions Officer

Professors

- Samuel Miller Allen, PhD
- POSCO Professor of Physical Metallurgy
- Ronald George Ballinger, ScD
- Professor of Materials Science and Engineering
- and Nuclear Science and Engineering
- Angela Belcher, PhD
- Germeshausen Professor of Materials Science and Engineering
- and Biological Engineering
- W. Craig Carter, PhD
- Professor of Materials Science and Engineering
- MacVicar Faculty Fellow
- Gerbrand Ceder, PhD
- Richard P. Simmons Professor of Materials Science and Engineering
- Yet-Ming Chiang, ScD
- Kyocera Professor of Ceramics
- Michael John Cima, PhD
- Sumitomo Electric Industries Professor of Engineering
- Director, Lemelson–MIT Program
- Joel Phillip Clark, ScD
- Professor of Materials Systems
- Thomas Waddy Eagar, ScD
- Professor of Materials Engineering and Materials Systems
- Eugene A. Fitzgerald, PhD
- Merton C. Flemings—SMA Professor of Materials Science and Engineering

163
Lorna Jane Gibson, PhD
Matoula S. Salapatas Professor of Materials Science and Engineering
Linn Walker Hobbs, DPhil
Professor of Materials Science and Nuclear Science and Engineering
Dorothy Hosler, PhD
Professor of Archaeology and Ancient Technology
Klavs Flemming Jensen, PhD
Warren K. Lewis Professor of Chemical Engineering and Materials Science and Engineering Head, Department of Chemical Engineering
Heather Nan Lechtman, MA
Professor of Archaeology and Ancient Technology
Director, Center for Materials Research in Archaeology and Ethnology
Anne M. Mayes, PhD
Toyota Professor of Materials Science and Engineering
MacVicar Faculty Fellow
Christine Ortiz, PhD
Professor of Biomedical Engineering
Dean for Graduate Education
Caroline Anne Ross, PhD
Toyota Professor of Materials Science and Engineering
Michael Francis Rubner, PhD
TDK Professor of Materials Science and Engineering
Director, Center for Materials Science and Engineering
Donald Robert Sadoway, PhD
John F. Elliott Professor of Metallurgy
Subra Suresh, ScD
Vannevar Bush Professor of Engineering
Professor of Materials Science and Engineering, Mechanical Engineering, and Biological Engineering
Dean of Engineering
Carl Vernette Thompson II, PhD
Stavros Salapatas Professor of Materials Science and Engineering
Director, Materials Processing Center
Bernhardt John Wuensch, PhD
Professor of Ceramics
Sidney Yip, PhD
Professor of Nuclear Science and Engineering and Materials Science and Engineering

Associate Professors
Yoel Fink, PhD
Associate Professor of Materials Science
MacVicar Faculty Fellow
Jeffrey Grossman, PhD
Carl R. Soderberg Associate Professor of Power Engineering
Darrell J. Irvine, PhD
Associate Professor of Materials Science and Engineering and Tissue Engineering
Howard Hughes Medical Investigator
Nicola Marzari, PhD
Toyota Associate Professor in Materials Processing
David Kaye Roylance, PhD
Associate Professor of Materials Engineering
Christopher Schuh
Danae and Vasilis Salapatas Associate Professor of Ferrous Metallurgy
Krystyn Van Vliet, PhD
Associate Professor of Materials Science and Engineering
Yang Shao-Horn, PhD
Associate Professor of Mechanical Engineering and Materials Science and Engineering

Assistant Professors
Alfredo Alexander-Katz, PhD
Marton C. Flemings Assistant Professor of Materials Science and Engineering
Geoffrey Stephen Beach, PhD
Amax Assistant Professor of Materials Science and Engineering
Michael J. Demkowicz, PhD
John C. Chipman Assistant Professor of Materials Science and Engineering
Silvija Gradečak, PhD
Thomas Lord Assistant Professor of Materials Science and Engineering

Adjunct Professor
Francesco Stellacci, PhD
Adjunct Professor of Materials Science and Engineering

Senior Lecturer
Paul I. David, PhD

Lecturers
Geetha Berera, PhD
Harry Vincent Merrick, PhD
Joseph Parse, PhD
Meri Treska, PhD

Technical Instructors
Sidney W. Carter
Michael J. Tarkanian

Instructor
Peter Houk

Research Staff

Visiting Scientists
Maris K. Chan
Samed Halilov
Anna Jagielska
Boris Kozinsky
Jonathan Hua-Wei Lim
Pimpa Limthongkul
Nonglak Meethong
Timothy K. Mueller
Shin Rong Ong
Cleva W. Ow Yang
Yu Watanabe
Jianping Xie
Conrad Kang Xu
Haipeng Zheng

Research Scientists
David Bono
Ming Dao
Martin Maldovan
Luis A. Ortiz
Jifa Qi
Alan Schwartzman

Sponsored Research Technical Staff
Donald Galler
Research Specialist
George LaBonte

Technical Assistant
Talitha L. Forcier

Professors Emeriti
Robert Weierter Balluffi, ScD
Professor of Physical Metallurgy, Emeritus

Merton C. Flemings, ScD
Toyota Professor of Materials Processing, Emeritus

Harry Constantine Gatos, PhD
Professor of Molecular Engineering and Electronic Materials, Emeritus

Ronald Michael Latanision, PhD
Professor of Materials Science and Engineering

Frederick Jerome McGarry, SM
Professor of Civil Engineering and Polymer Engineering, Emeritus

Regis Marc Noel Pelloux, ScD
Professor of Materials Engineering, Emeritus

Robert Michael Rose, ScD
Professor of Materials Science and Engineering, Emeritus
Director, Concourse Program

Kenneth Calvin Russell, PhD
Professor of Metallurgy and Nuclear Engineering, Emeritus

John Bruce Vander Sande, PhD
Professor of Material Science, Emeritus
Mechanical engineering is concerned with the responsible development of products, processes, and power, whether at the molecular scale or at the scale of large, complex systems. Mechanical engineering principles and skills are needed at some stage during the conception, design, development, and manufacture of every human-made object with moving parts. Many innovations crucial to our future will have their roots in the world of mass, motion, forces, and energy—the world of mechanical engineers.

Mechanical engineering is one of the broadest and most versatile of the engineering professions. This is reflected in the portfolio of current activities in the department, one that has widened rapidly in the past decade. Today, our faculty are involved in projects ranging from, for example, the use of nanoparticles to tailor the properties of polymers, to the use of nonlinear dynamics to control unsteady flow separation; from the design and fabrication of low-cost radio-frequency identification chips, to the development of efficient methods for robust design; from the development of unmanned underwater vehicles, to the creation of optimization methods that autonomously generate decision-making strategies; from the invention of cost-effective photovoltaic cells, to the prevention of material degradation in proton-exchange membrane fuel cells; from the use of acoustics to explore the ocean of one of Jupiter’s moons, to the biomimetics of swimming fish; from the development of physiological models for the human liver, to the development of novel ways for detecting precancerous events; and from the use of nanoscale antennas for manipulating large molecules, to the fabrication of 3-D nanostructures out of 2-D substrates.

The department carries out its mission with a focus on the seven areas of excellence described below. Our education and research agendas are informed by these areas, and these are the areas in which we seek to excite the best undergraduate and graduate students.

Area 1: Mechanics, Modeling, Experimentation, and Computation (MMEC). At the heart of mechanical engineering lies the ability to measure, describe, and model the physical world of materials and mechanisms. The MMEC area focuses on teaching the fundamental principles, essential skills, and scientific tools to be able to predict and understand thermo-mechanical phenomena and use such knowledge in rational engineering design. We provide students with the foundations in experimental, modeling, and computational skills needed to understand, exploit, and enhance the thermo-physical behavior of advanced engineering devices and systems, and to make lifelong creative contributions at the forefront of the mechanical sciences and beyond. Research in the MMEC area focuses on four key thrusts:

- Computational mechanics
- Fluid dynamics
- Mechanics of solid materials
- Nonlinear dynamics

The fundamental engineering principles embodied in these topics can be applied over a vast range of force, time, and length scales, and applications of interest in the MMEC area span the spectrum from the nano/micro world to the geophysical domain. A Course 2-A track is offered in this area.

Area 2: Design, Manufacturing, and Product Development. Design, manufacturing, and product development is the complete set of activities needed to bring new devices and technologies to the marketplace. These activities span the entire product life-cycle, from the identification of a market opportunity or need, through design, testing, manufacture and distribution, and end of useful life. Our work includes everything from understanding the voice of the customer to finding new ways of processing materials to improve product performance and tracking product flow through a distribution network. A central component of this area is the design and construction of novel equipment, either for consumer products or for industrial uses. This spans scales from meters to microns, and involves mechanical, electronic and electromechanical devices. Many MechE students apply design, manufacturing, and product development skills and techniques to extracurricular design work for organizations and student activities such as Design that Matters, Formula SAE, Satellite Engineering Team, and the Solar Electric Vehicle Team. Some projects are intended as flagship products for new companies and are entered in the MIT $100K Entrepreneurship Competition. A Course 2-A track in product development is offered along with a unique Master of Engineering degree in manufacturing.

Area 3: Controls, Instrumentation, and Robotics. The mission in this area is to promote research and education for automating, monitoring, and manipulating systems. The focus is on system-level behavior that emerges primarily from interactions and cannot be explained from individual component behavior alone. We seek to identify fundamental principles and methodologies that enable systems to exhibit intelligent, goal-oriented behavior, and develop innovative instruments to monitor, manipulate, and control systems. The core competencies in which we seek to excel are:

- Methodologies for understanding system behavior through physical modeling, identification, and estimation
- Technologies for sensors and sensor networks; actuators and energy transducers; and systems for monitoring, processing, and communicating information
- Fundamental theories and methodologies for analyzing, synthesizing, and controlling systems; learning and adapting to unknown environments; and effectively achieving task goals

We seek to apply our core competencies to diverse areas of social, national, and global needs. These include health care, security, education, space and ocean exploration, and autonomous systems in air, land, and underwater. We also offer a Course 2-A track in this area.

Area 4: Energy Science and Engineering. Energy is one of the most significant challenges facing humanity and is a central focus of mechanical engineering’s contribution to society. Our research focuses on efficient and environmentally friendly energy conversion and utilization from fossil and renewable resources. Programs in the department cover many of the disciplinary and technological aspects of energy, with applications to high performance combustion engines, batteries and fuel cells, thermoelectricity and photovoltaics, wind turbines, and efficient buildings. Work in very low-temperature thermodynamics includes novel sub-Kelvin refrigeration. Efforts in high-temperature thermodynamics and its coupling with transport and chemistry include internal combustion engine analysis, design, and technology; control of combustion dynamics and emissions; thermo-
electric energy conversion; low- and high-temperature fuel cells; and novel materials for rechargeable batteries. Work in heat and mass transport covers thermal control of electronics from manufacturing to end use; microscale and nanoscale transport phenomena; desalination and water purification; high heat flux engineering; and energy-efficient building technology. Work in renewable energy encompasses the design of offshore and floating wind turbines and tidal wave machines; and analysis and manufacturing of photovoltaic and thermophotovoltaic devices. Energy storage, hybrid systems, fuel synthesis, and integration of energy systems are active research areas in the department. We also offer a Course 2-A track in energy.

Area 6: Bioengineering. Engineering analysis, design, and synthesis are needed to understand biological processes and to harness them successfully for human use. Mechanical forces and structures play an essential role in governing the function of cells, tissues, and organs. Our research emphasizes integration of molecular-to-systems–level approaches to probe the behavior of natural biological systems; and to design and build new systems. At the smallest scale, proteins, enzymes, and biological motors are being studied using instrumentation that combines optical tweezers, single-molecule fluorescence, and pulsed spectroscopy. Single molecules are manipulated within complex systems using nanoscale antennas, opening new avenues for therapy and diagnosis. Computational and experimental models are used to describe the networks of molecules in the cytoskeleton, and how they couple with the extracellular matrix to respond to external forces. Emphasis is also placed on creating new physiological models using the tools of nano- and microfabrication as well as creation of new biomaterials. Applications include understanding, diagnosing, and treating diseases ranging from atherosclerosis to osteoarthritis to liver failure; new tools for drug discovery and drug development; and tissue-engineered scaffolds and devices for in vivo regeneration of tissues and organs. Work also includes design and fabrication of new devices and tools for rehabilitation of stroke victims, and for robotic surgery. We offer many elective subjects as well as a bioengineering track in Course 2-A.

Area 7: Nano/Micro Science and Technology. The miniaturization of devices and systems of ever-increasing complexity has been a fascinating and productive engineering endeavor during the past few decades. Near and long term, this trend will be amplified as physical understanding of the nano world expands, and widespread commercial demand drives the application of manufacturing to micro- and nanosystems. Micro- and nanotechnology can have tremendous impact on a wide range of mechanical systems. Examples include microelectromechanical system (MEMS) devices and systems that are already deployed as automobile airbag sensors and for drug delivery; stronger and lighter nanostructured materials now used in automobiles; and nanostructured energy conversion devices that significantly improve the efficiency of macroscale energy systems. Research in this area cuts across mechanical engineering and other disciplines. Examples include sensors and actuators; fluids, heat transfer, and energy conversion at the micro- and nanoscales; optical and biological micro- and nano-electromechanical systems (MEMS and NEMS); engineered 3-D nanomaterials; ultraprecision engineering; and the application of optics in measurement, sensing, and systems design. Our faculty members have also developed and are developing new educational materials in micro and nano science and technology. Students interested in micro/nano technology are encouraged to explore the Course 2-A nanoengineering track.

In order to prepare the mechanical engineers of the future, the department has developed undergraduate and graduate educational programs of the depth and breadth necessary to address the diverse and rapidly changing technological challenges that society faces. Our educational programs combine the rigor of academic study with the excitement and creativity inherent to innovation and research. **UNDERGRADUATE STUDY**

The Department of Mechanical Engineering offers three programs of undergraduate study. The first of these, the traditional program that leads to the bachelor’s degree in mechanical engineering, is a more structured program that prepares students for a broad range of career choices in the field of mechanical engineering. The second program leads to a bachelor’s degree in engineering and is intended for students whose career objectives require greater flexibility. It allows them to combine the essential elements of the traditional mechanical engineering program with study in another, complementary field. The third program, in mechanical and ocean engineering, is also a structured program for students interested in mechanical engineering as it applies to the engineering aspects of ocean science, exploration, and utilization, and of marine transportation. All of the educational programs in the department prepare students for professional practice in an era of rapidly advancing technology. They combine a strong base in the engi-
neering sciences (mechanics, materials, fluid and thermal sciences, systems and control) with project-based laboratory and design experiences. All strive to develop independence, creative talent, and leadership, as well as the capability for continuing professional growth.

Bachelor of Science in Mechanical Engineering/Course 2
The program in mechanical engineering provides a broad intellectual foundation in the field of mechanical engineering. The program develops the relevant engineering fundamentals, includes various experiences in their application, and introduces the important methods and techniques of engineering practice.

The educational objectives of the program leading to the degree Bachelor of Science in Mechanical Engineering are that: (1) in their careers, graduates will bring to bear a solid foundation in basic mathematical and scientific knowledge and a firm understanding of the fundamental principles and disciplines of mechanical engineering; (2) graduates will use proper engineering principles when they model, measure, analyze, and design mechanical and thermal components and systems; (3) graduates will have the professional skills necessary for formulating and executing design projects, for teamwork, and for effective communication; and (4) graduates will demonstrate the confidence, awareness of societal context, professional ethics, and motivation for lifelong learning that are necessary for them to be leaders in their chosen fields of endeavor.

Students are urged to contact the Undergraduate Office as soon as they have decided to enter mechanical engineering so that an ME faculty advisor may be assigned. Students, together with their faculty advisors, plan a program that best utilizes the departmental electives and the 48 units of unrestricted electives available in the Course 2 degree program.

This curriculum has been accredited by the Accreditation Board for Engineering and Technology as a mechanical engineering degree.

Bachelor of Science in Mechanical Engineering/Course 2

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement (can be satisfied by 2.001 and 18.03 in the Departmental Program)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement (can be satisfied by 2.671 in the Departmental Program)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication Requirement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M) (satisfiable by 2.009 and 2.671 in the Departmental Program).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLUS Departmental Program</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject names below are followed by credit units, and by prerequisites, if any (prerequisites in italics).</td>
<td></td>
</tr>
<tr>
<td>Required Departmental Core Subjects</td>
<td>159</td>
</tr>
<tr>
<td>2.001 Mechanics and Materials I, 12; REST; Physics I (GIR), Calculus II (GIR), 18.03</td>
<td></td>
</tr>
<tr>
<td>2.002 Mechanics and Materials II, 12; 2.001, Chemistry (GIR)</td>
<td></td>
</tr>
<tr>
<td>2.003 Dynamics and Control I, 12; REST; Physics I (GIR), 18.03</td>
<td></td>
</tr>
<tr>
<td>2.004 Dynamics and Control II, 12; 2.003, Physics II (GIR)</td>
<td></td>
</tr>
<tr>
<td>2.005 Thermal-Fluids Engineering I, 12; REST; Physics II (GIR), Calculus II (GIR), 18.03</td>
<td></td>
</tr>
<tr>
<td>2.006 Thermal-Fluids Engineering II, 12; 2.005, 18.03</td>
<td></td>
</tr>
<tr>
<td>2.008 Design and Manufacturing I, 12, 1/2 LAB; 2.001, 2.005, 2.007 or 2.009</td>
<td></td>
</tr>
<tr>
<td>2.009 The Product Engineering Process, 12, CI-M; 2.001, 2.003, 2.005; 2.670 or 2.00B; senior standing or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>2.026 Numerical Computation for Mechanical Engineers, 12; 2.001, 2.005, 2.009, 18.03</td>
<td></td>
</tr>
<tr>
<td>2.027 Medical Engineering Tools, 3*</td>
<td></td>
</tr>
<tr>
<td>2.671 Measurement and Instrumentation, 12, LAB, CI-M; 2.001, 2.003, Physics II (GIR)</td>
<td></td>
</tr>
<tr>
<td>2.672 Project Laboratory, 6, 1/2 LAB; 2.001, 2.003J, 2.006, 2.671</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12; REST; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>2.013 Undergraduate Thesis, 6* and either</td>
<td></td>
</tr>
<tr>
<td>2.007 Design and Manufacturing I, 12; 2.001</td>
<td></td>
</tr>
<tr>
<td>2.017 Design of Electromechanical Robotic Systems, 12, 1/2 LAB; 2.003J, 2.005 or 2.016; 2.671</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restricted Elective Subjects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Students are required to take two of the following elective subjects (substitutions by petition to the ME Undergraduate Office):</td>
<td></td>
</tr>
<tr>
<td>2.016 Hydrodynamics, 12; Physics II (GIR), 18.03</td>
<td></td>
</tr>
<tr>
<td>2.017 Design of Electromechanical Robotic Systems, 12, 1/2 LAB; 2.003J, 2.005 or 2.016; 2.671</td>
<td></td>
</tr>
<tr>
<td>2.019 Design of Ocean Systems, 12, CI-M; 2.001, 2.003J, 2.005 or 2.016; senior standing or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>2.050 Nonlinear Dynamics I: Chaos, 12; 18.03 or 18.034; Physics II (GIR)</td>
<td></td>
</tr>
<tr>
<td>2.092 Computer Methods in Dynamics, 12; 2.001, 2.003J</td>
<td></td>
</tr>
<tr>
<td>2.11 Introduction to Robotics, 12; 2.004</td>
<td></td>
</tr>
<tr>
<td>2.12 Analysis and Design of Feedback Control Systems, 12; 2.004</td>
<td></td>
</tr>
<tr>
<td>2.13 Biomechanics and Neural Control of Movement, 12; 2.004 or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>2.370 Molecular Mechanics, 12; 2.001; Chemistry (GIR)</td>
<td></td>
</tr>
<tr>
<td>2.37 Intermediate Heat and Mass Transfer, 12; 2.006*</td>
<td></td>
</tr>
<tr>
<td>2.601 Fundamentals of Advanced Energy Conversion, 12; 2.006*</td>
<td></td>
</tr>
<tr>
<td>2.71 Optics, 12; Physics II (GIR), 18.03; 2.004*</td>
<td></td>
</tr>
<tr>
<td>2.72 Elements of Mechanical Design, 12; 2.005, 2.007, 2.671</td>
<td></td>
</tr>
<tr>
<td>2.793 Fields, Forces and Flows in Biological Systems, 12; 2.005, 6.021, 20.320, or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>2.794 Molecular, Cellular, and Tissue Biomechanics, 12; 18.03 or 3.016; Biology (GIR), 2.370 or 2.772</td>
<td></td>
</tr>
<tr>
<td>2.813 Environmentally Benign Design and Manufacturing, 12; 2.008 or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>2.96 Management in Engineering, 12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Program Units That Also Satisfy the GIRs</th>
<th>(36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted Electives*</td>
<td>48</td>
</tr>
</tbody>
</table>

| Total Units Beyond the GIRs Required for SB Degree | 195 |

No subject can be counted both as part of the 27-subject GIRs and as part of the 195 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.
Bachelor of Science in Engineering as Recommended by the Department of Mechanical Engineering/Course 2-A

Course 2-A is designed for students whose academic and career goals demand greater breadth and flexibility than can be realized under the mechanical engineering program, Course 2. To a large extent, the 2-A program allows students an opportunity to tailor a curriculum to their own needs, starting from a solid mechanical engineering base. The program combines a rigorous grounding in core mechanical engineering subjects with an individualized course of study focused on a second area that the student designs with the help and approval of the 2-A faculty advisor. The program leads to the degree Bachelor of Science in Engineering as Recommended by the Department of Mechanical Engineering.

This curriculum has been accredited by the Accreditation Board for Engineering and Technology as an engineering degree.

The educational objectives of the program leading to the degree of Bachelor of Science in Engineering as Recommended by the Department of Mechanical Engineering are that: (1) in their careers, graduates will bring to bear a solid foundation in basic mathematical and scientific knowledge and a firm understanding of the basic principles and disciplines of mechanical engineering; (2) graduates will use proper engineering principles when they model, measure, analyze, and design engineering systems, processes, and components; (3) graduates will have the professional skills necessary for formulating and executing design projects, for teamwork, and for effective communication; (4) graduates will demonstrate the confidence, awareness of societal context, professional ethics, and motivation for lifelong learning that are necessary for them to be leaders in their chosen fields of endeavor; and (5) graduates will integrate mechanical engineering technical abilities and knowledge with those of another disciplinary field.

A significant part of the 2-A curriculum consists of electives chosen by the student to provide in-depth study of a field of the student’s choosing. A wide variety of popular concentrations are possible in which well-selected academic subjects complement a foundation in mechanical engineering and general Institute requirements. Some examples of potential concentrations include biomedical engineering and pre-medicine; energy conversion engineering; engineering management; product development; robotics; sustainable development; architecture and building technology; and any of the seven departmental focus areas mentioned above. The ME faculty have developed specific recommendations in some of these areas; details are available from the ME Undergraduate Office and on the departmental website.

Concentrations are not limited to those listed above. Students are encouraged to design and propose technically oriented concentrations that reflect their own needs and those of society.

The student’s overall program must contain a total of at least one and one-half years of engineering content (144 units) appropriate to the student’s field of study. The required core and second-level subjects include approximately 75 units of engineering topics. The self-designed concentration must include at least 66 more units of engineering topics. While engineering topics are usually covered through engineering subjects, subjects outside the School of Engineering may provide material essential to the engineering program of some concentrations. For example, management subjects usually form an essential part of an engineering management concentration. In all cases, the relationship of concentration subjects to the particular theme of the concentration must be obvious.

To pursue the 2-A degree, students must submit the 2-A enrollment form to the ME Undergraduate Office, Room 1-108, no later than Add Date of their second term in the program. Enrollment forms are available in that office.

Bachelor of Science in Mechanical and Ocean Engineering/Course 2-OE

This program is intended for students who are interested in combining a firm foundation in mechanical engineering with a specialization in ocean engineering. The program includes engineering aspects of the ocean sciences, ocean exploration, and utilization of the oceans for transportation, defense, and extracting resources. Theory, experiment, and computation of ocean systems and flows are covered in a number of courses, complementing a rigorous mechanical engineering program; a hands-on capstone design class allows students to master the design of advanced marine systems, including autonomous underwater vehicles and smart sensors.

This curriculum has been accredited by the Accreditation Board for Engineering and Technology in both mechanical engineering and ocean engineering.

The educational objectives of the program leading to the degree Bachelor of Science in Mechanical and Ocean Engineering are that: (1) in their careers, graduates will bring to bear a solid foundation in basic mathematical and scientific knowledge and a firm understanding of the fundamental principles and disciplines of both mechanical and ocean engineering; (2) graduates will use proper engineering principles when they model, measure, analyze, and design mechanical, thermal, and ocean components and systems; (3) graduates will have the professional skills necessary for formulating and executing design projects, for teamwork, and for effective communication; and (4) graduates will demonstrate the confidence, awareness of societal context, professional ethics, and motivation for lifelong learning that are necessary for them to be leaders in their chosen fields of endeavor.

Graduates have exciting opportunities in offshore industries, naval architecture, the oceanographic industry, the Navy, or government, or for further study in graduate school.
Bachelor of Science in Engineering as Recommended by the Department of Mechanical Engineering/Course 2-A

General Institute Requirements (GIRs) Subjects
Science Requirement 6
Humanities, Arts, and Social Sciences Requirement 8
Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 2.001 and 18.03 in the Departmental Program] 2
Laboratory Requirement [satisfied by 2.671 in the Departmental Program] 1
Total GIR Subjects Required for SB Degree 17

Communication Requirement
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M) [satisfied by 2.009 and 2.671 in the Departmental Program].

PLUS Departmental Program
Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics). Units
Required Departmental Core Subjects
2.003 Mechanics and Materials I, 12; REST; Physics I (GIR), Calculus II (GIR), 18.03 75
2.003J Dynamics and Control I, 12; REST; Physics I (GIR), 18.03
2.005 Thermal-Fluids Engineering I, 12; REST; Physics II (GIR), Calculus II (GIR), 18.03
2.009 The Product Engineering Process, 12; CI-M; 2.001, 2.003J, 2.005; 2.670 or 2.008; senior standing or permission of instructor
2.670 Mechanical Engineering Tools, (3)
2.671 Measurement and Instrumentation, 12, LAB, CI-M; 2.001, 2.003J, Physics II (GIR)
2.672 Mechanics and Materials II, 12, REST; Calculus II (GIR)
2.675 Differential Equations, 12, REST; Calculus II (GIR)

Two Additional Mechanical Engineering Subjects 24
2.002 Mechanics and Materials II, 12; 2.003, Chemistry (GIR)
2.004 Dynamics and Control II, 12; 2.003J, Physics II (GIR)
2.006 Thermal-Fluids Engineering II, 12; 2.005, 18.03
2.007 Design and Manufacturing I, 12; 2.001
2.008 Design and Manufacturing II, 12, 1/2 LAB; 2.001; 2.005; 2.007 or 2.017f
2.086 Numerical Computation for Mechanical Engineers, 12; 2.001, 2.003J, 2.005
2.714 The Product Engineering Process, 12

Elective Subjects with Engineering Content (3)
72

Departmental Program Units That Also Satisfy the GIRs (36)
48

Total Units Beyond the GIRs Required for SB Degree 183

No subject can be counted both as part of the 17-subject GIRs and as part of the 183 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
* Alternate prerequisites and corequisites are listed in the subject description.
(3) Students who have completed a subject that provides equivalent experience (e.g., 2.00A or 2.00B) may petition to substitute; contact the ME Undergraduate Office, Room 1-108, for information.
(4) These electives define a concentrated area of study and must be chosen with the written approval of the ME Undergraduate Office. A minimum of 69 units of engineering topics must be included in the 72 units of concentration electives. Engineering topics are usually obtained from engineering courses, but in some cases, non-engineering subjects may be necessary for the particular engineering program defined by the concentration (e.g., management subjects for an engineering management concentration). In all cases, the relationship of concentration subjects to the theme of the concentration must be obvious. A thesis (2.714) of up to 12 units may be included among the concentration subjects if not already applied to the second-level requirement.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Undergraduate Practice Opportunities Program
The Undergraduate Practice Opportunities Program, an innovative internship program administered and sponsored by the School of Engineering, offers opportunities to sophomores in the School. Further information on the program may be obtained from the department in which the student is registered or from Susann Luperfoy, executive director, Room 12-193, 617-253-0055, upop@mit.edu, or from http://web.mit.edu/engineering/upop/.

Minor in Mechanical Engineering
The requirements for a Minor in Mechanical Engineering are as follows:

Students pursuing a minor in the department must complete a total of six subjects (including 18.03 as a prerequisite to departmental subjects). Subjects for the minor must constitute a coherent program approved by the department, and be drawn from the required subjects and departmental electives in the Course 2 or Course 2-OE degree programs. These subjects must include four of the ME program’s required core subjects.

Inquiries
Further information on undergraduate programs may be obtained from the Undergraduate Office, Room 1-108, 617-253-2305, me-undergradoffice@mit.edu, and from the downloadable Guide to the Undergraduate Program in Mechanical Engineering [http://web.mit.edu/me-ugoffice/gamed.pdf].

GRADUATE STUDY

The Mechanical Engineering Department provides opportunities for graduate work leading to the following degrees: Master of Science in Mechanical Engineering, Master of Science in Ocean Engineering, Master of Science in Naval Architecture and Marine Engineering, Master of Engineering in Manufacturing, degree of Mechanical Engineer, degree of Naval Engineer, and the Doctor of Philosophy (PhD) or Doctor of Science (ScD), which differ in name only.

The Master of Engineering degree is a 12-month professional degree intended to
prepare students for technical leadership in the manufacturing industries.

The Mechanical Engineer’s and Naval Engineer’s degrees offer preparation for a career in advanced engineering practice through a program of advanced coursework that goes well beyond the master’s level. These degrees are not a stepping stone to the PhD.

The Doctor of Philosophy (or Science), the highest academic degree offered, is awarded upon the completion of a program of advanced study and significant original research, design, or development.

Entrance Requirements for Graduate Study

Applications to the mechanical engineering graduate program are accepted from persons who have completed, or will have completed by the time they arrive, a bachelor’s degree. Most incoming students have a degree in mechanical engineering or ocean engineering, or some related branch of engineering. The department’s admission criteria are not specific, however, and capable students with backgrounds in different branches of engineering or in science may gain entry. Nevertheless, to qualify for a graduate degree, the candidate is expected to have had at least an undergraduate-level exposure to the core subject areas in mechanical engineering (applied mechanics, dynamics, fluid mechanics, thermodynamics, materials, control systems, and design) and to be familiar with basic electrical circuits and electromagnetic field theory. Those with deficiencies may be asked to make up subjects in certain areas before they graduate.

Applications for September entry are due on December 1 of the previous year (except for the Master of Engineering, which has a January 15 deadline), and decisions are reported in March. Foreign students applying from abroad may be admitted, but they will be allowed to register only if they have full financial support for the first year.

All applicants to the graduate program in mechanical engineering must submit the GRE test results. Students applying from non-English-speaking countries are required to take the International English Language Testing System (IELTS) exam (now the preferred testing method for the Department of Mechanical Engineering) and receive a minimum score of 7.
Early Admission to Master’s Degree Programs in Mechanical Engineering
At the end of the junior year, extraordinarily qualified students in the Department of Mechanical Engineering will be invited to apply for early admission to the graduate program. Students who are admitted will then be allowed to enroll in core graduate subjects during the senior year and to find a faculty advisor who is willing to start and supervise research for the master’s thesis while the student is still in the senior year. With the consent of the faculty advisor, the student may also use a portion of the work conducted towards the master’s thesis in the senior undergraduate year to satisfy the requirements of the bachelor’s thesis.

Writing Ability Requirement
The Mechanical Engineering Department requires that all incoming graduate students demonstrate satisfactory English writing ability, or successfully complete appropriate training in writing. This requirement reflects the faculty’s conviction that writing is an essential skill for all engineers. All incoming graduate students, native as well as foreign, must take the departmental writing ability test, which is administered in September. Depending on the results, a student will either pass or be required to take a subject in writing.

Master of Science in Mechanical Engineering
To qualify for the Master of Science in Mechanical Engineering, a student must complete at least 72 credits of coursework, not including thesis. Of these, at least 48 must be graduate H-level subjects (refer to the Guide to Graduate Study on the ME website). The remainder of the 72 units may be for G-level subjects or advanced undergraduate subjects that are not requirements in the undergraduate mechanical engineering curriculum.

At least three of the H-level subjects must be taken in mechanical engineering sciences (refer to the Guide to Graduate Study on the ME website). Students must take at least one graduate mathematics subject (12 units) offered by the MIT Mathematics Department. No waivers are allowed.

Finally, a thesis is required. The thesis is an original work of research, development, or design, performed under the supervision of a faculty or research staff member, and is a major part of any graduate program in the Mechanical Engineering Department. A master’s student usually spends as much time on thesis work as on coursework. A master’s degree usually takes about one and one-half to two years to complete.

Master of Science in Ocean Engineering/ Master of Science in Naval Architecture and Marine Engineering
The curriculum leading to a Master of Science in Ocean Engineering is based on a broad working knowledge of all the basic engineering skills. The intended outcome of this program is to prepare a person whose main interest is the development of the resources of the ocean for the good of humanity, and who, in following this ambition, is prepared to use whatever engineering disciplines are needed to address the problem at hand.

As a part of the more general field of ocean engineering, naval architecture and marine engineering are concerned with all aspects of waterborne vehicles operating on, below, or just above the sea surface. The Master of Science in Naval Architecture and Marine Engineering is intended to develop an individual who plans to concentrate in areas related to waterborne vehicles and/or their subsystems.

The requirements for these degrees are that the student take 72 credit units of subjects—with 48 of them being H-level subjects—and complete a thesis. At least three of the subjects must be chosen from a prescribed list of basic ocean engineering subjects (refer to the Guide to Graduate Study on the ME website). Students must take at least one graduate mathematics subject (12 units) offered by MIT’s Mathematics Department. No waivers are allowed.

Master of Engineering in Manufacturing
The Master of Engineering in Manufacturing is a twelve-month professional degree in mechanical engineering that is intended to prepare the student to assume a role of technical leadership in the manufacturing industries. The degree is aimed at practitioners who will use this knowledge to become leaders in existing, as well emerging, manufacturing companies. To qualify for this degree, a student must complete a highly integrated set of subjects and projects that cover the process, product, system, and business aspects of manufacturing, totaling 90 units, plus complete a group-based thesis project with a manufacturing industry. While centered in engineering and firmly grounded in the engineering sciences, this degree program considers the entire enterprise of manufacturing. Students will gain both a broad understanding of the many facets of manufacturing and a knowledge of manufacturing fundamentals from which to build new technologies and businesses. The admission process is identical to that of the Master of Science degree, with the exception that a supplemental application is required. For more information, see the program description at http://web.mit.edu/~meng-manufacturing/.

Leaders for Global Operations Program
The 24-month Leaders for Global Operations (LGO) program combines graduate education in engineering and management for those with two or more years of full-time work experience who aspire to leadership positions in manufacturing or operations companies. A required 6.5-month internship provides opportunity to complete a research project on site at one of LGO’s partner companies. The internship leads to a dual-degree thesis, culminating in two master’s degrees—an SM in management or an MBA, and an SM from a participating engineering department. The program is offered jointly through the MIT Sloan School of Management and the School of Engineering. For more information, see the program description under Engineering Systems Division or visit http://lgo.mit.edu/.

Mechanical Engineer’s Degree
The Mechanical Engineer’s degree provides an opportunity for further study beyond the master’s level for those who wish to enter engineering practice rather than research. This degree emphasizes breadth of knowledge in mechanical engineering and its economic and social implications, and is quite distinct from the PhD, which emphasizes depth and originality of research.

The engineer’s degree requires a broad program of advanced coursework in mechanical engineering totaling at least 162 credit units (typically about 14 subjects), including those taken during the master’s degree program. The engineer’s degree program is centered around the application of engineering principles to
advanced engineering problems and includes an applications-oriented thesis, which may be an extension of a suitable master’s thesis. An engineer’s degree typically requires at least one year of study beyond the master’s degree.

Naval Engineer’s Degree—Program in Naval Construction and Engineering
The program leading to the Naval Engineer’s degree requires a higher level and significantly broader range of professional competence in engineering than is required for an SM in naval architecture and marine engineering or ocean engineering. The program for an engineer’s degree ordinarily includes subjects in the areas of economics, industrial management, and public policy or law, and at least 12 units of comprehensive design. Should the student be working toward the simultaneous award of the engineer’s and master’s degrees, a single thesis is generally acceptable provided it is appropriate to the specifications of both degrees and demonstrates the educational maturity expected of candidates for the higher degree.

The Naval Construction and Engineering (NCE) program provides US Navy and US Coast Guard officers, foreign naval officers, and civilian students interested in ships and ship design a broad graduate-level engineering education for a career as a professional naval engineer. The program focuses on naval architecture, hydrodynamics, ship structures, materials, power and propulsion, and ship production in a total-ship-design and engineering context. Students learn to apply a total-system-design approach to large-scale complex systems—in particular, surface naval combatants, submarines, and high-performance commercial ships. The program is appropriate for naval officers and civilians who later actively participate in concept formulation, design, and construction of naval ships, as well as for those interested in commercial ship design. In addition to general engineering and science and a core program of subjects in ocean engineering, each student follows one of several specialized curricula applicable to ship construction and engineering.

Doctor of Philosophy and Doctor of Science
The highest academic degree is the Doctor of Science, or Doctor of Philosophy (the two differ only in name). This degree is awarded upon the completion of a program of advanced study, and the performance of significant original research, design, or development. Doctoral degrees are offered in all areas represented by the department’s faculty.

Students become candidates for the doctorate by passing the doctoral qualifying examinations. The doctoral program includes a major program of advanced study in the student’s principal area of interest, and a minor program of study in a different field. The Graduate Office should be consulted about the deadline for passing the qualifying exam.

The principal component of the program is the thesis. The thesis is a major, original work that makes a significant research, development, or design contribution in its field. The thesis and the program of study are done under a faculty supervisor and a doctoral committee selected by the student and his or her supervisor, and perhaps other interested faculty members. The committee makes an annual examination of the candidate’s progress and conducts a final examination based on the thesis. The doctoral program usually takes a minimum of two years of work beyond the master’s degree.

Interdisciplinary Programs
Graduate students registered in the Department of Mechanical Engineering may elect to participate in interdisciplinary programs of study. Programs are available in computation for design and optimization, polymer science and technology, and technology and policy. See Interdisciplinary Graduate Programs in Part 3 for program descriptions.

Joint Program with the Woods Hole Oceanographic Institution
The Joint Program with the Woods Hole Oceanographic Institution (2W) is intended for students whose primary career objective is oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; however, thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in the department. The program is described in more detail under Interdisciplinary Graduate Programs in Part 3.

Assistantships and Fellowships
The Department of Mechanical Engineering offers three types of financial assistance to graduate students: research assistantships, teaching assistantships, and fellowships.

The majority of students in the department are supported by research assistantships (RAs), which are appointments to work on particular research projects with particular faculty members. Faculty members procure research grants for various projects and hire graduate students to carry out the research. The research is almost invariably structured so that it becomes the student’s thesis. An RA appointment provides a full-tuition scholarship (i.e., covers all tuition) plus a salary that is adequate for a single person. The financial details are outlined in a separate handout available from the Departmental Graduate Office. An RA may register for a maximum of 24 units (about two subjects) of classroom subjects per regular term and 12 units in the summer term, and must do at least the equivalent of 24 units of thesis (i.e., research on the project) per term.

Teaching assistants (TAs) are appointed to work on specific subjects of instruction. As the name implies, they usually assist a faculty member in teaching, often grading homework problems and tutoring students. In the Mechanical Engineering Department, TAs are very seldom used for regular full-time classroom teaching. TAs are limited to 24 units of credit per regular term, including both classroom subjects and thesis. The TA appointment does not usually extend through the summer.

A fellowship provides the student with a direct grant, and leaves the student open to select his or her own research project and supervisor. A limited number of awards and scholarships are available to graduate students directly through the department. A number of students are also supported by fellowships from outside agencies, such as the National Science Foundation, Office of Naval Research, and Department of Defense. Scholarships are awarded each year by the Society of Naval Architects and Marine Engineers.
These awards are normally granted to applicants whose interest is focused on naval architecture and marine engineering or on ocean engineering. Applications are made directly to the granting agency, and inquiries for the fall term should be made in the preceding fall term.

Prospective students are invited to communicate with the department regarding any of these educational and financial opportunities.

Experience has shown that the optimum graduate program consists of about equal measures of coursework and research, consistent with an RA appointment. The main advantage of a fellowship is a greater freedom in choosing a research project and supervisor. A teaching assistantship gives the student teaching experience and can also be extremely valuable for reviewing basic subject material—for example, in preparation for the doctoral qualifying exams. It does not, however, leave much time for thesis research and may extend the time that the student needs to complete his or her degree.

Inquiries
For additional information on mechanical engineering graduate admissions, contact Joan Kravit or Una Sheehan. For general inquiries on the mechanical engineering graduate program, contact Leslie Regan. All can be reached in the Mechanical Engineering Graduate Office, Room 1-112, 617-253-2291, me-gradoffice@mit.edu.

RESEARCH LABORATORIES AND PROGRAMS
The Mechanical Engineering Department is organized into seven areas that collectively capture the broad range of interests and activities within it. These areas are:

- Mechanics: Modeling, Experimentation, and Computation (MMEC)
- Design, Manufacturing, and Product Development
- Controls, Instrumentation, and Robotics
- Energy Science and Engineering
- Ocean Science and Engineering
- Bioengineering
- Nano/Micro Science and Technology

The educational opportunities offered to students in mechanical engineering are enhanced by the availability of a wide variety of research laboratories and programs, and well-equipped shops and computer facilities.

The department provides many opportunities for undergraduates to establish a close relationship with faculty members and their research groups. Students interested in project work are encouraged to consult their faculty advisor or approach other members of the faculty.

Many members of the Department of Mechanical Engineering participate in interdepartmental or school-wide research activities. These include the Center for Biomedical Engineering, Center for Materials Science and Engineering, Computation for Design and Optimization Program, Computational and Systems Biology Program, Computer Science and Artificial Intelligence Laboratory, Institute for Soldier Nanotechnologies, Laboratory for Manufacturing and Productivity, MIT energy Initiative, and the MIT Microsystems Technology Laboratories.

The following list includes many of the laboratories and research projects. Research in the department is supported, in addition, by a broad range of federal agencies and foundations.

Below is a partial list of departmental laboratories, listed according to the seven core areas of research.

Mechanics: Modeling, Experimentation, and Computation

AMP Mechanical Behavior of Materials Laboratory
Mechanisms of deformation and fracture processes in engineering materials.

Center for Nonlinear Science
Interdisciplinary research into nonlinear phenomena. Incorporates the Nonlinear Dynamical Systems Lab (modeling, simulation, analysis), Nonlinear Dynamics Lab (experiments), and Nonlinear Systems Lab.

Composite Materials and Nondestructive Evaluation Laboratory
Development of quantitative nondestructive evaluation characterization which are directly correlatable with the mechanical properties of materials and structures.

Finite Element Research Group
Computational procedures for the solution of problems in structural, solid, and fluid mechanics.

Hatsopoulos Microfluids Laboratory
Fundamental research on the behavior of complex fluid systems at microscopic scales, and associated engineering applications.

Design, Manufacturing, and Product Development

Auto-ID Laboratory
Creation of the “Internet of Things” using radio frequency identification and wireless sensor networks, and of a global system for tracking goods using a single numbering system called the Electronic Product Code.

Computer-Aided Design Laboratory
Advancing the state of the art in design methodology and computer-aided design methods.

Laboratory for Manufacturing and Productivity
An interdepartmental laboratory in the School of Engineering. Polymer microfabrication for microfluidic devices, chemical mechanical planarization for the semiconductor industry, precision macro- and micro-scale devices, and novel metrology methods for micro-scale devices. Small-scale fuel cells design, photovoltaic material and process research, and manufacture of photovoltaic panels. Identification technologies such as RFID, wireless sensors, and complex systems. Methods to integrate data and models across global networks. Factory-level manufacturing systems design and control, and supply chain design and management. Environmentally benign manufacturing.
Martin Center for Engineering Design
Design methodology, design of integrated electrical-mechanical systems, prototype development, advanced computer-aided design techniques.

Park Center for Complex Systems
Research to understand complexity, educating students and scholars on complexity, designing complex systems for the benefit of humankind, and disseminating knowledge on complexity to the world at large.

Precision Engineering Laboratory
Fundamental and applied research on all aspects of the design, manufacture, and control of high precision machines ranging from manufacturing machines to precision consumer products.

Precision Systems Design and Manufacturing
Modeling, design, and manufacturing methods for nanopositioning equipment, carbon nanotube-based mechanisms and machines, and compliant mechanisms.

** Controls, Instrumentation, and Robotics**

d’Arbeloff Laboratory for Information Systems and Technology
Research on mechatronics, home and health automation, interface between hardware and software, and development of sensing technologies.

Field and Space Robotics Laboratory
Fundamental physics of robotic systems for unstructured environments. Development, design, and prototyping of control and planning algorithms for robotic applications, including space exploration, rough terrains, sea systems, and medical devices and systems.

Nonlinear Systems Laboratory
Analysis and control of nonlinear physical systems with emphasis on adaptation and learning in robots.

Energy Science and Engineering

Center for Energy and Propulsion Research
Innovative science and technology for a sustainable energy future in a carbon-constrained world. Fundamental and applied research in energy conversion and transportation, with applications to low-carbon efficient energy and propulsion systems. Includes several research groups:

- **Electrochemical Energy Laboratory.** Engineering of advanced materials for lithium batteries, proton exchange membrane and solid oxide fuel cells, and air battery and fuel cell hybrids.
- **Reacting Gas Dynamics Laboratory.** Fluid flow, chemical reaction, and combustion phenomena associated with energy conversion in propulsion systems, power generation, industrial processes, and fires.
- **Sloan Automotive Laboratory.** Processes and technology that control the performance, efficiency, and environmental impact of internal combustion engines, their lubrication, and fuel requirements.

Cryogenic Engineering Laboratory
Application of thermodynamics, heat transfer, and mechanical design to cryogenic processes and apparatus and the operation of a liquid helium facility.

Rohsenow Heat and Mass Transfer Laboratory
Fundamental research in convection, microscale/nanoscale transport, laser/material interaction, and high heat fluxes; applied research in water purification, thermoelectric devices, energy-efficient buildings, and thermal management of electronics.

Ocean Science and Engineering

Center for Ocean Engineering
Provides an enduring ocean engineering identity, giving visibility to the outside world of MIT’s commitment to the oceans, and serves as the focus point of ocean-related research at the Institute. Supports the research activities of the MIT/WHOI Joint Program in Oceanographic Engineering and the Naval Construction and Engineering Program. Encompasses the activities of the following research groups and laboratories:

- **Autonomous Marine Sensing Lab.** Distributed ocean sensing concepts for oceanographic science, national defense, and coastal management and protection. Oceanographic sensing and modeling, sonar system technology, computational underwater acoustics, and marine robotics and communication networking.
- **Design Lab.** Ship design, offshore structure design, marine robotics, geometric and solid modeling, advanced manufacturing, and shipbuilding. Includes the Center for Environmental Sensing and Modeling.
- **Experimental Hydromechanics Lab.** Advanced surface ship, offshore platform, and underwater vehicle design. Development of non-invasive flow measurement and visualization methods.
- **Impact and Crashworthiness Laboratory.** Industry-oriented fracture testing and prediction technology of advanced high-strength steel sheets for automotive and shipbuilding applications. Includes both quasi-static and high strain rate response and effect of loading history on fracture.
- **Experimental and Nonlinear Dynamics Lab.** Laboratory experiments to obtain insight into all manner of dynamical phenomena, from micro-scale diffusive processes to global-scale oceanic wave fields. Field studies for ocean-related problems.
- **Laboratory for Ship and Platform Flows.** Modeling of free surface flows past conventional and high-speed vessels and estimation of their resistance and seakeeping in deep and shallow waters. Analytical and computational techniques.
- **Laboratory for Undersea Remote Sensing.** Ocean exploration, undersea remote sensing of marine life and geophysical phenomena, wave propagation and scattering theory in remote sensing, statistical estimation and information theory, acoustics and seismics, Europa exploration.
• **Marine Hydrodynamics Laboratory (Propeller Tunnel).** A variable-pressure recirculating water tunnel capable of speeds up to 10 m/s. Experiments are performed using state-of-the-art measurement techniques and instrumentation.

• **Multidisciplinary Ocean Dynamics and Engineering Laboratory.** Complex physical and interdisciplinary oceanic dynamics and processes. Mathematical model and computation methods for ocean predictions, dynamical diagnostics, and for data assimilation and data-model comparisons.

• **Ocean Engineering Testing Tank.** The tank is 108 feet long, 8.5 feet wide, with an average depth of 4.5 feet. The wave generator can generate harmonic or random waves. The tank also houses several laser flow visualization systems.

• **Vortical Flow Research Laboratory.** Advanced capabilities for simulation of complex vortical flows. Powerful computer workstations and LINUX clusters, computer-video image conversion, and state-of-the-art flow simulation animation technologies.

• **MIT Sea Grant AUV Lab.** Dedicated to autonomous underwater vehicles (AUVs), the lab is a leading developer of advanced unmanned marine robots, with applications in oceanography, environmental monitoring, and underwater resource studies. It engages in instrumentation and algorithm development for underwater vehicles performing navigation- and information-intensive tasks. Various vehicle platforms, and fabrication tools and materials are available.

Bioengineering

Bioinstrumentation Laboratory
Utilization of biology, optics, mechanics, mathematics, electronics, and chemistry to develop innovative instruments for the analysis of biological processes and new devices for the treatment and diagnosis of disease.

Human and Machine Haptics
Interdisciplinary studies aimed at understanding human haptics, developing machine haptics, and enhancing human-machine interactions in virtual reality and teleoperator systems.

International Consortium for Medical Imaging Technology
Development and implementation of information technology that will lead to improved medical diagnosis and health care as well as reductions in costs.

Laboratory for Biomechanics of Cells and Biomolecules
Development of new instruments for the measurement of mechanical properties on the scale of a single cell or single molecule to better understand the interactions between biology and mechanics.

Newman Laboratory for Biomechanics and Human Rehabilitation
Research on bioinstrumentation, neuromuscular control, and technology for diagnosis and remediation of disabilities.

Nano/Micro Science and Technology

Pappalardo Laboratory for Micro/Nano Engineering
Creation of new engineering knowledge and products on the nano and micro scale through multidomain, multidisciplinary, and multiscale research.

Faculty and Staff

Faculty and Teaching Staff
Mary C. Boyce, PhD
Gail E. Kendall Professor of Mechanical Engineering

MacVicar Faculty Fellow
Department Head

Gareth H. McKinley, PhD
School of Engineering Professor of Teaching Innovation
Professor of Mechanical Engineering
Class of 1960 Fellow
Associate Department Head, Research

John H. Lienhard V, PhD
Samuel C. Collins Professor of Mechanical Engineering
Director, KFUPM Center for Clean Water and Clean Energy
Associate Department Head, Education

Michael S. Triantafyllou, ScD
W. I. Koch Professor of Marine Technology
Professor of Mechanical and Ocean Engineering
Director, Center for Ocean Science and Engineering

Professors
Rohan Abeyaratne, PhD
Quentin Berg Professor of Mechanics
MacVicar Faculty Fellow
Director, Singapore–MIT Alliance for Research and Technology

Triantaphyllos R. Akylas, PhD
Professor of Mechanical Engineering

Lallit Anand, PhD
Warren and Towneley Rohsenow Professor of Mechanical Engineering

H. Harry Asada, PhD
Ford Professor of Engineering
Director, d’Arbeloff Laboratory for Information Systems and Technology

Arthur B. Baggeroer, ScD
Director, Pappalardo Micro and Nano Science and Technology

Klaus-Jürgen Bathe, PhD, DSc, Dr-Ing eh, Dr hc Mult
Professor of Mechanical Engineering

George Barbastathis, PhD
Ford Professor of Engineering, Emeritus

Klaus-Jürgen Bathe, PhD, DSc, Dr-Ing Eh, Dr hc Mult
Professor of Mechanical Engineering

John G. Brisson II, PhD
Professor of Mechanical Engineering

Gang Chen, PhD
Carl Richard Soderberg Professor of Power Engineering
Director, Pappalardo Micro and Nano Engineering Laboratories

Triantaphyllos R. Akylas, PhD
Director, Solid-State Solar-Thermal Energy Conservation Center

Wai K. Cheng, PhD
Professor of Mechanical Engineering

Rohan Abeyaratne, PhD
Professor of Mechanical Engineering

Chryssostomos Chryssostomidis, PhD
Professor of Mechanical and Ocean Engineering

Gang Chen, PhD
Professor of Ocean Science and Engineering

Henry L. and Grace Doherty Professor in Ocean Science and Engineering

Professor of Mechanical and Ocean Engineering
Director, MIT Sea Grant College Program
Jung-Hoon Chun, PhD
Professor of Mechanical Engineering
Director, Laboratory for Manufacturing and Productivity
(On leave)

Ernest G. Cravalho, PhD
Professor of Mechanical Engineering

C. Forbes Dewey, Jr., PhD
Professor of Mechanical and Biological Engineering

Steven Dubowsky, ScD
Professor of Mechanical Engineering and Aeronautics and Astronautics

Ahmed F. Goniem, PhD
Ronald C. Crane Professor of Mechanical Engineering
Director, Center for 21st Century Energy
(On leave)

Lorna J. Gibson, PhD
Matoula S. Salapatas Professor of Materials Science and Engineering
Professor of Mechanical Engineering and Civil and Environmental Engineering

Leon R. Glicksman, PhD
Professor of Mechanical Engineering and Architecture

David C. Gossard, PhD
Professor of Mechanical Engineering

Stephen C. Graves, PhD
Abraham Siegel Professor of Management
Professor of Mechanical Engineering and Management

Linda G. Griffith, PhD
School of Engineering Professor of Teaching Innovation
Professor of Mechanical and Biological Engineering

Alan J. Grodzinsky, ScD
Professor of Mechanical, Electrical, and Biological Engineering

Timothy G. Gutowski, PhD
Professor of Mechanical Engineering

David E. Hardt, PhD
Ralph E. and Eloise F. Cross Professor of Mechanical Engineering
Professor of Engineering Systems

Douglas P. Hart, PhD
Professor of Mechanical Engineering

John B. Heywood, PhD, DSc, DTech (hon), DSc (hon)
Professor of Mechanical Engineering

Sun Jae Professor of Mechanical Engineering, Emeritus

Neville J. Hogan, PhD, PhD (hon)
Sun Jae Professor of Mechanical Engineering
Professor of Brain and Cognitive Sciences
Director, Newman Laboratory

ian W. Hunter, PhD
Hatsopoulos Professor of Mechanical Engineering
Director, Laboratory for Bioinstrumentation

Roger D. Kamm, PhD
Germeshausen Professor of Mechanical and Biological Engineering

Mujid S. Kazimi, PhD
Professor of Mechanical and Nuclear Engineering

Robert S. Langer, PhD
Professor of Mechanical, Chemical and Biological Engineering
Institute Professor

Steven B. Leeb, PhD
Professor of Mechanical and Electrical Engineering and Computer Science
MacVicar Faculty Fellow

John J. Leonard, PhD
Professor of Mechanical and Ocean Engineering

Seth Lloyd, PhD
Professor of Mechanical Engineering
(On leave)

Nicholas C. Makris, PhD
Professor of Mechanical and Ocean Engineering

Henry S. Marcus, DBA
Professor of Marine Systems

Chiang C. Mei, PhD
Professor of Mechanical and Civil Engineering
Ford Professor of Engineering, Emeritus

Borivoje B. Mikić, ScD
Professor of Mechanical Engineering
(On leave, fall)

Jerome H. Milgram, PhD
Professor of Mechanical and Ocean Engineering

William I. Koch Professor of Marine Technology, Emeritus

David M. Parks, PhD
Professor of Mechanical Engineering

Anthony T. Patera, PhD
Ford Professor of Engineering
Codirector, Center for Computational Engineering

Nicholas M. Patrikalakis, PhD
Kawasaki Professor of Engineering
Singapore Research Professor of Robotics and Sensing
Professor of Mechanical and Ocean Engineering

Derek Rowell, PhD
Professor of Mechanical Engineering

Emanuel M. Sachs, PhD
Fred Fort Flowers ’41 and Daniel Fort Flowers ’41
Professor of Mechanical Engineering

Sanjay E. Sarma, PhD
Professor of Mechanical Engineering
MacVicar Faculty Fellow

Henrik Schmidt, PhD
Professor of Mechanical and Ocean Engineering

Paul D. Sclavounos, PhD
Professor of Mechanical Engineering and Naval Architecture

Warren P. Seering, PhD
Weber-Shaughness Professor of Mechanical Engineering
Professor of Engineering Systems
Codirector, System Design and Management Program

Alexander H. Slocum, PhD
Neil and Jane Pappalardo Professor of Mechanical Engineering

Jean-Jacques E. Slotine, PhD
Professor of Mechanical Engineering and Brain and Cognitive Sciences

Joseph L. Smith, Jr., ScD
Professor of Mechanical Engineering

Samuel C. Collins Professor of Mechanical Engineering, Emeritus
Part 2

SCHOOl OF ENGINEErING

Peter T. C. So, PhD
Professor of Mechanical and Biological Engineering
(On leave)

Subra Suresh, ScD
Vannevar Bush Professor of Engineering
Professor of Materials Science and Engineering, Mechanical Engineering, and Biological Engineering
Dean of Engineering

David L. Trumper, PhD
Professor of Mechanical Engineering

J. Kim Vandiver, PhD
Professor of Mechanical and Ocean Engineering
MacVicar Faculty Fellow
Director, Edgerton Center
Dean for Undergraduate Research

Charles M. Vest, PhD
Professor of Mechanical Engineering
President Emeritus

David Wallace, PhD
Professor of Mechanical Engineering and Engineering Systems
MacVicar Faculty Fellow
(On leave, spring)

Mark S. Welsh, NE
Professor of the Practice of Naval Construction and Engineering

Richard M. Wiesman, PhD
Professor of the Practice of Mechanical Engineering

Tomasz Wierzbicki, ScD
Professor of Applied Mechanics

James H. Williams, Jr., PhD
Professor of Mechanical Engineering and Writing and Humanistic Studies
School of Engineering Professor of Teaching Excellence, Emeritus

Ioannis V. Yannas, PhD
Professor of Mechanical Engineering, Polymer Science, and Biological Engineering

Kamal Youcef-Toumi, ScD
Professor of Mechanical Engineering

Dick Kau-Ping Yue, ScD
Philip J. Solondz Professor of Engineering
Professor of Mechanical and Ocean Engineering

Associate Professors

Martin Culpepper, PhD
Associate Professor of Mechanical Engineering

Daniel Frey, PhD
Associate Professor of Mechanical Engineering and Engineering Systems

Jeffrey C. Grossman, PhD
Carl Richard Soderberg Associate Professor of Power Engineering
Associate Professor of Mechanical and Materials Science and Engineering

Nicolas G. Hadjiconstantinou, PhD
Associate Professor of Mechanical Engineering

Kimberly Hamad-Schifferli, PhD
Associate Professor of Mechanical and Biological Engineering

Anette E. Hosoi, PhD
Associate Professor of Mechanical Engineering
MacVicar Faculty Fellow
(On leave, fall)

Joseph Jacobson, PhD
Associate Professor of Mechanical Engineering and Media Arts and Sciences

Sang-Gook Kim, PhD
Associate Professor of Mechanical Engineering

Pierre F. J. Lermusiaux, PhD
Doherty Associate Professor of Ocean Utilization

Carol Livermore, PhD
Associate Professor of Mechanical Engineering

Scott Manalis, PhD
Associate Professor of Mechanical and Biological Engineering
Associate Member, Broad Institute

Thomas Peacock, PhD
Associate Professor of Mechanical Engineering

Yang Shao-Horn, PhD
Associate Professor of Mechanical Engineering and Materials Science and Engineering

Peter Small, NE
Associate Professor of the Practice of Naval Construction and Engineering

Alexandra H. Techet, PhD
Associate Professor of Mechanical and Ocean Engineering

Assistant Professors

Mark Bathe, PhD
Samuel A. Goldblith Assistant Professor of Applied Biology
Assistant Professor of Mechanical Engineering and Biological Engineering

Cullen Buie, PhD
Assistant Professor of Mechanical Engineering

Franz Hover, PhD
Doherty Assistant Professor in Ocean Utilization
(On leave, spring)

Rohit N. Karnik, PhD
d’Arbeloff Assistant Professor of Mechanical Engineering

Sangbae Kim, PhD
Assistant Professor of Mechanical Engineering

Alexander Mitsos, PhD
Assistant Professor of Mechanical Engineering
(On leave, fall)

Pedro M. Reis, PhD
Assistant Professor of Mechanical and Civil and Environmental Engineering

Kripa Varanasi, PhD
d’Arbeloff Assistant Professor of Mechanical Engineering

Evelyn N. Wang, PhD
Esther and Harold E. Edgerton Assistant Professor of Mechanical Engineering

Maria C. Yang, PhD
Robert N. Noyce Assistant Professor of Mechanical Engineering and Engineering Systems
Senior Lecturers
John P. Appleton, PhD
Arthur Bergles, PhD
Ernesto E. Blanco, BME
Ronald Campbell
Stephen D. Fantone, PhD
Dean Kamen, PhD
Raymond, McCord, PhD
Hilario Oh, PhD
William Plummer, PhD
Mark Schattenburg, PhD
Amy Smith, SM
Barrick Tibbitts, NE
Abbott Weiss, PhD

Lecturers
Miriam Balaban, BSc
Harrison Chin, PhD
Richard Fenner, BS
Julio Guerrero, PhD
Rajiv Gupta, PhD, MD
Hamid Hashemi, PhD
Barbara Hughey, PhD
Philip Koenig, ScD
Sheng Liu, PhD
Taesik Lee, PhD
David Meeker, PhD
Benjamin Powers, PhD
Monica Rush
Vishal Saxena, PhD
Juhan Sonin
Tian Tian, PhD
Victor Wong, PhD
Robert Wunderlick, MA
Dana R. Yoerger, PhD

Instructors
Harrison Chin, PhD
Barbara Hughey, PhD

Technical Instructors
Joseph Cronin
David Dow
Pierce Hayward
Patrick McAtamney

Research Staff

Senior Research Engineers/Scientists
Anuradha Annaswamy, PhD
Stanley B. Gershwin, PhD
Lynette A. Jones, PhD
Mandayam A. Srinivasan, PhD

Principal Research Engineers/Scientists
James Bredt, PhD
Karl Iagnemma, PhD
H. Igo Krebs, PhD
Yuming Liu, PhD
Taofang Zeng, PhD

Research Engineers/Scientists
Arjuna Balasuriya, PhD
Wonjoon Cho, PhD
Joseph A. Curcio
Laura Dipietro, PhD
Keivan Esfarjani
Maurice Fallon, PhD
John Folkesson, PhD
Arvind Gopinath, PhD
Patrick Haley, PhD
Kelli Hendrickson, PhD
Nora C. Hogan, PhD
Michael Kaess, PhD
George E. Karniadakis, PhD
Wayne Leslie, SM
Santosh Shanbhogue, PhD

Postdoctoral Associates
Neerav Abani, PhD
Arezoo Ardekani, PhD
Sung-Jin Ahn, PhD
Mohammad-Reza Alam, PhD
Panagiotis Artemiadis, PhD
Marie-Eve Aubin-Tan, PhD
Remi Bourguet, PhD
Christopher Brooks, PhD
Hye Ryung Byon, PhD
Christopher Carton, PhD
Yann Chalopin, PhD
Shuo Chen, PhD
Sadegh Dabiri, PhD
Michael J. Dahl, PhD
Weitao Dai, PhD
Mostafa El Sharqawy, PhD
Hossam El-Asrag, PhD
Ryan Enright, PhD
Waleed Farahat, PhD
Shien-Ping Feng, PhD
Amin Gholibeyti, PhD
Lei Gu, PhD
Sang Eon Han, PhD
Simon Haward, PhD
Celine Hin, PhD
Tomonori Honda, PhD
Dinh Huynh, PhD
Susumu Imahashi, PhD
Jae Sik Jin, PhD
Kenneth Kar, PhD
Samira Kiani, PhD
Areti Kiara, PhD
Daekeun Kim, PhD
Jun Hyung Kim, PhD
Seung Jae Kim, PhD
Patrick Kirchen, PhD
David Knezevic, PhD
Seung Woo Lee, PhD
Tengfei Luo, PhD
Yuan Luo, PhD
Matthew McCarthy, PhD
Shalabh Maroo, PhD
Bhaskaran Muralidharan, PhD
Eva Mutoro, PhD
Se Baek Oh, PhD
Michael Park, PhD
Ethan Parsons, PhD
Teresa Peters, PhD
Mohammad Rastgaraa-Aagaah, PhD
David Rival, PhD
Vivek Sharma, PhD
Anup Shiraonkar, PhD
Niraj Sinha, PhD
Johannes Soulages, PhD
Cheng Hock Tan, PhD
Jekanthan Thangavelautham, PhD
Anand Veeraragavan, PhD
Lifeng Wang, PhD
Gabriel Weymouth, PhD
Jinshan Xu, PhD
Zhichuan Xu, PhD
Se Young Yang, PhD
Monica Zebjardi, PhD
Cheng Zhang, PhD

Professors Emeriti
Ali S. Argon, ScD
Quentin Berg Professor of Mechanical Engineering, Emeritus
A. Douglas Carmichael, PhD
Professor of Mechanical and Power Engineering, Emeritus

Stephen H. Crandall, PhD
Ford Professor of Engineering, Emeritus

Ira Dyer, PhD
Professor of Mechanical and Ocean Engineering, Emeritus

James A. Fay, PhD
Professor of Mechanical Engineering, Emeritus

Woodie C. Flowers, PhD
Pappalardo Professor of Mechanical Engineering, Emeritus

Ernst G. Frankel, PhD, DBA
Professor of Mechanical Engineering and Marine Systems, Emeritus

Peter Griffith, ScD
Professor of Mechanical Engineering, Emeritus

Elias P. Gyftopoulos, ScD
Ford Professor of Engineering, Emeritus

James C. Keck, PhD
Professor of Mechanical Engineering, Emeritus

Justin E. Kerwin, PhD
Professor of Mechanical Engineering and Naval Architecture, Emeritus

Shih-Ying Lee, ScD
Professor of Mechanical Engineering, Emeritus

Richard H. Lyon, PhD, DrEng (hon)
Professor of Mechanical Engineering, Emeritus

Koichi Masubuchi, PhD
Kawasaki Professor of Engineering, Emeritus

Frank A. McClintock, PhD
Professor of Mechanical Engineering, Emeritus

J. Nicholas Newman, ScD
Professor of Mechanical Engineering and Naval Architecture, Emeritus

T. Francis Ogilvie, PhD
Professor of Mechanical and Ocean Engineering, Emeritus

Ronald F. Probstein, PhD
Ford Professor of Engineering, Emeritus

Warren M. Rohsenow, DEng
Professor of Mechanical Engineering, Emeritus

Thomas B. Sheridan, ScD, D (hon)
Ford Professor of Engineering and Applied Psychology, Emeritus

Nam P. Suh, PhD, LHD (hon), EngD (hon), TekD (hon)
Ralph E. and Eloise F. Cross Professor of Mechanical Engineering, Emeritus

Neil E. Todreas, PhD
Professor of Nuclear and Mechanical Engineering, Emeritus

David Gordon Wilson, PhD
Professor of Mechanical Engineering, Emeritus

Gerald L. Wilson, ScD
Vannevar Bush Professor of Electrical and Mechanical Engineering, Emeritus

Carl R. Peterson, ScD
Professor of Mechanical Engineering, Emeritus
The Department of Nuclear Science and Engineering provides undergraduate and graduate education for students interested in developing peaceful applications of nuclear science and technology. This is an exciting time to study nuclear science and engineering: society's interest in, and need for, a clean energy source such as nuclear energy is at a high level. The applications of other nuclear technologies in medicine and industry have similarly focused attention on the value of a strong nuclear science and engineering program. In response to this demand, the department has developed a discipline-focused program of study that prepares students for the many diverse applications of nuclear science and technology. Underlying all these applications is the core discipline of applied nuclear science, including low-energy nuclear physics, the interaction of ionizing radiation with matter, and plasma science and technology.

The department’s view of nuclear science and engineering is manifest in our unified core curriculum for all our graduate students and our discipline-based undergraduate program. Once the core material is mastered, students can select from a wide variety of applications through more specialized subjects.

Applications can be sorted into three overlapping subcategories: nuclear energy, plasma physics and fusion technology, and the broad area of nuclear and radiation science and technology. In keeping with MIT’s longstanding contributions to the well-being of the nation, the department aims to educate individuals who will make key scientific and engineering advances in these societally important fields. Each of the three basic research areas involves substantial faculty and student activities. A synopsis of these activities follows.

Nuclear Energy. Nuclear reactors, using the fissioning of heavy elements such as uranium, supply approximately 17 percent of electricity worldwide and power ships and submarines. They produce radioisotopes for medical, biological, and industrial uses, and for long-lived on-board spacecraft power. They could also provide energy for chemical and industrial processing and portable fuel production (e.g., synthetic fuels or hydrogen).

The generation of electricity by nuclear power is probably the most familiar application. In some countries, the fraction of electricity obtained from nuclear power is greater than 80 percent. In the United States, it is about 20 percent. Concerns about the unreliability of fossil fuels and the need for new domestic supplies of electricity have led to a resurgence of interest in the design of advanced nuclear reactors. Nuclear reactors emit no greenhouse gases and therefore represent a highly attractive and realistic option for reducing the pollution that is contributing to global climate change.

The safe and economical development, design, construction, and operation of nuclear power plants and their related nuclear fuel recycling facilities is a major field of engineering. Future Nuclear Science and Engineering research goals are focused on: developing new advanced nuclear reactor designs that include passive safety features; developing innovative new proliferation-resistant fuel cycles; extending the life of nuclear fuels and structures; and reducing the capital and operating costs of nuclear power stations. The goal is to make nuclear power the most economical, safe, and environmentally friendly way of generating electricity, thereby making a major contribution to our energy independence and a sustainable global climate.

The Department of Nuclear Science and Engineering is also an active participant in MIT’s interdisciplinary programs of instruction and research in the management of complex technological systems and technology and public policy. This is a growing and important area, since policy makers need more effective tools in assessing complex systems and human behavior.

Plasma Physics and Fusion Technology. A different source of nuclear energy results from the controlled fusion of light elements, notably hydrogen isotopes. Since the basic source of fuel for fusion can be easily and inexpensively extracted from the ocean or from very abundant lithium, the supply is virtually inexhaustible. Fusion reactions can only readily occur in a fully ionized plasma heated to super high temperatures (150 million K). Such hot plasmas cannot be contained by material walls and are usually confined instead by strong magnetic fields. Recent progress within the international fusion community increases the likelihood that controlled fusion will become a practical source of energy within the next half-century. Attainment of a fusion power plant involves the solution of many intellectually challenging physics and engineering problems. Included among these challenges are a mastery of the sophisticated field of plasma physics; the discovery of improved magnetic geometries to enhance plasma confinement; the development of materials capable of withstanding high stresses and exposure to intense radiation; and the need for great engineering ingenuity in integrating fusion power components into a practical, safe, and economical system. The department has strong programs in plasma fundamentals, materials for intense radiation fields, and engineering of fusion systems.

The fundamentals of plasmas also underlie novel methods for treatment of toxic gases, magneto-hydrodynamic energy conversion, and ion propulsion, all topics of interest in the department. Students concentrating on applied plasma physics are trained not only to contribute to the advancement of controlled fusion but also to apply their knowledge in current industrial applications. In these plasma programs, the Department of Nuclear Science and Engineering is a leader in MIT’s broad, interdepartmental program of research and instruction in plasma physics and its varied applications.

Nuclear and Radiation Science and Technology. The department’s nuclear and radiation science and technology program is concerned with the continued development of low energy nuclear science and its application to fields such as medicine and biology, information processing, materials research, industrial processes, and radiation detection.

Bionuclear science and engineering utilizes nuclear processes in a variety of ways that impact medicine and biology. For example, nuclear radiation can be used as a medical diagnostic tool through a variety of imaging techniques and therapies. Understanding the biological impact of radiation is also key to environmental and occupational health.

A new frontier in nuclear science and engineering is to precisely control the quantum mechanical wave function of atomic and subatomic systems. Thus far, this has been achieved only in low energy processes, particularly nuclear magnetic resonance, a form of nuclear spectroscopy which has allowed the basic techniques needed for quantum control to be explored in unprecedented detail. The department has initiated an
ambitious program in this area, which promises to be widely applicable in nanotechnology. The ultimate achievement would be the construction of a “quantum computer,” which would be capable of solving problems that are far beyond the capacities of classical computers. Other significant applications are quantum-enabled sensors and actuators, secure communication, and the direct simulation of quantum physics.

A cross-cutting area of research in the department involves the area of nuclear materials research. Understanding how radiation interacts with biological materials is a major interest in the nuclear science and technology program. However, materials also are critical in the nuclear power and fusion programs. Here, in order to achieve the full potential of nuclear energy from either fission or fusion reactors, it is necessary to develop special materials capable of withstanding intense radiation for long periods of time. It is also crucial to understand the phenomenon of corrosion in a radiation environment.

Nuclear science and engineering makes important contributions to a wide range of industrial applications. For example, nuclear techniques are being used and developed for the rapid, non-intrusive inspection of aircraft baggage and cargo. Nuclear techniques have been used to develop a noninvasive solidification sensor for the metal casting industry, a sensor of great practical quality control and economic importance. Nuclear technologies have been used to eliminate E. coli bacteria from food and anthrax from our mail system.

UNDERGRADUATE STUDY

Bachelor of Science in Nuclear Science and Engineering/Course 22

The Department of Nuclear Science and Engineering’s undergraduate program offers a strong foundation in science-based engineering, providing the skills and knowledge for a broad range of technical careers. The nuclear energy industry is experiencing a major resurgence worldwide, leading to high demand for nuclear engineers. Other nuclear and radiation applications are increasingly important in medicine, industry, and government. The program provides fundamental knowledge both in engineering, including
The Course 22 degree program is accredited by the Accreditation Board for Engineering and Technology.

Subject requirements and options are described in the preceding paragraphs and chart. A bachelor’s degree thesis of 12 units is required.

Minor in Nuclear Science and Engineering

The requirements for a Minor in Nuclear Science and Engineering are as follows:

- Students must complete a total of six subjects, which typically include 8.03 and 18.03 as prerequisites to departmental subjects, plus:
 - 22.01 Introduction to Ionizing Radiation
 - 22.02 Introduction to Applied Nuclear Physics
 - 22.05 Neutron Science and Reactor Physics
 - 22.06 Engineering of Nuclear Systems
 - 22.058 Principles of Tomographic Imaging
 - 22.09 Principles of Nuclear Radiation Measurement and Protection

The department’s minor advisor will ensure that each minor program forms a coherent group of subjects.

Combined Bachelor’s and Master’s Programs

The five-year programs leading to a joint Bachelor of Science in Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Nuclear Science and Engineering, or Physics and a Master of Science in Nuclear Science and Engineering are designed for students who decide relatively early in their undergraduate career that they wish to pursue a graduate degree in nuclear engineering. Students must submit their application for this program during the second term of their junior year and be judged to satisfy the graduate admission requirements of the department. The normal expectations of MIT undergraduates for admission to the five-year program are an overall MIT grade point average of at least 4.3, and a strong mathematics, science, and engineering background with GPA of at least 4.0.

The nuclear science and engineering thesis requirements of the two degrees may be satisfied either by completing both an SB thesis and an SM thesis, or by completing an SM thesis and any 12 units of undergraduate credit.

For further information, interested students should contact either their undergraduate department or the Department of Nuclear Science and Engineering.

Inquiries

Further information on undergraduate programs, admissions, and financial aid may be obtained from the department’s Academic Office, Room 24-102, 617-258-5682.

Graduate Study

The nuclear science and engineering profession is broad and many undergraduate disciplines provide suitable preparation for graduate study. While the graduate program splits into three areas after the initial core set of courses, many incoming students change their area of interest after joining the program. The Department of Nuclear Science and Engineering is dedicated to attracting a diverse class of well-prepared engineers and scientists.

An undergraduate degree in physics, engineering physics, chemistry, mathematics, metallurgy, or chemical, civil, electrical, mechanical, or nuclear science and engineering can provide a foundation for graduate study in nuclear science and engineering. Optimum undergraduate preparation would include the following:

- **Physics**—at least three introductory subjects covering classical mechanics, electricity and magnetism, and wave phenomena. An introduction to quantum mechanics is quite helpful, and an advanced subject in electricity and magnetism (including a description of time-dependent fields via Maxwell’s equations) is recommended for those wishing to specialize in fusion.

- **Mathematics**—it is essential that incoming students have a solid understanding of mathematics, including the study and application of ordinary differential equations. It is highly recommended that students also have studied partial differential equations and linear algebra.

- **Chemistry**—at least one term of general, inorganic, and physical chemistry.

- **Engineering Fundamentals**—the graduate curriculum builds on a variety of engineering skills, and incoming students are expected to have had an introduction to thermodynamics, fluid mechanics, heat transfer, electronics and measurement, and computation and numerical methods. A subject covering the mechanics of materials is recommended, particularly for students wishing to specialize in fission.
Laboratory experience is essential. This may have been achieved through an organized subject, and ideally was supplemented with an independent undergraduate research activity or a design project.

Applicants for admissions are required to take the Graduate Record Examination (GRE).

Master of Science in Nuclear Science and Engineering

The object of the master of science program is to give the student a good general knowledge of nuclear science and engineering and to provide a foundation either for productive work in the nuclear field or for more advanced graduate study. The general requirements for the SM degree are listed under Graduate Education in Part 1. Subject 22.101 Applied Nuclear Physics or its equivalent is required for all master of science degree candidates.

Other subjects may be selected in accordance with the student’s particular field of interest. Most master of science candidates specialize in one of three alternative fields: fission nuclear technology, applied plasma physics, or nuclear science and technology. Detailed descriptions of the subjects available in each of these areas may be found in the Course 22 listings in the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Students with adequate undergraduate preparation normally need 18 months to two years to complete the requirements for the master of science. Additional information concerning the requirements for the Master of Science in Nuclear Science and Engineering, including lists of recommended subjects, may be obtained from the department’s Academic Office, Room 24-102.

Master of Science in Technology and Policy

The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy analysis and formulation. The Technology and Policy Program (TPP) curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning. For additional information, see the program description under Engineering Systems Division or visit http://web.mit.edu/tpp/.

Nuclear Engineer

The program of study leading to the nuclear engineer’s degree provides deeper knowledge of nuclear science and engineering than is possible in the master’s program and is intended to train students for creative professional careers in engineering application or design.

The general requirements for this degree, as described under Graduate Education in Part 1, include 162 units of subject credit plus a thesis. Each student must plan an individually selected program of study, approved in advance by the faculty advisor, and must complete, and orally defend, a substantial project of significant value.

The objectives of the program are to provide the candidate with broad knowledge of the profession and to develop competence in engineering applications or design. The emphasis in the program is more applied and less research-oriented than the doctoral program.

The engineering project required of all candidates for the nuclear engineer’s degree is generally the subject of an engineer’s thesis. A student with full undergraduate preparation normally needs two years to complete the program. Additional information may be obtained from the department.

Doctor of Philosophy and Doctor of Science

The program of study leading to either the doctor of philosophy or the doctor of science degree aims to give comprehensive knowledge of nuclear science and engineering, to develop competence in advanced engineering research, and to develop a sense of perspective in assessing the role of nuclear science and technology in our society.

General requirements for the doctorate are described under Graduate Education in Part 1 and in the Graduate School Policy and Procedures Manual. The specific requirements of the Department of Nuclear Science and Engineering are the math and physics competency requirement, the engineering requirement, the general examination, the core/major/minor program requirement, and the doctoral thesis.

Upon satisfactory completion of the requirements, the student ordinarily receives a PhD unless he or she requests an ScD. The requirements for both degrees are the same.

Students admitted for the master of science or nuclear engineer’s degree must apply to the Department of Nuclear Science and Engineering’s Admissions Committee for admission to the doctoral program.

Students admitted for a doctoral degree must complete the math and physics competency requirement and the engineering requirement prior to taking the general examination. Before starting doctoral research, each student is required to pass a general examination whose purpose is to establish intellectual potential as well as breadth and depth of knowledge. The general exam has two sections: a written component and an oral component. Both components must be passed in order to register for doctoral thesis credit.

Candidates for a doctoral degree must also satisfactorily complete (with an average grade of B or better) an approved program of advanced studies—the core/major/minor requirement. The program requires that students take not less than 84 credit hours of subjects (excluding special problems), of which two subjects (24 units) must be selected from the following courses (the core): 22.101, 22.105, and 22.106. Three subjects (36 units) comprise a field of specialization (the major) that will be closely related to the student’s doctoral thesis topic. Two subjects (24 units) must be coordinated subjects clearly outside the field of specialization (the minor). None of the 36 units selected by the student in the field of specialization (the major) may be from the list of subjects specified for general examination questions chosen by the student.

Doctoral research may be undertaken either in the Department of Nuclear Science and Engineering or in a nuclear-related field in another department. Appropriate areas of research are described generally in the introduction to the department, and a detailed list may be obtained from the Department of Nuclear Science and Engineering.
Research Facilities

The department’s programs are supported by a number of outstanding experimental facilities for advanced research in nuclear science and engineering.

The MIT Research Reactor in the Nuclear Reactor Laboratory operates at a power of 5 MW and is fueled with U-235 in a compact light-water cooled core surrounded by a heavy-water reflector. This reactor provides a wide range of radiation-related research and teaching opportunities for the students and faculty of the department. Major programs to study corrosion in a nuclear environment are currently in place. Details of the laboratory’s research programs and facilities are given in the section on Interdisciplinary Research and Study.

The department utilizes extensive experimental plasma facilities for the production and confinement of large volumes of highly ionized plasmas and for studies of plasma turbulence, particle motions, and other phenomena.

Most of the departmental research on plasmas and controlled fusion is carried out in the Plasma Science and Fusion Center. The department has played a major role in the design and development of high magnetic-field fusion devices. Currently there are three major plasma experiments at MIT—the Alcator C-Mod Tokamak, the Levitated Dipole Experiment, and the Versatile Toroidal Facility—all located in the Plasma Science and Fusion Center (described in the section on Interdisciplinary Research and Study in Part 3). Through its activities in the Plasma Science and Fusion Center, the department is also the national leader in the design of magnets, both copper and superconducting.

Within the Magnetic Resonance Laboratory, the full gamut of electron and nuclear magnetic resonance (NMR) techniques can be undertaken in one setting. Topics explored in the laboratory include NMR microscopy; studies of porous, granular, and soft matter; quantum chaos; coherent multi-body dynamics; and experimental implementation of quantum computers. A focus is on the engineering of quantum spin-based sensors, actuators, and computers.

The thermal hydraulics and nano-fluids laboratory is equipped with state-of-the-art instrumentation for measurement of fluid thermo-physical properties, and flow loops for characterizing convective heat transfer and fluid dynamics behavior. A particularly novel facility uses infrared thermography to study fundamental phenomena of boiling, such as bubble nucleation, growth, and departure from a heated surface.

In addition to the above facilities, the department has a nuclear instrumentation laboratory and a 14 MeV neutron source. Laboratory space and shop facilities are available for research in all areas of Nuclear Science and Engineering. A state-of-the-art scanning electron microscope that can be used to study irradiated specimens is available. A number of computer workstations dedicated to simulation, modeling, and visualization, as well as MIT’s extensive computer facilities, are used in research and graduate instruction.

Financial Aid

Financial aid for graduate students is available in the form of research and teaching assistantships, department-administered fellowships, and supplemental subsidies from the College Work-Study Program. Assistantships are awarded to students with high quality academic records. The duty of a teaching assistant is to assist a faculty member in the preparation of subject materials and the conduct of classes, while that of a research assistant is to work on a research project under the supervision of one or more faculty members.

Most fellowships are awarded in April for the following academic year. Assistantships are awarded on a semester basis. The assignment of teaching assistants is made before the start of each semester, while research assistants can be assigned at any time. Essentially all students admitted to the doctoral program receive financial aid for the duration of their education.

Application for financial aid should be made to Professor Jacopo Buongiorno, Room 24-206, 617-253-7316.

Inquiries

Additional information on graduate admissions and academic and research programs may be obtained from the department’s Academic Office, Room 24-102, 617-253-3814, cegan@mit.edu.
Assistant Professors
Paola Cappellaro, PhD
Assistant Professor of Nuclear Science and Engineering and Electrical Engineering and Computer Science
Benoit Forget, PhD
Assistant Professor of Nuclear Science and Engineering
Anne White, PhD
Assistant Professor of Nuclear Science and Engineering
Bilge Yildiz, PhD
Assistant Professor of Nuclear Science and Engineering

Visiting Associate Professor
Evgeni Shwageraus, PhD

Senior Lecturers
Bruce R. Rosen, MD, PhD
Charles Forsberg, PhD

Research Staff
Senior Research Scientists
Peter Catto, PhD
Senior Research Scientist, Plasma Science and Fusion Center and Nuclear Science and Engineering
Daniel R. Cohn, PhD
Senior Research Scientist, Plasma Science and Fusion Center and Nuclear Science and Engineering
Head, Plasma Technology and Systems, Plasma Science and Fusion Center
Richard C. Lanza, PhD
Senior Research Scientist

Research Engineers
Edward Pilat, PhD
Peter Stahle, BSME

Postdoctoral Associates
Zhuhua Cai, PhD
Xili Duan, PhD
Colm Ryan, PhD

Research Affiliates
Anatoli Arodzero, PhD
Piero Baglioni, PhD
Brandon Blackburn, PhD
Gongyi Chen, PhD
Henry Foxhill, PhD
Pavel Hejzlar, ScD
Jonathan Hodges, PhD
Michael Hynes, PhD
John Jackson, PhD
Erik Johnson, PhD
Shih-Ping Kao, PhD
Gerrit Krasko, PhD
Akihiro Kushima, PhD
Hua Li, PhD
Xi Lin, PhD
Francesco Mallamace, PhD
Ang Le Manzur, PhD
Shigenobu Ogata, PhD
David Perticone, PhD
Monica Regalbuto, PhD
Pradip Saha, PhD
Youssef Shatilla, PhD
Shuanghe Shi, PhD
Piero Tartaglia, PhD
Sebastian Teysserey, PhD
Dwight Williams, PhD
Zhiwen Xu, PhD
Vitaliy Ziskin, PhD

Professors Emeriti
Sow-Hsin Chen, PhD
Professor of Nuclear Science and Engineering, Emeritus
Michael John Driscoll, ScD
Professor of Nuclear Science and Engineering, Emeritus
Thomas Henderson Dupree, PhD
Professor of Nuclear Science and Engineering and Physics, Emeritus
Elias Panayiotis Gyftopoulos, ScD
Professor of Nuclear Science and Engineering and Mechanical Engineering, Emeritus
Kent Forrest Hansen, ScD
Professor of Nuclear Science and Engineering, Emeritus
Otto Karl Harling, PhD
Professor of Nuclear Science and Engineering, Emeritus
David Dayton Lanning, PhD
Professor of Nuclear Science and Engineering, Emeritus
Ronald Michael Latanian, PhD
Professor of Materials Science and Nuclear Science and Engineering, Emeritus
Kim Molvig, PhD
Associate Professor of Nuclear Science and Engineering, Emeritus
Ronald Richard Parker, PhD
Professor of Electrical Engineering and Nuclear Science and Engineering, Emeritus
Kenneth Calvin Russell, PhD
Professor of Metallurgy and Nuclear Science and Engineering, Emeritus
Neil Emmanuel Todreas, ScD
Professor of Nuclear Science and Engineering and Mechanical Engineering, Emeritus
Sidney Yip, PhD
Professor of Nuclear Science and Engineering and Materials Science and Engineering, Emeritus
The School of Humanities, Arts, and Social Sciences offers students the chance to explore creative expressions of the human imagination, understand the human past, and examine social, economic, and political change over time and the cultural and institutional contexts in which science and technology are rooted.
The great strength of MIT lies not only in the fact that it fosters creativity and innovation in science and technology, but that it also pioneers in exploring the social and cultural environments in which science and technology are produced.

A chief concern of the School’s undergraduate program has long been the provision of subjects to fulfill the Institute’s Humanities, Arts, and Social Sciences Requirement. The object of the requirement, broadly stated, is to ensure that every undergraduate at MIT is exposed to a wide range of interpretive and analytic approaches in the humanities, arts, and social sciences.

Humanities, arts, and social science programs emphasize teaching, research, and performance. Through their publications, lectures, and seminars, the faculty strive to expand the frontiers of human knowledge and awareness. Interdisciplinary collaboration is a hallmark of this activity.

The School’s five doctoral programs (Economics; History, Anthropology, and Science, Technology and Society [HASTS]; Linguistics; Philosophy; and Political Science) are among the leading graduate programs of their kind in the world. They prepare students primarily for teaching and research careers in universities and colleges, but also for government service, industry, and finance. The School also offers master’s degrees in Comparative Media Studies, Political Science, and Science Writing.

New Directions

Minor programs have been established in all of the School’s sections, programs, and departments, as well as in African and African Diaspora Studies, Applied International Studies, Chinese, Comparative Media Studies, East Asian Studies, Latin American Studies, Middle Eastern Studies, Psychology, Russian Studies, and Women’s and Gender Studies. These minors offer another opportunity for focused undergraduate exploration in the humanities, arts, and social sciences. For further details, see the section on interdisciplinary undergraduate minors in Part 3.

In response to the increasing demand on US campuses for internationalization of the curriculum, the Foreign Languages and Literatures Section has created language and culture programs in Japanese and Chinese. The Japanese Language and Cultural Program has built the most technologically advanced Japanese language and culture education curriculum in the world, using online computer networks and interactive videos. The MIT International Science and Technology Initiatives, located at the Center for International Studies, support student internships in China, France, Germany, India, Israel, Italy, Japan, Mexico, Singapore, and Spain.

The School’s newest graduate degree program is an SM in Science Writing, which focuses on the ability to interpret and explain science to the wider public. The School also offers an SM degree and an SB degree in Comparative Media Studies; both degree programs focus on new and old media and their global impact on society, economy, and politics.

History

MIT’s Course 21 (Humanities) was considered innovative when it was established in the 1950s, although its roots go back to the opening of the Institute in 1865. The 1865 course bulletin offered a curriculum option called the Course of Science and Literature, which encompassed the study of humanities and social science subjects. The science and literature option developed into Course 9, and by 1882 was renamed General Studies, offering “a larger amount of history, economics, language, and literature than is possible in technical courses.”

After the Second World War, MIT’s evaluation of general and humanistic education changed dramatically. The Institute saw the need to emphasize the “humanistic-social stem” of the engineering curriculum. During the postwar period, the School of Humanities and Social Studies (later the School of Humanities and Social Science) was established, allowing students to pursue a degree that combined engineering or science with humanities in a 60/40 ratio over four years. By this time, the Department of Economics and Social Science had been established within the School, attracting some of the nation’s best graduate students and achieving recognition as a leading department.

During the 1960s the School grew rapidly, was reorganized into most of its current departments and sections, and began to grant full-scale degrees. In 1965, Political Science became a separate department, offering both undergraduate and graduate degrees. Philosophy, History, Literature, and Music all emerged as separate sections. In 1966, for the first time ever, MIT students could major in the humanities.

In the 1970s the School continued to define separate programs: the Anthropology and Archaeology Program (now Anthropology Program), established in 1971, and the Writing Program (now Program in Writing and Humanistic Studies), established in 1974. A rearrangement of sections in 1976 produced the Foreign Languages and Literatures Section and the Department of Linguistics and Philosophy. The interdisciplinary Program in Science, Technology, and Society began in 1977, and in 1988 a doctoral program in the History and Social Study of Science and Technology (later called the History, Anthropology, and Science, Technology, and Society Program) was established in collaboration with the faculties of History and Anthropology. In 1990, the School replaced the generic SB degree in Humanities with SB degrees in specified areas of humanistic study: Anthropology, History, Literature, Foreign Languages and Literatures, Music, and Writing. In 1999, it introduced an SM degree in Comparative Media Studies and in 2002, an SM degree in Science Writing. In 2003, an SB degree in Comparative Media Studies was introduced. To reflect the growth and incorporation of the arts at MIT and in celebration of its 50th anniversary in 2000, the School changed its name to the School of Humanities, Arts, and Social Sciences.

Interdepartmental Programs

The interdepartmental centers, groups, and programs that reside in the School of Humanities, Arts, and Social Sciences include the following:

- Abdul Latif Jameel Poverty Action Laboratory
- Center for International Studies
- Women’s and Gender Studies Program
- Knight Science Journalism Fellows Program

See Interdisciplinary Research and Study in Part 3 for further information.
Degrees Offered in the School of Humanities, Arts, and Social Sciences

<table>
<thead>
<tr>
<th>Major</th>
<th>Course Code</th>
<th>Major Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropology</td>
<td>21A</td>
<td>SB Anthropology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM Comparative Media Studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhD Comparative Media Studies</td>
</tr>
<tr>
<td>Comparative Media Studies</td>
<td>CMS</td>
<td>SB Comparative Media Studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM Comparative Media Studies</td>
</tr>
<tr>
<td>Economics</td>
<td>14</td>
<td>SB Economics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM Economics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhD Economics</td>
</tr>
<tr>
<td>Foreign Languages and Literatures</td>
<td>21F</td>
<td>SB Foreign languages and literatures</td>
</tr>
<tr>
<td>History</td>
<td>21H</td>
<td>SB History</td>
</tr>
<tr>
<td>Humanities</td>
<td>21*</td>
<td>SB Humanities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SB Humanities and engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SB Humanities and Science</td>
</tr>
<tr>
<td>Linguistics and Philosophy</td>
<td>24</td>
<td>SB Linguistics and Philosophy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM Philosophy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhD Linguistics</td>
</tr>
<tr>
<td>Literature</td>
<td>21L</td>
<td>SB Literature</td>
</tr>
<tr>
<td>Music and Theater Arts</td>
<td>21M</td>
<td>SB Music</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM Science Writing</td>
</tr>
<tr>
<td>Political Science</td>
<td>17</td>
<td>SB Political Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM Political Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhD Political Science</td>
</tr>
<tr>
<td>Program in Science, Technology, and Society</td>
<td>STS</td>
<td>SB Science, Technology, and Society</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhD History, Anthropology, and Science, Technology, and Society</td>
</tr>
<tr>
<td>Writing and Humanistic Studies</td>
<td>21W</td>
<td>SB Writing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM Science Writing</td>
</tr>
</tbody>
</table>

Notes

* Students majoring in German or doing a “major departure” (an independently designed major in one of several specified fields) receive the generic SB degree in Humanities.

Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.
Anthropology studies humankind from a comparative perspective that emphasizes the diversity of human behavior and the importance of culture in explaining that diversity. While the discipline encompasses the biological nature of our species and the material aspects of human adaptation, it takes as fundamental the idea that we respond to nature and natural forces in large part through culture. Anthropology, then, is the study of human beings as cultural animals. Sociocultural anthropology draws its data from the direct study of contemporary peoples living in a wide variety of circumstances, from peasant villagers and tropical forest hunters and gatherers to urban populations in modern societies, professionals in technological organizations, as well as from the history and prehistory of these peoples.

The Anthropology program at MIT offers students a broad exposure to anthropological scholarship as well as perspectives on topics relevant to other fields in the humanities, social sciences, sciences, and engineering. It also provides more intensive introduction to areas of faculty specializations: social and political organization, science and technology, environmentalism, agriculture and food production, religion and symbolism, photography and film, ethics, law and human rights, gender studies, nationalism and ethnic identity, and the anthropology of medicine and scientific research.

The anthropology curriculum is divided into seven groups: 21A.100 to 21A.199 introductory subjects; 21A.200 to 21A.299 central topics in social anthropology; 21A.300 to 21A.399 subjects dealing with how technologies derive from and relate to their cultural settings; 21A.400 to 21A.499 subjects organized by geographic area and historical periods; 21A.500 to 21A.599 advanced undergraduate subjects intended primarily for majors and minors; 21A.600 to 21A.699, special topics, seminars, and research subjects for undergraduates; and 21A.700 to 21A.999 graduate subjects.

Subjects offered in the program fall into six themes:

- Health, disease, and biomedicine: 21A.215, 21A.216, 21A.330, 21A.344
- Technology and culture: 21A.340, 21A.344, 21A.550, 21A.360, 21A.385
- Media and the senses: 21A.253, 21A.265, 21A.275, 21A.335, 21A.337, 21A.339, 21A.348, 21A.360, 21A.370
- Other cultures, other worlds: 21A.113, 21A.212, 21A.270, 21A.275

For additional information, see http://web.mit.edu/anthropology/course_desc/index.html.

Students taking a concentration in anthropology should enroll in either 21A.100 Introduction to Anthropology or 21A.109 How Culture Works, and two other subjects. Anthropology subjects qualify for several interdisciplinary concentrations, including those in Women’s and Gender Studies, Latin American Studies, and Science, Technology, and Society.

Bachelor of Science in Anthropology

Course 21A

The undergraduate program leading to the degree of Bachelor of Science in Anthropology (Course 21A) provides a thorough grounding in cultural anthropology.

Majors learn about the concept of culture and processes of meaning-making, the nature of anthropological fieldwork, and the connections between anthropology and the other social sciences. They study the various theories that attempt to explain human behavior as well as the range of methods anthropologists use to analyze data. Students can focus on geographical areas, such as Latin America or modern western society, and on issues like neocolonialism, ethnic conflict, human rights, expressive culture, or globalization.

The anthropology student comes to understand that the hallmark of the discipline is the comparative study of human societies. Emphasis is on understanding diversity and the importance of the concept of culture in explaining that diversity, as well as on learning about the universals of behavior that may underlie diversity.

Minor in Anthropology

The Minor in Anthropology consists of six subjects arranged into three tiers as shown below. Students create individual programs with the help of the minor advisor to ensure that they gain a coherent introduction to the methods, approaches, and some of the results of the discipline.

Tier I

- One subject: 21A.100 Introduction to Anthropology or 21A.109 How Culture Works

Tier II

- Four subjects with a unifying theme (not to include 21A.100 or 21A.109).

For the list of suggested themes above, students may also suggest alternative unifying themes.

Tier III

- One subject: 21A.510 Seminar in Anthropological Theory or 21A.512 Seminar in Ethnography and Fieldwork

Joint Degree Programs

Joint degree programs are offered in anthropology in combination with a field in engineering or science (21E, 21S). See the joint degree programs listed under Humanities.

Either 21A.100 or 21A.109 is strongly recommended as a preliminary subject for all anthropology degree programs.

In collaboration, the Anthropology Program, the History faculty, and the Program in Science, Technology, and Society offer a Program in History, Anthropology, and Science, Technology and Society (HASTS) leading to the PhD; see the description under the Program in Science, Technology, and Society.

Subjects in anthropology are described in the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi. Further information on subjects and programs may be obtained from the Anthropology Office, Room 16-267, 617-253-3065.
Bachelor of Science in Anthropology/Course 21A

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [three subjects may be satisfied by subjects in the Departmental Program]</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication Requirement</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The program includes a Communication Requirement of 4 subjects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in the Major (CI-M).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLUS Departmental Program</th>
<th>Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>21A.100 Introduction to Anthropology, 12, HASS-ST</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>21A.109 How Culture Works, 12, HASS-ST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21A.510 Seminar in Anthropological Theory, 12, HASS-S, CI-M *</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21A.512 Seminar in Ethnography and Fieldwork, 12, HASS-S, CI-M *</td>
<td></td>
</tr>
</tbody>
</table>

| Restricted Electives | A coherent program of eight anthropology subjects which may include a pre-thesis tutorial and a thesis. | 90–96 |
| | The decision to write a thesis is made in consultation between the student and advisor. | |

<table>
<thead>
<tr>
<th>Departmental Program Units That Also Satisfy the GIRs</th>
<th>(56)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted Electives</td>
<td>72–78</td>
</tr>
</tbody>
</table>

| Total Units Beyond the GIRs Required for SB Degree | 180 |

<table>
<thead>
<tr>
<th>Notes</th>
<th>*Prerequisites and corequisites are listed in the subject description.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>† Students who entered prior to fall 2010 may use this subject to satisfy the HASS-D requirement.</td>
</tr>
<tr>
<td></td>
<td>For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.</td>
</tr>
</tbody>
</table>

Postdoctoral Associate
Kieran Downes, PhD

Postdoctoral Fellow
Emily Zeamer, PhD

Professor Emeritus
Arthur Steinberg, PhD
Professor of Anthropology, Emeritus
Established in 1999–2000, the program in Comparative Media Studies integrates the study of contemporary media (film, television, digital systems) with a broad historical understanding of older forms of human expression. The program embraces theoretical and interpretive principles drawn from the central humanistic disciplines of literary study, history, anthropology, art history, and film studies, but aims as well for a comparative synthesis that is responsive to the distinctive emerging media culture of the 21st century. Students explore the complexity of the media environment by learning to think across media, to see beyond the boundaries imposed by older medium-specific approaches to the study of audio-visual and literary forms.

The comparative and cross-disciplinary nature of both the graduate and undergraduate programs is embodied in a faculty drawn from Art and Architecture; Anthropology; Foreign Languages and Literatures; History; Literature; Music and Theater Arts; Philosophy; Writing and Humanistic Studies; Science, Technology, and Society; Media Arts and Sciences; Political Science; and Urban Studies and Planning.

UNDERGRADUATE STUDY

The undergraduate program—established in 1982 under its former name, Film and Media Studies—serves as preparation for advanced study in a range of scholarly and professional disciplines and also for careers in media or industry.

Bachelor of Science in Comparative Media Studies/Course CMS

The SB in Comparative Media Studies requires 10 subjects. Majors are required to take 21L.011 or CMS.100, one mid-tier subject, one capstone subject, and six electives. A pre-thesis tutorial (CMS.ThT) and thesis (CMS.ThU) may be substituted for one elective.

Minor in Comparative Media Studies

The minor requires six subjects that reflect the comparative study of media, including 21L.011 or CMS.100, one mid-tier subject, one capstone subject, and three electives. Each student designs his or her own plan of study in consultation with a field advisor.

GRADUATE STUDY

The graduate program comprises a two-year course of study leading to a Master of Science in Comparative Media Studies. The program aims to prepare students for careers in fields such as journalism, teaching and research, government or public service, museum work, information science, corporate consulting, media industry marketing and management, and educational technology.

CMS graduate students usually take three 12-unit subjects per term, plus a 3-unit colloquium. All students take three introductory seminars (Media Theories and Methods I and II, and Major Media Texts) during their first year, as well as two terms of Workshop, a subject that offers hands-on experience in media. In their final term they take a 24-unit subject devoted to completing the master's thesis, plus the 3-unit Colloquium in Comparative Media. Typically, students will graduate with a total of 144 units; however a minimum of 139 units is required for the master's degree in order to accommodate some electives that are 9-unit instead of 12-unit subjects.

Students may enter the program with a degree from a wide range of undergraduate majors, including the liberal arts, the social sciences, journalism, computer science, and management.

Graduate subjects include:

Required Subjects

- CMS.790 Media Theories and Methods I
- CMS.791 Media Theories and Methods II
- CMS.796 Major Media Texts
- CMS.801 Media in Transition
- CMS.950 Workshop I
- CMS.951 Workshop II
- CMS.980 Master's Thesis
- CMS.990 Colloquium in Comparative Media

Electives

- CMS.809 Transmedia Storytelling: Modern Science Fiction
- CMS.810 The Nature of Creativity
- CMS.811 Introduction to Philosophy of the Arts
- CMS.820 Philosophy of Film
- CMS.830 Studies in Film
- CMS.835 Photography and Truth
- CMS.836 The Social Documentary: Analysis and Production
- CMS.837 Film, Music, and Social Change: Intersections of Media and Society
- CMS.840 Literature and Film
- CMS.841 Introduction to Videogame Studies
- CMS.843 The Role of the Gamer: Theory, Criticism, and Practice
- CMS.845 Interactive and Non-linear Narrative: Theory and Practice
- CMS.846 The Word Made Digital
- CMS.863 Computer Games and Simulations for Investigation and Education
- CMS.864 Game Design
- CMS.866 Writing for Videogames
- CMS.867 Identity and the Internet
- CMS.868 Social and Cultural Facets of Digital Games
- CMS.871 Media in Cultural Context
- CMS.874 Visualizing Cultures
- CMS.876 History of Media and Technology
- CMS.8821 Film, Fiction, and History in India, 1905–2005
- CMS.888 Advertising and Popular Culture: East Asian Perspectives
- CMS.910 Literature and Technology
- CMS.915 Understanding Television
- CMS.917 Documenting Culture
- CMS.920 Popular Narrative
- CMS.922 Media Industries and Systems
- CMS.925 Film Music
CMS.935 Documentary Photography and Photojournalism: Still Images of a World in Motion
CMS.992 Portfolio in Comparative Media
CMS.993 Teaching in Comparative Media
CMS.994 Topics in Comparative Media Studies
CMS.995 Research in Comparative Media
CMS.997–CMS.999 Topics in Comparative Media

Graduate subjects in comparative media studies are described in the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Inquiries
For more information on the undergraduate and graduate programs in Comparative Media Studies, contact the CMS Office, Room E15-331, 617-253-3599, fax 617-258-5133, cms@mit.edu.

Faculty and Staff
William Uricchio, PhD
Professor of Comparative Media Studies
Director
(On leave)

James Paradis, PhD
Robert M. Metcalfe Professor of Writing
Interim Director

Ian Condry, PhD
Mitsui Career Development Associate Professor of Japanese Cultural Studies
Associate Director
(On leave)

James Buzard, PhD
Professor of Literature
Section Head, Literature
Member, CMS Steering Committee

Shigeru Miyagawa, PhD
Kochi Prefecture-John Manjiro Professor of Japanese Language and Culture
Professor of Linguistics
Section Head, Foreign Languages and Literatures
Member, CMS Steering Committee

Bachelor of Science in Comparative Media Studies/Course CMS

<table>
<thead>
<tr>
<th>General Institute Requirements (GIrS)</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [four subjects may be satisfied by subjects in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier I</td>
<td></td>
</tr>
<tr>
<td>21L.01 The Film Experience, 12, HASS-H, CI-H</td>
<td></td>
</tr>
<tr>
<td>CMS.100 Introduction to Media Studies, 12, HASS-HT, CI-H</td>
<td></td>
</tr>
<tr>
<td>Tier II (Mid-tier)</td>
<td></td>
</tr>
<tr>
<td>Choose one of the following:</td>
<td></td>
</tr>
<tr>
<td>CMS.400 Media Systems and Texts, 12, HASS-H, CI-M; one subject in CMS or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>CMS.403 Media and Methods: Performing, 12, HASS-H, CI-M; 21L.011, CMS.100, or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>CMS.405 Media and Methods: Seeing and Expression, 12, HASS-H, CI-M; 21L.011 or CMS.100</td>
<td></td>
</tr>
<tr>
<td>CMS.407 Media and Methods: Sound, 12, HASS-H, CI-M</td>
<td></td>
</tr>
<tr>
<td>Tier III (Capstone)</td>
<td></td>
</tr>
<tr>
<td>Choose one of the following:</td>
<td></td>
</tr>
<tr>
<td>21L.706 Studies in Film, 12, HASS-H, CI-M; 21L.011 and one subject in CMS or Literature; or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>21L.715 Media in Cultural Context, 12, HASS-H, CI-M; two subjects in CMS and/or Literature, or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>72</td>
</tr>
<tr>
<td>Students choose six restricted electives. Qualified students may, with departmental approval, substitute a pre-thesis tutorial (CMS.ThT) and thesis (CMS.ThU) for one elective.</td>
<td></td>
</tr>
</tbody>
</table>

Departmental Program Units That Also Satisfy the GIRs (48)

Unrestricted Electives (60–108)

Total Units Beyond the GIRs Required for SB Degree (180)

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
† Students who entered prior to fall 2010 may use this subject to satisfy the HASS-D requirement.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
Janet Sonenberg, MFA
Professor of Theater Arts
MacVicar Faculty Fellow
Section Head, Music and Theater Arts
Member, CMS Steering Committee

Faculty and Teaching Staff
Vivek Bald, PhD
Assistant Professor of Writing and Digital Media
Edward Barrett, PhD
Senior Lecturer in Writing
Christopher Capozzola, PhD
Associate Professor of History
(On leave)
Beth Coleman, PhD
Assistant Professor of Writing and New Media
Ellen Crocker, MA
Senior Lecturer in German
Thomas F. DeFrantz, PhD
Class of 1948 Professor of Theater Arts
Junot Díaz, MFA
Professor of Writing
Peter Donaldson, PhD
Professor of Literature
Mary Fuller, PhD
Professor of Literature
(On leave)
Stefan Helmreich, PhD
Associate Professor of Anthropology
Diana Henderson, PhD
Professor of Literature
MacVicar Faculty Fellow
Wyn Kelley, PhD
Senior Lecturer in Literature
Alvin Charles Kibel, PhD
Professor of Literature
(On leave, spring)
Eric Klopfer, PhD
Associate Professor of Education
Director, Teacher Education Program
Martin Marks, PhD
Senior Lecturer in Music
Nick Montfort, PhD
Associate Professor of Digital Media
Douglas Morgenstern, MA
Senior Lecturer in Spanish
Jeffrey S. Ravel, PhD
Professor of History
Jay Scheib, MFA
Associate Professor of Theater Arts
(On leave, spring)
Hanna Rose Shell, PhD
Assistant Professor of Science, Technology, and Society
Irving Singer, PhD
Professor of Philosophy
David Thorburn, PhD
Professor of Literature
MacVicar Faculty Fellow
Director, MIT Communications Forum
Edward Baron Turk, PhD
Professor of French Studies and Film
John E. Burchard Professor of Humanities
Chris Walley, PhD
Associate Professor of Anthropology
Andrea Walsh, PhD
Lecturer in Writing and Humanistic Studies
Jing Wang, PhD
Professor of Chinese Cultural Studies
S. C. Fang Professor of Chinese Languages and Culture

Visiting Scholars
Mia Consalvo, PhD
Visiting Associate Professor
Chris Weaver, CAS
Visiting Lecturer

Research Staff

Research Managers
Kurt Fendt, PhD
Scot Osterweil, BA
Daniel Pereira, BA
Philip Tan, MS
Economics is the study of all those aspects of individual and social activities related to the choice, production, distribution, and consumption of goods and services. In relation to these decisions, economics is concerned with the behavior and interaction of individuals, private firms, and other institutions and government agencies. Economics contributes to the understanding of many important social problems: changes in efficiency and productivity, fluctuations in the overall levels of economic activity and employment, inflation, the effects of government deficits, the growth and decline of industries, changes in foreign exchange rates, increases in international indebtedness, and the behavior of the centrally planned and less developed countries.

Subjects are offered in the major areas of economics: theoretical and applied analysis at the levels of the individual consumer, the firm, and the industry, as well as aggregate economic activity, industrial organization and health economics, Econometrics, public finance, urban economics, labor economics and industrial relations, behavioral economics, international trade and finance, economic history, and economic development.

UNDERGRADUATE STUDY

Bachelor of Science in Economics/Course 14
Course 14, leading to the Bachelor of Science in Economics, combines training in technical economics with opportunities for a broad and balanced undergraduate education. Students may choose from a diversified group of undergraduate subjects and are encouraged to engage in independent research.

The aims of the undergraduate degree program are threefold: to give students a firm grounding in modern economic theory and a basic understanding of economic processes; to provide a descriptive knowledge of the US and world economies; and to develop in students the capabilities for quantitative analysis and independent thought. These aims correspond roughly to the requirements in the Course 14 program of theory, electives, statistics and econometrics, and research.

The requirements allow substantial freedom for students in designing individual programs within economics and balancing the programs with subjects in other disciplines. The large amount of unrestricted elective time encourages students to shape programs close to their own needs and interests. Students may select programs that concentrate on economics and other social sciences or may combine economics with other fields. They may emphasize the relation of economics and technology by choosing their free electives in engineering and science, or they may combine their studies in economics with subjects in history and the other humanities.

The successful completion of the degree program prepares students for further study in economics or for careers in business administration and finance, consulting, law and related fields, and public policy.

Although there are several satisfactory alternative subject sequences, students who by the end of their second year have taken 14.01 Principles of Microeconomics and 14.02 Principles of Macroeconomics can follow a program that permits considerable depth in electives in their third and fourth years. The student can complete 14.04 Intermediate Microeconomic Theory, 14.05 Intermediate Applied Macroeconomics, 14.30 Introduction to Statistical Method in Economics, and 14.32 Econometrics in the third year. This program satisfies the prerequisites for all subjects, including 14.33, and prepares students for research on their thesis and in other elective subjects.

The department specifies one Restricted Elective in Science and Technology (REST) Requirement subject and one laboratory subject, and strongly recommends that students take additional subjects in mathematics if professionally interested in economics.

Minor in Economics
The objective of the minor is to extend the understanding of economic issues beyond the level of the concentration. This is done through specialized analytical subjects and elective subjects that provide an extensive treatment of economic issues in particular areas.

The Minor in Economics consists of six subjects arranged into three levels of study:

Tier I
14.01 Principles of Microeconomics*
14.02 Principles of Macroeconomics*
and either
14.30 Introduction to Statistical Method in Economics
or
18.05 Introduction to Probability and Statistics

Tier II
One subject from the following three:
14.03 Microeconomic Theory and Public Policy
14.04 Intermediate Microeconomic Theory
14.05 Intermediate Applied Macroeconomics

Tier III
Two elective undergraduate subjects chosen from the fields of applied economics. A list of specific subjects is available in the Economics Department Office, E52-391.

GRADUATE STUDY

Entrance Requirements for Graduate Study
The Department of Economics specifies the following prerequisites for graduate study in economics: one full year of college mathematics and an appreciable number of professional subjects in economics for those qualified students who have majored in fields other than economics. Applicants for admission who have deficiencies in entrance requirements should consult with the department about programs to remedy such deficits.

Master of Science in Economics
Under special circumstances, admission may be granted to current MIT students seeking the Master of Science degree. The general requirements for the SM are given in the section on Graduate Education in Part 1.

*Under no circumstances may a student complete a minor with fewer than six subjects. Any student who receives permission from the Economics Department to skip 14.01 and/or 14.02 and take a higher-level subject must take replacement subject(s) for 14.01/14.02.
Bachelor of Science in Economics/Course 14

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement (three subjects can be satisfied by subjects in the Departmental Program)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement (one subject can be satisfied by 14.30 in the Departmental Program)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement (can be satisfied by 14.33 in the Departmental Program)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree

17

Communication Requirement

- The program includes a Communication Requirement of 4 subjects:
 - 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
 - 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Subject Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Microeconomics, 12, HASS-S</td>
<td>12</td>
</tr>
<tr>
<td>Principles of Macroeconomics, 12, HASS-S</td>
<td>12</td>
</tr>
<tr>
<td>Intermediate Microeconomic Theory, 12, HASS-S; 14.01, Calculus II (GIR)</td>
<td>12</td>
</tr>
<tr>
<td>Intermediate Applied Macroeconomics, 12, HASS-S, CI-M; 14.01, 14.02</td>
<td>12</td>
</tr>
<tr>
<td>Introduction to Statistical Method in Economics, 12, REST; Calculus II (GIR)</td>
<td>12</td>
</tr>
<tr>
<td>Econometrics, 12, 14.30</td>
<td>12</td>
</tr>
<tr>
<td>Research and Communication in Economics, 12, LAB, CI-M; 14.04, 14.05, 14.32</td>
<td>12</td>
</tr>
<tr>
<td>Thesis (15 units), 14.33</td>
<td>15</td>
</tr>
</tbody>
</table>

Required Electives

- Elective subjects in economics

Departmental Program Units That Also Satisfy the GIRs

(60)

Unrestricted Electives

81–84

Total Units Beyond the GIRs Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

- Alternate prerequisites and corequisites are listed in the subject description.
- No more than three subjects in economics may be used for the Humanities, Arts, and Social Sciences Requirement.
- Or an approved alternative in statistics.
- May be replaced by an additional elective subject in economics.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Doctor of Philosophy

A candidate for the doctorate must demonstrate a mastery of economic theory, including both microeconomics and macroeconomics, and four other fields of study; achieve a specified level of competence in econometrics; submit and defend a dissertation that represents a contribution to knowledge; and be in residence for a minimum of two years. Two of the four fields, including economic theory, are covered by the written General Examination. Two minor fields may each be satisfied by one year of coursework. The four major and minor elective fields may be chosen from advanced economic theory, econometrics, economic development, economic history, finance, industrial organization, international economics, labor economics, monetary economics, public economics, and urban economics.

There is no required minimum number of graduate subjects in the department. However, candidates ordinarily need two full academic years of study to prepare adequately for the General Examinations and to meet the other pre-thesis requirements. The doctoral thesis must be written in residence, which typically requires three years of research.

Economics and Urban Studies

A doctoral program offered jointly by the departments of Economics and Urban Studies and Planning at MIT integrates the analytic emphasis of economics with the institutional and policy orientation of urban studies. Students desiring to enter the program must be admitted to both departments and then explicitly to the joint degree program. Specific requirements for economics are the same as for the economics PhD with only two major fields and one minor, instead of two major and two minor fields. The specific requirements for urban studies are the same as for the PhD except for substitution of an economics general examination field for one of the required urban studies fields. One dissertation is required with acceptance by both departments. The program is administered by an informal standing committee. Further information is available from Professor William C. Wheaton, Room E52-252B, 617-253-1723.
Teaching and Research Assistantships
A limited number of students are supported by scholarship and fellowship grants, as well as by teaching and research assistantships. Typically, the assistantships are available only to students who have passed their general examinations, but in special circumstances research assistantships may be held by second-year students.

Inquiries
For more information regarding admissions or financial aid, contact Peter Hoagland, 617-253-8787, pahoag@mit.edu. For undergraduate admissions and academic programs, contact Gary King, 617-253-0951, gking@mit.edu. For any other information, contact Jessica Colón, 617-253-3807, jcolon@mit.edu.

Faculty and Teaching Staff
Ricardo J. Caballero, PhD
Ford International Professor of Economics
Department Head

David Autor, PhD
Professor of Economics
Associate Department Head

Professors
K. Daron Acemoglu, PhD
Charles P. Kindleberger Professor of Economics
(On leave, fall)

George-Marios Angeletos, PhD
Professor of Economics
(On leave)

Joshua Angrist, PhD
Ford Professor of Economics

Abhijit Banerjee, PhD
Ford International Professor of Economics

Olivier Blanchard, PhD
Class of 1941 Professor of Economics
(On leave)

Victor Chernozhukov, PhD
Professor of Economics

Peter A. Diamond, PhD
Professor of Economics
Institute Professor
(On leave)

Esther Duflo, PhD
Abdul Latif Jameel Professor of Poverty Alleviation and Development Economics

Glenn D. Ellison, PhD
Gregory K. Palm (1970) Professor of Economics
(On leave)

Amy Finkelstein, PhD
Professor of Economics
(On leave)

Robert S. Gibbons, PhD
Sloan Distinguished Professor of Management and Economics

Michael Greenstone, PhD
3M Professor of Environmental Economics

Jonathan Gruber, PhD
Professor of Economics
MacVicar Faculty Fellow

Jeffrey E. Harris, MD, PhD
Professor of Economics
(On leave, fall)

Jerry A. Hausman, DPhil
John and Jennie S. MacDonald Professor of Economics
(On leave)

Bengt R. Holmström, PhD
Paul A. Samuelson Professor of Economics

Whitney K. Newey, PhD
Jane Berkowitz Carlton and Dennis William Carlton Professor of Economics

Michael J. Piore, PhD
David W. Skinner Professor of Political Economy

James M. Poterba, DPhil
Mitsui Professor of Economics

Drazen Prelec, PhD
Digital Equipment Corporation Leaders for Global Operations Professor of Management Science and Economics

Muhamet Yildiz, PhD
Professor of Economics

Associate Professors
Guido Lorenzoni, PhD
Pentti J. K. Kouri Career Development Associate Professor of Economics

Ben Olken, PhD
Associate Professor of Economics
(On leave)

Stephen P. Ryan, PhD
Silverman Family Career Development Associate Professor of Economics
(On leave, fall)

Assistant Professors
Arnaud Costinot, PhD
Assistant Professor of Economics
(On leave)

Dave Donaldson, PhD
Assistant Professor of Economics

Panle Jia, PhD
Rudi Dornbusch Career Development Assistant Professor of Economics
(On leave, spring)

Mihai Manea, PhD
Assistant Professor of Economics

Anna Mikusheva, PhD
Castle Kroh Career Development Assistant Professor of Economics

Parag Pathak, PhD
Economics Career Development Assistant Professor of Economics
(On leave, spring)
Juuso Toikka, PhD
Assistant Professor of Economics

Senior Lecturer
Sara Fisher Ellison, PhD
(On leave)

Visiting Professors
Hunt Allcott, PhD
Visiting Assistant Professor
Mathias Dewatripont, PhD
Visiting Professor of Economics
Ernst Fehr, PhD
Visiting Professor of Economics
James Feyrer, PhD
Visiting Professor of Economics
Oded Galor, PhD
Visiting Professor of Economics
Francesco Giavazzi, PhD
Visiting Professor of Economics
Gib Metcalf, PhD
Visiting Professor of Economics
Jean Tirole, PhD
Visiting Professor of Economics

Professors Emeriti
Morris A. Adelman, PhD
Professor of Economics, Emeritus
Robert L. Bishop, PhD
Professor of Economics, Emeritus
Richard S. Eckaus, PhD
Ford International Professor of Economics, Emeritus
Stanley Fischer, PhD
Professor of Economics, Emeritus
Frank Fisher, PhD
Jane Berkowitz Carlton and Dennis William Carlton Professor of Economics, Emeritus
Paul L. Joskow, PhD
Elizabeth and James Killian Professor of Economics and Management, Emeritus
Jerome Rothenberg, PhD
Professor of Economics, Emeritus
Abraham J. Siegel, PhD
Howard W. Johnson Professor of Management, Emeritus
Robert M. Solow, PhD, LL.D, DLH
Professor of Economics, Emeritus
Institute Professor, Emeritus
Peter Temin, PhD
Elisha Gray II Professor of Economics, Emeritus
Lester C. Thurow, PhD
Jerome and Dorothy Lemelson Professor of Management and Economics, Emeritus
The Foreign Languages and Literatures Section offers a variety of programs. There are subject sequences in Chinese, French, German, Japanese, and Spanish languages and literatures taught in the original; a subject sequence on literature in English translation (SILC); studies in bilingualism; and a comprehensive program in English Language Studies.

The Foreign Languages and Literatures curriculum is arranged in three tiers. Fundamental language subjects familiarize students with the principles of the language in both its spoken and written forms, and introduce them to the culture of the country where the language is spoken. Levels III and IV language subjects provide review and refinement of grammar, study of more difficult reading matter with cultural and literary content, and include compositions and discussions in the foreign language.

Subjects in language, literature, and culture are conducted in the foreign language. They introduce students to the form and content of foreign literatures and of foreign cultures and societies. These subjects also offer the opportunity to develop more refined communication skills in the language. Advanced subjects, conducted in the foreign language, encourage students to explore the cultural history of the particular country in which the language is spoken.

Offerings in Studies in International Literatures and Cultures (SILC), taught in English, give students both a specific and comparative focus on foreign cultures.

Concentrations are available in a given language, literature, or culture in the original language or in English. Concentrations should be arranged on an individual basis in consultation with a designated advisor in each language group.

The Minor Programs in Chinese, French, German, Japanese, and Spanish lead students who have already reached an intermediate level of proficiency into more advanced study of the language, literature, and culture. Note that language levels I and II do not count toward the minor. Also note that, unlike other minor programs in HASS, the minor advisor in each of these languages can, at his or her discretion, approve a minor in which MIT subjects comprise at least one-third of the subjects of the program. However, this exception to the general HASS Minor Requirement is only allowed in those cases in which students have received transfer credits equal to four subjects through study abroad in a country where the language of the minor is the dominant tongue.

Bachelor of Science in Foreign Languages and Literatures/Course 21F

Program I in French Studies and Program II in Spanish Studies are designed to provide: competence in reading, writing, and speaking; general knowledge of French or Spanish culture and literature; and advanced subjects in literature, film, and cultural studies.

For either option, each student designs a program in consultation with an advisor in order to meet individual interests, abilities, and goals. However, all majors reflect a balance of historical, geographical, cultural, and linguistic competence.

Minor Programs

The **Minor in Chinese** typically consists of six subjects arranged into three levels of study as follows:

<table>
<thead>
<tr>
<th>Tier</th>
<th>Two language subjects at the intermediate level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier I</td>
<td>21F.103/21F.173 Chinese III (Regular) or 21F.109/21F.183 Chinese III (Streamlined) and 21F.104 Chinese IV (Regular) or 21F.110 Chinese IV (Streamlined)</td>
</tr>
</tbody>
</table>

Students in the Streamlined sequence of subjects (as opposed to Regular) should consult with the minor advisor about the special options for them to fulfill the Tier II requirement.

- **Tier III**: Two subjects in Chinese literature, history, or culture, at least one of which must be a Chinese Language Option subject, i.e., 21F.190, 21F.192, 21F.193, 21F.194, or 21F.195. The Chinese Language Option subjects meet with the five subjects 21F.036, 21F.046, 21F.030, 21F.038, and 21F.044, respectively, and include some assignments that require reading and writing in Chinese.

Students taking the Streamlined track may use the capstone subject 21F.199 instead of the regular Chinese Language Option subjects.

<table>
<thead>
<tr>
<th>Program I in French Studies</th>
<th>Offerings in Studies in International Literatures</th>
<th>Program II in Spanish Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>21F.190 Advertising and Popular Culture: East Asian Perspectives</td>
<td>21F.192 Modern Chinese Fiction and Cinema</td>
<td>21F.193 East Asian Culture: From Zen to Pop</td>
</tr>
<tr>
<td>21F.501 Traditional China: Earliest Times to 1644</td>
<td>21F.502 Modern China: 1644 to Present</td>
<td>21F.515 Shanghai as Model, Measure, and Metaphor for China’s Modernization</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier</th>
<th>Two or three subjects from the following intermediate subjects in French language, literature, and culture:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier II</td>
<td>21F.303/21F.373 French III 21F.304/21F.374 French IV</td>
</tr>
<tr>
<td>Tier III</td>
<td>21F.050, 21F.052, 21F.320–21F.348, and 21H.346</td>
</tr>
</tbody>
</table>

The **Minor in German** consists of six subjects arranged into three levels of study as follows:

<table>
<thead>
<tr>
<th>Tier</th>
<th>Two or three subjects from the following intermediate subjects in French literature and culture:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier II</td>
<td>21F.050, 21F.052, 21F.320–21F.348, and 21H.346</td>
</tr>
</tbody>
</table>

Minor in French

The **Minor in French** consists of six subjects arranged into three levels of study as follows:

<table>
<thead>
<tr>
<th>Tier</th>
<th>Two subjects or fewer depending on demonstrated level of entering competence:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier I</td>
<td>21F.303/21F.373 French III 21F.304/21F.374 French IV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier</th>
<th>Two or three subjects from the following intermediate subjects in French language, literature, and culture:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier II</td>
<td>21F.303/21F.373 French III 21F.304/21F.374 French IV</td>
</tr>
<tr>
<td>Tier III</td>
<td>21F.050, 21F.052, 21F.320–21F.348, and 21H.346</td>
</tr>
</tbody>
</table>

The **Minor in French** consists of six subjects arranged into three levels of study as follows:

<table>
<thead>
<tr>
<th>Tier</th>
<th>Two subjects or fewer depending on demonstrated level of entering competence:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier I</td>
<td>21F.303/21F.373 French III 21F.304/21F.374 French IV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier</th>
<th>Two or three subjects from the following intermediate subjects in French language, literature, and culture:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier II</td>
<td>21F.303/21F.373 French III 21F.304/21F.374 French IV</td>
</tr>
<tr>
<td>Tier III</td>
<td>21F.050, 21F.052, 21F.320–21F.348, and 21H.346</td>
</tr>
</tbody>
</table>

Minor Programs

- **Minor in Chinese** consists of six subjects arranged into three levels of study as follows:
 - **Tier I**: Two language subjects at the intermediate level:
 - 21F.103/21F.173 Chinese III (Regular) or 21F.109/21F.183 Chinese III (Streamlined) and 21F.104 Chinese IV (Regular) or 21F.110 Chinese IV (Streamlined)
 - **Tier II**: Two language subjects at the advanced level:
 - 21F.105/21F.175 Chinese V (Regular) or 21F.113/21F.185 Chinese V (Streamlined) and 21F.106 Chinese VI (Regular)
 - **Tier III**: Two subjects in Chinese literature, history, or culture, at least one of which must be a Chinese Language Option subject, i.e., 21F.190, 21F.192, 21F.193, 21F.194, or 21F.195. The Chinese Language Option subjects meet with the five subjects 21F.036, 21F.046, 21F.030, 21F.038, and 21F.044, respectively, and include some assignments that require reading and writing in Chinese.

- **Minor in German** consists of six subjects arranged into three levels of study as follows:
 - **Tier I**: Two subjects or fewer depending on demonstrated level of entering competence:
 - 21F.303/21F.373 French III 21F.304/21F.374 French IV

<table>
<thead>
<tr>
<th>Tier</th>
<th>Two or three subjects from the following intermediate subjects in French language, literature, and culture:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier II</td>
<td>21F.303/21F.373 French III 21F.304/21F.374 French IV</td>
</tr>
<tr>
<td>Tier III</td>
<td>21F.050, 21F.052, 21F.320–21F.348, and 21H.346</td>
</tr>
</tbody>
</table>

The **Minor in German** consists of six subjects arranged into three levels of study as follows:
Bachelor of Science in Foreign Languages and Literatures/Course 21F

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [three subjects may be satisfied by subjects in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Program</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1: French Studies</td>
<td>Units</td>
</tr>
<tr>
<td>Required Subjects</td>
<td>42</td>
</tr>
<tr>
<td>21F.304 French IV, 12, HASS-H†, 21F.305*</td>
<td>(24)</td>
</tr>
<tr>
<td>Plus departmental Program</td>
<td>(24)</td>
</tr>
<tr>
<td>Required Subjects</td>
<td>42</td>
</tr>
<tr>
<td>21F.305* French IV, 12, HASS-H†, 21F.305*</td>
<td>(24)</td>
</tr>
</tbody>
</table>

Restricted Electives

A coherent program of 8 subjects beyond French II from the French curriculum, which may include a pre-thesis tutorial and a thesis.

Program 2: Spanish Studies

<table>
<thead>
<tr>
<th>Program</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>42</td>
</tr>
<tr>
<td>21F.704 Spanish IV, 12, HASS-H†, 21F.703*</td>
<td>(24)</td>
</tr>
</tbody>
</table>

Restricted Electives

A coherent program of 8 subjects beyond Spanish II from the Spanish curriculum, which may include a pre-thesis tutorial and a thesis.

Departmental Program Units That Also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Program</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>42</td>
</tr>
<tr>
<td>21F.403/21F.473 German III</td>
<td>(24)</td>
</tr>
<tr>
<td>21F.404/21F.474 German IV</td>
<td>(24)</td>
</tr>
</tbody>
</table>

Notes

- Alternate prerequisites and corequisites are listed in the subject description.
- Students who entered prior to fall 2010 may use this subject to satisfy the HASS-D requirement.
- For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
The Minor in Spanish consists of six subjects arranged into three levels of study as follows:

Tier I

Two subjects or fewer depending on demonstrated level of entering competence:

- 21F.703/21F.773 Spanish III
- 21F.704/21F.774 Spanish IV
- 21F.705 Oral Communication in Spanish

Tier II

Three subjects or fewer depending on demonstrated level of entering competence from the Spanish Intermediate Subjects in Language, Literature, and Culture listing: 21F.711–21F.714, and 21F.792

Tier III

Two subjects or more depending on demonstrated level of entering competence from the Spanish Advanced Subjects in Literature and Culture listing: 21F.010, 21F.080, 21F.084J, 21F.716–21F.740

Please also refer to HASS Minors in Regional Studies in Part 3, which include Applied International Studies, East Asian Studies, Latin American Studies, Middle Eastern Studies, African and African Diaspora Studies, and Russian Studies.

Other Degree Programs

A degree program is offered in German (Course 21). Joint degree programs are offered in French, German, and Spanish, and include majors in combination with a field in engineering or science (21E, 21S). See the Department of Humanities section for further information.

Inquiries

Further information on subjects and programs may be obtained from the Foreign Languages and Literatures Section Office, Room 14N-305, 617-253-4771.
History is the study of the recorded past. Since interest in the past is closely linked with a desire to understand the present, the history curriculum at MIT is tailored in part to put the modern world in historical perspective. Subjects explore the social, economic, and political transformations that shape the present; and efforts are made to suggest where traditional assumptions remain in present-day politics, society, and culture.

The curriculum seeks to encourage both an understanding of the human past and the development of skills necessary to express that knowledge effectively.

Bachelor of Science in History/ Course 21H

The program leading to the degree of Bachelor of Science in History is designed to encourage students to discover and reconstruct the past, to confront and understand the complexity of past human behavior for itself, and to inform their sense of the historical present. The curriculum includes the selection of at least one subject taken from the curriculum’s 21H elective seminars. Students are expected to take seven additional subjects of their own choice, selected in consultation with a major advisor. These must include subjects drawn from at least two geographical areas, as well as one pre-modern (before 1700) and one modern subject.

During the junior year, the history major is required to take the Seminar in Historical Methods, which is intended to develop skills for independent research and writing, followed in the senior year by a Thesis Tutorial, and either a second major essay or a senior thesis. Supplementing these requirements within the history curriculum is the stipulation of three additional subjects in a second field of humanities, arts, and social sciences: anthropology, economics, political science, literature, foreign languages and literatures—fields that provide the perspectives of another discipline on the history of human thought and behavior. This program is intentionally flexible; the relatively large number of electives and unrestricted time allows for the design of a course of study that meets individual needs and interests.

Minor in History

The goal of this minor is to lead the student from basic survey subjects into more focused studies of individual countries or periods of time, and to encourage thinking about broader analytical and comparative issues in historical study.

The Minor in History consists of six subjects, which must include:

- At least one 21H elective seminar
- Four undergraduate elective subjects from the history curriculum
- 21H.931 Seminar in Historical Methods
- At least two temporal periods—one pre-modern (before 1700) and one modern—to be covered by the five subjects other than 21H.931

For a listing of available subjects, consult the History Office, Room E51-285, 617-253-9846.

Concentration in History

The Concentration in History consists of three 21H subjects.

Minor in Applied International Studies

A range of subjects in history can fulfill requirements for the interdisciplinary Minor in Applied International Studies. For more information about this minor, see the program description under Interdisciplinary Undergraduate Programs and Minors in Part 3.

Joint Degree Programs

Joint degree programs are offered in history in combination with a field in engineering or science (21E, 21S). See the joint degree programs listed under Humanities.

Subjects in History are described in the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi. Further information on subjects and programs may be obtained from the History Office, Room E51-285, 617-253-4965.

Faculty and Staff

Faculty and Teaching Staff

Anne E. C. McCants, PhD
Professor of History
MacVicar Faculty Fellow
Section Head

Professors

Robert Michael Fogelson, PhD
Professor of History and Urban Studies

Philip S. Khoury, PhD
Ford International Professor of History
Associate Provost

Pauline Maier, PhD
William R. Kenan, Jr. Professor of History

Jeffrey S. Ravel, PhD
Professor of History

Harriet Ritvo, PhD

Arthur J. Conner Professor of History

Merritt Roe Smith, PhD

Leverett and William Cutten Professor of the History of Technology

Craig Steven Wilder, PhD
Professor of History

Elizabeth A. Wood, PhD
Professor of History

Associate Professors

William Broadhead, PhD
Associate Professor of History

Christopher Capozzola, PhD
Associate Professor of History

(On leave)

Meg Jacobs, PhD
Associate Professor of History

Assistant Professors

Christopher R. Leighton, PhD
Assistant Professor of History

Haimanti Roy, PhD
Assistant Professor of History
Bachelor of Science in History/Course 21H

General Institute Requirements (GIrS)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement (three subjects can be satisfied by subjects in the Departmental Program)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>One 21H seminar subject (9–12 units)</td>
<td>45–48</td>
</tr>
<tr>
<td>21H.931 Seminar in Historical Methods, 12, CI-M, HASS-H *</td>
<td></td>
</tr>
<tr>
<td>21H.THT History Pre-Thesis Tutorial, 12</td>
<td></td>
</tr>
<tr>
<td>21H.THU History Thesis, 12, CI-M *</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>84–114</td>
</tr>
<tr>
<td>A coherent program of seven subjects from the history curriculum; and three related subjects from a second HASS discipline.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Program Units That Also Satisfy the GIRs</th>
<th>(27–33)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted Electives</td>
<td>48–72</td>
</tr>
</tbody>
</table>

Total Units Beyond the GIrS Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIrS and as part of the 180 units required beyond the GIrS. Every subject in the student's departmental program will count toward one or the other, but not both.

Notes

*Prerequisites and corequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
The Department of Humanities consists of six autonomous sections and programs, each with its own headquarters: Anthropology, Foreign Languages and Literatures, History, Literature, Music and Theater Arts, and Writing and Humanistic Studies.

In addition to the degrees offered in the six sections, other undergraduate degree programs are available in Course 21, either in combination with a field in engineering or science (21E, 21S) or as full majors (major departure, Course 21), described later in this section. Students interested in any of these degree programs should consult an advisor in the field, as well as the section or program office.

MAJOR DEPARTURE

Bachelor of Science in Humanities/Course 21

The Bachelor of Science in Humanities degree provides an option for students who wish to pursue their humanistic studies extensively and at an advanced level. This degree is received by students majoring in German or completing a Course 21 major departure. The major departure is a major by special arrangement, requiring approval by the Dean of the School of Humanities, Arts, and Social Sciences, in one of the following fields:

American Studies
Ancient and Medieval Studies
East Asian Studies
Latin American Studies
Psychology
Russian Studies
Theater Arts
Women’s and Gender Studies

Bachelor of Science in Humanities/Course 21

General Institute Requirements (GIRs)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Science Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Humanities, Arts, and Social Sciences Requirement [all but two Humanities, Arts, and Social Sciences Distribution subjects can be satisfied by subjects in the Departmental Program]</td>
</tr>
<tr>
<td>8</td>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
</tr>
<tr>
<td>2</td>
<td>Laboratory Requirement</td>
</tr>
<tr>
<td>17</td>
<td>Total GIR Subjects Required for SB Degree</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Units</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Restricted Electives 126–162</td>
</tr>
<tr>
<td></td>
<td>German 8 elective subjects in the field (which may include a pre-thesis and a thesis), plus a four-subject cluster(^{(2)})</td>
</tr>
<tr>
<td></td>
<td>To satisfy the requirement that students complete two Communication Intensive subjects in the major, students must take 21F.406 and 21F.407. Registration for 21F.406 and 21F.407 must be simultaneous with one of 21F.409, 21F.410, 21F.412, 21F.414, 21F.415, 21F.416, or 21F.420.</td>
</tr>
<tr>
<td></td>
<td>Major Departures The restricted electives for the major departure fields are determined in consultation with the faculty advisor in the chosen field.</td>
</tr>
<tr>
<td></td>
<td>Each major departure program must include two Communication Intensive major subjects, usually chosen from the subjects designated as CI-M for major programs in adjacent disciplines.</td>
</tr>
<tr>
<td></td>
<td>Departmental Program Units That Also Satisfy the GIRs (27–36)</td>
</tr>
<tr>
<td></td>
<td>Unrestricted Electives 45–90</td>
</tr>
<tr>
<td></td>
<td>Total Units Beyond the GIRs Required for SB Degree 180</td>
</tr>
<tr>
<td>Notes</td>
<td>No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Only one subject used to meet the distribution element of the Humanities, Arts, and Social Sciences Requirement may be counted toward the humanities component of these degree programs.

\(^{(2)}\) The cluster is usually formed within a single second discipline of the humanities, arts, or social sciences. In special cases, it may draw together subjects from different disciplines to form a coherent grouping.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
Bachelor of Science in Humanities and Engineering/Course 21E, Bachelor of Science in Humanities and Science/Course 21S

General Institute Requirements (GIRs)(1)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Science Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Humanities, Arts, and Social Sciences Requirement (all but two Humanities, Arts, and Social Sciences Distribution subjects can be satisfied by subjects in the Departmental Program)</td>
</tr>
<tr>
<td>2</td>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
</tr>
<tr>
<td>1</td>
<td>Laboratory Requirement</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree: 17

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

1. 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2. 2 subjects designated as Communication Intensive in the Major (CI-M). Students must designate CI-M subjects by petitioning the Subcommittee on the Communication Requirement. Each 21E and 21S program must include two CI-M subjects. Normally, students are expected to complete one CI-M from each area of study, usually chosen from the subjects designated as CI-M for the full major.

PLU Departmental Program

Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).

Restricted Electives

For the humanities component, one of the following (further details may be obtained from the descriptions of programs in specific fields and the relevant field office):

- **American Studies**
- **Ancient and Medieval Studies**
- **Anthropology**
- **Comparative Media Studies**
- **East Asian Studies**
- **Foreign Languages and Literatures (in French, German, or Spanish)**
- **History**
- **Latin American Studies**
- **Literature**
- **Music**
- **Psychology**
- **Russian Studies**
- **Science, Technology, and Society**
- **Theater Arts**
- **Women’s and Gender Studies**
- **Writing (Creative, Digital Media, or Science Writing)**

Faculty advisors in each discipline help students to arrange programs suited to both their interests and professional objectives. Any one of these fields may be joined with any science or engineering field to form a major. Some combinations naturally lend themselves not only to an understanding of each field but also to an integrative and comparative view of the relationship between the two.
Science, Technology, and Society (STS)
Eight subjects (including an STS Tier I subject and STS.091), plus a pre-thesis tutorial and a thesis. 96–114

Theater Arts
Eight subjects (including Script Analysis, Theater Practicum, and Stagecraft), a pre-thesis tutorial, and a thesis. 90–108

Women’s and Gender Studies
Seven subjects (including SP.401 Introduction to Women’s and Gender Studies), a pre-thesis tutorial, and a thesis. Students may submit a request to the Women’s and Gender Studies director to substitute two classes in lieu of the thesis and pre-thesis. 81–102

Writing: Creative
Seven subjects centered in creative or expository writing (one of these subjects is normally at the introductory level, one may be chosen from a related field), a pre-thesis tutorial, and a thesis. 93–102

Writing: Digital Media
Three subjects in digital media (21W.764, 21W.765), and 21W.785), a CI-M subject in writing, and three related subjects from another department. 93–102

Writing: Science Writing
Six subjects in writing (including 21W.777, 21W.778, 21W.792, a subject in basic exposition, and a subject in digital media), one approved science, technology, and society subject, a pre-thesis tutorial, and a thesis. 96–102

And for the engineering/science component, one of the following:

For 21E
Six elective subjects restricted to one of the engineering curricula and approved by a faculty member in the field. 54–72

For 21S
Six elective subjects restricted to one of the science curricula and approved by a faculty member in the field. 54–72

Departmental Program Units That Also Satisfy the GIRs
(54–72)

Unrestricted Electives
54–103

Total Units Beyond the GIRs Required for SB Degree
180

No subject can be counted as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes on 21E and 21S
(1) As a matter of general Course 21 policy, subjects used to meet the General Institute Science Requirement, the REST Requirement, and the Laboratory Requirement may not be included in the six-subject Engineering or Science component of 21E or 21S degrees. Only one subject being used to meet the distribution element of the Humanities, Arts, and Social Sciences Requirement may be counted toward the humanities component of these degree programs.
(2) American Studies, Ancient and Medieval Studies, East Asian Studies, Latin American Studies, Psychology, Russian Studies, Theater Arts, and Women’s and Gender Studies are also available as full majors by special arrangement with the Dean of the School of Humanities, Arts, and Social Sciences.
(3) Russian language subjects are not offered at MIT, but may be taken at Harvard University or Wellesley College through cross-registration.
(4) When possible, the subject satisfying the Institute Laboratory Requirement and one of the subjects satisfying the REST Requirement should be selected from this same curriculum, in addition to the regular requirement.

For an explanation of credit units, or hours, please refer to the online help in the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
As its name suggests, the Department of Linguistics and Philosophy houses a linguistics section and a philosophy section. Though they share a number of intellectual interests and a joint undergraduate major, these two sections are administratively autonomous with separate chairpersons, faculties, admissions procedures, curricular and degree requirements, and financial aid programs.

UNDERGRADUATE STUDY

Bachelor of Science in Philosophy/Course 24-1

This major is designed to provide familiarity with the history and current status of the main problems in epistemology, metaphysics, and ethics; mastery of some of the technical skills requisite for advanced work in philosophy; facility at independent philosophical study; and work at an advanced level in an allied field. A relatively large amount of unrestricted elective time is available so that students can devise programs suited to individual needs and interests.

Bachelor of Science in Linguistics and Philosophy/Course 24-2

This major, also known as the Program in Language and Mind, aims to provide students with a working knowledge of a variety of issues that currently occupy the intersection of philosophy, linguistics, and cognitive science. Central among these topics are the nature of language, of those mental representations that we call “knowledge” and “belief,” and of the innate basis for the acquisition of certain types of knowledge (especially linguistic knowledge). Students have the option of pursuing either a philosophy track or a linguistics track. Both require a core set of subjects drawn from both fields and are designed to teach students the central facts and issues in the study of language and the representation of knowledge. Each track requires, in addition, a set of subjects drawn primarily from its discipline and is designed to prepare students for graduate study either in philosophy/cognitive science or in linguistics. A coherent program of three restricted electives (drawn from one or two of the following three areas: linguistics, philosophy, or a related area) rounds out the major.

Bachelor of Science in Philosophy/Course 24-1

General Institute Requirements (GIrS)

<table>
<thead>
<tr>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement (three subjects can be satisfied by subjects in the Departmental Program for the field of concentration)</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree: 17

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units and by prerequisites, if any (corequisites in italics).

Required Subjects(1)

One CI-H philosophy subject(2)

One History of Philosophy subject:

24.01 Classics of Western Philosophy, 12, HASS-H, CI-H
24.201 Topics in the History of Philosophy, 12, HASS-H, CI-M

One Knowledge and Reality subject:

24.08I Philosophical Issues in Brain Science, 12, HASS-HI, CI-H
24.09 Minds and Machines, 12, HASS-HI, CI-H
24.111 Philosophy of Quantum Mechanics, 12, HASS-H
24.112 Space, Time, and Relativity, 12, HASS-H
24.114I A Philosophical History of Energy, 12, HASS-HI, CI-H
24.211 Theory of Knowledge, 12, HASS-H*
24.215 Topics in the Philosophy of Science, 12, HASS-H*
24.221 Metaphysics, 12, HASS-H, CI-M*
24.231 Introduction to Philosophy of Language, 12, HASS-H, CI-M*
24.253 Philosophy of Mathematics, 12, HASS-H*
24.280 Foundations of Probability, 12, HASS-S*

One Value subject:

24.02 Moral Problems and the Good Life, 12, HASS-HI, CI-H
24.04 Justice, 12, HASS-HI, CI-H
24.06 Bioethics, 12, HASS-HI, CI-H
24.120 Moral Psychology, 12, HASS-H, CI-M
24.209 Philosophy in Film and Other Media, 12, HASS-H
24.215 Philosophy of Film, 12, HASS-H
24.214A Introduction to Philosophy of the Arts, 12, HASS-H
24.222 Decisions, Games and Rational Choice, 12, HASS-H
24.231 Ethics, 12, HASS-H, CI-M
24.233I Philosophy of Law, 12, HASS-H*
24.237 Feminist Theory, 12, HASS-H, CI-M*
24.263 The Nature of Creativity, 12, HASS-H, CI-M*

One Logic subject:

24.118 Paradox and Infinity, 12, HASS-H
24.241 Logic I, 12, HASS-H
24.242 Logic II, 12, HASS-H*
24.243 Classical Set Theory, 12, HASS-H*
24.244 Modal Logic, 12, HASS-H*, 24.241
24.245 Theory of Models, 12, HASS-H*

Restricted Electives

A coherent program of five additional subjects, of which two must be in philosophy.

To satisfy the requirement that students take two CI-M subjects, students must take 24.260 and one of the following: 24.320, 24.321, 24.322, 24.323, 24.327, 24.325, or 24.263.

Departmental Program Units That Also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
</tr>
</tbody>
</table>

Unrestricted Electives

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>84–99</td>
</tr>
</tbody>
</table>
Note that students are prohibited from majoring in both 24-1 and 24-2.

Minors

The goal of the Minor in Philosophy is to introduce students to the methods of analytic philosophy and then to have them study a broad range of philosophers and philosophical issues at a more sophisticated level, culminating in an advanced seminar.

The minor consists of six subjects arranged into three levels of study as follows:

- **Tier I**
 - Two subjects: any CI-H philosophy subject and a logic course (24.241 Logic I, 24.242 Logic II, 24.243 Set Theory, or 24.244 Modal Logic, or a logic course in another department, e.g. Mathematics, if approved by the minor advisor)

- **Tier II**
 - Three non-introductory philosophy subjects, approved by the minor advisor

- **Tier III**
 - One subject: 24.260 Topics in Philosophy

The **Minor in Linguistics** consists of six subjects arranged in three levels of study, intended to provide students with breadth in the field of theoretical linguistics as a whole. The three levels are as follows:

- **Tier I**
 - One subject: 24.900 Introduction to Linguistics

- **Tier II**

- **Tier III**
 - Two subjects chosen from:
 - 24.904 Language Acquisition
 - 24.905 Psycholinguistics
 - 24.906 The Linguistic Study of Bilingualism
 - 24.907 Abnormal Language
 - 24.909 Field Methods in Linguistics
 - 24.910 Advanced Topics in Linguistic Analysis
 - 24.914 Language Variation and Change
 - 24.915 Linguistic Phonetics

GRADUATE STUDY

Master of Science in Linguistics

The Department of Linguistics and Philosophy has an Indigenous Language Initiative program leading to a Master of Science in Linguistics. For more information about this experimental degree, visit the website at http://web.mit.edu/linguistics/www/mitili/ or contact the program administrator at mitili@mit.edu.

Doctor of Philosophy in Linguistics

The Linguistics Section offers a demanding program leading to the degree of Doctor of Philosophy in Linguistics. The normal course of study is four or five years, including the writing of the dissertation. The orientation of the program is highly theoretical, its central aim being the development of a general theory that reveals the rules and laws that govern the structure of a given language and the general laws and principles that govern all natural languages. The topics that form the core of this program are the traditional ones of phonology, morphology, syntax, semantics, and historical linguistics; but the program’s interests also extend into questions of the interrelations between linguistics and other disciplines such as philosophy and logic, literary studies, mathematics and the study of formal languages, acoustics, artificial intelligence, and computer science.

Approximately eight students enter the program each year in a highly selective admissions process. The department does not require that applicants have taken any particular set of subjects or that they be trained in any particular discipline. Instead, applicants must present evidence that they are able to engage in serious study of complex subject matter. Examples of such evidence might be mastery in depth of a language or group of languages, e.g., classical Greek, Semitic, Japanese; or work, academic or nonacademic, of high quality in a relevant area, especially if it requires considerable application, imagination, or ingenuity.

All students in the linguistics program must complete a set of required subjects unless they have acquired adequate preparation elsewhere. Before degree candidates begin their doctoral research, they are required to pass a comprehensive general examination, in conformity with Institute requirements. Students must also demonstrate competence in one foreign language.

The following subjects are normally required of all doctoral candidates in linguistics, unless they have obtained adequate preparation elsewhere:

24.924 Topics in the Grammar of a Less Familiar Language
24.949 Language Acquisition I
24.951 Introduction to Syntax
24.952 Advanced Syntax
24.959 Workshop in Syntax and Semantics
24.961 Introduction to Phonology
24.962 Advanced Phonology
24.969 Workshop in Phonology and Morphology
24.970 Introduction to Semantics
24.973 Advanced Semantics
24.992 Survey of General Linguistics
24.993 Tutorial in Linguistics and Related Fields
and one of the following:
24.956 Topics in Syntax
24.964 Topics in Phonology
24.979 Topics in Semantics

Before students begin their doctoral research, they are required to pass a comprehensive general examination that is composed of...
two parts. The first part is a written examination consisting of two substantial papers on topics chosen in consultation with members of the faculty. The two papers must present research on two distinct topics in two distinct subdisciplines of linguistics. The subdisciplines include phonetics, phonology, syntax, semantics, pragmatics, language acquisition, language processing, or any other area of linguistics, so long as there is a substantial theoretical-linguistic component to the papers. In conformity with Institute regulations, the second part of the examination is oral. It deals with topics treated in the candidate’s written examination, but is not limited to these and probes into the candidate’s competence in linguistics in general.

Doctor of Philosophy in Philosophy

The program of studies leading to the doctorate in philosophy provides subjects and seminars in such traditional areas as logic, ethics, metaphysics, epistemology, philosophy of science, philosophy of language, philosophy of mind, aesthetics, social and political philosophy, and history of philosophy. Interest in philosophical problems arising from other disciplines, such as linguistics, psychology, mathematics, and physics, is also encouraged.

To enter the doctoral program, students must have done well in their previous academic work and must be formally accepted as candidates for the degree by the Department of Linguistics and Philosophy. Although there are no formal course requirements for admission, applicants must satisfy the committee on admissions that their preparation in philosophy and allied disciplines is sufficient for undertaking the study of philosophy at the graduate level.

Before beginning dissertation research, students are required to take two years of coursework, including a proseminar in contemporary philosophy that all students must complete in their first year of graduate study. Students are also required to demonstrate competence in the following areas: value theory, logic, and the history of philosophy.

Interdisciplinary study is encouraged, and candidates for the doctorate may take a minor in a field other than philosophy. Options for minors include psychology, linguistics, and logic. Students who elect one of these options are expected to complete three approved graduate subjects in their minor field. There is no general

Bachelor of Science in Linguistics and Philosophy/Course 24-2

<table>
<thead>
<tr>
<th>General Institute Requirements (GIrs)</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement (three subjects can be satisfied by subjects in the Departmental Program for the field of concentration)</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GI Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLUS Departmental Program</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linguistics Track</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linguistics Track</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Linguistics, 12, HASS-S, CI-H</td>
<td>24.900</td>
</tr>
<tr>
<td>Language and Its Structure I: Phonology, 12, HASS-S*</td>
<td>24.901</td>
</tr>
<tr>
<td>Language and Its Structure II: Syntax, 12, HASS-S, CI-M*</td>
<td>24.902</td>
</tr>
<tr>
<td>Language and Its Structure III: Semantics and Pragmatics, 12, HASS-S</td>
<td>24.903</td>
</tr>
<tr>
<td>Workshop in Linguistic Research, 12, HASS-S, CI-M*</td>
<td>24.918</td>
</tr>
<tr>
<td>One of the following five Linguistic Analysis subjects:</td>
<td></td>
</tr>
<tr>
<td>Language Acquisition, 12, HASS-S*</td>
<td>24.904</td>
</tr>
<tr>
<td>Psycholinguistics, 12, HASS-S*</td>
<td>24.905</td>
</tr>
<tr>
<td>The Linguistic Study of Bilingualism, 12, HASS-S, CI-H*</td>
<td>24.906</td>
</tr>
<tr>
<td>Abnormal Language, 12*</td>
<td>24.907</td>
</tr>
<tr>
<td>Linguistic Phonetics, 12, HASS-S*</td>
<td>24.915</td>
</tr>
<tr>
<td>Philosophy Track</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Philosophy Track</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topics in the History of Philosophy, 12, HASS-H, CI-M*</td>
<td>24.201</td>
</tr>
<tr>
<td>Logic I, 12, HASS-H</td>
<td>24.202</td>
</tr>
<tr>
<td>Introduction to the Philosophy of Language, 12, HASS-H, CI-M*</td>
<td>24.203</td>
</tr>
<tr>
<td>Topics in Philosophy, 12, HASS-H, CI-M*</td>
<td>24.260</td>
</tr>
<tr>
<td>One of the following two subjects:</td>
<td></td>
</tr>
<tr>
<td>Philosophical Issues in Brain Science, 12, HASS-HT, CI-H</td>
<td>24.08</td>
</tr>
<tr>
<td>Minds and Machines, 12, HASS-HT, CI-H</td>
<td>24.09</td>
</tr>
<tr>
<td>One of the following Knowledge and Reality subjects:</td>
<td></td>
</tr>
<tr>
<td>Philosophy of Quantum Mechanics, 12, HASS-H</td>
<td>24.111</td>
</tr>
<tr>
<td>Space, Time, and Relativity, 12, HASS-H</td>
<td>24.112</td>
</tr>
<tr>
<td>A Philosophical History of Energy, 12, HASS-H</td>
<td>24.114</td>
</tr>
<tr>
<td>Theory of Knowledge, 12, HASS-H*</td>
<td>24.211</td>
</tr>
<tr>
<td>Topics in the Philosophy of Science, 12, HASS-H*</td>
<td>24.215</td>
</tr>
<tr>
<td>Metaphysics, 12, HASS-H*</td>
<td>24.223</td>
</tr>
<tr>
<td>Philosophy of Mathematics, 12, HASS-H*</td>
<td>24.253</td>
</tr>
<tr>
<td>Foundations of Probability, 12, HASS-S*</td>
<td>24.280</td>
</tr>
<tr>
<td>One of the following three subjects:</td>
<td></td>
</tr>
<tr>
<td>Cognitive Processes, 12, HASS-S*</td>
<td>9.65</td>
</tr>
<tr>
<td>Language Acquisition, 12, HASS-S*</td>
<td>24.904</td>
</tr>
<tr>
<td>Psycholinguistics, 12, HASS-S*</td>
<td>24.905</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>27–36</td>
</tr>
</tbody>
</table>

A coherent program of three additional subjects from linguistics, philosophy, or a related area.
language requirement for the doctorate, except in those cases in which competence in one or more foreign languages is needed to carry on research for the dissertation.

Inquiries
Information regarding undergraduate or graduate academic programs, research activities, admissions, financial aid, and assistantships may be obtained from the Department of linguistics and Philosophy, Room 32-D808, 617-253-9372.

Faculty and Staff

Faculty and Teaching Staff
Irene Heim, PhD
Professor of Linguistics
Department Head

Professors
Alexander Byrne, PhD
Professor of Philosophy
Noam Chomsky, PhD
Professor of Linguistics
Kai von Fintel, PhD
Professor of Linguistics
Associate Dean, School of Humanities, Arts, and Social Sciences
Suzanne Flynn, PhD
Professor of Second Language Acquisition
(On leave, spring)
Daniel Fox, PhD
Professor of Linguistics
Edward A. Gibson, PhD
Professor of Cognitive Science

Sally Haslanger, PhD
Professor of Philosophy
Richard Holton, PhD
Professor of Philosophy
Sabine Iatridou, PhD
Professor of Linguistics
Michael Kenstowicz, PhD
Professor of Linguistics
Rae Langton, PhD
Professor of Philosophy
Vann McGee, PhD
Professor of Philosophy
Shigeru Miyagawa, PhD
Kochi Prefecture-John Manjiro Professor of Japanese Language and Culture
Professor of Linguistics
Wayne O’Neil, PhD
Professor of Linguistics
David Pesetsky, PhD
Ferrari P. Ward Professor of Linguistics
MacVicar Faculty Fellow
Norvin Richards, PhD
Professor of Linguistics
MacVicar Faculty Fellow
Irving Singer, PhD
Professor of Philosophy
Robert Stalnaker, PhD
Laurance S. Rockefeller Professor of Philosophy
Donca Steriade, PhD
Class of 1941 Professor of Linguistics
(On leave, fall)

Kenneth N. Wexler, PhD
Professor of Psychology and Linguistics
Stephen Yablo, PhD
Professor of Philosophy

Associate Professors
Adam Albright, PhD
Associate Professor of Linguistics
Michel DeGraff, PhD
Associate Professor of Linguistics
Edward Flemming, PhD
Associate Professor of Linguistics
Martin Hackl, PhD
Associate Professor of Linguistics
(On leave, spring)

Caspar Hare, PhD
Associate Professor of Philosophy
Agustín Rayo, PhD
Associate Professor of Philosophy
Roger White, PhD
Associate Professor of Philosophy

Assistant Professors
Julia Markovits, PhD
Assistant Professor of Philosophy
(On leave, spring)
Bradford Skow, PhD
Assistant Professor of Philosophy

Professors Emeriti
Sylvain Bromberger, PhD
Professor of Philosophy, Emeritus
Richard Lee Cartwright, PhD
Professor of Philosophy, Emeritus
Morris Halle, PhD
Institute Professor, Emeritus
James Wesley Harris, PhD
Professor of Spanish and Linguistics, Emeritus
Samuel Jay Keyser, PhD
Professor of Linguistics, Emeritus
Judith Jarvis Thomson, PhD
Professor of Philosophy, Emerita
The Literature Section’s mission is to maintain a level of excellence and innovation consistent with the best universities while remaining responsive to MIT’s distinctive intellectual environment. The curriculum emphasizes interdisciplinary approaches to literary texts as well as theoretical, generic, and thematic subjects that range across geographical and historical boundaries.

The Literature Section accommodates students with a wide variety of interests and diverse career choices. The major provides a solid grounding in the discipline but remains flexible enough to allow students to explore the particular domains that most interest them. Students graduating from the MIT Literature program in recent years have been admitted into the best doctoral programs in the country and abroad. For those not pursuing literature as a career, the program nonetheless develops transferable skills in writing, comprehension, and analysis relevant to a variety of different professional paths—both to traditional choices (e.g., journalism, law, and medical school) and to more esoteric ones, such as working in the gourmet food industry or computer game design.

Depending on the depth of one’s engagement, a student may major, minor, or concentrate in Literature. Regardless of the individual choice, our courses will introduce you to the pleasures of reading and interpretation, expose you to different ways of thinking about the world, and lead to a competence in writing and communication that will remain with you the rest of your life.

A supplement to this catalog, available online and from Literature Headquarters, Room 14N-407, offers detailed descriptions of all Literature subjects and includes specific information about required tests, writing assignments, and exams.

The Literature curriculum is arranged in four graduated categories:

- **Introductory** subjects (21L.000–21L.017) focus on major literary texts grouped in broad historical and generic sequences; all introductory subjects carry HASS and Communication Intensive credit.
- **Samplings** (21L.310–21L.395) are 6-unit subjects that provide both an alternative route into literary study and a less intensive means for students to sustain a commitment to reading and textual interpretation. Their focus is on critical exploration, textual comprehension, and group discussion, with less sustained attention to analytic writing skills. Students can combine two 6-unit Sampling subjects to count as a single 12-unit HASS subject, equivalent to a subject in the Intermediate tier. No more than four Sampling subjects may be combined in this manner. (See http://web.mit.edu/hassreq/ for details.)
- **Intermediate** subjects (21L.420–21L.512) explore literary forms in greater depth and center on historical periods, literary themes, or genres.
- **Seminar** subjects (21L.701–21L.715)—usually restricted to students who have taken at least two previous subjects in Literature—encourage a greater degree of independent work, such as oral reports and other special projects. Enrollment in seminars is strictly limited to a maximum of 12 students.

Bachelor of Science in Literature/ Course 21L

General Institute Requirements (GIrs)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [three subjects can be satisfied by subjects in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIrs Subjects required for SB degree

17

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three seminar level subjects</td>
<td>36</td>
</tr>
</tbody>
</table>

To satisfy the requirement that students complete two Communication Intensive subjects in the major, students must take two subjects from this list of approved CI-M subjects for Course 21L: 21L.473, 21L.701, 21L.702, 21L.703, 21L.704, 21L.705, 21L.706, 21L.707, 21L.708, 21L.709.

Note: Four of the 10 subjects required to satisfy the major (three of the eight for joint majors) must be chosen, in consultation with a faculty advisor, either from four of five historical periods (ancient/medieval; Renaissance; Restoration and 18th century; 19th century; 20th century and contemporary) or from four of five thematic complexes (historical period; genre; author study; film, media, and popular culture; gender studies, ethnic studies, and theory).

<table>
<thead>
<tr>
<th>Restricted Electives</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A coherent program of seven additional subjects from the literature curriculum (see above).</td>
<td>63–84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Program Units That Also Satisfy the GIrs</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(27–36)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unrestricted Electives</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(87–117)</td>
<td></td>
</tr>
</tbody>
</table>

Total Units Beyond the GIrs Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIrs and as part of the 180 units required beyond the GIrs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
Concentrations in Literature are available in particular genres (e.g., poetry, drama, fiction) and in historical periods (e.g., ancient studies, 19th-century literature, modern and contemporary literature), as well as in popular culture, media and film studies, minority and ethnic studies, literary theory, and a range of national literatures.

Bachelor of Science in Literature/ Course 21L

The program in Literature leading to the degree of Bachelor of Science in Literature is equivalent to the curricula in English (or literary studies) of the major liberal arts universities. The Literature curriculum is notable also for its inclusion, along with traditional literary themes and texts, of materials drawn from film and media, popular culture, and minority and ethnic cultures.

Majors are required to take a minimum of 10 subjects, three of which must be seminars and no more than three of which may be introductory subjects. Students develop an appropriate course of study in consultation with a faculty advisor; majors choose from one of two areas in organizing four of their restricted electives (three for joint majors): historical periods or thematic complexes.

Minor in Literature
The minor aims to lay a foundation for advanced study and to enhance a student’s appreciation of major narrative, poetic, and dramatic texts in relation to the cultures that produced them.

The Minor in Literature consists of six subjects arranged into three levels of study as follows:

- **Tier I** Introductory Level
 - At least one and no more than two subjects from 21L.000–21L.017

- **Tier II** Intermediate Level
 - Two or three subjects from 21L.420–21L.512; Note: two sample subjects (21L.310–21L.325) may be substituted for an intermediate level subject

- **Tier III** Seminar Level
 - At least two subjects from 21L.701–21L.715

At least two subjects must focus primarily on material from before 1900.

Joint Degree Programs
Joint degree programs are offered in Literature in combination with a field in engineering or science (21E, 21S). See the joint degree programs listed under Humanities.

Subjects in Literature are described in the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi. Further information on subjects and programs may be obtained from Literature Headquarters, Room 14N-407, 617-253-3581, lit@mit.edu.

FACULTY AND STAFF

Faculty and Teaching Staff
James Buzard, PhD
Professor of Literature
Section Head

Professors
Peter S. Donaldson, PhD
Professor of Literature
Mary C. Fuller, PhD
Professor of Literature
(On leave)
Diana Henderson, PhD
Professor of Literature
MacVicar Faculty Fellow
John Hildebidle, PhD
Professor of Literature
Alvin Charles Kibel, PhD
Professor of Literature
(On leave, spring)
Ruth Perry, PhD
Professor of Literature
MacVicar Faculty Fellow
Stephen James Tapscott, PhD
Professor of Literature
MacVicar Faculty Fellow
David Thorburn, PhD
Professor of Literature
MacVicar Faculty Fellow
William Uricchio, PhD
Professor of Comparative Media Studies
Director, Comparative Media Studies Program
(On leave)

Associate Professors
Sandy Alexandre, PhD
Associate Professor of Literature
Noel B. Jackson, PhD
Homer A. Burnell Career Development Associate Professor of Literature
Shankar Raman, PhD
Associate Professor of Literature
(On leave)

Assistant Professors
Arthur W. Bahr, PhD
Assistant Professor of Literature
Alisa Braithwaite, PhD
Assistant Professor of Literature
Eugenie A. Brinkema, PhD
Assistant Professor of Contemporary Literature and Media

Senior Lecturer
Wyn Kelley, PhD

Lecturers
Howard Eiland, PhD
Ina Lipkowitz, PhD

Postdoctoral Fellow
Joel Burges, PhD

Professors Emeriti
Albert Ramsdell Gurney, Jr., MFA
Professor of Literature, Emeritus
Louis Kampf, BA
Professor of English, Emeritus
Irene Tayler, PhD
Professor of Literature, Emerita
MUSIC

The Music Program offers a broad range of opportunities to experience and explore the realm of music. A great variety of subjects is offered, ranging from Fundamentals of Music to Senior Seminar in Music. The subjects are arranged into six categories: introductory, history/literature, theory/composition, performance, special topics/advanced subjects, and music and media. Most students begin with introductory subjects, but anyone with musical training is encouraged to begin with history/literature or theory/composition subjects, which constitute the nucleus of the program. Graduate credit is available for upper-level performance, special topics/advanced, and music and media subjects.

The symphony orchestra, choral groups, wind and jazz ensembles, chamber music groups, and the Senegalese drumming and Balinese Gamelan ensembles are an integral part of MIT’s cultural life, and any student is welcome to audition for one or more of them. Auditions are held at the beginning of each term. Academic credit is available for performance groups and for some private study.

Twenty-three professors and lecturers who specialize in composition, performance, and music history offer our wide variety of subjects.

Bachelor of Science in Music/Course 21M

The undergraduate program leading to the degree of Bachelor of Science in Music represents a confluence of three basic areas: a thorough grounding in the harmony and counterpoint of Western music, in-depth study of the history and repertoire of Western and World music, and performing experience in small and/or large ensembles. Seven required subjects (one of which consists of two terms of performance) and three electives (which must include subjects from three different categories) constitute the core of the program, which should be supplemented by other electives. This program is analogous to that for music majors at leading liberal arts colleges and universities, and it prepares a student in many ways for graduate study in the field.

Before declaring their major, students should demonstrate proficiency in instrumental or vocal performance by participating in a performance subject, and in harmony/counterpoint by obtaining a grade of B or better in 21M.301.

Minor in Music

The Minor in Music requires six subjects that will give students experience within the three main branches of music: performance, composition, and history. The four subjects in Tiers I and II are at the introductory or intermediate level. The two in Tier III will provide depth in one of the three branches.

Tier I

One subject, typically chosen from the following:
21M.011 Introduction to Western Music
21M.030 Introduction to World Music
21M.051 Fundamentals of Music

Students with sufficient musical knowledge or experience may substitute a subject from Tier II or III for the subject in Tier I. Please discuss this possibility with the minor advisor.

Tier II

Three subjects:
Theory/Composition: 21M.301 and one from each of the following areas:
History/Literature: 21M.220, 21M.235, 21M.250, 21M.260, 21M.291, 21M.293, or another subject (with approval of minor advisor)
Performance (two terms): 21M.401–499

Tier III

Two subjects from one of the following areas of specialization:
History/Literature: 21M.201–299, 21M.500
Theory/Composition: 21M.302–399
Performance (four terms): 21M.401–499

Joint Degree Programs

For students interested in combining the study of engineering or science with music, a joint major in the 21E or 21S degree program provides an opportunity to study two realms. The joint major requires four subjects (21M.301, 21M.302, 21M.500, and one of the following: 21M.220, 21M.235, 21M.250, or 21M.260), two terms of performance subjects, electives in two categories (usually theory/composition, history/literature), a third elective in any category (theory/composition, history/literature, or two terms of performance), and six subjects that fulfill the engineering or science curriculum portion of the joint degree.

NB: Joint as well as full majors may, with faculty approval, substitute three full years of Advanced Music Performance (21M.480) and a senior recital for the two required terms of performance subjects and two of the three electives.

Students wishing to enroll in any of these degree programs should consult the major or minor advisor in music no later than the first term of their junior year.

Subjects in music are described in the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi. Further information on subjects and programs may be obtained from the Music Section Office, Room 4-246, 617-253-3210.

THEATER ARTS

The Program in Theater Arts offers the opportunity for an imaginative and rigorous engagement with the arts and disciplines of theater: acting, directing, playwriting, design, technical work, dance, and scholarship. The program combines work in the classroom, in the studio, and on the stage. Performance is the testing ground for what is learned in the classroom and the experiences, from student-generated workshops to fully-mounted productions by Theater Arts, Dramashop, and Playwrights-in-Performance. All these activities are guided by a professional faculty and staff, often with the enriching participation of guest artists. A degree is offered under Course 21; see the Department of Humanities section for details.

Minor in Theater Arts

The Minor in Theater Arts is designed to give students the opportunity to experiment imaginatively but constructively in the making of theater. The flexibility of the minor allows students either to explore the basic principles of several theater disciplines or to concentrate more deeply on one.
The Minor in Theater Arts consists of the equivalent of six subjects arranged in three levels of study as follows:

Tier I Analysis and Theory
One subject from the following:

- 21M.616 Learning from the Past: Drama, Science, Performance
- 21M.621 Theater and Cultural Diversity in the US
- 21M.670 Traditions in American Concert Dance: Gender and Autobiography (CI-H)

Tier II Practical Studies
Four subjects:

- 21M.600 Introduction to Acting
- 21M.603 Design for the Theater: Projects in Making
- 21M.604 Playwriting I
- 21M.605 Voice and Speech for the Actor
- 21M.606 Introduction to Stagecraft
- 21M.611 Foundations of Theater Practice
- 21M.645 Motion Theater
- 21M.675 Dance Theory and Composition
- 21M.704 Musical Theater Workshop
- 21M.705 The Actor and the Text
- 21M.714 Selected Topics in Theater Arts
- 21M.725 Hip-Hop
- 21M.785 Playwrights’ Workshop
- 21M.790 Directing
- 21M.830 Acting: Techniques and Style
- 21M.840 Performance Media
- 21M.846 Topics in Performance Studies
Tier III Production and Performance
21M.815 Technical Theater Practicum
or
21M.606 Introduction to Stagecraft

and either
21M.805 Theater Practicum
or a minimum of 6 units from any combination of the following subjects:
21M.820 Technical Theater Special Topics
21M.851 Special Topics in Drama
21M.863 Advanced Topics in Theater Arts
21M.873 IAP Theater Arts Topics

Subjects in theater arts are described in the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi. For further information on subjects and programs, contact the Music and Theater Arts Office, Room 4-246, 617-253-3210.

Faculty and Teaching Staff

Faculty and Teaching Staff
Janet Sonenberg, MFA
Professor of Theater Arts
MacVicar Faculty Fellow
Section Head

Professors
Alan Brody, PhD
Professor of Theater Arts
Peter Child, PhD
Professor of Music
MacVicar Faculty Fellow
Thomas F. DeFrantz, PhD
Class of 1948 Professor of Theater Arts
John Harbison, MFA
Professor of Music
Institute Professor
Ellen T. Harris, PhD
Class of 1949 Professor of Music
Lowell Edwin Lindgren, PhD
Professor of Music
Marcus Aurelius Thompson, DMA
Robert R. Taylor Professor of Music

Evan Ziporyn, PhD
Kenan Sahin Distinguished Professor of Music

Associate Professors
Keevil Makan, PhD
Associate Professor of Music
(On leave, fall)
Jay Scheib, MFA
Associate Professor of Theater Arts
(On leave, spring)
Patricia J. Tang, PhD
Associate Professor of Music
(On leave, fall)

Assistant Professor
Michael Cuthbert, PhD
Assistant Professor of Music

Senior Lecturers
David Deveau, MM
Senior Lecturer in Music
Anna Kohler
Senior Lecturer in Theater Arts
Martin Marks, PhD
Senior Lecturer in Music
George Ruckert, PhD
Senior Lecturer in Music
Charles Shadle, PhD
Senior Lecturer in Music
Pamela Sharon Wood, MM
Senior Lecturer in Music

Lecturers
Adam Boyles, DMA
Lecturer in Music
Director, Orchestra
Sara Brown, MFA
Lecturer in Theater Arts
Director of Design
William C. Cutter, DMA
Lecturer in Music
Director, Choral Programs
Frederick Harris, PhD
Lecturer in Music
Director, Wind Ensembles

Mark Harvey, PhD
Lecturer in Music
Kim Mancuso, MFA
Lecturer in Theater Arts
Theresa Neff, PhD
Lecturer in Music
Jean Rife, BM
Lecturer in Music
Elena L. Ruehr, PhD
Lecturer in Music
Peter Whincop, MA
Lecturer in Music

Instructors
Leslie Cocuzzo Held, BA
Technical Instructor in Theater Arts
Michael Katz, MFA
Technical Instructor in Theater Arts
Karen Perlow, BA
Technical Instructor in Theater Arts

Faculty Emeriti
Jeanne Shapiro Bamberger, MA
Professor of Music, Emerita
Stephen Erdely
Professor of Music, Emeritus
Michael Ouellette, MFA
Senior Lecturer in Theater Arts, Emeritus
Barry Lloyd Vercoe, DMA
Professor of Media Arts and Sciences, Emeritus
Political science is concerned with the systematic study of government and the political process. Within the discipline, scholars analyze the development, distribution, and uses of political power; determinants and consequences of various forms of political behavior and sources of political conflict; ways in which conflicts are both intensified and resolved; and the relationship between the individual and the state. Political science is a discipline of special interest to scientists and engineers who must understand the political system within which they live in order to evaluate their influence upon that system. It is of interest as well to those students who are considering careers in public service or university teaching and research.

The Department of Political Science has a research-oriented faculty that welcomes both undergraduate and graduate students in ongoing research. The department covers the fields of American politics and public policy, comparative politics, international relations and foreign policy, and political philosophy and social theory, with particular emphasis on ethnicity and identity, international security, representation, and the politics of globalization. The Department of Political Science offers degree programs at the bachelor’s, master’s, and doctoral levels.

UNDERGRADUATE STUDY

Bachelor of Science in Political Science/ Course 17

The political science curriculum for undergraduates combines professional social science training with opportunities for a broad liberal arts education. Students may choose subjects from a wide range of both undergraduate and graduate offerings, and are encouraged to engage in independent research projects. In addition, the department sponsors an internship program in which students work in governmental agencies, legislative offices, community associations, international organizations, and advocacy groups at all levels.

The undergraduate program prepares students for study in political science, law, public policy, and related fields, and for careers in government, business, law, research, teaching, or journalism. This program is also designed to give students, whatever their career objectives, an understanding of political institutions and processes. Some students want to focus on political systems themselves; others choose to concentrate on the political aspects of public policy, focusing on such issues as the environment, health, or arms control. Both of these perspectives are found in the program.

Subjects are offered by the department in the following fields: political theory, political economy, American politics, public policy, international relations and security studies, comparative politics, and models and methods. Students may work out individualized programs with the assistance of a faculty advisor.

In the junior year students are introduced to the major theoretical and methodological themes of political science in two subjects:

17.869 Political Science Scope and Methods (typically fall term, junior year) and
17.871 Political Science Laboratory (typically spring term, junior year)

The department believes that every political science major should have the experience of conducting and writing at least one substantial research project, a requirement that is fulfilled by the senior thesis. Each undergraduate chooses a thesis advisor and a second thesis reader in his or her area of interest. The student then registers for:

17.ThT Thesis Research Design Seminar (fall term, senior year) and
17.ThU Thesis (spring term, senior year)

In addition to the thesis, there are numerous other opportunities for students to pursue research interests. Students are eligible to receive academic credit or limited funding for expenses or wages through the Institute-wide Undergraduate Research Opportunities Program. Students should consult the department’s UROP coordinator to discuss specific projects.

Minor in Political Science

The objective of the Minor in Political Science is to deepen and expand student knowledge of the discipline of political science. A minor in political science consists of six subjects divided into two tiers, selected from any of the discipline’s subfields as listed in the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Tier I consists of introductory classes, and Tier II, of upper-level classes.

The requirements of the minor are as follows:

Tier I

- At least one but no more than two introductory classes (introductory classes are designated with two-digit numbers). These introductory classes provide broad theoretical and/or empirical overviews of their subject matter. Examples include:
 - 17.01J Justice
 - 17.20 Introduction to the American Political Process
 - 17.40 American Foreign Policy: Past, Present, and Future
 - 17.50 Introduction to Comparative Politics

Tier II

- At least four but no more than five upper-level classes (upper-level classes are designated with three-digit numbers). These specialized classes provide students with advanced and in-depth examination of their subject matter. Examples include:
 - 17.195 Globalization
 - 17.405 Seminar on Politics and Conflict in the Middle East
 - 17.477 Technology and Policy of Weapons Systems
 - 17.811 Game Theory and Political Theory

For a listing of available subjects in these areas, consult Tobie Weiner in the Political Science Undergraduate Office, Room E53-484 or the SHASS Dean’s Office, Room 4-240.

Minor in Applied International Studies

The interdisciplinary HASS Minor in Applied International Studies prepares students for an increasingly global business and research environment by integrating international learning into their course of study. A detailed description of this minor may be found under Interdisciplinary Undergraduate Programs and Minors in Part 3.

Minor in Public Policy

The Department of Political Science jointly offers a Minor in Public Policy with the Department of Urban Studies and Planning (Course 11). A detailed description and list of requirements for this minor may be found under Interdisciplinary Undergraduate Programs and Minors in Part 3.
Bachelor of Science in Political Science/Course 17

General Institute Requirements (GIRs) Subjects
Science Requirement 6
Humanities, Arts, and Social Sciences Requirement [three subjects can be satisfied by subjects in the Departmental Program] 8
Restricted Electives in Science and Technology (REST) Requirement 2
Laboratory Requirement 1
Total GIR Subjects Required for SB Degree 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H);
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program Units
Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).

Required Subjects*
17.869 Political Science Scope and Methods, 12, HaSS-S, CI-M
17.871 Political Science Laboratory, 15, LAB; 17.869*
17.ThT Thesis Research Design Seminar, 12, CI-M; 17.869, 17.871, or permission of instructor
17.ThU Undergraduate Political Science Thesis (at least 12 units; additional units by special arrangement)

Restricted Electives 60–84
Political philosophy/social theory: one political science subject in the field of political philosophy/social theory (17.00–17.099)
American politics: one political science subject in the field of American politics (17.20–17.299)
Public policy: one political science subject in the field of public policy (17.30–17.399), or a subject in another field designated as fulfilling the public policy requirement
International politics: one political science subject in the fields of international relations/security studies (17.40–17.499) or comparative politics (17.50–17.599)
Plus three additional political science subjects representing a coherent plan of study. Specific subjects satisfying these criteria should be chosen in consultation with a faculty advisor.

Departmental Program Units That Also Satisfy the GIRs (30–36)

Unrestricted Electives 81–99
Total Units Beyond the GIRs Required for SB Degree 180
No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
* Alternate prerequisites are listed in the subject description.
* Students typically enroll in subjects as follows: 17.869, fall term, junior year; 17.871, spring term, junior year; 17.ThT, fall term, senior year; 17.ThU, spring term, senior year.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

GRADUATE STUDY

The Department of Political Science offers programs leading to the Master of Science in Political Science and the Doctor of Philosophy.

Entrance Requirements for Graduate Study
All applicants must take the GRE general test. Non-native English speakers must take the Test of English as a Foreign Language (TOEFL) or International English Language Testing System (IELTS). Applicants from all disciplines are welcome. Applicants need not have majored in political science, though some prior coursework in political science or related subjects, such as history, economics, philosophy, psychology, or sociology is helpful.

Master of Science in Political Science
The Master of Science in Political Science is a one-year program intended for students who wish to develop skills in applied research in preparation for a career in public policy or with a business or research organization. The master’s program emphasizes intensive preparation in a single field of study. Applicants to the SM program should specify their field of specialization.

The minimum number of subjects required for the SM degree is six graduate subjects, at least four of which must be completed in the Political Science Department at MIT. The remaining two may be taken elsewhere at MIT or through cross-registration at Harvard University. A 3.5 GPA must be maintained. A master’s thesis is required. See the section on Graduate Education in Part 1 for the general requirements for the SM.

Accelerated Master of Science in Political Science
The department offers a five-year program leading to the Bachelor of Science and Master of Science, awarded simultaneously. This program is open to MIT undergraduates only. It allows the student to plan for a single combined SB-SM thesis written during the last three terms at the Institute. Undergraduate Institute requirements may be completed during the fifth year of the program.
Doctor of Philosophy

Doctoral students must complete the following requirements:

• A one-term seminar for first-year students covering fundamental ideas, theories, and methods in modern political science
• One class in statistics
• One class in empirical research methods
• One class in political philosophy
• Reading proficiency in one language other than English (demonstrated by two semesters of intermediate-level college course work or an exam) or knowledge of advanced statistics (demonstrated by three semesters of course work or an exam)
• A second-year paper and related workshop
• A doctoral thesis

In addition, doctoral students are required to elect two of the following major fields: American politics and public policy, comparative politics, international relations, models and methods, political economy, political philosophy and social theory, and security studies. In each of the two elected fields students will take a written general exam followed by a single oral exam covering both fields. Specific fields may have additional requirements.

Students may take subjects in other MIT departments. Cross-registration arrangements also permit enrollment in subjects taught in the Graduate School of Arts and Sciences at Harvard University and in some of Harvard’s other graduate schools. Students are encouraged to do field research and develop close working ties with faculty members engaged in major research activities.

Inquiries

Additional information regarding graduate programs in the department and admissions may be obtained from the graduate administrator, Susan Twarog, 617-253-8336. Written inquiries should be addressed to Department of Political Science, Room E53-467.

Faculty and Teaching Staff

Richard M. Locke, PhD
Alvin J. Siteman Professor of Entrepreneurship and Political Science
Department Head

Professors

Suzanne Berger, PhD
Raphael Dorman and Helen Starbuck Professor of Political Science
 Nazli Choucri, PhD
Professor of Political Science
Melissa Nobles, PhD
Professor of Political Science
Roger Petersen, PhD
Professor of Political Science
Michael Joseph Piore, PhD
David W. Skinner Professor of Political Economy and Political Science
Barry R. Posen, PhD
Ford Foundation International Professor of Political Science
Richard J. Samuels, PhD
Ford International Professor of Political Science
Ben Ross Schneider, PhD
Professor of Political Science
Charles Stewart III, PhD
Kenan Sahin Distinguished Professor of Political Science
(Kon sabbatical)
Kathleen Thelen, PhD
Ford Professor of Political Science
(On leave, spring)
Stephen W. Van Evera, PhD
Ford International Professor of Political Science

Assistant Professors

Fotini Christia, PhD
Assistant Professor of Political Science
Jens Hainmueller, PhD
Assistant Professor of Political Science
Vipin Narang, PhD
Assistant Professor of Political Science

Associate Professors

Adam Berinsky, PhD
Associate Professor of Political Science
Andrea Campbell, PhD
Associate Professor of Political Science
Taylor Fravel, PhD
Cecil and Ida Green Career Associate Professor of Political Science
(On leave, fall)
Chappell H. Lawson, PhD
Associate Professor of Political Science
(On leave, fall)
Gabriel Lenz, PhD
Associate Professor of Political Science
(On leave, fall)
Kenneth A. Oye, PhD
Associate Professor of Political Science
David Andrew Singer, PhD
Associate Professor of Political Science
(On leave)
Edward Steinfield, PhD
Associate Professor of Political Science
Lily Tsai, PhD
Associate Professor of Political Science

Professors Emeriti

Donald L. M. Blackmer, PhD
Professor of Political Science, Emeritus
Lincoln P. Bloomfield, PhD
Professor of Political Science, Emeritus
Joshua Cohen, PhD
Professor of Political Science, Emeritus
Willard R. Johnson, PhD
Professor of Political Science, Emeritus
George W. Rathjens, PhD
Professor of Political Science, Emeritus
Harvey M. Sapolsky, PhD
Professor of Political Science, Emeritus
Eugene B. Skolnikoff, PhD
Professor of Political Science, Emeritus
The Program in Science, Technology, and Society (STS) focuses on the ways in which scientific, technological, and social factors interact to shape modern life. The program brings together humanists, social scientists, engineers, and natural scientists, all committed to transcending the boundaries of their disciplines in a joint search for new insights and new ways of reaching science and engineering students. The goal of the program is to set up a forum to explore the relationship between what scientists and engineers do and the constraints, needs, and responses of society.

Located in a major university where most people study science and engineering, STS is dedicated to understanding the context of science and engineering.

UNDERGRADUATE STUDY

MIT students are increasingly seeking to understand the social and historical contexts in which they will work and the social consequences of what they will do in their professional careers. STS subjects help them think realistically and creatively about the intellectual, moral, political, social, psychological, and artistic issues raised by the rapid growth of science and technology in the 20th century and beyond.

STS contributes to undergraduate education at MIT in several ways. It offers general subjects to introduce students to broad social and intellectual perspectives on science and engineering fields. It also offers more specialized subjects in the history of science and technology and in social and cultural studies of science and technology. Within each of these categories, students can choose both introductory and more advanced subjects.

The concentration in STS requires three STS subjects, as least one and not more than two of which must be selected from the indicated list of Tier I subjects.

Minor in Science, Technology, and Society

The goal of the minor program is to give students a broad social perspective on the fields of engineering and science: how they have evolved and how they fit into the wider context of society, culture, politics, and values.

The Minor in Science, Technology, and Society consists of six subjects as follows:

Tier I
At least one of the following:
STS.003 The Rise of Modern Science
STS.005 Disease and Society in America
STS.006 Bioethics
STS.007 Technology in History
STS.008 Technology and Experience
STS.009 Evolution and Society
STS.010 Neuroscience and Society
STS.011 Ethics and Politics in Science and Technology

Tier II
Four undergraduate STS subjects forming a coherent group relevant to the student’s major Course of study.

Tier III
STS.091 Critical Issues in STS. Prerequisite is completion of one STS Tier I subject or permission of instructor.

Double Major

For students who wish to integrate their professional study of engineering or science with a rigorous treatment of its relation to social and historical forces, STS offers a double major in cooperation with the Schools of Engineering and Science. The object of this program is to give those students the full technical and scientific education provided by a science or engineering major, balanced with intensive study of the historical and social contexts of science and technology. Double major applications from students in other Schools (e.g., Architecture and Planning; Management; Humanities, Arts, and Social Sciences) will be considered on a case-by-case basis.

Students in the double major program must complete all the requirements of their majors as well as the STS requirements described below. In addition, they must write an STS thesis. If the second major also requires a thesis, students may coordinate their thesis effort pending approval of undergraduate officers in both majors.

The STS requirements include 14 subjects as follows: one STS Tier I subject; six other STS subjects; STS.091 Critical Issues in STS; pre-thesis tutorial; the thesis; and four related subjects in the historical and social study of science and technology forming a coherent group. Further details on the requirements of this double major may be obtained from the STS undergraduate academic officer and the STS academic administrator.

Joint Degree Program

Students who wish to integrate studies in STS and science or engineering in the context of a single degree program should consider this program. It includes a group of specially designated subjects offered by STS that provide a focus for interdisciplinary work. Central to this core is STS.091 Critical Issues in STS, which examines interactions of science, technology, and culture through writing, reading, and discussion of major works.

Students who take this degree must complete 10 STS subjects: one STS Tier I subject; six other STS subjects; STS.091 Critical Issues in STS; pre-thesis tutorial; and thesis.

Consult the 21E/21S degree chart for details on the requirements for this joint degree. Further details may be obtained from the Department of Humanities and the STS undergraduate academic officer.

GRADUATE STUDY

In collaboration, STS, the History Faculty, and the Anthropology Program offer a Program in History, Anthropology, and Science, Technology and Society (HaSTS) leading to the PhD.

The objective of the program is to develop advanced competence in the study of science and technology from a historical and social scientific perspective. Students are expected to develop professional mastery of a field of history or one of the social sciences. They must also master the underlying concepts in science and engineering that relate to their special field of interest.

Graduate students take at least 10 subjects in the doctoral program during their first two years. Normally, all students take the required introductory seminars, STS.210J, STS.250J, and STS.260, in their first term. Students are encouraged to take 21A.861 and STS.390 at some point in their program. To fulfill the remaining subject requirement, students choose from among several departmental seminars designed to offer more in-depth study of particular topics.
Bachelor of Science in Science, Technology, and Society/Double Major/ Course STS (1)

General Institute Requirements (GIrs) Subjects
Science Requirement 6
Humanities, Arts, and Social Sciences Requirement (three subjects can be satisfied by subjects in the Departmental Program) 8
Restricted Electives in Science and Technology (REST) Requirement 2
Laboratory Requirement 1
Total GIr Subjects Required for SB Degree 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program Units
Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).

Required Subjects 42
One STS Tier I subject of at least 12 units
STS.091 Critical Issues in STS, 12, HaSS-e, CI-M*
STS.ThT Undergraduate Thesis Tutorial, 6
STS.ThU Undergraduate Thesis, 12, CI-M*

Restricted Electives 90–120
A coherent group of six elective subjects in STS, plus four related subjects in the historical and social study of science and technology (three of which can be satisfied by HaSS GIrs), in consultation with the STS undergraduate officer.

Departmental Program Units That Also Satisfy the GIrs (30)
Unrestricted Electives 48–81
Total Units Beyond the GIrs Required for SB Degree 180
No subject can be counted both as part of the 17-subject GIrs and as part of the 180 units required beyond the GIrs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
*Prerequisites and corequisites are listed in the subject description.
1) The full major in Science, Technology, and Society (STS) may be pursued only as a second major program in conjunction with another degree program in a field of engineering or science, or in other fields on a case-by-case basis.
For an explanation of credit units, or hours, please refer to the online help of the MIT Subject listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Inquiries
Additional information on the Program in Science, Technology, and Society may be obtained from the STS academic administrator, Room E51-185, 617-253-9759, http://web.mit.edu/STS/.
For detailed descriptions of subjects in Science, Technology, and Society, see the online MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Faculty and Teaching Staff

Faculty and Teaching Staff
David A. Mindell, PhD
Frances and David Dibner Professor of the History of Engineering and Manufacturing
Professor of Aeronautics and Astronautics
MacVicar Faculty Fellow
Program Director

Professors
Michael M. J. Fischer, PhD
Andrew W. Mellon Professor in the Humanities

Dean, School of Humanities, Arts, and Social Sciences
Kenneth Rogers Manning, PhD
Thomas Meloy Professor of Rhetoric and the History of Science

Theodore A. Postol, PhD
Professor of Science, Technology, and National Security Policy

Merritt Roe Smith, PhD
Leverett Howell and William King Cutten Professor of the History of Technology

Sherry Turkle, PhD
Abby Rockefeller Mauzé Professor of the Social Studies of Science and Technology

Rosalind H. Williams, PhD
Bern Dibner Professor of the History of Science and Technology

Associate Professors
David S. Jones, PhD, MD
Associate Professor of the History and Culture of Science and Technology

MacVicar Faculty Fellow

David Kaiser, PhD
Associate Professor of the History of Science

Natasha Schüll, PhD
Leo Marx Career Development Associate Professor of Science, Technology, and Society

Assistant Professors
Vincent Lépinay, PhD
Assistant Professor of Science, Technology, and Society

Upon the satisfactory completion of general examinations in the third year, students proceed to the writing of a dissertation proposal and dissertation, usually with the assistance of a multidisciplinary advisory committee.

Students from any academic discipline are invited to apply to the doctoral program.

For additional information about the graduate program, visit the HASTS website at http://web.mit.edu/hasts/, or contact the STS academic administrator, Room E51-185, 617-253-9759.
Clapperton Mavhunga, PhD
Assistant Professor of Science, Technology, and Society

Hanna Rose Shell, PhD
Assistant Professor of Science, Technology, and Society

Adjunct Professor
John Durant, PhD
Adjunct Professor of Science, Technology, and Society

Visiting Professors
Jill Ker Conway, PhD
Professor of the History of Women

Thomas P. Hughes, PhD
Distinguished Visiting Professor of the History of Technology

Senior Lecturer
Leo Marx, PhD
William R. Kenan Professor of American Cultural History, Emeritus

Professors Emeriti
Louis Lawrence Bucciarelli, PhD
Professor of Engineering and Technology Studies, Emeritus

Loren R. Graham, PhD
Professor of the History of Science, Emeritus

Evelyn Fox Keller, PhD
Professor of History and Philosophy of Science, Emerita

Kenneth Keniston, PhD
Andrew W. Mellon Professor of Human Development, Emeritus

Leo Marx, PhD
William R. Kenan Professor of American Cultural History, Emeritus

Eugene B. Skolnikoff, PhD
Professor of Political Science, Emeritus

Leon Trilling, PhD
Professor of Aeronautics and Astronautics, Emeritus

Charles Weiner, PhD
Professor of the History of Science and Technology, Emeritus
The Program in Writing and Humanistic Studies teaches students the craft, forms, and traditions of contemporary writing and communication. Some students explore writing as a means of artistic expression. Some learn how to communicate the results of their science and technical work to broad audiences and members of their professions. Others work collaboratively within the evolving framework of digital media to become skillful in interactive and nonlinear forms of communication. All subjects in the program emphasize the development of the foundational skills, creative initiative, and critical sensibility necessary to become a good writer.

Subjects in the program’s three options—creative writing (fiction, nonfiction prose, poetry), science writing, and digital media—are taught at both introductory and advanced levels. All subjects require extensive writing and revision. Student work is typically discussed in workshops and receives the written commentary of the instructor.

Concentrations in writing establish a course of study in fiction, prose nonfiction (including rhetoric), science writing, or digital media, and offer engineering or science majors an opportunity to develop abilities that will play a key role in their professional careers.

The Minor in Writing and Humanistic Studies offers students a sustained opportunity to work in one of the program’s three options while also exploring offerings in the program’s core curriculum.

The program also offers a one-year master’s degree in science writing. Students in the graduate program receive intensive training in the craft of turning technically complex ideas and discoveries into compelling writing and productions for broad audiences. Approaches in the graduate curriculum range from daily journalism to long-form prose, documentary audio and video, and digital media; students complete a required internship.

Bachelor of Science in Writing/
Course 21W

The Program in Writing and Humanistic Studies offers three undergraduate options leading to the Bachelor of Science in Writing. The curriculum in creative writing is designed to develop expertise in writing and reading a genre of the student’s choice (e.g., fiction, poetry, or nonfiction prose forms), familiarity with related genres, and a three-subject focused exposure to an allied discipline, usually in the humanities, arts, or social sciences. This curriculum offers students flexibility in designing their courses of study for both breadth and depth.

The curriculum in science writing is designed to enable the student to develop mastery of the craft and rhetoric of writing about the worlds of science and engineering for broad audiences. This writing major is an option for students interested in science journalism, longer forms like the science documentary, and communication issues related to the public understanding of science and technology. It is also designed to work as a complementary major for students majoring in science, engineering, or another field of study at MIT. This major includes a three-subject exposure to an allied field such as science, technology, and society; political science; or comparative media studies. Students also fulfill an internship requirement, which provides in-depth practical experience.

The digital media major offers in-depth study of emerging interactive and nonlinear styles of narrative, as well as individual and collaborative experience in producing digitally mediated forms, both aesthetic and utilitarian. Students gain extensive experience in using a variety of authoring systems to develop large-scale websites, web-based hypertext products, computer games, interactive fiction and poetry, and digitally mediated visual worlds. Knowledge of programming is often helpful, but not necessary.

Minor in Writing

The Minor in Writing consists of six subjects focusing on one of the three areas mentioned above, arranged into two tiers of study as follows:

Tier I

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21W.730</td>
<td>One subject from the following:</td>
</tr>
<tr>
<td>21W.730</td>
<td>Writing on Contemporary Issues</td>
</tr>
<tr>
<td>21W.731</td>
<td>Writing and Experience</td>
</tr>
<tr>
<td>21W.732</td>
<td>Science Writing and New Media</td>
</tr>
<tr>
<td>21W.734</td>
<td>Writing About Literature</td>
</tr>
<tr>
<td>21W.755</td>
<td>Writing and Reading Short Stories</td>
</tr>
<tr>
<td>21W.756</td>
<td>Writing and Reading Poems</td>
</tr>
</tbody>
</table>

Tier II

Five subjects from among the remaining writing subjects

Joint Degree Programs

Joint degree programs are offered in writing in combination with a field in engineering or science (the 21E and 21S degrees). See the joint degree programs listed under Humanities.

Graduate Program in Science Writing

The one-year Graduate Program in Science Writing is aimed at students who wish to write about science and technology for general readers, in ordinary newsstand magazines and newspapers, in popular and semi-popular books, on the walls of museums, or on television or radio programs. Students may be graduates of undergraduate science, engineering, journalism or writing programs; experienced journalists and freelance writers; working scientists or engineers; historians of science and technology; or other scholars, including those already holding advanced degrees.

The program is built around an intensive year-long advanced science writing seminar. In addition, students choose one elective each semester, write a substantial thesis, and complete an internship.

The graduate program maintains links to MIT’s Program in Science, Technology, and Society; to the Comparative Media Studies program; and to the Knight Science Journalism Fellowships program. For more information, see the descriptions of the Science, Technology, and Society and Comparative Media Studies programs in Part 2. See Interdisciplinary Research and Study in Part 3 for more information about the Knight Science Journalism Fellowships program.

Writing and Communication Center

The MIT Writing and Communication Center offers free individual writing consultation on an appointment or drop-in basis to all members of the MIT community. In addition, the center gives mini-sessions each semester on a variety of writing topics, and also offers workshops for people for whom English is a second language. For further information, contact the Writing Center at 617-253-3090.
Writing Across the Curriculum
The Writing Across the Curriculum (WAC) staff of the Program in Writing and Humanistic Studies helps provide the integration of instruction and feedback in writing and speaking in subjects in all undergraduate departments and programs. The writing tutor program supports enhanced writing instruction in Communication Intensive in Humanities, Arts, and Social Sciences (CI-H) subjects. WAC lecturers collaborate with faculty in all schools in the teaching of Communication Intensive in the Major (CI-M) subjects.

Subjects in writing are described in the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi. Further information on subjects and programs may be obtained from the Program in Writing and Humanistic Studies Office, Room 14E-303, 617-253-7894.

FACULTY AND STAFF

Faculty and Teaching Staff
Thomas Levenson
Professor of Science Writing
Program Head

Professors
Junot Díaz, MFA
Professor of Writing
Robert Kanigel, BS
Professor of Science Writing
Kenneth R. Manning, PhD
Thomas Meloy Professor of Rhetoric and the History of Science
James Paradis, PhD
Robert M. Metcalfe Professor of Writing
Rosalind H. Williams, PhD
Bern Dibner Professor of the History of Science and Technology

Associate Professors
Douglas A. (Fox) Harrell, Jr., PhD
Associate Professor of Digital Media
Helen Elaine Lee, JD
Associate Professor of Writing
Nick Montfort, PhD
Associate Professor of Digital Media

Bachelor of Science in Writing/Course 21W

General Institute Requirements (GIrs)
Science Requirement
6
Humanities, Arts, and Social Sciences Requirement [three subjects may be satisfied by subjects in the Departmental Program]
8
Restricted Electives in Science and Technology (REST) Requirement
2
Laboratory Requirement
1
Total GIR Subjects Required for SB Degree
17

Communication Requirement
The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).

Option 1: Creative Writing (fiction, nonfiction, poetry)
Required Subjects
21W.TH6 Writing and Humanistic Studies Pre-Thesis Tutorial, 6
21W.TH7 Writing and Humanistic Studies Thesis, 12, CI-M; 21W.TH6
One of the following (CI-M): 21W.757, 21W.758, 21W.759, 21W.762, 21W.766J, 21W.770, 21W.771, or 21W.777
Restricted Electives
Six subjects centered on creative writing, of which one is normally introductory; three subjects in literature, one of which may be in CMS.

Option 2: Science Writing
Required Subjects
21W.T77 The Science Essay, 12, HASS-H, CI-M
21W.T78 Science Journalism, 12, HASS-H, CI-H
21W.T92 Science Writing Internship, 12, HASS-H
21W.TH6 Writing and Humanistic Studies Pre-Thesis Tutorial, 6
21W.TH7 Writing and Humanistic Studies Thesis, 12, CI-M; 21W.TH6
Restricted Electives
Four subjects in writing, of which one is normally introductory; three are writing subjects approved for this major, of which one is in digital media (48 units).
One approved Science, Technology, and Society subject (12 units).

Option 3: digital Media
Required Subjects
21W.T64 The Word Made Digital, 12, HASS-A
21W.T65 Interactive and Non-Linear Narrative: Theory and Practice, 12, HASS-A
21W.T85 Communicating with Web-Based Media, 12, HASS-A, CI-H
21W.TH6 Writing and Humanistic Studies Pre-Thesis Tutorial, 6
21W.TH7 Writing and Humanistic Studies Thesis, 12, CI-M; 21W.TH6
One of the following (CI-M): 21W.T57, 21W.T58, 21W.T59, 21W.T62, 21W.T66J, 21W.T70, 21W.T71, or 21W.T77
Restricted Electives
Three subjects in writing, which may be in digital media, creative writing, or science writing, and three related subjects from another department.

Departmental Program Units That Also Satisfy the GIrs

Unrestricted Electives
Option 1
Option 2
Option 3

Total Units Beyond the GIrs Required for SB Degree
180

No subject can be counted both as part of the 17-subject GIrs and as part of the 180 units required beyond the GIrs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
Assistant Professors
Vivek Bald, PhD
Assistant Professor of Writing and Digital Media
Beth Coleman, PhD
Assistant Professor of Writing and New Media

Adjunct Professors
Marcia Bartusiak, MS
Adjunct Professor of Science Writing
Joe Haldeman, MFA
Adjunct Professor of Fiction
Alan Lightman, PhD
Adjunct Professor of the Humanities

Visiting Professor
Mia Consalvo, PhD
Visiting Associate Professor in Comparative Media Studies

Senior Lecturer
Edward Barrett, PhD
Senior Lecturer in Writing

Lecturers
Atissa Banuazizi, MA
Karen Boiko, PhD
Harlan Breindel, MA
Stephen Brophy, BA
Mary Caulfield, MA
B. D. Colen, BA
Jane Abbott Connor, MA
William Corbett, BA
Director, Student Writing Activities

Jennifer Craig, MA
David Custer, BA
Kathleen Delaney, PhD
Nora Delaney, MA
Thomas Delaney, MA
Rebecca Faery, PhD
Director, First Year Writing

Elizabeth Fox, PhD
Erica Funkhouser, MA
JoAnn Graziano
Gay Haldeman, MA
Elizabeth Harris, MA
Louise Harrison-Leperi, MA
Diane Hendrix, MA
Philip J. Hilts
Robert Irwin, PhD
Nora Jackson, MA
Sonal Jhaveri, PhD
Neal Lerner, EdD
Marilyn Levine, MA
Shariann Lewitt, MFA
Lucy Marx, MA
Janis Melvold, PhD
Marilee Ogren, PhD
Karen Pepper, PhD
Mya Poe, PhD
Director, Technical Communication

Kym Ragusa, MFA
Leslie Ann Sulit Roldan, PhD
Thalia Rubio, MEd
Susan Ruff, BA
Pamela Siska, MA
Amanda Sobel, MA
Susan Spilecki, MA
Cynthia Taft, PhD
Donald Unger, PhD
Kim Vaeth, MA
Lydia Volaitis, PhD
Andrea Walsh, PhD
Jeanne Wildman, JD
Mary Zoll, MA, PhD

Research Staff

Research Associate
Philip Alexander, MS

Postdoctoral Fellow
Amaranth Borsuk, PhD

Professors Emeriti
Anita Desai, BA
John E. Burchard Professor of Humanities, Emerita

Robert Reynolds Rathbone, MA
Professor of Technical Communication, Emeritus

James H. Williams, Jr., PhD
SEPTe Professor of Engineering, Emeritus

Cynthia Griffin Wolff, PhD
Class of 1922 Professor of Literature, Emerita
The MIT Sloan School of Management, like the rest of MIT, catalyzes innovation through research and education. As one of the world’s leading business schools, MIT Sloan seeks to develop principled, innovative leaders who improve the world. Sloan graduates are particularly good at building cutting-edge products, services, markets, and organizations—delivering the advances essential for competitive survival and for economic and social progress.
The mission of the MIT Sloan School of Management is to develop principled, innovative leaders who improve the world and to generate ideas that advance management practice.

To accomplish this, the School

- Offers premier programs for shaping leaders who will create, redefine, and build cutting-edge products, services, markets, and organizations
- Collaborates across MIT to capitalize on and contribute to the Institute’s distinctive intellectual excellence and entrepreneurial culture
- Attracts, develops, and retains outstanding faculty and staff who lead the world in management education and research
- Enrolls students with integrity, strong leadership potential, high aspirations, and exceptional intellectual ability
- Fosters a cooperative and adventurous learning community that includes alumni and business partners, works on important problems, and is based on mutual respect, rigorous analysis, and high ethical standards

History
The MIT Sloan School grew out of a curriculum in engineering administration—Course 15—that was first offered to MIT undergraduates in 1914. A program leading to a master’s degree in management was established in 1925. The world’s first university-based executive education program, the Sloan Fellows Program, had its beginnings at MIT in 1931 under the principal sponsorship of Alfred P. Sloan, Jr., the 1895 MIT graduate in electrical engineering who rose to the top of the General Motors Corporation. Sloan endowed the pioneering program in 1938. In 1952, a further grant from the Sloan Foundation made possible the creation of the MIT School of Industrial Management—charged with the education of “the ideal manager.” The School was renamed in honor of Mr. Sloan in 1964.

New Directions
MIT Sloan’s array of top-ranked undergraduate, graduate, and executive programs are well known for drawing on the creative and collaborative approaches common to engineering, behavioral science, economics, and management science to give managers a competitive edge. In our diverse education and research programs, we work with industry to develop the basic knowledge, insights, tools, and techniques that are shaping the future of the practice of management.

Among MIT Sloan’s key strengths are its exceptionally close ties with other world-class departments at MIT, especially in fields crucial to business, including economics, engineering, and science. One manifestation of this interdisciplinary approach is Leaders for Global Operations, an educational and research collaboration with the School of Engineering and industry partners that is transforming the practice of manufacturing and manufacturing education. Other examples include the medical innovations course, conducted in partnership with MIT Sloan, the School of Engineering, and doctors at Massachusetts General Hospital, and the new Biomedical Enterprises program.

With a focus on the future of management, MIT Sloan has been aggressive in developing leading edge research programs that have an impact on the emerging practice of business. The School has been a leader in developing the concepts of financial engineering that underlie today’s financial markets, for example. Recently, MIT Sloan launched the Master of Finance, a 12-month intensive degree program designed to prepare students for careers in the financial industry.

Reflecting a world characterized by increasing economic globalization, MIT Sloan is itself an international community. Approximately one-third of the MBA class and close to half of all executive education participants come from outside the United States, and diverse research/educational collaborations have been developed with Europe, Mexico, and Asia. In addition, the School has a strong network of alumni in more than 100 countries.

As one of the world’s preeminent management schools, MIT Sloan strives to prepare its students to be principled, innovative leaders in a rapidly changing world. In an increasingly competitive environment, MIT Sloan must continually listen to the marketplace, explore new directions, and use this knowledge to develop new products, services, and processes quickly and efficiently. To maintain its leadership, MIT Sloan continues to drive change and innovation in a number of areas:

Entrepreneurship. The MIT Entrepreneurship Center, housed at MIT Sloan, aims to inspire, train, and coach new generations of entrepreneurs to create successful high-tech ventures. The center’s educational programs, especially New Enterprises, Entrepreneurship Lab, and Entrepreneurship Lab courses, are designed to give students the experience, skills, and network they need to turn their ideas into opportunities for new ventures and then to make those ventures successful. The center continues to work with leading practitioners and build its entrepreneurship faculty, who also conduct research on the dynamic process of high-tech venture development.

Global Initiatives. A top priority for MIT Sloan is to widen the international reach of its educational and research initiatives. MIT Sloan has international MBA programs in collaboration with China’s Sun Yat-sen, Fudan, Tsinghua, Yunnan, and Lingnan universities. MIT Sloan also hosts Chinese university faculty to help them absorb and apply MIT Sloan’s approach to management education. The School also works with Nanyang Technological University in Singapore, the Epoch Foundation in Taiwan, the Sungkyunkwan University in Korea, and Instituto Tecnológico y de Estudios Superiores in Mexico. In early 2009, MIT Sloan and the Moscow School of Management SKOLKOVO launched a series of joint programs aimed at strengthening the Russian school’s capacity in business education at the international level while exposing MIT Sloan faculty and students to a new range of global developments and challenges.

Sustainability Lab (S-Lab). Utilizing a collaborative, interdisciplinary approach to sustainability challenges, S-Lab is jointly taught by seven of the School’s top faculty and features opportunities to work with a variety of companies as they confront environmental and social business challenges.

China Lab. MIT Sloan’s partnership with four premier business schools in China was expanded to include an intensive, semester-long opportunity for students from both countries to learn and work together collaboratively. Involving Chinese international MBA students and MIT Sloan students, the inaugural China Lab incorporates elements of Project Team China and the popular E-Lab and G-Lab courses to give students hands-on work experience as part of a multinational business team.
Research Centers
MIT Sloan’s interdisciplinary research centers include:

- Center for Computational Research and Management Science
- Center for Energy and Environmental Policy Research
- Center for Future Banking
- Center for Information Systems Research
- Institute for Work and Employment Research
- Laboratory for Financial Engineering
- Lean Advancement Initiative
- MIT Center for Collective Intelligence
- MIT Center for Digital Business
- MIT Entrepreneurship Center
- MIT Leadership Center
- MIT Workplace Center
- Operations Management Group
- Operations Research Center
- Organization Studies Group
- Productivity from Information Technology Initiative
- System Dynamics
- Virtual Customer Initiative

Information about these centers is available in the Interdisciplinary Research and Study section in Part 3 and on the MIT Sloan website, http://mitsloan.mit.edu/faculty/research/index.php.

Publications
MIT Sloan produces publications that enjoy robust readerships within the MIT community, across the country, and around the world. MIT Sloan Management Review is a quarterly subscription-based journal for professional managers. More information about the magazine is presented on the web at http://mitsloan.mit.edu/smr/.

The alumni magazine MIT Sloan aims to connect alumni to the School and to each other through compelling news features, faculty articles, student and alumni profiles, and class notes.

In addition, MIT Sloan maintains a dynamic website, http://mitsloan.mit.edu/, that provides access to a rich and detailed range of news and information about the School, its activities, and its resources.

Degrees Offered in the MIT Sloan School of Management

<table>
<thead>
<tr>
<th>Management</th>
<th>Course 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>Management Science</td>
</tr>
<tr>
<td>MBA</td>
<td>Master of Science</td>
</tr>
<tr>
<td>MFin</td>
<td>Management</td>
</tr>
<tr>
<td>SM</td>
<td>Management of Technology</td>
</tr>
<tr>
<td>SM</td>
<td>Management Studies</td>
</tr>
<tr>
<td>SM/MBa</td>
<td>Engineering/Management—Leaders for Global Operations</td>
</tr>
<tr>
<td>PhD</td>
<td>Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operations Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
</tr>
<tr>
<td>Operations Research</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systems Design and Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
</tr>
<tr>
<td>Engineering and Management</td>
</tr>
</tbody>
</table>

Note: Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.

The Operations Research Center is an interdepartmental center affiliated with a variety of departments from the MIT Sloan School of Management, the School of Engineering, the School of Science, and the School of Architecture and Planning. See the section on Interdisciplinary Graduate Programs in Part 3 for more information on these programs.

The Systems Design and Management Program is offered jointly by the School of Engineering and the MIT Sloan School of Management. See the section on the Engineering Systems Division in Part 2 for more information.

Office of the Dean
David C. Schmittlein, PhD
John C Head III Dean
Robert Michael Freund, PhD
Theresa Seley Professor of Management Science
Deputy Dean
Richard M. Locke, PhD
Alvin J. Siteman (1948) Professor of Entrepreneurship
Professor of Political Science
Deputy Dean
JoAnne Yates, PhD
Sloan Distinguished Professor of Management
Deputy Dean
Donna M. Behmer, MEd
Senior Associate Dean for Finance and Administration
Alan F. White, SM
Senior Associate Dean
Cynthia Albert Link
Associate Dean for External Relations
Rochelle Weichman
Associate Dean for Executive Education
Bachelor of Science in Management Science/Course 15
The MIT Sloan School of Management offers an undergraduate degree program in management science. This cutting-edge curriculum is designed to prepare students for top jobs in today’s technologically oriented business world. By combining General Institute Requirements with subjects at the MIT Sloan School of Management, students learn a unique combination of technical and managerial skills that allow them to excel in such high-demand areas as web-based commerce, financial engineering, market analysis, and software development.

In recent years, the field of management science has grown rapidly in conjunction with advances in technology, methods for collecting and structuring large quantities of data, and the building of sophisticated mathematical models. The MIT Sloan School’s undergraduate degree program develops necessary expertise in the underlying disciplines of mathematical programming and modeling, statistics, and computer technology, and a strong background in the associated disciplines of economics, accounting, communication, and managerial psychology. Students learn to apply this knowledge within a variety of managerial functions. Each student selects a concentration of four subjects in finance, information technologies, marketing science, or operations research.

MIT Sloan undergraduates take most management electives at the graduate level, alongside MBA and other graduate students. This arrangement provides an excellent opportunity for undergraduates to learn from students with previous business experience. The SB degree in management science gives students the best of both worlds—technical and managerial excellence.

Minor in Management Science
The Minor in Management Science introduces undergraduates in other majors to the techniques of quantitative business analysis and their application to practical problems. Its focus reflects the core content of the SB degree program in management science.

The minor consists of six subjects, four required:

- 6.041 Probabilistic Systems Analysis
- 14.01 Principles of Microeconomics
- 15.053 Optimization Methods in Management Science
- 15.075 Statistical Thinking and Data Analysis

Plus, two Course 15 subjects selected from a list of restricted electives. (Two six-unit subjects will be counted as a single elective subject.) Subject 14.01 is also a permissible elective.

Minor in Management Science
The Minor in Management Science introduces undergraduates in other majors to the techniques of quantitative business analysis and their application to practical problems. Its focus reflects the core content of the SB degree program in management science.

The minor consists of six subjects, four required:

- 15.301 Managerial Psychology Laboratory or People and Organizations
- 15.668 People and Organizations
- 15.751 Corporate Financial Accounting
- 15.812 Marketing Management

Plus, any three Course 15 subjects (other than UROP, Special Studies, Special Seminars, and general-elective transfer credit) that are not designated as restricted to students in other Sloan School programs, in consultation with the minor advisor. (Two six-unit subjects will be counted as a single elective subject.) Subject 14.01 is also a permissible elective.

Interdepartmental (Non-Sloan) Students
MIT students from other departments are welcome to take unrestricted elective subjects at MIT Sloan, if they have taken the listed prerequisites. All students must participate in the MIT Sloan course bidding system. Information about the process is available on the bidding website at https://sloanbid.mit.edu/. Bidding occurs at the same time as online WebSIS pre-registration in December and May for the following terms. The MIT Sloan course schedule is available on the bidding website, as are most class syllabi, to assist students in course selection. Staff in Sloan Educational Services, Room E52-101, 617-253-1510, are always available to assist all students and provide information about MIT Sloan classes and the course bidding system.

Inquiries
For additional information about these Sloan undergraduate programs, students may consult the Office of Undergraduate Programs, Room E52-117, 617-253-8614, and the MIT Sloan undergraduate website, http://mitsloan.mit.edu/undergrad/.

Graduate Study
The MIT Sloan School of Management offers opportunity for graduate study leading to the degrees of Master of Business Administration, Master of Science in Management, Master of Science in Management of Technology, Master of Finance, and Doctor of Philosophy.

Entrance Requirements for Graduate Study
Applications are welcome from college graduates in all areas of concentration—the humanities, social sciences, physical sciences, and engineering—but matriculants must have completed formal subjects in calculus and in economics. The minimum level of preparation is normally a one-year subject in economic theory and a one-year subject in calculus. If these subjects have not been taken in a previous academic program, they may be covered by formal subjects prior to enrollment.

All applicants, including those from foreign countries, must take the Graduate Management Admission Test (GMAT). Information is available from the Graduate Management Admission Council, Educational Testing Service, Princeton, NJ 08541. GRE scores may be used in place of GMAT scores for the MBA, MFin, and doctoral programs and for LGO applicants applying through the School of Engineering.

Master of Business Administration and Master of Science in Management
The MIT Sloan School MBA program offers a course of study in graduate management educa-
tion, leading to a master’s degree in Business Administration (MBA) or Master of Science in Management (SM). Degree candidates are admitted in spring to a program that begins with a mandatory orientation program in August. The program of study is two consecutive years and requires candidates to complete a core curriculum plus 144 units of H- or G-level elective subjects. Residency for four academic terms is required. Students also fulfill research and leadership requirements through activities in the mid-term Sloan Innovation Period and through elective coursework.

The MBA curriculum is designed for maximum flexibility, allowing students to create an individual program best suited to their needs and career interests. During the first term, students take a sequence of core subjects with the option of one elective subject. After the first term, students have a wide range of elective subject choices. Students also have the option of earning a certificate in either finance or entrepreneurship and innovation by enrolling in and completing the elective requirements for that track.

Practical exposure to management takes place in the MIT Sloan School through a variety of activities. Students in the MBA program are expected to spend the summer between their first and second years working in some activity that contributes to their understanding of and effectiveness in dealing with management problems. During the academic year students have additional opportunities both in and outside the classroom to apply their learning. Many Sloan subjects incorporate action learning into their pedagogy and require students to complete projects within companies and organizations as a deliverable for the subject. In the case of “Lab” subjects this may include a 1–3 week international experience working within the host organization. Students also have the opportunity to work as paid teaching and research assistants to the Sloan faculty. The Sloan Innovation Period is an opportunity for intellectual experimentation during which students may try new things, become immersed in new ideas, gain exposure to new faculty, experience a different way of learning, practice using different tools, and stop to reflect on their MBA experience and goals. Outside of the classroom the MBA community is home to multiple community-related, student...
government, and professional clubs that give students the opportunity to practice leadership through the execution of conferences, international study trips and treks, business competitions, and club-related activities. Corporate leaders are also often invited to work with students either through guest lectureships in classes or through interaction with one of the 65+ student organizations.

Master of Finance
In 2009, the Sloan School of Management introduced a new degree program, the Master of Finance (MFin). Designed to prepare students for careers in the financial industry, the 12-month (July–June) program consists of required fundamental and advanced subjects, restricted electives, a pro-seminar, general electives, and an optional master’s thesis.

In addition to the traditional synergies among finance, economics, and accounting, the program exploits intellectual ties between finance and mathematics, statistics, psychology, management, computer science, and engineering. The program is appropriate for recent graduates, as well as those who have several years of work experience in the finance industry. In addition, engineers, mathematicians, physicists, computer programmers, or other high-tech professionals seeking a new career in the finance world may apply.

Required summer-term coursework provides the foundation in finance for continuing with more advanced required and elective subjects in the fall and spring terms. Restricted and general electives ensure appropriate depth as well as opportunities for breadth of study, depending on the student’s interest. The required pro-seminar is a project-based class in which students work in teams to address current problems identified by finance professionals. A thesis option is available in lieu of one or more general elective subjects for students who wish to research a topic of particular interest.

Frequent seminars, conferences, and major lectures present students with opportunities to hear from recognized leaders from a variety of industries. MFin students have full access to the extensive resources of the MIT Sloan Career Development Office as well as the MIT Career Development Center. In addition, students participate in a wide array of professional clubs, student government, sports teams, and organizations at the school and campus level.

Applications to the MFin program are due in early January; decisions are typically announced in early March.

Master of Science in Management Studies
The Master of Science in Management Studies (MSMS) program is intended for top business school students in non-US institutions who wish to undertake advanced studies in management at MIT Sloan. This program is open to applicants with stellar academic and work experience who have completed or are in the process of completing an MBA (or equivalent degree program) in a non-US school. Applicants from our international partner and cooperating schools are especially encouraged to apply.

Students in this nine-month program specify a concentration area within management to write their master’s thesis and take subjects that support their thesis writing. They can take MIT Sloan elective subjects, subjects in other departments, and subjects at Harvard. During their academic year at MIT Sloan, students are expected to select a Sloan faculty member to serve as their thesis advisor. Students will also be able to fully utilize resources such as the MIT Sloan Career Development Office. If students are concurrently pursuing the MSMS program and their MBA degree at their home institutions, they may have the support and resources of two different institutions to rely on. Upon fulfilling the MSMS degree requirements in two terms, students receive a Master of Science degree from MIT and join the ranks of the MIT Alumni network.

The program, which runs from September to June, requires full-time residence. Applications are due in mid-February. For more information, visit http://mitsloan.mit.edu/academic/msms/.

System Design and Management Program: Master of Science in Engineering and Management
Jointly sponsored by the School of Engineering and the MIT Sloan School, the System Design and Management (SDM) program targets experienced engineers and product development professionals who seek to build upon their technical background and advance to positions of leadership in their careers.

The SDM program was created in 1996, in response to a critical need expressed by government and industry to provide future engineering leaders with an educational experience that combines an engineering systems perspective with the essentials of a management education. The program has focused on developing competencies in the areas of systems thinking, management skills, leadership, and an end-to-end understanding of systems development.

SDM is offered in three formats, including a 13-month full-time on-campus program and two career-compatible 24-month programs—half-time on campus for local area commuter students and a distance delivery option via synchronous video conferencing. SDM is the only MIT degree program that can be completed primarily through distance education.

Program applicants have significant engineering and/or managerial experience, in addition to a scientific or engineering education. On average, SDM student-fellows have about 10 years of work experience. The program participants come from both private and government institutions, either as company sponsored, or as self-sponsored students. A majority of SDM students have advanced degrees in other fields, and over half come from countries other than the United States.

The SDM program begins in January. Applications are accepted on a continuous basis, with an early notification deadline of May 15 and a final cutoff of October 15 for admission to the next cohort. For additional information, contact the SDM Program Office, Room E40-315, 617-253-1055, sdm@mit.edu, or visit http://sdm.mit.edu/. See also Engineering Systems Division in Part 2.

Leaders for Global Operations Program: Dual Master’s Degrees in Management and Engineering
The 24-month Leaders for Global Operations (LGO) program combines graduate education in engineering and management for those with two or more years of full-time work experience who aspire to leadership positions in manufacturing or operations companies. A required 6.5-month internship provides opportunity to complete a research project on site at one of LGO’s partner...
companies. The internship leads to a dual-degree thesis, culminating in two master’s degrees—an MBA (or SM in management) and an SM in engineering. The program is offered jointly through the MIT Sloan School of Management and the School of Engineering master’s programs in Aeronautics and Astronautics, Biological Engineering, Chemical Engineering, Civil and Environmental Engineering, Electrical Engineering and Computer Science, Engineering Systems, Materials Science and Engineering, and Mechanical Engineering. For general requirements and application procedures, visit the LGO website at http://lgo.mit.edu/.

Doctor of Philosophy
The purpose of the MIT Sloan School’s PhD program is to prepare students for careers in teaching and research or, to a lesser extent, for positions requiring advanced research and analytical capabilities. The PhD program provides the opportunity to combine in-depth work in theory with work in broadly defined “applied” areas, with faculty who are experts in their fields.

A candidate entering with a bachelor’s degree should be able to complete the program in four or five years. The first year is devoted to work in the basic disciplines of management and to preliminary work in the student’s major and minor fields. The second year is primarily devoted to the major and minor fields. Finally, two or three years are required for the doctoral dissertation.

Major and Minor Fields
Candidates must master the literature, theory, and application of a major field of concentration as well as a minor field. Successful completion of this requirement is determined by General Examinations. The major fields currently available in the MIT Sloan School are the following (although individually constructed majors are possible):

- Accounting and Control
- Economic Sociology
- Finance
- Information Technologies
- Marketing
- Operations Management
- Organization Studies
- System Dynamics

- Technological Innovation, Entrepreneurship, and Strategic Management
- Work and Employment Research

PhD candidates enter the program with a clear idea in mind of a concentration. An appropriate minor field is then selected—typically a theoretical discipline that provides a foundation for research in the major field. Major fields such as accounting or marketing usually have economics as a minor field, while organization studies has behavioral science.

The subject requirements for the major and minor fields are not rigid. There are normal groups of subjects for the standard fields, but substitutions of other subjects and independent study are possible. Regardless of the major and minor fields chosen, a plan of study designed to prepare the student for General Examinations is worked out by the student and his or her faculty advisor(s).

The General Examinations normally are taken at the end of the second year or beginning of the third year of study, after completion of major and minor field coursework and a research paper (see below). The exact form of general exams varies and may involve written examinations, critiques of research papers, or review papers on prescribed topics. In all cases, the last stage is an oral examination.

The MIT Sloan School is committed to research, and the philosophy and structure of the PhD program reflect this professional commitment. There are two separate research requirements: the second-year research paper and the thesis.

A substantial part of the student’s work in the latter half of the first year and in the second year is devoted to an independent research project. The topic, design, and execution of the project are left to the student, while advice and criticism are provided by a research advisor and other interested faculty. Upon completion of the project, the student prepares a document known as the “second-year paper.”

The PhD dissertation consists of significant scholarly research in some area of management. Close working relationships with faculty are established early so that the thesis can be defined as a manageable project as early as possible. Candidates typically require two or three years of full-time work to complete their theses.

There is no language requirement in the MIT Sloan School’s PhD program, although in some cases the student and his or her advisor may decide that further study of a foreign language is necessary if the student is to work effectively in his or her major field.

Teaching and Research Assistantships
All doctoral students in the MIT Sloan School are eligible to apply for the approximately 100 part-time research and teaching assistantships available each year.

Inquiries
MBA brochures and application information are available online at http://mitsloan.mit.edu/mba/; questions may be directed to mbaadmissions@sloan.mit.edu. For doctoral information, contact the Doctoral Program Office, Room E60-236, 617-253-7188 or 617-253-8957, sloan-phd@sloan.mit.edu. For Leaders for Global Operations program brochures, call 617-253-1055, lgo@mit.edu. Applications are available at http://mitsloan.mit.edu/mba/.

MASTER’S DEGREE PROGRAM FOR MID-CAREER EXECUTIVES

MIT Sloan Fellows Program in Innovation and Global Leadership
The MIT Sloan Fellows Program in Innovation and Global Leadership is a highly selective degree program that brings together 100 mid-career men and women (with at least 10 years’ professional experience) from a wide variety of for-profit and nonprofit industries, organizations, and functional areas. The 12-month (June–June) program is characterized by a rigorous academic curriculum, frequent interactions with international business and government leaders, and a valuable exchange of global perspectives. The fellows work together in a team environment tackling practical issues with a spirit of intellectual adventure. After collaborating across disciplines, cultures, and backgrounds in this intense learning environment, they leave the program with the skills necessary to create change, build alliances, and drive global ventures.

For more information about the MIT Sloan Fellows Program in Innovation and Global
Leadership and how to apply, visit the website at http://mitsloan.mit.edu/fellows/ or contact the program office, Room E52-126, 617-253-8600, fax 617-252-1200, fellows@sloan.mit.edu.

OTHER PROGRAMS

Computation for Design and Optimization
The Computation for Design and Optimization (CDo) program offers a master’s degree to students interested in the analysis and application of computational approaches to designing and operating engineered systems. The curriculum is designed with a common core serving all engineering disciplines and an elective component focusing on specific applications. Current MIT graduate students may pursue a CDo master’s degree in conjunction with a department-based master’s or PhD program. For more information, see the full program description under Interdisciplinary Graduate Programs or visit http://web.mit.edu/cdo-program/index.html.

FACULTY AND STAFF

David C. Schmittlein, PhD
Professor of Marketing
John C Head III Dean

Robert M. Freund, PhD
Theresa Seley Professor of Management Science
Deputy Dean

Richard M. Locke, PhD
Alvin J. Siteman (1948) Professor of Entrepreneurship
Professor of Political Science
Deputy Dean

JoAnne Yates, PhD
Sloan Distinguished Professor of Management
Professor of Managerial Communication
Deputy Dean

Alan F. White
Senior Lecturer
Senior Associate Dean

Faculty and Teaching Staff

Professors
Deborah G. Ancona, PhD
Seley Distinguished Professor of Management
Director, MIT Leadership Center
Paul Asquith, PhD
Gordon Y Billard Professor of Finance
Arnold I. Barnett, PhD
George Eastman Professor of Management Science
Ernst R. Berndt, PhD
Louis E. Seley Professor of Applied Economics
Dimitris Bertsimas, PhD
Boeing Leaders for Global Operations Professor of Management
Codirector, Operations Research Center
Gabriel R. Bitran, PhD
Society of Sloan Fellows Professor of Management
Erik Brynjolfsson, PhD
The Schussel Family Professor of Management Science
Director, MIT Center for Digital Business
John S. Carroll, PhD
Morris A. Adelman Professor of Management
Professor of Engineering Systems
Codirector, Lean Advancement Initiative
John E. Core, PhD
Professor of Accounting
John C. Cox, PhD
Nomura Professor of Finance
Michael A. Cusumano, PhD
Sloan Management Review Distinguished Professor of Management
Professor of Engineering Systems
Steven D. Eppinger, ScD
General Motors Leaders for Global Operations Professor of Management
Professor of Engineering Systems
Codirector, System Design and Management Program
Roberto M. Fernández, PhD
William F. Pounds Professor of Management

Charles H. Fine, PhD
Chrysler Leaders for Global Operations Professor of Management
Professor of Engineering Systems
Codirector, International Motor Vehicle Program
Kristin J. Forbes, PhD
Jerome and Dorothy Lemelson Professor of Management

Robert S. Gibbons, PhD
Sloan Distinguished Professor of Management

Stephen C. Graves, PhD
Abraham J. Siegel Professor of Management
Professor of Engineering Systems and Mechanical Engineering

John R. Hauser, ScD
Kirin Professor of Marketing

Bengt R. Holmstrom, PhD
Paul A. Samuelson Professor of Economics
Professor of Management

Yasheng Huang, PhD
International Program Professor of Chinese Economy and Business

Simon H. Johnson, PhD
Ronald A. Kurtz (1954) Professor of Entrepreneurship

Paul L. Joskow, PhD
Elizabeth and James Killian Professor of Economics
Professor of Management

Thomas A. Kochan, PhD
George Maverick Bunker Professor of Management
Professor of Engineering Systems
Codirector, Institute for Work and Employment Research

Leonid Kogan, PhD
Nippon Telegraph and Telephone Professor of Management

S. P. Kothari, PhD
Gordon Y Billard Professor of Management

Donald R. Lessard, PhD
Epoch Foundation Professor of International Management
Faculty Director, BP Projects and Engineering Academy
John D. C. Little, PhD
Institute Professor
Andrew W. Lo, PhD
Harris and Harris Group Professor
Director, Laboratory for Financial Engineering
Deborah J. Lucas, PhD
Professor of Finance
Stuart E. Madnick, PhD
John Norris Maguire (1960) Professor of Information Technology
Professor for Engineering Systems
Codirector, PROFIT Program
Thomas L. Magnanti, PhD
Professor of Management Science and Electrical Engineering
Institute Professor
Thomas W. Malone, PhD
Patrick J. McGovern (1959) Professor of Management
Director, MIT Center for Collective Intelligence
Robert C. Merton, PhD
Chaired Professor of Finance
Stewart C. Myers, PhD
Wanda J. Orlikowski, PhD
Alfred P. Sloan Professor of Management
James B. Orlin, PhD
E. Pennell Brooks (1917) Professor of Management
MacVicar Faculty Fellow
Paul Osterman, PhD
Nanyang Technological University Professor
Codirector, Institute for Work and Employment Research
Georgia Perakis, PhD
William F. Pounds Professor of Management
Robert S. Pindyck, PhD
Bank of Tokyo–Mitsubishi Ltd. Professor of Finance and Economics
Drazen Prelec, PhD
Digital Equipment Corporation Leaders for Global Operations Professor of Management
Professor of Economics and Brain and Cognitive Sciences
Roberto Rigobón, PhD
Sloan Society Fellows Professor of Management
Edward B. Roberts, PhD
David Sarnoff Professor of Management Technology
Chair, MIT Entrepreneurship Center
Stephen A. Ross, PhD
Franco Modigliani Professor of Financial Economics
Richard L. Schmalensee, PhD
Howard W. Johnson Professor of Management
Director, Center for Energy and Environmental Policy Research
Antoinette Schoar, PhD
Michael M. Koerper (1949) Professor of Entrepreneurship
Andreas S. Schulz, PhD
Patrick J. McGovern (1959) Professor of Management
Duncan Simester, PhD
Nanyang Technological University Professor of Marketing
John D. Sterman, PhD
Jay W. Forrester Professor of Computer Science
Professor of Engineering Systems
Director, System Dynamics Group
Scott Stern, PhD
Professor of Technological Innovation, Entrepreneurship, and Strategic Management
Thomas M. Stoker, PhD
Gordon Y Billard Professor of Management and Economics
Glen L. Urban, PhD
David Austin Professor of Management
Chairman, MIT Center for Digital Business
James M. Utterback, PhD
David J. McGrath, Jr. (1959) Professor of Management and Innovation
Professor of Engineering Systems
John E. Van Maanen, PhD
Erwin H. Schell Professor of Management
Eric A. von Hippel, PhD
T. Wilson (1953) Professor of Management
Professor of Engineering Systems
Jiang Wang, PhD
Mizuho Financial Group Professor
Ross L. Watts, PhD
Erwin H. Schell Professor of Management
Roy E. Welsch, PhD
Eastman Kodak Leaders for Global Operations
Professor of Management
Dean of Engineering Systems
Director, Center for Computational Research in Economics and Management Science
Birger Wernerfelt, DBA
J. C. Penney Professor of Management
Ezra W. Zuckerman Sivan, PhD
Nanyang Technological University Professor
Codirector, Economic Sociology PhD Program
Associate Professors
Pierre Azoulay, PhD
Zenon Zannetos (1955) Career Development Associate Professor
Nittai Bergman, PhD
Associate Professor of Finance
Emilio J. Castilla, PhD
W. Maurice Young (1961) Career Development Associate Professor
Jared R. Curhan, PhD
Ford International Career Development Associate Professor
Joseph J. Doyle, Jr., PhD
Alfred Henry (1929) and Jean Morrison Hayes Career Development Associate Professor
David D. Gamarnik, PhD
Associate Professor of Operations Research
Michelle Hanlon, PhD
Associate Professor of Accounting
Retsef Levi, PhD
Associate Professor of Operations Management
Fiona E. Murray, PhD
Sarofim Family Career Development Associate Professor
Associate Director, MIT Entrepreneurship Center
Jun Pan, PhD
Associate Professor of Finance
Ray E. Reagans, PhD
Alfred P. Sloan Associate Professor of Management

Nelson Repenning, PhD
Associate Professor of System Dynamics

Rodrigo S. Verdi, PhD
Sarofim Family Career Development Associate Professor of Accounting

Joseph P. Weber, PhD
Associate Professor of Accounting

Assistant Professors

Joshua M. Ackerman, PhD
Assistant Professor of Marketing

Itai Ashlagi, PhD
Assistant Professor of Operations Management

Alessandro Bonatti, PhD
Assistant Professor of Applied Economics

Michael Braun, PhD
Homer A. Burnell (1928) Career Development Assistant Professor

Albert F. Cavallo, PhD
Assistant Professor of Applied Economics

Damon Centola, PhD
Assistant Professor of System Dynamics

Hui Chen, PhD
Jon D. Gruber Career Development Assistant Professor of Finance

Reining Chen, PhD
Assistant Professor of Accounting

Jason Davis, PhD
Theodore T. Miller (1922) Career Development Assistant Professor

Vivek Farias, PhD
Robert N. Noyce Career Development Assistant Professor

Carola Frydman, PhD
Assistant Professor of Finance

Renee Richardson Gosline, PhD
Assistant Professor of Marketing

Michael Grubb, PhD
Assistant Professor of Applied Economics

Rajakmal J. Iyer, PhD
Assistant Professor of Finance

Erin M. Johnson, PhD
Assistant Professor of Applied Economics

Scott Joslin, PhD
Assistant Professor of Finance

Aleksandra J. Kacperczyk, PhD
Assistant Professor of Technological Innovation, Entrepreneurship, and Strategic Management

Kate Kellogg, PhD
Class of 1954 Career Development Assistant Professor

Denise Lewin Loyd, PhD
Sloan School Career Development Assistant Professor

Gustavo Manso, PhD
Maurice F. Strong Career Development Assistant Professor of Management

Matthew T. Marx, PhD
Assistant Professor of Technological Innovation, Entrepreneurship, and Strategic Management

Konstantin W. Milbradt, PhD
Assistant Professor of Finance

Mark Mortensen, PhD
Richard S. Leghorn (1939) Career Development Assistant Professor of Management of Technological Innovation

Jeffrey Ng, PhD
Assistant Professor of Accounting

Elena Obukhova, PhD
Fred Kayne (1960) Career Development Assistant Professor of Entrepreneurship

Cynthia Rudin, PhD
Assistant Professor of Statistics

Ofer Sharone, PhD
Assistant Professor of Work and Employment Research

Ewa Sletten, PhD
Assistant Professor of Accounting

Tavneet Suri, PhD
Mitsubishi Career Development Assistant Professor of International Management

Catherine E. Tucker, PhD
Douglas Drane Career Development Assistant Professor of Information Technology and Management

Adrien Verdelhan, PhD
Assistant Professor of Finance

Pai-Ling Yin, PhD
Assistant Professor of Technological Innovation, Entrepreneurship, and Strategic Management

Juanjuan Zhang, PhD
Assistant Professor of Marketing

Adjunct Professor

Mary P. Rowe, PhD
Adjunct Professor of Management

Senior Lecturers

Noubar Afeyan, PhD
John Akula, PhD, JD

Seth Alexander, BS
President, MIT Investment Management Company

Howard Anderson, MBA
Bill Porter (1967) Distinguished Senior Lecturer of Entrepreneurship

William Aulet, MS
Enterpreneur in Residence

Acting Managing Director, MIT Entrepreneurship Center

Patricia Bentley, PhD

Lori Breslow, PhD
Director, MIT Teaching and Learning Laboratory

Stephen F. Brown, AB
John F. Carrier, DS

Sharmila Chatterjee, PhD
Phil Cooper, MS

John DeTore, MS
Jonathan Fleming, MPA

Jack Gill, PhD
Joseph G. Hadzima, Jr., JD

Leigh Hafrey, PhD
Neal Hartman, ABD

Virginia Healy-Tangney, MS
William Neal Isaacs, DPhil

Craig Jarchow, PhD
Charles F. Kane, MBA

Ralph Katz, PhD
Scott Keating, DBA

Christine Kelly, PhD
Janice Klein, PhD

Mark Kritzman, MBA
Peter Kurzina, JD

Shari Loessberg, JD
Jeffrey Alan Meldman, PhD, JD
Director, Undergraduate Programs

John Minahan, PhD

Bradley Morrison, PhD

Chris Noe, PhD

Sinead O’Flanagan, MS

John Parsons, PhD

Executive Director, Center for Energy and Environmental Policy Research

John T. Preston, MBA

Rama Ramakrishnan, PhD

John M. Reilly, PhD

John Rockart, PhD

Donald B. Rosenfield, PhD

Director, Leaders for Global Operations Program

Anjali Sastry, PhD

Imran Sayeed, BA

Claus Otto Scharmer, PhD

Peter M. Senge, PhD

Jeffrey Shames, SM

Janet Shanberge, MS

Craig Stephenson, PhD

Henry Birdseye Weil, SM

Darcy Winslow, MS

Andrew Wolk, MBA

Lecturers

Kara Blackburn, MA

Catherine Calarco, MBA

Terence Heagney, PhD

Thomas J. Hynes III, BS

Jason Jay, PhD

M. Jonathan Lehric, MBA

Peter Levine, BS

Robert Pittore, MBA

John Richardson, JD

Andrey Zarur, PhD

Research Staff

Senior Research Scientist

Peter Weill, PhD

Chairman, Center for Information Systems Research

Principal Research Associates

Mark Klein, PhD

George Roth, PhD

Alexander Samarov, PhD

Principal Research Scientists

Andrew McAfee, DBA

Jeanne Ross, PhD

Director, Center for Information Systems Research

Michael D. Siegel, PhD

Research Associate

Daniel Goldsmith, MBA

Research Scientists

Elaine Backman, BA

Peter Gloor, PhD

Josh Introne, PhD

Danica Mijovic-Prelec, PhD

Anne Quaadgras, PhD

George Westerman, PhD

Stephanie Woerner, PhD

Professors Emeriti

Thomas J. Allen, Jr., PhD

Howard W. Johnson Professor of Management, Emeritus

Professor of Engineering Systems, Emeritus

Codirector, Leaders for Global Operations Program

Lotte L. Bailyn, PhD

T. Wilson (1953) Professor of Management, Emerita

Jay W. Forrester, DEng

Professor of Management, Emeritus

Arnoldo C. Hax, PhD

Alfred P. Sloan Professor of Management, Emeritus

Gordon M. Kaufman, DBA

Morris A. Adelman Professor of Management, Emeritus

Robert B. McKersie, PhD

Professor of Management, Emeritus

William F. Pounds, PhD

Professor of Management, Emeritus

Edgar H. Schein, PhD

Society of Sloan Fellows Professor of Management, Emeritus

Jeremy F. Shapiro, PhD

Professor of Operations Research and Management, Emeritus

Michael S. Scott Morton, DBA

Jay W. Forrester Professor of Computer Science, Emeritus

Abraham J. Siegel, PhD

Howard W. Johnson Professor of Management, Emeritus

Lester C. Thurow, PhD

Jerome and Dorothy Lemelson Professor of Management and Economics, Emeritus

Coordinator, Asia-Pacific Initiatives

D. Eleanor Westney, PhD

Society of Sloan Fellows Professor of International Management, Emerita
Above all, science is elegant, beautiful, and mysterious; it ennobles the human spirit. It is a privilege—whether for a semester, four years, or a lifetime—to attempt to understand nature at its most fundamental level. In the School of Science, research and education are inextricably interwoven, and our faculty is committed to excellence in both endeavors.
The School of Science is an amazing enterprise: with approximately 300 faculty members, 1,200 graduate students, 1,000 undergraduate majors, and comparable numbers of postdoctoral researchers and research staff, the School is large enough to carry out research at the frontiers in every field of science. Our faculty members have won 16 Nobel Prizes and our alumni have won another 16, most of which have been awarded in the past 20 years. The six departments in the School are consistently rated among the best in the world.

The School is a prolific generator of new knowledge. Some members of our community study deep philosophical questions: What is the nature of dark matter and dark energy, which make up 95 percent of the content of our universe? How does our brain, a complex system of interconnected neurons, give rise to our mind—our consciousness and ability to learn? Other faculty members study problems that have obvious practical implications: How does global warming increase the intensity of hurricanes? Can we make adult stem cells capable of generating any cells in the body, replacing cells damaged by disease without using embryos?

However, the deep commitment to education found in the School of Science makes MIT unique among the great research universities. MIT provides each of its undergraduates with an understanding of the basic elements of biology, chemistry, mathematics, and physics, and our Science faculty are devoted to doing this well. Some of our most famous faculty members, even a few with Nobel Prizes, are some of the best teachers of our freshman subjects.

Our science majors are provided with the very best introduction to their chosen field and the opportunity to participate in leading-edge research. Whether our undergraduates go on to graduate studies in science or a professional school in an area such as medicine, law, business, or engineering, they will be superbly prepared for their careers after MIT.

Many of our graduate students have pursued distinguished careers in research and education; however, others enjoy equally satisfying careers in business, industry, and government. Combining their PhD degrees in science with medical, law, or business degrees, our graduate students are uniquely capable of making creative contributions to the modern world.

For more information about the School of Science, visit http://web.mit.edu/science/.

History
Science has been at the core of an MIT education since the Institute’s founding in 1861 by the distinguished natural scientist, William Barton Rogers. The earliest offerings in chemistry, geology, and general science were expanded to include physics, mathematics, and biology, and then consolidated as the School of Science under the leadership of Karl Taylor Compton in 1932. During Compton’s tenure and into the postwar years, the Institute saw vast growth in the physical sciences as federal funding for basic research increased. In 1969, the Department of Brain and Cognitive Sciences (BCS) moved from the Whitaker College of Health Sciences and Technology to the School of Science. Recently, BCS joined with the Picower Institute for Learning and Memory and the McGovern Institute for Brain Research, expanding the School-wide resources for research in the neurosciences.

Science Laboratories and Centers
Much of our research in science is carried out in large research laboratories and centers like the Picower and McGovern institutes, where the kinds of facilities necessary for research are available and collaboration among research groups is encouraged. Laboratories and centers with strong participation by members of the School of Science include:

- Broad Institute of MIT and Harvard
- Center for Global Change Science
- Earth Resources Laboratory
- Koch Institute for Integrative Cancer Research
- Laboratory for Nuclear Science
- McGovern Institute for Brain Research
- MIT Kavli Institute for Astrophysics and Space Research
- Picower Institute for Learning and Memory
- Spectroscopy Laboratory
- Whitehead Institute for Biomedical Research

Collaboration with the School of Engineering
One of the great strengths of MIT is that school and departmental boundaries are invisible. Many School of Science faculty members carry out research in collaboration with others in the School of Engineering, often in inter-school laboratories, such as the Center for Materials Science and Engineering, the Research Laboratory of Electronics, or the Institute for Soldier Nanotechnologies. Joint programs, such as the Singapore–MIT Alliance, the Microbiology program, or the Computational and Systems Biology program, also provide significant opportunities for inter-school collaboration. Research in science is often facilitated by the outstanding facilities developed to support engineering research and education, such as the Microsystems Technology Laboratories.

For more information about interdisciplinary laboratories, centers, and programs, see Part 3.
Degrees Offered in the School of Science

Biology Course 7
- **SB** Biology
- **PhD** Biology
- **PhD** Biochemistry
- **PhD** Biological Oceanography (jointly offered with WHoi)
- **PhD** Biophysical Chemistry and Molecular Structure
- **PhD** Cell Biology
- **PhD** Computational and Systems Biology
- **PhD** Developmental Biology
- **PhD** Genetics
- **PhD** Immunology
- **PhD** Microbiology
- **PhD** Molecular Biology
- **PhD** Neurobiology

Brain and Cognitive Sciences Course 9
- **SB** Brain and Cognitive Sciences
- **PhD** Cognitive Science
- **PhD** Neuroscience

Chemistry Course 5
- **SB** Chemistry
- **PhD, ScD** Biological Chemistry
- **PhD, ScD** Inorganic Chemistry
- **PhD, ScD** Organic Chemistry
- **PhD, ScD** Physical Chemistry

Computational and Systems Biology Course CSB
- **PhD** Computational and Systems Biology (jointly offered with the School of Engineering)

Earth, Atmospheric, and Planetary Sciences Course 12
- **SB** Earth, Atmospheric, and Planetary Sciences
- **SM** Atmospheric Science
- **SM** Chemical Oceanography (jointly offered with WHoi)
- **SM** Climate Physics and Chemistry
- **SM** Earth and Planetary Sciences
- **SM** Marine Geology and Geophysics (jointly offered with WHoi)
- **SM** Physical Oceanography (jointly offered with WHoi)
- **PhD, ScD** Atmospheric Chemistry
- **PhD, ScD** Atmospheric Science
- **PhD, ScD** Chemical Oceanography (jointly offered with WHoi)
- **PhD, ScD** Climate Physics and Chemistry
- **PhD, ScD** Geochemistry
- **PhD, ScD** Geology
- **PhD, ScD** Geophysics
- **PhD, ScD** Marine Geology and Geophysics (jointly offered with WHoi)
- **PhD, ScD** Physical Oceanography (jointly offered with WHoi)
- **PhD, ScD** Planetary Sciences

Mathematics Course 18
- **SB** Mathematics
- **SB** Mathematics with Computer Science
- **PhD** Mathematics

Microbiology
- **PhD** Microbiology

Notes
- Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.
- Several departments also offer undesignated degrees, which lead to the Bachelor of Science without departmental designation. The curricula for these programs offer students opportunities to pursue broader programs of study than can be accommodated within a four-year departmental program.

Office of the Dean

Marc A. Kastner, PhD
Donner Professor of Physics
Dean

Hazel Louise Sive, PhD
Professor of Biology
Member, Whitehead Institute for Biomedical Research
Associate Dean

Elizabeth Chadis, BA
Assistant Dean for Development

James White, MS, CPA, CMA
Assistant Dean for Finance

Heather G. Williams, MA
Assistant Dean for Administration and Human Resources
The Department of Biology offers undergraduate, graduate, and postdoctoral training in basic biology, and in a variety of biological fields of specialization. The quantitative aspects of biology, including molecular biology, biochemistry, genetics, and cell biology, represent the core of the program. Students in the department are encouraged to acquire a solid background in the physical sciences not only to master the applications of mathematics, physics, and chemistry to biology, but also to develop an integrated scientific perspective. The various programs, which emphasize practical experimentation, combine a minimum of formal laboratory exercises with ample opportunities for research work both in project-oriented laboratory subjects and in the department’s research laboratories. Students at all levels are encouraged to acquire familiarity with advanced research techniques and to participate in seminar activities.

UNDERGRADUATE STUDY
Bachelor of Science in Biology/Course 7
The curriculum leading to the Bachelor of Science in Biology is designed to prepare students for a professional career in the area of the biological sciences. Graduates of this program are well prepared for positions in industrial or research institutes. However, experience has shown that many graduates choose to continue their education at a graduate school in order to obtain a PhD in an area such as biochemistry, microbiology, genetics, biophysics, cell biology, or physiology, followed by research or teaching in one of those areas. The undergraduate curriculum is also excellent preparation for students who wish to continue their education toward an MD, particularly if their career plans include laboratory investigations bearing on human disease.

Bachelor of Science as Recommended by the Department of Biology/Course 7-A
Course 7-A is designed for students who wish to obtain a background in biology as preparation for careers without laboratory research. Course 7-A has the same requirements as Course 7, and requires 180 units beyond the GIs, except that it does not require a 30-unit laboratory subject. To satisfy the requirement that students complete two Communication Intensive subjects in the major, students must take 7.02/10.702 or 20.109, and one subject from this list of approved CI-M subjects for Course 7-A: 3.014, 5.36, 5.38, 7.19, 8.13, 9.02, 9.12, 9.18, 9.63, 10.26, 10.28, 10.29, 20.380, or 2.791/6.021J/20.370J.

Further details on the 7-A major and CI-M subjects may be obtained from the department.

Students are encouraged to use their elective subjects for more advanced subjects in their field and for additional study in basic and advanced subjects offered in various departments.

Additional information regarding undergraduate academic programs and research opportunities may be obtained from the Biology Education Office, Room 68-120, 617-253-4718, undergradbio@mit.edu.

Minor in Biology
The requirements for a Minor in Biology are as follows:

- 5.12 Organic Chemistry I
- 7.03 Genetics
- 7.05 General Biochemistry
- plus two additional subjects from:
 - 7.02 or 20.109, 7.06, 7.08J, 7.20J, 7.21,
 - 7.22, 7.23, 7.25, 7.26, 7.27, 7.28, 7.29J,
 - 7.31, 7.32J, 7.35, 7.36, and 7.37J

For a general description of the minor program, see Undergraduate Education in Part 1.

GRADUATE STUDY
The Department of Biology offers graduate work leading to the Doctor of Philosophy. Study may be pursued in the following fields of specialization.

Biochemistry is the study of enzyme catalysis, and the chemical properties of proteins, carbohydrates, complex lipids, nucleic acids, and protein-nucleic acid complexes. Methods of analysis include gene cloning, the use of genetic variants, synthetic substrates, and transition state analogs. Specific areas of study include the chemistry of oncogenes, mechanism of RNA splicing, analysis of cytoskeletal proteins, chemistry of blood coagulation, mechanism of ion pumps and photoreceptors, and the role of complex carbohydrates in cell surface function and protein compartmentalization.

Biophysical chemistry and molecular structure focuses on studies of the principles that underlie the folding, stability, molecular design, and assembly of proteins and nucleic acids. Analysis of molecular structure includes X-ray crystallography and nuclear magnetic resonance. Specific areas of concentration include the study of genetic strategies for enhancing the stability, ligand affinity, and catalytic efficiency of proteins and enzymes; pathways of protein folding; protein-nucleic acid recognition; and antigen-antibody interactions. Studies of more complex systems include the control of viral and cytoskeletal assembly.

Cell biology refers to molecular biological, genetic, and cell biological analysis of eukaryotic cells. The specific areas of research include the organization, expression, and regulation of eukaryotic genomes; structure and function of membranes and cytoskeletons; molecular basis of cellular structure, organization, proliferation, and movement; differentiation and functions of specialized cell types; and the molecular basis of various diseases.

Computational and systems biology is a very recent area of emphasis in the department that is being codeveloped with the Department of Electrical Engineering and Computer Science and the Division of Biological Engineering as part of the Computational and Systems Biology Initiative (CSBI). Computational and systems biology combines biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis of complex biological phenomena. Equal emphasis is placed on computational and experimental research and on molecular and systematic views of biological function. One major role of CSBI research is to develop methods and devices that can measure, in a systematic and precise manner, the biochemical properties of large numbers of biomolecules in cells, tissues, and whole organisms. A second major CSBI goal is to build mathematical models of biological systems that link mechanistic understanding of molecular function to systems-wide knowledge of networks and interactions. Like models in mature engineering disciplines, CSBI models will capture empirical knowledge as it accumulates and will have the ability to predict experimental outcomes.

Developmental biology refers to the cellular, genetic, and molecular mechanisms responsible for generating the diversity of cell types that arise during development, and controlling the ways in which cells interact to produce organ systems and whole organisms. These problems are studied using vertebrates, invertebrates,
and plants. Specific topics of interest include the regulation of gene expression, cell interactions, cell lineages, cell migrations, sex determination, stem cells, and cloning.

Genetics/microbiology includes genetic analyses of fundamental problems in bacteria, bacteriophage, viruses, and yeast. Areas of specific interest include protein secretion, DNA transposition, protein turnover, DNA synthesis and repair, mechanisms of genetic recombination, and electron transport in mitochondria. More complex problems under study are cellular responses to stress, plant-bacterial interactions, high resolution structure-function studies of proteins and RNAs, and the control circuits regulating gene expression. A new area of study is the application of high resolution molecular techniques to problems in human genetics.

Immunology is the study of the genetic, cellular, and molecular mechanisms underlying the exquisite sensitivity and specificity of the immune system. The immunology group studies the chemistry of antigen-antibody and antigen-T cell receptor interactions, using the tools of molecular biology as well as classical immunological approaches. Of particular interest is the role of idiotypic and cellular interactions in the regulation of the immune system as studied by organ culture, hybridoma technology, and the behavior of transgenic mice.

Neurobiology is an area of recent emphasis in the department. The subject in general neurobiology is supplemented by a seminar series and an interlaboratory journal club. Students admitted to the Biology graduate program can join the molecular and cellular neurosciences track, offering access to participating faculty and neuroscience coursework across campus. The emphasis is molecular, primarily using cell-biological, developmental, and genetic approaches. Present areas of research interest include the molecular determinants of neuronal diversity and shape; of cell-adhesive, cell-inductive, and synaptic interactions; and the genetic and molecular determinants of cell-lineages, memory storage, and sensory transduction.

Entrance Requirements for Graduate Study

In the Department of Biology, the Master of Science is not a prerequisite for a program of study leading to the doctorate.

Bachelor of Science in Biology/Course 7

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement (two subjects can be satisfied by 5.111, 5.112, or 3.091, and 7.012, 7.013, or 7.014 in the Departmental Program)</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied from among 5.12, 5.60 and 7.03 or 7.05 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 7.02] in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).

Required Subjects

5.111 or 5.112 Principles of Chemical Science, 12 or 3.091 Introduction to Solid-State Chemistry, 12
5.12 Organic Chemistry I, 12, REST; Chemistry (GIR)
20.110 Thermodynamics of Biomolecular Systems, 12, REST; Calculus II (GIR), Chemistry (GIR)
7.101 Physical Chemistry of Biomolecular Systems, 12; Calculus II (GIR), Chemistry (GIR), Physics I (GIR), Physics II (GIR)
or
5.60 Thermodynamics and Kinetics, 12; Calculus II (GIR), Chemistry (GIR)
7.012 or 7.013 or 7.014 Introductory Biology, 12
7.021 Introduction to Experimental Biology and Communication, 18, LAB, CI-M; Biology (GIR) or
20.109 Laboratory Fundamentals in Biological Engineering, 15, LAB, CI-M; Biology (GIR), Chemistry (GIR), 6.00, 18.03, 20.110*
7.03 Genetics, 12, REST; Biology (GIR)
7.05 General Biochemistry, 12, REST; 5.12*
or
5.07 Biological Chemistry I, 12; 5.12
7.06 Cell Biology, 12; 7.03, 7.05

Restricted Electives

Three undergraduate-level 12-unit subjects offered by the Department of Biology for which 7.03 and/or 7.05 are prerequisites. Exceptions: 7.30j is eligible as a restricted elective; 7.19 cannot be used as a restricted elective. Graduate-level subjects may not be used as restricted electives. Subjects that count as restricted electives are the following: 7.08j, 7.20j, 7.21, 7.22, 7.23, 7.24, 7.25, 7.26, 7.27, 7.28, 7.29j, 7.30, 7.31, 7.32j, 7.35, 7.36, and 7.37.

One of the 30-unit project laboratory subjects in the department curriculum. Those currently offered are: 7.13 Experimental Microbial Genetics, 30, CI-M; 7.02, 7.03, 7.05
7.16 Experimental Molecular Biology: Biotechnology II, 30, CI-M; 7.02, 7.03, 7.05
7.18 Topics in Experimental Biology, 30, CI-M; 7.02, 7.03, 7.05

Departmental Program Units That Also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Unrestricted Electives</th>
<th>(66)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.
The department modifies the General Institute Requirements for admission to graduate study as follows: 18.01, 18.02 Calculus; one year of college physics; 5.12 Organic Chemistry I; professional subjects including general biochemistry, genetics, and physical chemistry. However, students may make up some deficiencies over the course of their graduate work.

Doctor of Philosophy

The General Degree Requirements for the Doctor of Philosophy are listed under Graduate Education in Part 1. In the departmental program, each graduate student is expected to acquire a solid background in four fundamental areas of biology: biochemistry, genetics, cell biology, and molecular biology. Most students take subjects in these areas during the first year. All students are required to take three subjects: 7.52 Genetics for Graduate Students, 7.51 Principles of Biochemical Analysis, and 7.50 Method and Logic in Molecular Biology. This last subject is a seminar designed specifically to introduce graduate students to in-depth discussion and analysis of topics in molecular biology. Students have a choice of several elective subjects, which have been designed for the entering graduate student. One of the elective subjects must focus on computational and quantitative approaches to biology. Typically students choose between the following three subjects: 7.57 Quantitative Biology for Graduate Students, 7.81 Systems Biology, or 7.91 Foundations of Computational and Systems Biology. In addition to providing a strong formal background in biology, the first-year program serves to familiarize the students with faculty and students in all parts of the department.

Joint Program with the Woods Hole Oceanographic Institution

MIT and the Woods Hole Oceanographic Institution administer a joint program in biological oceanography leading to a jointly awarded Doctor of Philosophy. The program is described at the end of Part 3.

Financial Support

Students who are accepted into the graduate program are provided with support from departmental training grants, departmental funds for teaching assistants, and research grants. In addition, some students bring NSF and other competitive fellowships. Through these sources, full tuition plus a stipend for living expenses are provided.

Students are encouraged to apply for outside fellowships for which they are eligible, such as the National Science Foundation Fellowships. Information regarding graduate student fellowships is available at most colleges from the career planning office.

Inquiries

Additional information regarding graduate academic programs, research activities, admissions, financial aid, and assistantships may be obtained from the Biology Education Office, Room 68-120, 617-253-3717, gradbio@mit.edu.

Faculty and staff

Faculty and teaching staff

Chris Kaiser, PhD
Professor of Biology
Department Head

Uttam L. RajBhandary, PhD
Lester Wolfe Professor of Molecular Biology
Associate Department Head

Professors

Angelika Amon, PhD
Professor of Biology
Howard Hughes Medical Institute Investigator

Tania Baker, PhD
E. C. Whitehead Professor of Biology
Howard Hughes Medical Institute Investigator
MacVicar Faculty Fellow

David Bartel, PhD
Professor of Biology
Howard Hughes Medical Institute Investigator
Member, Whitehead Institute for Biomedical Research

Stephen Bell, PhD
Professor of Biology
Howard Hughes Medical Institute Investigator

Christopher Burge, PhD
Whitehead Career Development Professor of Biology
Associate Member, Broad Institute

Jianzhu Chen, PhD
Professor of Biology
Cottrell Professor of Immunology

Sallie W. Chisholm, PhD
Lee and Geraldine Martin Professor of Environmental Studies
Professor of Civil and Environmental Engineering and Biology
Associate Member, Broad Institute

Catherine L. Drennan, PhD
Professor of Chemistry and Biology
Howard Hughes Medical Institute Investigator
Howard Hughes Medical Institute Professor

Gerald R. Fink, PhD
American Cancer Society Professor of Genetics
Associate Member, Broad Institute
Member, Whitehead Institute for Biomedical Research

Frank Gertler, PhD
Professor of Biology

Alan Davis Grossman, PhD
Praecis Professor of Biology

Leonard Pershing Guarente, PhD
Novartis Professor of Biology
Associate Member, Broad Institute
Nancy Haven Hopkins, PhD
Amgen Professor of Biology

H. Robert Horvitz, PhD
David H. Koch Professor of Biology
Howard Hughes Medical Institute Investigator

David Evan Housman, PhD
Virginia and Daniel K. Ludwig Professor for Cancer Research
Associate Member, Broad Institute

Richard Olding Hynes, PhD
Virginia and Daniel K. Ludwig Professor for Cancer Research
Howard Hughes Medical Institute Investigator
Associate Member, Broad Institute

Barbara Imperiali, PhD
Class of 1922 Professor of Chemistry
Professor of Biology

Tyler E. Jacks, PhD
David H. Koch Professor of Biology
Howard Hughes Medical Institute Investigator
Associate Member, Broad Institute
Director, David H. Koch Institute for Integrative Cancer Research

Rudolf Jaenisch, MD
Professor of Biology
Member, Whitehead Institute for Biomedical Research

Jonathan Alan King, PhD
Professor of Molecular Biology Without Tenure (Retired)

Monty Krieger, PhD
Professor of Biology
Whitehead Professor of Molecular Genetics
Associate Member, Broad Institute

Eric S. Lander, PhD
Professor of Biology
Member, Whitehead Institute for Biomedical Research
Founding Director, Broad Institute

Douglas Lauffenburger, PhD
Whitaker Professor of Biological Engineering, Chemical Engineering, and Biology
Associate Member, Broad Institute
Head, Biological Engineering Department

Jacqueline Lees, PhD
Professor of Biology
Associate Director, David H. Koch Institute for Integrative Cancer Research

Susan L. Lindquist, PhD
Professor of Biology
Howard Hughes Medical Institute Investigator
Associate Member, Broad Institute
Member, Whitehead Institute for Biomedical Research

Harvey Franklin Lodish, PhD
Professor of Biology and Bioengineering
Associate Member, Broad Institute
Member, Whitehead Institute for Biomedical Research

Terry L. Orr-Weaver, PhD
American Cancer Society Research Professor of Biology
Member, Whitehead Institute for Biomedical Research

David Conrad Page, MD
Professor of Biology
Howard Hughes Medical Institute Investigator
Director, Whitehead Institute for Biomedical Research

Mary Lou Pardue, PhD
Boris Magasanik Professor of Biology

Hidde Ploegh, PhD
Professor of Biology
Associate Member, Broad Institute
Member, Whitehead Institute for Biomedical Research

William G. Quinn, PhD
Professor of Neurobiology

Alexander Rich, MD
William Thompson Sedgwick Professor of Biophysics

Leona Samson, PhD
American Cancer Society Research Professor of Toxicology and Biological Engineering
Director, Center for Environmental Health Sciences

Robert Thomas Sauer, PhD
Salvador E. Luria Professor of Biology

Phillip Allen Sharp, PhD
Institute Professor

Morgan H. Sheng, MBBS, PhD
Menicon Professor of Neuroscience
Howard Hughes Professor of Neuroscience

Anthony John Sinskey, ScD
Professor of Microbiology and Health Sciences and Technology

Hazel Louise Sive, PhD
Professor of Biology
Member, Whitehead Institute for Biomedical Research
Associate Dean, School of Science

Frank Solomon, PhD
Professor of Immunology

JoAnne Stubbe, PhD
Novartis Professor of Chemistry
Professor of Biology
Associate Member, Broad Institute

Susumu Tonegawa, PhD
Picower Professor of Biology and Neuroscience

Alexander Van Oudenaarden, PhD
Keck Career Development Professor of Physics and Biology

Graham Charles Walker, PhD
American Cancer Society Research Professor of Biology
Howard Hughes Medical Institute Professor

Robert Alan Weinberg, PhD
Daniel K. Ludwig and American Cancer Society Professor for Cancer Research
Associate Member, Broad Institute
Member, Whitehead Institute for Biomedical Research

Matthew Wilson, PhD
Sherman Fairchild Professor of Neurobiology

Michael B. Yaffe, MD, PhD
Professor of Biology
Associate Member, Broad Institute

Richard Allen Young, PhD
Professor of Biology
Member, Whitehead Institute for Biomedical Research
Associate Professors
Amy Keating, PhD
Sizer Career Development Associate Professor of Biology
Associate Member, Broad Institute

Dennis Kim, PhD
Associate Professor of Biology

Troy Littleton, MD, PhD
Associate Professor of Biology

Elly Nedivi, PhD
Associate Professor of Neurobiology

Peter Reddien, PhD
Thomas D. and Virginia W. Cabot Career Development Associate Professor of Biology
Howard Hughes Medical Institute Early Career Scientist
Associate Member, Broad Institute

David Sabatini, MD, PhD
Associate Professor of Biology
Howard Hughes Medical Institute Investigator
Associate Member, Broad Institute

Mary Gehring, PhD
Assistant Professor of Biology

Assistant Professors
Laurie A. Boyer, PhD
Assistant Professor of Biology

Paul Chang, PhD
Linda and Howard Stern Career Development Assistant Professor of Biology

Iain Cheeseman, PhD
Thomas D. and Virginia W. Cabot Career Development Assistant Professor of Biology
Associate Member, Whitehead Institute for Biomedical Research

Mary Gehring, PhD
Assistant Professor of Biology

Wendy Gilbert, PhD
Swanson Career Development Assistant Professor of Biology

Piyush Gupta, PhD
Assistant Professor of Biology

Associate Professors
Michael Hemann, PhD
Assistant Professor of Biology
Associate Member, Broad Institute

Michael Laub, PhD
Assistant Professor of Biology
Howard Hughes Medical Institute Early Career Scientist
Associate Member, Broad Institute

Adam Martin, PhD
Assistant Professor of Biology

Aviv Regev, PhD
Burroughs Wellcome Fund Career Development Assistant Professor of Biology
Howard Hughes Medical Institute Early Career Scientist
Core Member, Broad Institute

Jeroen P. J. Saeij, PhD
Assistant Professor of Biology
Associate Member, Broad Institute

Matthew G. Vander Heiden, PhD
Assistant Professor of Biology

Technical Instructors
Vanessa Cheung, PhD
Michelle Mischke, PhD
Alice Rushforth, PhD
Diviya Sinha, PhD
Ekaterina Zagriadskaia, PhD

Instructor, Outreach Coordinator
Mandana Sassanfar, PhD

Research Staff

Research Scientists
Paolo Boccazzi, PhD
Clara Chan, PhD
Chu Choi, PhD
Sanjay D’Souza, PhD
Robert Grant, PhD
Hyun Kang, PhD
Caroline Koehler, PhD
Kazuhiko Kurowsawa, PhD
Catherine Lee, PhD
Stuart Levine, PhD
Director, BioMicro Center

Ky Lowenhaupt, PhD
John F. W. Quimby, PhD
T. Sambandan, PhD
Carolyn Sevier, PhD
Eric Spear, PhD
Mohan Viswanathan, PhD
Laura Willis, PhD
Ayce Yesilaltay, PhD

Professors Emeriti
David Baltimore, PhD
Professor of Biology, Emeritus

Gene Brown, PhD
Professor of Biochemistry, Emeritus

Arnold Lester Demain, PhD
Professor of Industrial Microbiology, Emeritus

Herman Nathaniel Eisen, MD
Professor of Immunology, Emeritus

Maurice Sanford Fox, PhD
Professor of Molecular Biology, Emeritus

Malcolm Lawrence Gefter, PhD
Professor of Biochemistry, Emeritus

Har Gobind Khorana, PhD
Alfred P. Sloan Professor of Biology and Chemistry, Emeritus

Irving M. London, MD
Grover M. Hermann Professor of Health Sciences and Technology, Emeritus
Professor of Biology and Medicine, Emeritus

Boris Magasanik, PhD
Jacques Monod Professor of Microbiology, Emeritus

Sheldon Penman, PhD
Professor of Cell Biology, Emeritus

Phillips Wesley Robbins, PhD
Professor of Biochemistry, Emeritus

Robert Daniel Rosenberg, MD, PhD
Whitehead Professor of Biology, Emeritus

Paul Reinhard Schimmel, PhD
John D. MacArthur Professor of Biochemistry and Biophysics, Emeritus

Ethan Royal Signer, PhD
Professor of Biology, Emeritus

Annamaria Torriani, PhD
Professor of Biology, Emerita
The study of mind, brain, and behavior has grown in recent years with unprecedented speed. New avenues of approach, opened by developments in the biological and computer sciences, raise the hope that human beings, who have achieved considerable mastery over the world around them, may also come closer to an understanding of themselves. The goal of the Department of Brain and Cognitive Sciences is to answer fundamental questions concerning intelligent processes and brain organization. To this end, the department focuses on four themes: molecular and cellular neuroscience, systems neuroscience, cognitive science, and computation. Several members of the department's faculty are affiliated with two major research centers: the Picower Institute for Learning and Memory and the McGovern Institute for Brain Research. Research in cellular neuroscience deals with the biology of neurons, emphasizing the special properties of these cells as encoders, transmitters, and processors of information. Departmental researchers apply techniques of contemporary molecular and cellular biology to problems of neuronal development, structure, and function, resulting in new understanding of the underlying basic components of the nervous system and their interactions. These studies have profound clinical implications, in part by generating a framework for the treatment of neurological and psychiatric disorders. Primary areas of interest include the development and plasticity of neuronal morphology and connectivity, the cellular and molecular bases of behavior in simple neuronal circuits, neurochemistry, and cellular physiology.

In the area of systems neuroscience, departmental investigators use a number of new approaches ranging from computation through electrophysiology to biophysics. Of major interest are the visual and motor systems where the scientific goals are to understand transduction and encoding of sensory stimuli into nerve messages, organization and development of sensorimotor systems, processing of sensorimotor information, and the sensorimotor performance of organisms. Also of major interest is neural and endocrine regulation, where the scientific goal is to understand the effects of circulating compounds on brain composition and behavior.

Bachelor of Science in Brain and Cognitive Sciences/Course 9

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [three subjects can be satisfied by 9.00 and two other HASS subjects in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [one subject can be satisfied by 9.01 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by a laboratory in the Departmental Program]</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLS Departmental Program

Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).

Required Subjects

- 9.00 Introduction to Psychology, 12, HASS-S
- 9.01 Introduction to Neurosciences, 12, REST; Physics II (GIR)*
- 9.07 Statistics for Brain and Cognitive Science, 12; Calculus II (GIR)*

Core Subjects

Choose six subjects from three areas: cognitive science, cognitive neuroscience, and neuroscience.

Any combination of subjects is permitted, but at least one subject must be chosen in a second area.

Cognitive Science

- 9.34 Sensory and Social Orders, 9; 9.00*
- 9.37 Anigrafs, 9; 9.34*
- 9.36 Abnormal Language, 12; 24.900*
- 9.37 Language Acquisition, 12, HASS-S; 24.900*
- 9.59 Psycholinguistics, 12; HASS-S; 24.900* or 9.00
- 9.65 Cognitive Processes, 12, HASS-S; 9.00
- 9.66 Computational Cognitive Science, 12; 9.07*
- 9.85 Infant and Early Childhood Cognition, 12, HASS-S, CI-M; 9.00
- 24.900* Introduction to Linguistics, 12, HASS-ST, CI-H

Cognitive Neuroscience

- 9.00 Cognitive Neuroscience, 12; 9.01
- 9.20 Animal Behavior, 12; HASS-S; 9.00*
- 9.22 A Clinical Approach to the Human Brain, 12
- 9.35 Sensation and Perception, 12; Physics II (GIR), Calculus II (GIR)*; or permission of instructor
- 9.71 Functional MRI of High-Level Vision, 12, CI-M; 9.07; 9.34*

Neuroscience

- 9.03 Neural Basis of Learning and Memory, 12; 9.01
- 9.04 Neural Basis of Vision and Audition, 12; 9.01*
- 9.05 Neural Basis of Movement, 12; 9.01*
- 9.09 Cellular Neurobiology, 12; 7.05
- 9.14 Brain Structure and Its Origins, 12, 9.01
- 9.15 Biochemistry and Pharmacology of Synaptic Transmission, 12; 9.01*
- 9.18 Developmental Neurobiology, 12, CI-M; 9.01*
- 9.24 Diseases of the Nervous System, 12; 9.01
- 9.29 Introduction to Computational Neuroscience, 12; 18.03, Physics II (GIR); or permission of instructor
- 9.31 The Neurophysiology of Memory, 12; 9.01

Laboratory

One of the following is required:

- 9.02 Systems Neuroscience Laboratory, 12, LAB, CI-M; 9.01
- 9.03 Experimental Molecular Neurobiology, 12, LAB, CI-M; 9.01, Biology (GIR)
- 9.65 Laboratory in Higher-Level Cognition, 12, LAB, CI-M; 9.07; 9.35*
- 9.63 Laboratory in Visual Cognition, 12, LAB, CI-M; 9.07; 9.00*

plus one of the following:

- 9.4R Undergraduate Research, 12
- 9.02 Systems Neuroscience Laboratory, 12, LAB, CI-M; 9.01
- 9.12 Experimental Molecular Neurobiology, 12, LAB, CI-M; 9.01, Biology (GIR)
- 9.44 Topics in Neuroscience and Cognitive Science, 18, CI-M; 9.4R, permission of instructor
- 9.30 Research in Brain and Cognitive Sciences, 12, LAB; 9.00*
In computation and cognitive science, particularly strong interactions exist between the Department of Brain and Cognitive Sciences, the Computer Science and Artificial Intelligence Laboratory, and the Center for Biological and Computational Learning, providing new intellectual approaches in areas including vision and motor control, and biological and computer learning. Computational theories are developed and tested within the framework of neurophysiological, psychological, and other experimental approaches. In the study of vision and motor control, complementary experimental work includes single-cell and multiple-cell neurophysiological recording as well as functional brain imaging. In the area of learning, which is seen as central to intelligent behavior, departmental researchers along with members of the Center for Biological and Computational Learning are working to develop theories of vision, motor control, neural circuitry, and language within an experimental framework.

In cognitive science, human experimentation is combined with formal and computational analyses to understand complex intelligent processes such as language, reasoning, memory, and visual information processing. There are applications in the fields of education, artificial intelligence, human-machine interaction, and in the treatment of language, cognitive, and other disorders.

Subfields in cognitive science include psycholinguistics, comprising sentence and word processing, language acquisition, and aphasia; visual cognition, including reading, imagery, attention, and perception of complex patterns such as faces, objects, and scenes; spatial cognition; memory; and the nature and development of concepts. Another key field is the study of perception—developmental and processing approaches focus on human and machine vision, and how visual images are encoded, stored, and retrieved, with current topics that include motion analysis, stereopsis, perceptual organization, and perceptual similarity. Other research includes functional brain imaging in normal subjects as well as studies of neurologically impaired patients in an attempt to understand brain mechanisms underlying normal human sensation, perception, cognition, action, and affect.

Note

*Alternate prerequisites are listed in the subject description
† Students who entered prior to fall 2010 may use this subject to satisfy the HASS-D requirement.
‡ Additional elective units may be available to the extent the General Institute Requirements are fulfilled by subjects taken in the department program.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
Tier I
Two subjects:
9.00 Introduction to Psychology and
9.01 Introduction to Neuroscience

Tier II
Four subjects, three from one area of specialization and one from the other area:
Cognitive Science:
9.10, 9.34, 9.35, 9.56I, 9.57I, 9.59I,
9.65, 9.66I, 9.71, 9.85, 9.URG*
Computation and Systems
Neuroscience:
9.03, 9.04, 9.05, 9.09I, 9.10, 9.14,
9.15, 9.18, 9.20, 9.22, 9.24, 9.29I,
9.31, 9.37I, 9.URG*

* 9.URG may count only once toward the minor program.

Minor in Psychology

The field of psychology is represented at MIT by an interdisciplinary Program in Psychology in the School of Humanities, Arts, and Social Sciences. The Program in Psychology encompasses subjects from the Department of Brain and Cognitive Sciences, Sloan School of Management, Program in Science, Technology, and Society, and other areas. It administers a HASS Concentration and Minor in Psychology. For information about the concentration or other aspects of the program, contact the BCS Undergraduate Office, Room 46-2005, 617-253-0482. A detailed description of the Minor in Psychology is available under Interdisciplinary Undergraduate Programs and Minors in Part 3.

For a general description of minors, see Undergraduate Education in Part 1.

GRADUATE STUDY

The Department of Brain and Cognitive Sciences offers programs of study leading to the doctoral degree in neuroscience or cognitive science. Areas of research specialization include cellular and molecular neuroscience, systems neuroscience, computation, and cognitive science. The graduate programs are designed to prepare participants to teach and to do original research.

Doctor of Philosophy

The departmental PhD program can normally be completed with four to five years of full-time work, including summers. Institute requirements for the PhD are given in the section on General Degree Requirements under Graduate Education in Part 1. Formal coursework, described below, is intended to prepare the student to pass the general examinations and do original thesis research. The written general examinations will be given in June of the second year.

All students start with a first-term intensive core subject that provides an introduction to brain and behavioral studies from the viewpoint of systems neuroscience. In the fall and/or spring term, students may choose between two core subjects: a two-term core subject covering molecular and cellular neuroscience or a one-term core subject covering cognitive science. Incoming graduate students are encouraged to take all three within the first two years of study. Further coursework will be diversified to give each individual the appropriate background for research in his or her own area.

Coursework in cellular and molecular neuroscience emphasizes the current genetic, molecular, and cellular approaches to biological systems that are necessary to generate advances in neuroscience.

Training in systems neuroscience covers neuroanatomy, neurophysiology, and neurotransmitter chemistry, concentrating on the major sensory and motor systems in the vertebrate brain. Specific ties to molecular neurobiology or computation may be emphasized, depending upon the research interests of the student.

Coursework for students in computation is intended to give both an understanding of empirical approaches to the study of the vertebrate brain and animal behavior and a theoretical background for analyzing computational aspects of biological information processing.

Candidates studying cognitive science take coursework covering such topics as language processing, language acquisition, cognitive development, natural computation, neural networks, connectionist models, and visual information processing. Students also choose seminars and coursework in linguistics, philosophy, logic, mathematics, or computer science, depending on the individual student’s research program.

Graduate students begin a research apprenticeship immediately upon arrival with lab rotations in the first year, after which time advisor assignments are made based upon a match of interests. These assignments may change as a student’s goals become more focused. At the end of the first year, an advisory committee of two to four faculty members is formed. This committee monitors progress and, with membership changing as necessary, evolves into the thesis committee. Thesis research normally requires 24–36 months of full-time activity after the qualifying examinations have been passed. It is expected that the research embodied in the PhD dissertation be original and significant work, publishable in scientific journals.

Assistantships and Fellowships

Financial assistance is provided to qualified applicants in the form of traineeships, research assistantships, teaching assistantships, and a limited number of fellowships, subject to availability of funds. Prospective students are encouraged to apply for individual fellowships such as those sponsored by the National Science Foundation and the National Defense Science and Engineering Graduate Fellowship Program to cover all or part of the cost of their education. The department’s financial resources for non-US citizens are limited; international students are strongly encouraged to seek financial assistance for all or part of the cost of their education from non-MIT sources.

Inquiries

For additional information regarding teaching and research programs, contact the Graduate Office, Department of Brain and Cognitive Sciences, Room 46-2005, 617-253-7403, or visit [http://web.mit.edu/bcs/](http://web/mit.edu/bcs/).
Faculty and Teaching Staff

Mriganka Sur, PhD
Paul E. Newton Professor of Neuroscience
Associate Member, Broad Institute
Department Head

Matthew Wilson, PhD
Sherman Fairchild Professor of Neurobiology
Associate Director, Picower Institute for Learning and Memory
Associate Department Head

Professors

Edward H. Adelson, PhD
John and Dorothy Wilson Professor of Vision Science

Mark Bear, PhD
Picower Professor of Neuroscience
Howard Hughes Medical Institute Investigator

Robert Cregar Berwick, PhD
Professor of Computational Linguistics

Emilio Bizzi, MD
Institute Professor

Emery N. Brown, MD, PhD
Professor of Computational Neuroscience and Health Sciences and Technology

Stephan Lewis Chorover, PhD
Professor of Psychology

Martha Constantine-Paton, PhD
Professor of Biology

Suzanne Corkin, PhD
Professor of Behavioral Neuroscience

Robert Desimone, PhD
Doris and Don Berkey Professor of Neuroscience
Director, McGovern Institute for Brain Research

Michale Fee, PhD
Professor of Neuroscience

Guoping Feng, PhD
Poiztiras Professor of Neuroscience

John D. E. Gabrieli, PhD
Grover Hermann Professor of Health Sciences and Technology and Cognitive Neuroscience
Director, Martinos Imaging Center at the McGovern Institute for Brain Research
Codirector, MIT Catalyst Clinical Research Center

Edward A. F. Gibson, PhD
Professor of Cognitive Sciences

Ann Martin Graybiel, PhD
Institute Professor

Alan Hein, PhD
Professor of Experimental Psychology

Susan Hockfield, PhD
Professor of Neuroscience
President, MIT

Nancy G. Kanwisher, PhD
MacVicar Faculty Fellow

Earl K. Miller, PhD
Picower Professor of Visual Neuroscience
Associate Director, Picower Institute for Learning and Memory

Tomaso Armando Poggio, PhD
Eugene McDermott Professor in the Brain Sciences and Human Behavior
Director, Center for Biological and Computational Learning

Mary Crawford Potter, PhD
Professor of Psychology

Drazen Prelec, PhD
Digital Equipment Corporation Leaders for Manufacturing Professor of Management
Professor of Economics and Brain and Cognitive Sciences

William G. Quinn, PhD
Professor of Neurobiology

Thomlson Albin Richards, PhD
Professor of Cognitive Sciences

Peter Harkai Schiller, PhD
Dorothy W. Poiztiras Professor in Medical Engineering and Medical Physics

Gerald Edward Schneider, PhD
Professor of Neuroscience

H. Sebastian Seung, PhD
Professor of Computational Neuroscience and Physics

Howard Hughes Medical Institute Investigator

Jean-Jacques Slotine, PhD
Professor of Mechanical Engineering and Information Sciences
Director, Nonlinear Systems Laboratory

Susumu Tonegawa, PhD
Picower Professor of Biology and Neuroscience
Howard Hughes Medical Institute Investigator

Li-Huei Tsai, PhD
Picower Professor of Neuroscience
Howard Hughes Medical Institute Investigator
Associate Member, Broad Institute
Director, Picower Institute for Learning and Memory

Kenneth N. Wexler, PhD
Professor of Psychology and Linguistics

Richard Jay Wurtman, MD
Cecil H. Green Distinguished Professor of Neuropharmacology

Associate Professors

James DiCarlo, MD, PhD
Associate Professor of Neuroscience

Alan Jasanoff, PhD
Norman C. Rasmussen Career Development Associate Professor of Nuclear Science and Engineering and Biological Engineering

J. Troy Littleton, MD, PhD
Associate Professor of Biology

Christopher Moore, PhD
Associate Professor of Neuroscience

Elly Nedivi, PhD
Associate Professor of Neurobiology

Aude Oliva, PhD
Associate Professor of Cognitive Science

Laura Schulz, PhD
Class of ’43 Career Development Associate Professor of Cognitive Science

Pawan Sinha, PhD
Associate Professor of Computational Neuroscience

Joshua Tenenbaum, PhD
Associate Professor of Cognitive Science and Computation
Assistant Professors
Edward S. Boyden, PhD
Benesse Career Development Assistant Professor of Biomedical Engineering
Kia Ann Goosens, PhD
Assistant Professor of Neuroscience
Yingxi Lin, PhD
Assistant Professor of Neuroscience
Rebecca R. Saxe, PhD
Fred and Carole Middleton Career Development Assistant Professor of Cognitive Neuroscience
Weifeng Xu, PhD
Assistant Professor of Neuroscience

Visiting Professors
Jinhoon Choi, PhD
Morgan Hwa-Tze Sheng, MBBS, PhD

Senior Lecturers/Lecturers
Merritt Christian Brown, PhD
Thomas Byrne, MD
John Growdon, MD
Timothy J. Maher, PhD

Instructors/Technical Instructors
Henry Hall, SB
Monica Linden, PhD
Mandana Sassanfar, PhD

Research Staff
Senior Research Scientists
Sonal Jhaveri, PhD
Rachael Neve, PhD

Principal Research Scientist
Ruth Rosenholtz, PhD

Research Associates/Engineers/Scientists
Ken-ichi Amemori, PhD
Narcisse Bichot, PhD
Jill Crittenden, PhD
Natalia Denisenko, PhD
Tobias Denninger, PhD
Kensuke Futai, PhD
Gadi Geiger, MS
Chen Chen Gong, MMus
Zhou Guan, PhD
Arnold Heynen, PhD

Lingfei Hou, PhD
Dan Hu, PhD
Hae-Yoon Jung, PhD
Myung Jung Kim, PhD
Fabian Kloosterman, PhD
Yasuo Kubota, PhD
Thomas J. McHugh, PhD
Hou Lingfei, PhD
Toshiaki Nakashiba, PhD
Akiyo Ogawa, MS
Ken-ichi Okamoto, PhD
Armando Miguel Remondes, PhD
Jefferson E. Roy, PhD
Jitendra Sharma, PhD
Warren Slocum III, PhD
Junghyup Suh, PhD
Lisa Sultzmann-Knopf, MS
Christina Triantafyllou, PhD
Dongqing Wang, PhD
Kuan Hong Wang, PhD
Susan Whitfield-Gabrieli, ABD
Jun Yamamoto, PhD
Akira Yoshii, PhD
Jean-Ping Zhao, PhD
Huihui Zhou, PhD

Visiting Scientists/Scholars
Zhanyan Fu, PhD
Lorenzo Rosasco, PhD
Steven Sheridan, PhD
Takeo Yoshimizu, PhD

Professor Emeritus
Richard Held, PhD
Professor of Experimental Psychology, Emeritus
Chemistry is the study of the nanoworld, the world of atoms and molecules spanning dimensions from one to several thousand angstroms. Chemists study the architecture of this miniature universe, explore the changes that occur, unravel the principles that govern these chemical changes, and devise ways to create entirely new compounds and materials. Past triumphs of chemistry include the synthesis of pharmaceuticals and agricultural products, while current challenges include chemical memory, solar cells, superconductors, clean fuels, batteries, and the solution of numerous important problems relating to health and the environment.

The Department of Chemistry offers the Bachelor of Science, Doctor of Philosophy, and Doctor of Science degrees. The department’s program of teaching and research spans the breadth of chemistry. General areas covered include biological chemistry, inorganic chemistry, organic chemistry, and physical chemistry. Some of the research activities of the department are carried out in association with the work of interdisciplinary laboratories and centers (see Part 3) such as the Center for Materials Science and Engineering, Francis Bitter Magnet Laboratory, Harvard-MIT Division of Health Sciences and Technology, Institute for Soldier Nanotechnologies, Lincoln Laboratory, MIT Energy Initiative, and Spectroscopy Laboratory.

The undergraduate program aims to provide rigorous education in the fundamental areas of chemical and biochemical knowledge and experimentation. Undergraduate students are encouraged to participate in the Undergraduate Research Opportunities Program (UROP) and to take graduate-level chemistry classes as well as subjects in other departments at the Institute, Harvard, or Wellesley.

The Department of Chemistry graduate program admits applicants for the Doctor of Philosophy or Doctor of Science degree. In addition to formal coursework, each student undertakes a research problem that forms the core of graduate work. Graduate- and postgraduate-level research is often carried out in collaboration with scientists in other facilities and interdisciplinary laboratories.

For more information, visit http://web.mit.edu/chemistry/www/.

UNDERGRADUATE STUDY

Bachelor of Science in Chemistry/ Course 5

The Department of Chemistry offers an undergraduate program sufficiently flexible in its electives to provide excellent preparation for careers in many different areas of chemistry. Course 5 is designed to provide an education based on science both for those who intend to go on to graduate study and for those who intend immediately to pursue a professional career in either chemistry or an allied field in which a sound knowledge of chemistry is important. Students receive thorough instruction in the principles of chemistry, supplemented by a strong foundation in mathematics, physics, biology, and the humanities. A Certification in Biochemistry by the American Chemical Society can be received with a bachelor’s degree for students interested in concentrating in this area. The Department of Chemistry also teaches courses jointly with the departments of Biology, Chemical Engineering, and Biological Engineering.

Unrestricted electives allow students to extend their knowledge in areas of special interest. Those intending to do graduate work may elect subjects in the department or in other departments that give them more detailed knowledge in the areas in which they wish to specialize. Students who plan to enter industry may elect subjects that offer the fundamentals in a selected field of science, engineering, or the humanities and social sciences. Programs may also be elected that lead to a double major in two fields of specialization.

The student’s faculty advisor can offer suggestions for elective subjects that are of value in preparation for specialization in the various broad areas of chemistry. The proper choice of electives is particularly important for students planning to continue their education in a graduate school.

Students at all levels are encouraged to undertake original research under the supervision of a member of the chemistry faculty, and students carrying out research over at least three semesters have the option of preparing an undergraduate thesis.

Minor in Chemistry

The requirements for a Minor in Chemistry are as follows:

- 5.03 Principles of Inorganic Chemistry
- 5.12 Organic Chemistry I
- 5.310 Laboratory Chemistry
- 5.60 Thermodynamics and Kinetics

Two additional subjects from the following:

- 5.04 Principles of Inorganic Chemistry II
- 5.07 Biological Chemistry I
- 5.08 Biological Chemistry II
- 5.13 Organic Chemistry II
- 5.36 Biochemistry and Organic Laboratory
- 5.36U* Organic and Inorganic Laboratory
- 5.37 Organic and Inorganic Laboratory
- 5.37U* Organic and Inorganic Laboratory
- 5.43 Advanced Organic Chemistry
- 5.61 Physical Chemistry
- 5.62 Physical Chemistry

For a general description of the minor program, see Undergraduate Education in Part 1.

GRADUATE STUDY

The Department of Chemistry offers the Doctor of Philosophy and Doctor of Science degrees. The subjects offered for these degrees aim to develop a sound knowledge of fundamentals and a familiarity with current progress in the most active and important areas of chemistry. In addition to studying formal subjects, each student undertakes a research problem that forms the core of graduate work. Through the experience of conducting an investigation leading to the doctoral thesis, a student learns general methods of approach and acquires training in some of the specialized techniques of research.

The areas of research in the department include organic, inorganic, physical, and biological chemistry. The thesis frequently involves

*Students may complete 12 units from any combination of the modules in 5.36U and 5.37U (counted as one subject).
Bachelor of Science in Chemistry/Course 5

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement one subject can be satisfied by 5.111 or 5.112 in the Departmental Program</td>
<td>6</td>
</tr>
<tr>
<td>5.081 or 5.112 Principles of Chemical Science</td>
<td>12</td>
</tr>
<tr>
<td>5.12 Organic Chemistry I, 12; REST; Chemistry (GIR)</td>
<td>5.07 or 7.05; Module 2 or 5.310; Module 5</td>
</tr>
<tr>
<td>5.13 Organic Chemistry II, 12; 5.12</td>
<td></td>
</tr>
<tr>
<td>5.135 Introduction to Experimental Chemistry, 12; LAB; Chemistry (GIR)</td>
<td></td>
</tr>
<tr>
<td>Module 1 Survey of Spectroscopy, 4</td>
<td></td>
</tr>
<tr>
<td>Module 2 Inorganic Synthesis and Kinetics, 4; Module 1</td>
<td></td>
</tr>
<tr>
<td>Module 3 Polymeric Light Emitting Devices, 4; 5.12, Module 2</td>
<td></td>
</tr>
<tr>
<td>5.36 Biochemistry and Organic Laboratory, 12; CI-M</td>
<td></td>
</tr>
<tr>
<td>Module 4 Expression and Purification of Enzyme Mutants, 4; 5.07 or 7.05; Module 2 or 5.310; Module 5</td>
<td></td>
</tr>
<tr>
<td>Module 5 Kinetics of Enzyme Inhibition, 4; 5.07 or 7.05; Module 2 or 5.310; Module 4</td>
<td></td>
</tr>
<tr>
<td>Module 6 Organic Structure Determination, 4; 5.12; Module 2 or 5.310; 5.13</td>
<td></td>
</tr>
<tr>
<td>5.37 Organic and Inorganic Laboratory, 12</td>
<td></td>
</tr>
<tr>
<td>Module 7 Introduction to Organic Synthesis, 4; 5.13, Module 6</td>
<td></td>
</tr>
<tr>
<td>Module 8 Two-Electron Bond, 4; 5.03, Module 6, 5.61</td>
<td></td>
</tr>
<tr>
<td>Module 9 Dinitrogen Cleavage, 4; 5.03, Module 6, 5.61</td>
<td></td>
</tr>
<tr>
<td>5.38 Physical Chemistry Laboratory, 12; CI-M</td>
<td></td>
</tr>
<tr>
<td>Module 10 Quantum Dots, 4; 5.61, Module 6</td>
<td></td>
</tr>
<tr>
<td>Module 11 Time Resolved Molecular Spectroscopy, 4; 5.61; 5.07 or 7.05; Module 5</td>
<td></td>
</tr>
<tr>
<td>Module 12 Solid State NMR, 4; 5.61; 5.07 or 7.05; Module 6</td>
<td></td>
</tr>
<tr>
<td>5.60 Thermodynamics and Kinetics, 12; REST; Calculus II (GIR), Chemistry (GIR)</td>
<td></td>
</tr>
<tr>
<td>5.61 Physical Chemistry, 12; REST; Physics II (GIR), Calculus II (GIR), Chemistry (GIR)</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>24</td>
</tr>
<tr>
<td>At least two of the following four subjects:</td>
<td></td>
</tr>
<tr>
<td>5.04 Principles of Inorganic Chemistry I, 12; 5.03</td>
<td></td>
</tr>
<tr>
<td>5.081 Biological Chemistry II, 12; 5.12; 5.07 or 7.05</td>
<td></td>
</tr>
<tr>
<td>5.43 Advanced Organic Chemistry, 12; 5.13</td>
<td></td>
</tr>
<tr>
<td>5.62 Physical Chemistry, 12; 5.60, 5.61</td>
<td></td>
</tr>
</tbody>
</table>

Unrestricted Electives (36)(4)

Departmental Program Units That Also Satisfy the GIRs (36)(4)

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

(1) An alternate subject is listed in the GIR description.

(4) Students who do not take 5.111 or 5.112 to fulfill the General Institute Requirement in Chemistry will have 24 units in the Departmental Program that will also satisfy the General Institute Requirements.

For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
Doctor of Philosophy and
Doctor of Science
The Chemistry Department does not have any formal subject requirements for the doctoral degree. Each student, with the advice of a research supervisor, pursues an individual program of study that is pertinent to long-range research interests. All students are required to serve as a teaching assistant for two terms, usually during the first year.

Written major examinations are cumulative. Separate examinations in biological, inorganic, organic, and physical chemistry are offered each month from October through May. The examinations demonstrate an understanding of the important principles of each field. Six cumulative examinations must be passed to complete the written major examination. No fixed time limit is set for completion of this requirement; however, progress is reviewed periodically. No other general written examinations are required. In particular, no qualifying or entrance examinations are given.

A comprehensive oral examination in the candidate’s major field of advanced study is held generally in the fourth term of residence. Progress in the student’s research is also examined at that time. A final oral presentation on the subject of the doctoral research is scheduled after the thesis has been submitted and evaluated by a committee of examiners.

Teaching and Research Assistantships
The department appoints first-year graduate students as teaching assistants who are assigned either to laboratory subjects or to discussion sections of lecture subjects. Most students receive appointments to research assistantships after their first year, and departmental fellowships are also available. Financial support after the first academic year is subject to the availability of funds and provided for students who maintain a satisfactory record.

Inquiries
Correspondence about the graduate program or appointments should be addressed to the Chemistry Graduate Office, Room 2-204, 617-253-1845.

Faculty and Staff

Faculty and Teaching Staff
Sylvia Teresse Ceyer, PhD
John C. Sheehan Professor of Chemistry
Department Head

John Martin Essigmann, PhD
William and Betsy Leitch Professor of Chemistry
and Toxicology
Associate Department Head

Professors
Moungi G. Bawendi, PhD
Lester Wolfe Professor of Chemistry

Stephen Leffler Buchwald, PhD
Camille Dreyfus Professor of Chemistry

Christopher C. Cummins, PhD
Professor of Chemistry

Rick Lane Danheiser, PhD
Arthur C. Cope Professor of Chemistry

John Mark Deutch, PhD, ScD
Professor of Chemistry

Institute Professor

Catherine L. Drennan, PhD
Professor of Chemistry and Biology
Howard Hughes Medical Institute Investigator
Howard Hughes Medical Institute Professor

Robert Warren Field, PhD
Robert T. Haslam and Bradley Dewey Professor of Chemistry

Gregory C. Fu, PhD
Firmenich Professor of Chemistry

Robert G. Griffin, PhD
Professor of Chemistry

Director, Francis Bitter National Magnet Laboratory and the MIT-Harvard Center for Magnetic Resonance

Barbara Imperioli, PhD
Class of 1922 Professor of Chemistry
Professor of Biology

MacVicar Faculty Fellow

Timothy F. Jamison, PhD
Professor of Chemistry

Alexander M. Kilianov, PhD
Novartis Professor of Chemistry and Bioengineering

Stephen J. Lippard, PhD
Arthur Amos Noyes Professor of Chemistry

Keith Adam Nelson, PhD
Professor of Chemistry

Daniel G. Nocera, PhD
Henry Dreyfus Professor of Energy
Professor of Chemistry

Richard Royce Schrock, PhD
Frederick G. Keyes Professor of Chemistry

Robert James Silbey, PhD
Class of 1942 Professor of Chemistry

JoAnne Stubbe, PhD
Novartis Professor of Chemistry
Professor of Biology

Timothy M. Swager, PhD
John D. MacArthur Professor of Chemistry

Steven Robert Tannenbaum, ScD
Professor of Chemistry and Toxicology

Andrei Tokmakoff, PhD
Professor of Chemistry

Associate Professors
Jianshu Cao, PhD
Associate Professor of Chemistry

Mohammad Movassaghi, PhD
Associate Professor of Chemistry

Sarah E. O’Connor, PhD
Associate Professor of Chemistry

Alice Y. Ting, PhD
Associate Professor of Chemistry

Troy Van Voorhis, PhD
Associate Professor of Chemistry

Assistant Professors
Christian Degen, PhD
Assistant Professor of Chemistry

Mircea Dinca, PhD
Assistant Professor of Chemistry

Elizabeth Nolan, PhD
Assistant Professor of Chemistry
Research Staff

Sponsored Research Technical Staff
Deborah Bass, BS
Experimental Applications Specialist

Anne Gorham, BS, MS
Operations Manager

Li Li, BS
Research Specialist

Peter Mueller, PhD
Principal Research Scientist

Jeffrey Simpson, PhD
Director, Instrumentation Facility

Professors Emeriti
Robert Arnold Alberty, PhD, ScD
Professor of Chemistry, Emeritus

Klaus Biemann, PhD
Professor of Chemistry, Emeritus

Alan Davison, PhD
Professor of Chemistry, Emeritus

Carl Wesley Garland, PhD
Professor of Chemistry, Emeritus

Frederick Davis Greene II, PhD, ScD
Professor of Chemistry, Emeritus

Daniel Schaeffer Kemp, PhD
Professor of Chemistry, Emeritus

Har Gobind Khorana, PhD
Alfred P. Sloan Professor of Biology and Chemistry, Emeritus
Senior Lecturer

Irwin Oppenheim, PhD
Professor of Chemistry, Emeritus

Dietmar Seyferth, PhD
Robert T. Haslam and Bradley Dewey Professor of Chemistry, Emeritus

Jeffrey Irwin Steinfeld, PhD
Professor of Chemistry, Emeritus

John Stewart Waugh, PhD
Institute Professor, Emeritus
Professor of Chemistry, Emeritus

Gerald Norman Wogan, PhD
Professor of Chemistry, Emeritus
The Department of Earth, Atmospheric, and Planetary Sciences offers the bachelor’s degree in earth, atmospheric, and planetary sciences, and master’s and doctoral degrees in earth and planetary sciences, atmospheric sciences, oceanography, and climate physics and chemistry.

Departmental programs apply physics, chemistry, and mathematics to the study of the Earth and planets in order to understand the processes that are active in the Earth’s interior, oceans, and atmosphere, as well as the interiors and atmospheres of other planets. The department also uses the basic sciences to understand the past history of the Earth and planets. By combining the past history with models of present physical and chemical processes, faculty and students work to develop an understanding of the dynamics of systems as diverse as the global climate system, regional tectonics and deformation, petroleum and geothermal reservoirs, and the solar system.

Department faculty members teach and carry out research through programs in atmospheres, oceans and climate, geochemistry, geology, geobiology, geophysics, and planetary science. Specific research activities include environmental earth science, global climate change science, planetary missions, and earthquake and exploration geophysics.

Modern problems in these fields are approached by field measurements, laboratory studies, and theory. Experimental facilities for training and research are available not only in departmental laboratories such as the Earth Resources Laboratory, but also in MIT’s interdepartmental laboratories such as the Center for Global Change Science, Kavli Institute for Astrophysics and Space Research, Lincoln Laboratory, Haystack Radio Observatory and Millstone Radar facility, and the Wallace Astrophysical and Geophysical Observatories (described in the section on Interdisciplinary Research and Study in Part 3), and in cooperating institutions such as the Woods Hole Oceanographic Institution.

UNDERGRADUATE STUDY

Bachelor of Science in Earth, Atmospheric, and Planetary Sciences/ Course 12

The Earth, Atmospheric, and Planetary Sciences Department offers undergraduate preparation for professional careers in a wide range of fields in geoscience (which includes geology, geophysics, and geochemistry), physics of atmospheres and oceans, environmental science, and planetary science and planetary astronomy. Students concentrate in one of these four areas.

The curriculum for the Bachelor of Science in Earth, Atmospheric, and Planetary Sciences ensures a fundamental background through departmental core subjects and advanced study in an area of concentration that includes required subjects and restricted electives. Students are also required to take field and/or laboratory subjects, and to complete an independent research project as part of the degree requirements.

Double Major

Studies in physics, chemistry, biology, applied mathematics, and electrical or civil engineering are directly relevant preparation for work in earth, atmospheric, and planetary sciences. Students from these departments can arrange a program of study in Course 12 leading to a second major in one of the department’s areas of concentration.

Five-Year Program

Students with strong academic records from the departments of Earth, Atmospheric, and Planetary Sciences, Chemistry, Physics, Mathematics, Civil and Environmental Engineering, Electrical Engineering and Computer Science, or Chemical Engineering, should be able to complete a Master of Science in Earth and Planetary Sciences, in Atmospheric Sciences, or in Ocean Sciences in one year of additional study, particularly if programs are arranged for this purpose from the beginning of the fourth year.

Applications for graduate enrollment in the department are considered any time after the beginning of the fourth year. Students may receive the Bachelor of Science as soon as the requirements are completed, or may elect to defer the award for simultaneous presentation with the Master of Science.

Minors

The requirements for the Minor in Earth, Atmospheric, and Planetary Sciences are as follows:

Core Subjects

Two subjects from:

- 12.001 Introduction to Geology
- 12.002 Physics and Chemistry of the Terrestrial Planets
- 12.003 Physics of the Atmosphere and Ocean
- 12.006j Nonlinear Dynamics I: Chaos
- 12.102 Environmental Earth Science
- 12.400 The Solar System

One subject from:

- 18.03/18.034 Differential Equations
- 5.60 Thermodynamics and Kinetics

Restricted Electives

Two or more additional Course 12 subjects within one of the EAPS concentration areas, approved by the minor advisor; and 12 units from the following:

Lab: 12.115, 12.119, 12.307, 12.410j
Field and IAP: 12.120, 12.141, 12.213, 12.214, 12.221, 12.310, 12.411
Independent Study: 12.IND, 12.UR

The Earth, Atmospheric, and Planetary Sciences Department jointly offers a Minor in Astronomy with the Department of Physics (Course 8). A detailed description and list of requirements for this minor is available in the Interdisciplinary Undergraduate Programs and Minors section in Part 3.

Inquiries

Additional information may be obtained from the department’s Education Office, Room 54-912, 617-253-3381.

GRADUATE STUDY

The Department of Earth, Atmospheric, and Planetary Sciences offers opportunities for graduate study and research in a wide range of fields, as indicated by the detailed subject descriptions in the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi. This coursework is the usual prelude to a thesis demonstrating that the student is capable of independent and
creative research. A successful thesis leads to a graduate degree: a Master of Science, a Doctor of Philosophy, or a Doctor of Science in the field of specialization.

A graduate thesis may have either a theoretical, experimental, or observational focus. Modern laboratory facilities, computers, instrumentation, and extensive collections of specimens and data are available to students. Field study is an essential part of the graduate curriculum in geology, geophysics, and geochemistry, and special arrangements may be made for summer employment and field research on departmental projects and with industrial organizations and government agencies. In oceanography, sea-going observational research is an important part of the educational experience. In atmospheric science, climate studies, and oceanography, graduate study includes a mixture of theoretical and experimental studies sharing a common appreciation of the dynamics of the underlying processes.

Entrance Requirements for Graduate Study
In addition to the general institute requirements for admission listed in the section on Graduate Education in Part 1, the department requires preparation equivalent to the curriculum for the Bachelor of Science in Earth, Atmospheric, and Planetary Sciences at MIT for graduate studies in that field. For atmospheric sciences, climate studies, meteorology, and oceanography, the most essential element is a sound preparation in mathematics and physics, supplemented if possible by some chemistry. Students taking their undergraduate work at other institutions are advised to include in their programs the equivalent of the mathematics and physics contained in the MIT undergraduate curricula. If students are not fully prepared in certain of the fields or required subjects, they usually are asked to extend their studies in these areas while pursuing advanced work. The doctoral program can be entered without a Master of Science as a prerequisite.

Joint Program with the Woods Hole Oceanographic Institution
MIT and WHOI have established a program in oceanography that leads to a jointly awarded degree of Master of Science, Doctor of Philosophy, or Doctor of Science. For more information, see the program description at the end of Part 3.

Bachelor of Science in Earth, Atmospheric, and Planetary Sciences/
Course 12

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>(can be satisfied from among 12.001, 12.002, 12.003, and 18.03 or 18.034 in the Departmental Program)</td>
<td>1</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td></td>
</tr>
</tbody>
</table>

| Total GIR Subjects Required for SB Degree | 17 |

<table>
<thead>
<tr>
<th>Communication Requirement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The program includes a Communication Requirement of 4 subjects:</td>
<td></td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and</td>
<td></td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in the Major (CI-M).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLUS Departmental Program</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).</td>
<td></td>
</tr>
<tr>
<td>Required Subjects</td>
<td>Units</td>
</tr>
<tr>
<td>Core Material:</td>
<td>60</td>
</tr>
<tr>
<td>12.001 Introduction to Geology, 12, REST</td>
<td></td>
</tr>
<tr>
<td>12.005 Physics of the Atmosphere and Ocean, 12, REST; Physics I (GIR), Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>12.009 Theoretical Environmental Analysis, 12; Physics I (GIR); 18.03</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>or 18.034 Differential Equations, 12, REST; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>12.010 Thesis and Independent Study Preparation, 6</td>
<td></td>
</tr>
<tr>
<td>12.011 Undergraduate Thesis (at least 6 units), CI-M; 12.016</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory/Field Subjects:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>12.115 Field Geology II, 18, LAB, CI-M; 12.113, 12.114</td>
<td></td>
</tr>
<tr>
<td>12.211 Field Geophysics, 6</td>
<td></td>
</tr>
<tr>
<td>and 12.222 Field Geophysics Analysis, 6, CI-M; 12.221</td>
<td></td>
</tr>
<tr>
<td>12.307 Weather and Climate Laboratory, 12, LAB, CI-M; Calculus II (GIR), Physics I (GIR)</td>
<td></td>
</tr>
<tr>
<td>12.335 Experimental Atmospheric Chemistry, 12, LAB, CI-M; Chemistry (GIR)</td>
<td></td>
</tr>
<tr>
<td>12.410 Observational Techniques of Optical Astronomy, 15, LAB, CI-M; 8.282*; 8.03</td>
<td></td>
</tr>
</tbody>
</table>

The remainder of the program consists of 72 units from either the Discipline or Supporting Science subjects; no more than 48 units can be from Supporting Science. The program of study must be approved by the student’s academic advisor and the undergraduate committee of the department. 72 |

<table>
<thead>
<tr>
<th>Discipline Subjects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.002 Physics of the Terrestrial Planets, 12, REST; Physics II (GIR), Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>12.005 Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences, 12; Physics II (GIR), Calculus II (GIR); 18.03</td>
<td></td>
</tr>
<tr>
<td>12.006 Nonlinear Dynamics I: Chaos, 12; Physics II (GIR), 18.03*</td>
<td></td>
</tr>
<tr>
<td>12.007 Geobiology: History of Life on Earth, 12</td>
<td></td>
</tr>
<tr>
<td>12.008 Classical Mechanics: A Computational Approach, 12; Physics I (GIR), 18.03, permission of instructor</td>
<td></td>
</tr>
<tr>
<td>12.021 Earth Science, Energy, and the Environment, 12; Physics I (GIR), Calculus III (GIR)</td>
<td></td>
</tr>
<tr>
<td>12.086 Modeling Environmental Complexity, 12; 18.03</td>
<td></td>
</tr>
<tr>
<td>12.102 Environmental Earth Science, 12, REST</td>
<td></td>
</tr>
<tr>
<td>12.104 Geochemistry of the Earth and Planets, 12; Calculus II (GIR)</td>
<td></td>
</tr>
<tr>
<td>12.108 Structure of Earth Materials, 12; Chemistry (GIR)</td>
<td></td>
</tr>
<tr>
<td>12.109 Petrology, 15; 12.108</td>
<td></td>
</tr>
<tr>
<td>12.110 Sedimentary Geology, 12; 12.001</td>
<td></td>
</tr>
<tr>
<td>12.113 Structural Geology, 12; 12.001, 12.005</td>
<td></td>
</tr>
<tr>
<td>12.114 Field Geology I, 6; 12.108*; 12.123</td>
<td></td>
</tr>
<tr>
<td>12.119 Analytical Techniques for Studying Environmental and Geologic Samples, 12, LAB</td>
<td></td>
</tr>
<tr>
<td>12.120 Environmental Earth Science Field Course, 6; permission of instructor</td>
<td></td>
</tr>
<tr>
<td>12.158 Molecular Biogeochemistry, 9; permission of instructor</td>
<td></td>
</tr>
<tr>
<td>12.163 Geomorphology, 12; 12.005, Physics I (GIR), Calculus I (GIR); or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>12.170 Essentials of Geology, 12; Physics II (GIR), Calculus II (GIR); or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>12.172 Building Earth-like Planets: From Nebular Gas to Ocean Worlds, 12; Physics II (GIR), Calculus II (GIR); or permission of instructor</td>
<td></td>
</tr>
<tr>
<td>12.201 Essentials of Geophysics, 12; Physics II (GIR), 18.03</td>
<td></td>
</tr>
<tr>
<td>12.207 Nonlinear Dynamics II: Continuum Systems, 12; 12.006/</td>
<td></td>
</tr>
</tbody>
</table>
Earth, Atmospheric, and Planetary Sciences

COURSE 12

Unrestricted Electives

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Supporting Science Subjects

- Principles of Inorganic Chemistry I, 12; 5.12
- Organic Chemistry I, 12, REST; Chemistry (GIR)
- Physical Chemistry, 12, REST; Physics II (GIR), Calculus II (GIR)
- Introduction to Computer Science and Programming, 12, REST
- Principles of Applied Mathematics, 12; Calculus II (GIR), 18.03

Thermodynamics and Kinetics

- Principles of Inorganic Chemistry I, 12; 5.12
- Organic Chemistry I, 12, REST; Chemistry (GIR)
- Physical Chemistry, 12, REST; Physics II (GIR), Calculus II (GIR)
- Introduction to Computer Science and Programming, 12, REST
- Principles of Applied Mathematics, 12; Calculus II (GIR), 18.03

Notes

*Alternate prerequisites and corequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the online help in the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Master of Science in Earth and Planetary Sciences, in Atmospheric Science, or in Climate Physics and Chemistry

The General Degree Requirements for the degree of Master of Science in Earth and Planetary Science, in Atmospheric Science, or in Climate Physics and Chemistry are described under Graduate Education in Part 1. An individual program of study and research is arranged to suit the special background, needs, and goals of each student. The program is worked out in detail by the student with his or her personal faculty advisor and a departmental committee. There are no foreign language requirements for the degree. Master’s students in climate and atmospheric science have access to the facilities of the joint MIT-WHOI program.

Doctor of Philosophy and Doctor of Science

General Degree Requirements for the degree of Doctor of Philosophy or Doctor of Science are given in the section on Graduate Education in Part 1. The department does not require candidates for the doctorate to present evidence of competence in a foreign language, but it strongly urges that candidates for the doctorate acquire intermediate competence in one or more languages. A specialized program of study and research is tailored to each student’s background, needs, and goals by the student in consultation with a faculty advisor and a departmental committee. A doctoral candidate’s program should be broad and include formal study in other departments in addition to the specialized subjects that prepare the candidate for thesis research. Thesis research typically begins immediately after successful completion of the general examination by the end of the second year. The general examination is intended to test the candidate’s aptitude and preparation for independent research.

Thesis research is closely supervised by one or more faculty members interested in and knowledgeable about the research topic, who are chosen by the student and may be members of other departments. The thesis is expected to meet high professional standards, and to be a significant original contribution to the scientific field.
Teaching and Research Assistantships
The department offers a considerable number of research and teaching assistantships each year. Research assistants work on one of the many research projects in the department, often related to the student's thesis research. Teaching assistants assist in laboratory instruction or in the preparation of teaching materials and the grading of papers.

The department also offers several fellowships beyond normal teaching and research assistantships. Selection of individuals is based on the excellence of the applicant's record.

Inquiries
Additional information regarding academic and current research programs in the department, admission requirements, assistantship appointments, and financial aid may be obtained by writing to the department's Education Office, Room 54-912, 617-253-3381.

RESEARCH LABORATORIES AND PROGRAMS

Earth Resources Laboratory
The Earth Resources Laboratory (ERL) is one of the premier research laboratories in the world in the areas of applied geophysics and quantitative geology. The lab studies the spatial heterogeneity of the earth's upper crust through geophysical imaging, geological process modeling, and the interactions between rock pore systems and migrating fluids. Laboratory activities are centered around theoretical, experimental, and observational research programs in basic science that have both industrial and academic applications. Research at the lab is supported by industry and government agencies.

ERL's major research activities include: elastic wave propagation in complex media; characterization of reservoir properties such as fracture density, in-situ stress, and fluid mobility from seismic and well log data; turbidite depositional dynamics; field mapping of reservoir scale geologic analogs in Western Africa; electrosismic phenomena; imaging and simulation of pore-scale fluid flow; borehole acoustics; reservoir imaging from surface and borehole seismic data; GPS measurements of crustal deformation in the Eastern Mediterranean, including the North Anatolian fault system in Turkey; and physical monitoring of groundwater contaminant movement.

ERL's computation environment consists of a large network of workstations and personal computers, as well as the Reservoir Science Visualization Laboratory, which includes a number of high performance workstations running data analysis and visualization software. This facility is used to enhance and expand ERL's research activities in petroleum reservoir imaging and monitoring, environmental geophysics, and geologic mapping and remote sensing. ERL also has a wide range of experimental facilities and equipment, including a large-scale (5m by 5m) sediment dynamics tank, and Ultrasonic Laboratory for seismic imaging and borehole experiments, and field equipment for seismic, electrical, and GPR surveys.

Further information can be obtained through ERL headquarters, Room 54-1814, or by calling Professor Robert van der Hilst at 617-253-6977.

Center for Global Change Science
The Center for Global Change Science (CGCS) seeks to address long-standing scientific problems that impede our ability to accurately predict changes in the global environment. Established in 1990, CGCS is an interdepartmental organization that conducts research on global climate processes, climate observations, and past climate variations. Participants include faculty, staff, and students from a variety of natural science and engineering disciplines. The center's activities also involve substantial multidisciplinary cooperative efforts focused on climate modeling, through the Climate Modeling Initiative (http://pooc.mit.edu/cmi/), and climate-policy research, through the Joint Program on the Science and Policy of Global Change (http://mit.edu/globalchange/).

For further information, see the center description in the section Interdisciplinary Research and Study in Part 3.

Joint Program on the Science and Policy of Global Change
The Joint Program on the Science and Policy of Global Change conducts independent analyses of climate-policy issues and research on climate science. It is a cooperative effort of the Center for Global Change Science and the Center for Energy and Environmental Policy Research that brings together natural and social scientists to address global environmental change and human-climate interaction. The program is a highly visible and well-funded effort, providing rigorous integrated assessment of the climate change issue to governments, industry, and the public. The cornerstone of the program's research is an interacting set of models of the world economy (human activities) and the earth system (coupled ocean, atmosphere, land, and ecosystems). The program cooperates closely with the Ecosystems Center of the Marine Biological Laboratory in Woods Hole, MA; the MIT Climate Modeling Initiative; and other MIT environmental programs.

For further information see the program description in the section Interdisciplinary Research and Study in Part 3.

George R. Wallace, Jr. Astrophysical Observatory
The George R. Wallace, Jr., Astrophysical Observatory is a versatile facility for research and teaching optical astronomy. The observatory located in Westford, MA, has two optical telescopes with 16-inch and 24-inch diameters and unique electronic instrumentation. The telescopes are used in formal instruction for student research projects, and as testbeds for instrumentation to be used with larger telescopes. Further information on the Wallace Observatory may be obtained by contacting Professor James L. Elliot, Room 54-422, 617-253-6308, jle@mit.edu, or visit http://web.mit.edu/wallace/.

Wallace Geophysical Observatory
The George R. Wallace, Jr., Geophysical Observatory is a unique research facility designed to monitor ground motions and to aid in the development and testing of new seismic and other geophysical instrumentation. It is also a key component of MIT's five-station seismic network in New England.

Located 35 miles north of Boston in Westford, MA, the observatory has a large, multi-room underground vault and a surface control room. The vault has a controlled temperature environment and instrument piers resting directly on the basement granite. The observatory contains sensitive seismometers and instruments for monitoring ground tilts and the earth's tidal motions. The surface building houses a work area and control and recording instruments. Data from the observatory are telemetered directly to the Earth Resources Laboratory of the Department of
Earth, Atmospheric, and Planetary Sciences. The data from the observatory and the New England Seismic Network are recorded, displayed, and analyzed by three dedicated COMPAQ computers, which are also connected to workstations to facilitate data sharing and transfers. Data from the observatory along with the numerous resources of the department provide a unique facility for undergraduates, graduate students, and staff to pursue research concerning the interior of the earth.

Further information may be obtained by contacting the director, Professor M. Nafi Toksöz, Room E34-440, 617-253-7852, nafi@erl.mit.edu.

Faculty and Staff

Faculty and Teaching Staff
Maria Zuber, PhD
Earle Griswold Professor of Geophysics and Planetary Science
Department Head

Professors
Richard P. Binzel, PhD
Professor of Planetary Sciences
Samuel A. Bowring, PhD
Robert R. Shrock Professor of Geology
MacVicar Faculty Fellow
Edward Allen Boyle, PhD
Professor of Ocean Geochemistry
Director, MIT-WHOI Joint Program
Burrell Clark Burchfiel, PhD
Schlumberger Professor of Geology
James Ludlow Elliot, PhD
Professor of Planetary Astronomy and Physics
Director, George R. Wallace, Jr., Astrophysical Observatory
Kerry Andrew Emanuel, PhD
Breene M. Kerr Professor of Atmospheric Science
Director, Program in Atmospheres, Oceans and Climate
Dara Entekhabi, PhD
Professor of Civil and Environmental Engineering and Earth, Atmospheric, and Planetary Sciences
J. Brian Evans, PhD
Professor of Geophysics
Raffaele Ferrari, PhD
Professor of Dynamical Oceanography
Glenn Richard Flierl, PhD
Professor of Oceanography
Frederick August Frey, PhD
Professor of Geochemistry
Timothy L. Grove, PhD
Professor of Geology
Bradford H. Hager, PhD
Cecil and Ida Green Professor of Earth Sciences
Thomas A. Herring, PhD
Professor of Geophysics
Richard Siegmund Lindzen, PhD
Alfred P. Sloan Professor of Meteorology
John C. Marshall, PhD
Professor of Atmospheric and Oceanic Sciences
F. Dale Morgan, PhD
Professor of Geophysics
Associate Director, Earth Resources Laboratory
Director, Kuwait-MIT Center
Raymond Alan Plumb, PhD
Professor of Meteorology
Ronald George Prinn, ScD
TEPCO Professor of Atmospheric Chemistry
Director, Center for Global Change Science
Paola Malanotte Rizzoli, PhD
Professor of Physical Oceanography
Daniel H. Rothman, PhD
Professor of Geophysics
Leigh H. Royden, PhD
Professor of Geology and Geophysics
Sara Seager, PhD
Ellen Swallow Richards Professor of Extrasolar Planets
Professor of Physics
Roger E. Summons, PhD
Professor of Geobiology
Robert van der Hilst, PhD
Cecil and Ida Green Professor of Geophysics
Director, Earth Resources Laboratory
Jack Wisdom, PhD
Professor of Planetary Sciences
Carl Isaac Wunsch, PhD
Cecil and Ida Green Professor of Physical Oceanography

Associate Professors
Stéphane Rondenay, PhD
Associate Professor of Seismology
Sang-Heon Shim, PhD
Associate Professor of Experimental Geophysics
Benjamin P. Weiss, PhD
Associate Professor of Planetary Sciences

Assistant Professors
Tanja Bosak, PhD
Green Faculty Development Assistant Professor of Geobiology
Linda T. Elkins-Tanton, PhD
Mitsui Assistant Professor of Geological Sciences
Oliver Jagoutz, PhD
Kerr-McGee Career Development Assistant Professor of Geology
Alison Malcolm, PhD
Assistant Professor of Theoretical Geophysics
Paul O’Gorman, PhD
Victor P. Staff Career Development Assistant Professor of Atmospheric Science
Shuhei Ono, PhD
Assistant Professor of Geochemistry
Jay Taylor Perron, PhD
Assistant Professor of Geomorphology and Planetary Science

Visiting Professors
Vernon F. Cormier, PhD
Professor of Geophysics
Martijn V. de Hoop, PhD
Professor of Geophysics
James Hansen, PhD
Professor of Atmospheric Dynamics

Senior Lecturer
Lodovica Illari, PhD

Lecturer
Amanda Bosh, PhD
Research Staff

Senior Research Scientists
William Durham, PhD
Michael Fehler, PhD
Michael Follows, PhD

Principal Research Scientists
Nilanjan Chatterjee, PhD
Patrick Heimbach, PhD
Robert W. King, Jr., PhD
Srinivas Ravela, PhD
Robert Reilingar, PhD
William Rodi, PhD

Principal Research Engineer
Christopher Hill, BS

Research Engineer
Zhenya Zhu, PhD

Research Scientists
Eduardo Andrade Lima, PhD
Yves Bernabé, PhD
Daniel Burns, PhD
Executive Director, Earth Resources Laboratory
Kerri Cahoy, PhD
Jean-Michel Campin, PhD
Christopher Carr, PhD
Stephanie Dutkiewicz, PhD
Constantinos Evangelinos, PhD
Ming Fang, PhD
David Ferreira, PhD
Gael Forget, PhD
Helen Hill, PhD
Sadi Kuleli, PhD
Erwan Mazarico, PhD
Simon Mcclusky, PhD
Ulrich Mok, PhD
Michael Person, PhD
Malcolm Pringle, PhD
Jahandar Ramezani, PhD
Jeffery Scott, PhD
David E. Smith, PhD
Youshun Sun, PhD
Haijian Zhang, PhD

Postdoctoral Associates
Sheekela Baker-Yeboah, PhD
Robert Buchwaldt, PhD
Min Chen, PhD
Bruce-Olivier Demory, PhD
Olivier Devauchelle, PhD
Ian Fenty, PhD
Kenneth Ferrier, PhD
Pierre Gondard, PhD
Brent Grocholski, PhD
Christian Hallmann, PhD
Gill-Ran Jeong, PhD
Andreas Klocker
Anthony Leboissetier, PhD
Clarissa Lui, PhD
Sabine Mehay, PhD
Romain Meyer, PhD
Erwan Monier, PhD
Caroline Muller, PhD
Anne Pommier, PhD
Pierre Rampal, PhD
Daniel Reeves, PhD
Matthew Rioux, PhD
Fabien Roquet, PhD
Julio Sepulveda, PhD
John Taylor, PhD
Ben Ward, PhD
Huijuan Yao, PhD
Zhang Yu, PhD

Postdoctoral Fellows
Noah Bechor Ben Dov, PhD
Tianrunchen, PhD
Gregory Dumond, PhD
Yolanda Echegoyen Sanz
Anne Willem Ohta, PhD
Oleg Poliannikov, PhD
Tim Seher, PhD
Ross Tulloch, PhD
Sergio Vellina-Fernandez, PhD
Yingcai Zheng, PhD

Research Affiliates
Arthur Cheng, PhD
Robert Cicerone, PhD
Peter Clift, PhD
Jesse Dann, PhD
Norman Gaut, PhD

SCHOOl OF SCIENCE

Visiting Scientists
William Bains, PhD
Mark Behn, PhD
Stephen Brown, PhD
Thomas Burbine, PhD
Kevin Burke, PhD
Alan Faller, PhD
Geoffrey Gebbie, PhD
Amanda Hubis, PhD
Levent Gulen, PhD
John Haynes, PhD
Ross Hoffman, PhD
Stephen Levine, PhD
Malka Machlus, PhD
Ila Pillalamarri, PhD
Pui Ponte, PhD
Dick Reesman, PhD
Carolyn Rupe, PhD
Lawrence Schwartz, PhD
Alison Shaw, PhD
Steven Singletary, PhD
Dirk Smit, PhD
Anhui Sun, PhD
Peter Tilke, PhD
Jing Yao, PhD

Professors Emeriti
William Francis Brace, PhD
Professor of Geology, Emeritus
Charles Claude Counselman III, PhD
Professor of Planetary Sciences, Emeritus
Theodore Richard Madden, PhD
Professor of Geophysics, Emeritus
Gordon Hemenway Pettengill, PhD
Professor of Planetary Physics, Emeritus
M. Gene Simmons, PhD
Professor of Geophysics, Emeritus
John Brelsford Southard, PhD
Professor of Geology, Emeritus
Peter Hunter Stone, PhD
Professor of Geophysics, Emeritus
M. Nafi Toksöz, PhD
Professor of Geophysics, Emeritus
The Department of Mathematics offers training at the undergraduate, graduate, and postgraduate levels. Its expertise covers a broad spectrum of fields ranging from the traditional areas of “pure” mathematics, such as analysis, algebra, geometry, and topology, to applied mathematics areas such as combinatorics, computational biology, fluid dynamics, theoretical computer science, and theoretical physics.

Course 18 includes two undergraduate degrees: a Bachelor of Science in Mathematics and a Bachelor of Science in Mathematics with Computer Science. Undergraduate students may choose one of three options leading to the Bachelor of Science in Mathematics: applied mathematics, theoretical mathematics, or general mathematics. The general mathematics option provides a great deal of flexibility and allows students to design their own programs in conjunction with their advisors. The Mathematics with Computer Science degree is offered for students who want to pursue interests in mathematics and theoretical computer science within a single undergraduate program.

At the graduate level, the Mathematics Department offers the PhD in Mathematics, which culminates in the exposition of original research in a dissertation. Graduate students also receive training and gain experience in the teaching of mathematics.

The Cle. Moore instructorships and Applied Mathematics instructorships bring mathematicians at the postdoctoral level to MIT and provide them with training in research and teaching.

For more information, visit http://math.mit.edu/.

Undergraduate Study

An undergraduate degree in mathematics provides an excellent basis for graduate work in mathematics or computer science, or for employment in such mathematics-related fields as finance, physics, business, consulting, systems analysis, or actuarial science. Students’ programs are arranged through consultation with their faculty advisors. Students majoring in other disciplines are strongly encouraged to consider a double major in mathematics.

Undergraduates in mathematics are encouraged to elect an upper-level mathematics course.

Bachelor of Science in Mathematics/Course 18

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST)</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, and by prerequisites, if any (corequisites in italics).

Required Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of the following two subjects: 18.03 or 18.034</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

To satisfy the requirements that students take two CI-M subjects, students must take two of the following subjects: 18.104, 18.704, 18.384, 18.424, 18.434, 18.504, 18.704, 18.784, 18.821, 18.904, or 18.994

or

one from the above list and one of the following subjects: 8.06, 14.33, 18.100C, or 18.310.

General Mathematics Option

Eight 12-unit subjects of different content, including at least six advanced subjects (first decimal digit one or higher). One of these eight subjects must be 18.06, 18.700, or 18.701.

Applied Mathematics Option

18.310 Principles of Applied Mathematics, 12, CI-M; 18.06, 18.700, or 18.701.

18.311 Principles of Applied Mathematics, 12; 18.06, 18.700, or 18.701.

One of the following two subjects:

- 18.04 Complex Variables with Applications, 12; 18.06, 18.100, 18.034
- 18.112 Functions of a Complex Variable, 12; 18.100, 18.06

One of the following two subjects:

- 18.06 Linear Algebra, 12, REST; 18.06
- 18.700 Linear Algebra, 12, REST; 18.06

Four additional 12-unit Course 18 subjects from the following two groups with at least one subject from each group:

- Group I—Probability and statistics, combinatorics, computer science
- Group II—Numerical analysis, physical mathematics, nonlinear dynamics

Theoretical Mathematics Option

18.100 Real Analysis, 12; 18.06, 18.034
18.701 Algebra I, 12; 18.700
18.702 Algebra II, 12; 18.701
18.901 Introduction to Topology, 12; 18.100

One of the following subjects:

- 18.101 Analysis and Manifolds, 12; 18.100, 18.06
- 18.102 Introduction to Functional Analysis, 12; 18.100, 18.06
- 18.103 Fourier Analysis—Theory and Applications, 12; 18.100, 18.06

An undergraduate seminar from the following list: 18.104, 18.504, 18.704, 18.784, 18.904, 18.994 (12 units).

Two additional Course 18 subjects of essentially different content, with the first decimal digit one or higher (24 units)

Departmental Program Units That Also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03 or 18.034</td>
<td>12</td>
</tr>
</tbody>
</table>

Unrestricted Electives

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03 or 18.034</td>
<td>60</td>
</tr>
</tbody>
</table>
Total Units Beyond the GIRs Required for SB Degree

180
No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
*Alternate prerequisites and corequisites are listed in the subject description.
16 Students may substitute the more advanced subject 18,701 Algebra I.
17 A list of acceptable subjects is available in Room 2-108 and on the Mathematics Department website.
For an explanation of credit units, or hours, please refer to the online help of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.

Semesters in the student’s departmental program will count toward one or the other, but not both. The required subjects covering complexity (18.404J or 18.400) and algorithms (18.410J) provide an introduction to the most theoretical aspects of computer science.

Some flexibility is allowed in this program. In particular, students may substitute the more advanced subject 18.701 Algebra I for 18.06, and, if they already have strong theorem-proving skills, may substitute 18.314 for 18.062 or 18.310. Students who have taken 6.001 before the Course 6 curriculum change may use it instead of 6.01 and, similarly, students who have taken 6.170 may use it instead of 6.005.

Minor in Mathematics
The requirements for a Minor in Mathematics are as follows:
Six 12-unit subjects in mathematics, beyond the Institute calculus requirement, of essentially different content, including at least four advanced subjects (first decimal digit one or higher).
For a general description of the minor program, see Undergraduate Education in Part 1.

Bachelor of Science in Mathematics with Computer Science/Course 18-C
Mathematics and computer science are closely related fields. Problems in computer science are often formalized and solved with mathematical methods. It is likely that many important problems currently facing computer scientists will be solved by researchers skilled in algebra, analysis, combinatorics, logic and/or probability theory, as well as computer science.

The purpose of this program is to allow students to study a combination of these mathematical areas and potential areas of application in computer science. Required subjects include linear algebra (18.06 or 18.700) because it is so broadly used; discrete mathematics (18.062) or 18.310 to give experience with proofs and the necessary tools for analyzing algorithms; and software construction (6.005 or 6.033) where mathematical issues may arise. The required subjects covering complexity (18.404J or 18.400) and algorithms (18.410J) provide an introduction to the most theoretical aspects of computer science.

Sophomores interested in applied mathematics typically enroll in 18.310 and 18.311 Principles of Applied Mathematics. Subject 18.310 is devoted to the discrete aspects of applied mathematics and may be taken concurrently with 18.03. Subject 18.311, given in the spring term, is devoted to continuous aspects and makes considerable use of differential equations.

The subjects in Group I of the program correspond roughly to those areas of applied mathematics that make heavy use of discrete mathematics, while Group II emphasizes those subjects that deal mainly with continuous processes. Some subjects, such as probability or numerical analysis, have both discrete and continuous aspects.

Students planning to go on to graduate work in applied mathematics should also take some basic subjects in analysis and algebra.

Theoretical Mathematics Option
Theoretical (or “pure”) mathematics is the study of the basic concepts and structure of mathematics. Its goal is to arrive at a deeper understanding and an expanded knowledge of mathematics itself.

Traditionally, pure mathematics has been classified into three general fields: analysis, which deals with continuous aspects of mathematics; algebra, which deals with discrete aspects; and geometry. The undergraduate program is designed so that students become familiar with each of these areas. Students also may wish to explore other topics such as logic, number theory, complex analysis, and subjects within applied mathematics.

The subjects 18.701 Algebra I and 18.901 Introduction to Topology are more advanced and should not be elected until a student has had experience with proofs, as in 18.100 Analysis I or 18.700 Linear Algebra.
GRADUATE STUDY

The Mathematics Department offers programs in pure and applied mathematics covering a broad range of topics leading to the Doctor of Philosophy and the Doctor of Science degrees. Numerous formal and informal seminars, as well as a joint weekly mathematics colloquium sponsored alternately by MIT, Brandeis, Harvard, and Northeastern, supplement the subject offerings.

Entrance Requirements for Graduate Study

Students are expected to have one year of college-level natural science in addition to an undergraduate mathematics program approximating that of mathematics majors at MIT. Students may enter the applied mathematics program from any undergraduate field of concentration; however, special consideration is given to students with a strong scientific background.

Doctor of Philosophy and Doctor of Science

The Institute requirements for these degrees are described under Graduate Education in Part 1. The details of the departmental requirements are explained on the department’s website at http://math.mit.edu/academics/grad/. In outline, the requirements include a general qualifying examination, a thesis proposal, and completion of a minimum of 132 units (registration in at least 11 graduate subjects). The decisive requirement is original research in mathematics that is described in a thesis.

For students in the pure mathematics program, the oral part of the general examination covers three areas chosen by the student in consultation with the chairperson of the Committee on Graduate Students. One of the three areas is examined in greater depth and normally it becomes the field of specialization. The examiner in this area usually becomes the thesis advisor.

For students choosing the applied mathematics program, the basic objective is a proper balance of specialization and diversity. A range of subjects is required, including some in discrete and some in continuous applied mathematics. By the end of the first year of study, each student must submit a plan of study for approval.

Bachelor of Science in Mathematics with Computer Science/Course 18-C

http://student.mit.edu/catalog/index.cgi

General Institute Requirements (GIrS)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 18.03, 18.034, 18.06, or 18.700 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIRS Subjects Required for SB Degree

17

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Required Subjects

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03 or 18.034 Differential Equations, 12; REST</td>
<td>12</td>
</tr>
<tr>
<td>18.06 or 18.700 Linear Algebra, 12; REST</td>
<td>12</td>
</tr>
<tr>
<td>Calculus II (GIR)</td>
<td>12</td>
</tr>
<tr>
<td>Calculus II (GIR)</td>
<td>12</td>
</tr>
<tr>
<td>18.400J Design and Analysis of Algorithms, 12; 6.006*</td>
<td>12</td>
</tr>
<tr>
<td>6.01 Introduction to EECS I, 12, 1/2 LAB</td>
<td>12</td>
</tr>
<tr>
<td>6.006 Introduction to Algorithms, 12; 6.01, 18.062</td>
<td>12</td>
</tr>
</tbody>
</table>

One subject from each of the following three groups:

- 18.062J Mathematics for Computer Science, 12; REST
- Calculus I (GIR)
- 18.310 Principles of Applied Mathematics, 12; CI-M
- Calculus II (GIR)

Required Subjects

- 18.400J Automata, Computability, and Complexity, 12; 18.062J
- 18.404J Theory of Computation,12; 12; 18.062J
- 6.005 Elements of Software Construction, 12, 6.01, 18.062
- 6.993 Computer System Engineering, 12; 6.004

Restricted Electives

Four additional 12-unit subjects from Course 18 and one additional subject of at least 12 units from Course 6. The Course 6 subject may be 6.02, 6.041, 6.17x, a Foundation or Header subject, or, with the permission of the Department of Mathematics, an advanced Course 6 subject. The overall program must consist of subjects of essentially different content, and must include at least five Course 18 subjects with a first decimal digit of 1 or higher.

To satisfy the requirements that students take two CI-M subjects, students must take two of the following subjects: 18.04, 18.041, 18.384, 18.424, 18.434, 18.504, 18.704, 18.784, 18.821, 18.904, or 18.994 or one from the above list and one of the following subjects: 6.033, 8.06, 14.33, 18.100C, or 18.310.

Departmental Program Units That Also Satisfy the GIRS

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted Electives</td>
<td>48</td>
</tr>
</tbody>
</table>

Total Units Beyond the GIRS Required for SB Degree

180

Notes

*Alternate prerequisites and corequisites are listed in the subject description.

1 Recommended alternative.

For an explanation of credit units, or hours, please refer to the online help in the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi.
Financial Support
Financial support is guaranteed for four years to students making satisfactory academic progress. Financial aid after the first year is usually in the form of a teaching assistantship.

Inquiries
For further information, see http://math.mit.edu/academics/grad/ or contact the Mathematics Academic Office, Room 2-108, 617-253-2416.

Faculty and Staff
Faculty and Teaching Staff
Michael Sipser, PhD
Professor of Applied Mathematics
Department Head
David S. Jerison, PhD
Professor of Mathematics
MacVicar Faculty Fellow
Chairman, Committee on Pure Mathematics
Michel X. Goemans, PhD
Leighton Family Professor of Applied Mathematics
Chairman, Committee on Applied Mathematics

Professors
Denis S. Auroux, PhD
Professor of Mathematics
(On leave)
Bonnie A. Berger, PhD
Professor of Applied Mathematics
(On leave, fall)
Roman Bezrukavnikov, PhD
Professor of Mathematics
(On leave)
Alexei Borodin, PhD
Professor of Mathematics
John W. Bush, PhD
Professor of Applied Mathematics
Hung Cheng, PhD
Professor of Applied Mathematics
Tobias H. Colding, PhD
Levinson Professor of Mathematics
Richard Mansfield Dudley, PhD
Professor of Mathematics
Alan Edelman, PhD
Professor of Applied Mathematics
Pavel I. Etingof, PhD
Professor of Mathematics
Daniel Z. Freedman, PhD
Professor of Applied Mathematics and Physics
Victor William Guillemin, PhD
Professor of Mathematics
Sigurdur Helgason, PhD
Professor of Mathematics
Victor G. Kac, PhD
Professor of Mathematics
Steven Kleiman, PhD
Professor of Mathematics
(On leave, spring)
F. Thomson Leighton, PhD
Professor of Applied Mathematics
George Lusztig, PhD
Abdun-Nur Professor of Mathematics
James McKernan, PhD
Norbert Weiner Professor of Mathematics
Richard Burt Melrose, PhD
Simons Professor of Mathematics
Ju-lee Kim, PhD
Associate Professor of Mathematics
(On leave, spring)

Associate Professors
Martin Z. Bazant, PhD
Associate Professor of Chemical Engineering and Applied Mathematics
Anette E. Hosoi, PhD
Associate Professor of Mechanical Engineering and Applied Mathematics
Steven G. Johnson, PhD
Associate Professor of Applied Mathematics
Kiran S. Kedlaya, PhD
Cecil and Ida B. Green Career Development Associate Professor of Mathematics
(On leave, spring)

Assistant Professors
Clark Barwick, PhD
Assistant Professor of Mathematics
Mark J. Behrens, PhD
Assistant Professor of Mathematics
(On leave, fall)
Benjamin B. Brubaker, PhD
Assistant Professor of Mathematics

Financial Support
The general oral examination in applied mathematics tests the student’s competence in the area chosen for thesis research.
Laurent Demanet, PhD
Assistant Professor of Applied Mathematics

Jacob Fox, PhD
Assistant Professor of Applied Mathematics

Jonathan A. Kelner, PhD
KDD Career Development Assistant Professor of Applied Mathematics

Abhinav Kumar, PhD
Assistant Professor of Mathematics

Lie Wang, PhD
Assistant Professor of Mathematics

Adjunct Professor
Henry Cohn, PhD
Adjunct Professor of Applied Mathematics

Senior Lecturer
John B. Lewis, PhD

CLE Moore Instructors
Avraham Aizenbud, PhD
Sami H. Assaf, PhD
Christine Breiner, PhD
Kiril Datchev, PhD (On leave)
Michael Eichmair, PhD
Mahir Hadzic, PhD (On leave)
Hamid Hezari, PhD
Stephen James Kleene, PhD
Lionel Levine, PhD (On leave, fall)
Ivan Loseu, PhD
Mark McLean, PhD
Aaron Naber, PhD
Kyle Ormsby, PhD
Travis Schedler, PhD
Christopher Schommer-Pries, PhD
Charles Smart, PhD (On leave)
Andrew Snowden, PhD
Peter Tingley, PhD
Vera Vértesi, PhD
Chenyang Xu, PhD
Zhiwei Yun, PhD

Applied Mathematics Instructors
Olivier Bernardi, PhD
Lyubov Chumakova, PhD
Tristan Gilet, PhD
Paul Hand, PhD
Neil Olver, PhD
Chin How Jeffrey Pang, PhD
Brendon Rhoades, PhD (On leave)
Daniel See-Wai Tam, PhD

Pure Mathematics Instructor
Asaf Nachmias, PhD

Professors Emeriti
Michael Artin, PhD
Professor of Mathematics, Emeritus
David J. Benney, PhD
Professor of Applied Mathematics, Emeritus
Herman Chernoff, PhD
Professor of Applied Mathematics, Emeritus
Harvey Philip Greenspan, PhD
Professor of Applied Mathematics, Emeritus
Louis Norberg Howard, PhD
Professor of Applied Mathematics, Emeritus
Daniel Marinus Kan, PhD
Professor of Mathematics, Emeritus
Daniel J. Kleitman, PhD
Professor of Applied Mathematics, Emeritus
Bertram Kostant, PhD
Professor of Mathematics, Emeritus
Chia-Chiao Lin, PhD
Professor of Applied Mathematics, Emeritus
Institute Professor, Emeritus
Willem V. R. Malkus, PhD
Professor of Applied Mathematics, Emeritus
Arthur Paul Mattuck, PhD
Professor of Mathematics, Emeritus
James Raymond Munkres, PhD
Professor of Mathematics, Emeritus
Hartley Rogers, PhD
Professor of Mathematics, Emeritus
Gerald E. Sacks, PhD
Professor of Mathematical Logic, Emeritus
Richard Donald Schafer, PhD
Professor of Mathematics, Emeritus
Isadore Manuel Singer, PhD
Professor of Mathematics, Emeritus
Institute Professor, Emeritus
Harold Stark, PhD
Professor of Mathematics, Emeritus
Daniel W. Stroock, PhD
Professor of Mathematics, Emeritus
Alar Toomre, PhD
Professor of Applied Mathematics, Emeritus

Daniel W. Stroock, PhD
Professor of Mathematics, Emeritus
The Department of Physics offers undergraduate, graduate, and postgraduate training, with a wide range of options for specialization.

The emphasis of both the undergraduate curriculum and the graduate program is on understanding the fundamental principles that appear to govern the behavior of the physical world, including space and time and matter and energy in all its forms, from the subatomic to the cosmological and from the elementary to the complex.

The Department of Physics strives to be at the forefront of many areas where new physics can be found. Consequently, the department works on problems where extreme conditions may reveal new behavior: from clusters of galaxies or the entire universe to elementary particles or the strings that may be the substructure of these particles; from collisions of nuclei at relativistic velocities that make droplets of matter hotter than anything since the Big Bang to laser-cooled atoms so cold that their wave functions overlap, resulting in a macroscopic collective state—the Bose-Einstein condensate; and from individual atoms to unusual materials, such as high-temperature superconductors and those that are important in biology. Pushing the limits provides the opportunity to observe new general principles and test theories of the structure and behavior of matter and energy.

UNDERGRADUATE STUDY

Bachelor of Science in Physics/Course 8

An undergraduate degree in physics provides an excellent basis not only for graduate study in physics and related fields, but also for professional work in such fields as astrophysics, biophysics, engineering and applied physics, geophysics, management, law, or medicine. The undergraduate curriculum offers students the opportunity to acquire a deep conceptual understanding of fundamental physics. The core departmental requirements begin this process. The student then chooses one of two options to complete the degree: the focused option is designed for students who plan to pursue physics as a career, the flexible option is designed for those who are interested in other, perhaps non-traditional, career paths. Either option provides

Bachelor of Science in Physics/Course 8

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement (can be satisfied by 8.03 or 8.04, and 18.03 or 18.034 in the Departmental Program)</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement (satisfied by 8.13 or equivalent in the Departmental Program)</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Subject names below are followed by credit units, and by prerequisites, if any (corequisites are indicated in italics).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
</tr>
<tr>
<td>8.03 Physics III, 12, REST; Physics II (GIR), Calculus II (GIR)</td>
</tr>
<tr>
<td>8.04 Physics III, 12, REST; Quantum Physics I, 12, 8.03*; Quantum Physics I, 12, CI-M; Calculus II (GIR)</td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST; Calculus II (GIR)</td>
</tr>
<tr>
<td>18.034 Differential Equations, 12, REST; Calculus II (GIR)</td>
</tr>
<tr>
<td>8.044 Statistical Physics I, 12; 8.03, 8.03*</td>
</tr>
</tbody>
</table>

Physics: Flexible Option

One of the following subjects:

- 8.21 Physics of Energy, 12; Physics II (GIR), Calculus II (GIR), Chemistry (GIR)
- 8.223 Classical Mechanics II, 6; Physics I (GIR), Calculus II (GIR)

One of the following subjects:

- 8.05 Quantum Physics II, 12; 8.04
- 8.20 Introduction to Special Relativity, 9, REST;
 Physics I (GIR), Calculus I (GIR)
- 8.03 Relativity, 12; Physics I (GIR), Calculus II (GIR)

One of the following experimental experiences:

- 8.13 Experimental Physics I, 18, LAB, CI-M; 8.04
 A laboratory subject of similar intensity in another department
 An experimental research project or senior thesis
 An experimentally oriented summer externship

Physics: Focused Option

8.033 Relativity, 12; 8.03*, 18.03*

8.20 Quantum Physics I, 12; Physics II (GIR)

8.04 Quantum Physics II, 12; 8.04, 8.13

8.033 Relativity, 12; Physics I (GIR), Calculus II (GIR)

8.233 Classical Mechanics II, 6; Physics I (GIR), Calculus II (GIR)

8ThU Undergraduate Physics Thesis (12 units)³

Restricted Electives

- At least one subject in the Department of Physics in addition to those listed above (12 units)³
- Three subjects forming one intellectually coherent unit in some area, not necessarily physics, subject to the approval of the department (36 units)

Physics: Focused Option

One subject in the Department of Mathematics beyond 18.03 (12 units)

Two subjects in the Department of Physics in addition to those listed above,³ including at least one of the following:
- 8.07, 8.08, and 8.09 (24 units)

Department Program Units That Also Satisfy the GIRs

Unrestricted Electives

24–36

- 48–87

264
a considerable amount of time for exploration through electives. Students proceed at the pace and degree of specialization best suited to their individual capacities. Both options lead to the same degree: the Bachelor of Science in Physics.

Physics: Focused Option
This option—which includes three terms of quantum mechanics, 36 units of laboratory experience, and a thesis—is ideal preparation for a career in physics. In the second year, students take 8.03 Physics III, 8.033 Relativity, 8.04 Quantum Physics I, 8.044 Statistical Physics I, and 8.223 Classical Mechanics II. Important skills for experimentation in physics may be acquired by starting an Undergraduate Research Opportunities Program (UROP) project.

In the third year, students normally take laboratory subjects 8.13 and 8.14 Experimental Physics I and II, along with 8.05 and 8.06 Quantum Physics II and III. Students should also begin to take the restricted elective subjects, one in mathematics and at least two in physics. The mathematics subjects 18.04 Complex Variables with Applications, 18.075 Methods for Scientists and Engineers, and 18.06 Linear Algebra are particularly popular with physics majors. Topical elective subjects in astrophysics, biological physics, condensed matter, plasma, and nuclear and particle physics allow students to gain an appreciation of the forefronts of modern physics. Students intending to go on to graduate school in physics are encouraged to take the theoretical physics sequence 8.07 Electromagnetism II, 8.08 Statistical Physics II, and 8.09 Classical Mechanics III.

An important component of this option is the thesis, which is a physics research project carried out under the guidance of a faculty member. Many thesis projects grow naturally out of UROP projects. Students should have some idea of a thesis topic by the middle of the junior year. A thesis proposal must be submitted before registering for thesis units and no later than Add Date of the fall term of the senior year.

A relatively large amount of elective time usually becomes available during the fourth year and can be used either to deepen one’s background in physics or to explore other disciplines.

Physics: Flexible Option
This option is designed for students who wish to develop a strong background in the fundamentals of physics and then build on this foundation as they prepare for career paths that may not involve a graduate degree in physics. In the past, many students have found an understanding of the basic concepts of physics and an appreciation of the physicist’s approach to problem solving an excellent preparation for careers in business, law, medicine, or engineering. This option should be even more attractive today in light of the growing spectrum of nontraditional, technology-related career opportunities.

The option begins with the core subjects 8.01, 8.02, 8.03, 8.04, 8.044, and either 8.21 or 8.223. Students round out their foundation material with either an additional quantum mechanics subject (8.05) or a subject in relativity (8.20 or 8.033). There is an experimental requirement of 8.13 or, with the approval of the department, a laboratory subject of similar intensity in another department, an experimental research project or senior thesis, or an experimentally oriented summer externship. An exploration requirement consists of one elective subject in physics. Students can satisfy the departmental portion of the Communication Requirement by taking two of the following subjects: 8.06, 8.13, 8.225, 8.226, or 8.287). The department and the Subcommittee on the Communication Requirement may accept substitution of one of the department’s two required CI-M subjects with a CI-M subject in another department if it forms a natural part of the student’s physics program.

Students following this option must also complete a focus requirement—three subjects forming one intellectually coherent unit in some area (not necessarily physics), subject to the approval of the department and separate from those used by the student to satisfy the HASS requirement. Areas of focus chosen by students in the past include astronomy, biology, computational physics, nanotechnology, history of science, science and technology policy, philosophy, and science teaching. Some students may choose to satisfy their experimental and exploration requirements in the same area as their focus; others may opt for greater breadth by choosing other fields to fulfill these requirements.

Although students may choose this option at any time in their undergraduate career, many make this choice during their sophomore year in order to have enough time to craft a program that best suits their individual needs. Specific subject choices for the experimental and focus requirements require the written approval of the Flexible Program coordinator, Dr. Sean P. Robinson.

Cambridge-MIT Exchange
The Physics Department participates in the junior-year exchange program with Cambridge University, in the United Kingdom, through the Cambridge-MIT Exchange (CME). Students with broad interests and a desire to experience a different educational environment are encouraged to explore this unique opportunity. Interested students should consult the Year or Term Away section of the chapter on Undergraduate Education in Part 1, then contact the department’s CME coordinator, Professor Thomas Greytak.
Minors

The **Minor in Physics** provides a solid foundation for the pursuit of a broad range of professional activities in science and engineering. The requirements for a Minor in Physics are 18.03 or 18.034, plus any five Course 8 subjects beyond the General Institute Requirements.

Students should submit a completed Minor Application Form to Physics Academic Programs, Room 4-315. The Physics Department’s minor coordinator is Catherine Modica. For more information on minor programs, see Undergraduate Education in Part 1.

The **Minor in Astronomy**, offered jointly with the Department of Earth, Atmospheric, and Planetary Sciences, covers the observational and theoretical foundations of astronomy. For a description of the minor, see Interdisciplinary Undergraduate Programs and Minors in Part 3.

Inquiries

Additional information concerning degree programs and research activities may be obtained by contacting the department at physics-grad@mit.edu or 617-253-4841.

GRADUATE STUDY

The Physics Department offers programs leading to the degrees of Master of Science in Physics, Doctor of Philosophy, and Doctor of Science.

Entrance Requirements for Graduate Study

Students intending to pursue graduate work in physics should have as a background the equivalent of the requirements for the Bachelor of Science in Physics from MIT. However, students may make up some deficiencies over the course of their graduate work.

Master of Science in Physics

The requirements for the Master of Science in Physics are the General Degree Requirements listed under Graduate Education in Part 1. The master’s thesis must represent a piece of independent research work in any of the fields described below, and must be carried out under the supervision of a department faculty member. No fixed time is set for the completion of a master’s program; two years of work is a rough guideline. There is no language requirement for this degree.

Doctor of Philosophy and Doctor of Science

Candidates for the Doctor of Philosophy or Doctor of Science are expected to enroll in those basic graduate subjects that prepare them for the general examination, which must be passed no later than in the seventh term after initial enrollment. No specific subjects of study are prescribed, except for the requirement of two subjects in the candidate’s doctoral research area and two subjects outside the candidate’s field of specialization (breadth requirement). Half of the breadth requirement may be satisfied through a departmentally approved industrial internship. The doctoral thesis must represent a substantial piece of original research, carried out under the supervision of a department faculty member.

The Physics Department faculty members offer subjects of instruction and are engaged in research in a variety of fields in experimental and theoretical physics. This broad spectrum of activities is organized in the divisional structure of the department, presented below. Graduate students are encouraged to contact faculty members in the division of their choice to inquire about opportunities for research, and to pass through an apprenticeship (by signing up for Special Problems in Graduate Physics) as a first step toward an engagement in independent research for a doctoral thesis.

Research Divisions

Faculty and students in the Department of Physics are generally affiliated with one of several research divisions:

- Astrophysics
- Experimental Nuclear and Particle Physics
- Atomic Physics, Biophysics, Condensed Matter Physics, and Plasma Physics
- Theoretical Nuclear and Particle Physics

Much of the research in the department is carried out as part of the work of various interdisciplinary laboratories and centers, including the Haystack Observatory, Laboratory for Nuclear Science, Research Laboratory of Electronics, Spectroscopy Laboratory, Center for Materials Science and Engineering, MIT Kavli Institute for Astrophysics and Space Research, Francis Bitter Magnet Laboratory, Microsystems Technology Laboratories, and the Plasma Science and Fusion Center. Information on these can be found under Interdisciplinary Research and Study in Part 3. These facilities provide close relationships among the research activities of a number of MIT departments and give students opportunities for contact with research carried out in disciplines other than physics.

Inquiries

Additional information on degree programs, research activities, admissions, financial aid, teaching and research assistantships may be obtained by contacting the department at physics-grad@mit.edu or 617-253-4841.

FACULTY AND STAFF

Faculty and Teaching Staff

Edmund W. Bertschinger, PhD
Professor of Physics
Department Head

Krishna Rajagopal, PhD
Professor of Physics
MacVicar Faculty Fellow
Associate Department Head for Education

Professors

Raymond C. Ashoori, PhD
Professor of Physics

Ulrich Justus Becker, PhD
Professor of Physics

John Winston Belcher, PhD
Class of ’72 Professor of Physics

George Bernard Benedek, PhD
Alfred H. Caspary Professor of Physics and Biological Physics

William Bertozzi, PhD
Professor of Physics

Wit Busza, PhD
Francis L. Friedman Professor of Physics
(On leave, spring)
Claude Roger Canizares, PhD
Bruno Rossi Professor of Physics
Associate Director for MIT, Chandra X-ray
Observatory Center
Vice President for Research and Associate
Provost
Deepro Chakrabarty, PhD
Professor of Physics
Division Head, Astrophysics
Min Chen, PhD
Professor of Physics
Isaac Chuang, PhD
Professor of Electrical Engineering and Physics
Janet Conrad, PhD
Professor of Physics
Bruno Coppi, PhD
Professor of Physics
Mildred Spiewak Dresselhaus, PhD
Professor of Electrical Engineering and Physics
Institute Professor
James Ludlow Elliot, PhD
Professor of Earth, Atmospheric and Planetary
Sciences and Physics
Director, George R. Wallace, Jr. Astrophysical
Observatory
Edward Henry Farhi, PhD
Cecil and Ida B. Green Career Development
Professor of Physics
Director, Center for Theoretical Physics
Peter H. Fisher, PhD
Professor of Physics
Division Head, Particle and Nuclear Physics
Daniel Freedman, PhD
Professor of Mathematics and Physics
Thomas John Greytak, PhD
Lester Wolfe Professor of Physics
(On leave, spring)
Alan Harvey Guth, PhD
Victor F. Weisskopf Professor of Physics
MacVicar Faculty Fellow
Jacqueline N. Hewitt, PhD
Professor of Physics
Director, MIT Kavli Institute for Astrophysics and
Space Research
Erich Peter Ippen, PhD
Elihu Thomson Professor of Electrical
Engineering and Physics
Roman Wladimir Jackiw, PhD
Jerold Zacharias Professor of Physics
(On leave, spring)
Robert Jaffe, PhD
Professor of Physics
Otto and Jane Morningstar Professor of Science
John Dimitris Joannopoulos, PhD
Francis Wright Davis Professor of Physics
Director, Institute of Soldier Nanotechnologies
Paul Christopher Joss, PhD
Professor of Physics
Mehran Kardar, PhD
Francis L. Friedman Professor of Physics
Marc Aaron Kastner, PhD
Donner Professor of Science
Dean, School of Science
Wolfgang Ketterle, PhD
John D. MacArthur Professor of Physics
Director, MIT-Harvard Center for Ultracold Atoms
(On leave, fall)
Stanley Benedict Kowalski, PhD
Professor of Physics
Patrick A. Lee, PhD
William and Emma Rogers Professor of Physics
Division Head, Atomic, Biological, Condensed
Matter and Plasma Physics
Leonid S. Levitov, PhD
Professor of Physics
J. David Litster, PhD
Professor of Physics
June Lorraine Matthews, PhD
Professor of Physics
Nergis Mavalvala, PhD
Cecil and Ida B. Green Professor of Physics
Richard G. Milner, PhD
Professor of Physics
Director, Laboratory for Nuclear Science
Ernest J. Moniz, PhD
Cecil and Ida Green Distinguished Professor of Physics
Director, Energy Studies
John William Negele, PhD
William A. Coolidge Professor of Physics
Christoph M. E. Paus, PhD
Professor of Physics
Miklos Porkolab, PhD
Professor of Physics
Director, Plasma Science and Fusion Center
David Edward Pritchard, PhD
Cecil and Ida B. Green Professor of Physics
Robert Page Redwine, PhD
Professor of Physics
Director, Bates Laboratory
Paul Schechter, PhD
William A. M. Burden Professor of Astrophysics
Sara Seager, PhD
Ellen Swallow Richards Professor of Earth,
Atmospheric, and Planetary Sciences and
Physics
H. Sebastian Seung, PhD
Professor of Computational Neuroscience and
Physics
Washington Taylor IV, PhD
Professor of Physics
Max Tegmark, PhD
Professor of Physics
(On leave)
Samuel C. C. Ting, PhD
Thomas Dudley Cabot Professor of Physics
Alexander van Oudenaarden, PhD
Keck Career Development Professor of Biology
and Physics
Xiao-Gang Wen, PhD
Cecil and Ida Green Professor of Physics
Frank Wilczek, PhD
Herman Feshbach Professor of Physics
Boleslaw Wyslouch, PhD
Professor of Physics
(On leave)
Barton Zwiebach, PhD
Professor of Physics
MacVicar Faculty Fellow
Associate Professors

Jan Egedal-Pedersen, PhD
Associate Professor of Physics

Joseph Formaggio, PhD
Class of '56 Career Development Associate Professor of Physics

Scott Hughes, PhD
Associate Professor of Physics

Young Sang Lee, PhD
Mark Hyman Jr. Career Development Associate Professor of Physics

Hong Liu, PhD
Associate Professor of Physics

Leonid Mirny, PhD
Associate Professor of Health Sciences and Technology and Physics

Steven Nahn, PhD
Associate Professor of Physics

Gunther Roland, PhD
Associate Professor of Physics
(On leave, fall)

Gabriella Sciola, PhD
Associate Professor of Physics

Marin Soljacic, PhD
Associate Professor of Physics

Iain W. Stewart, PhD
Associate Professor of Physics
(On leave, fall)

Bernd Surrow, PhD
Associate Professor of Physics

Nuh Gedik, PhD
Assistant Professor of Physics
(On leave, spring)

Jeff Gore, PhD
Assistant Professor of Physics

Pablo Jarillo-Herrero, PhD
Assistant Professor of Physics
(On leave)

Markus Klute, PhD
Assistant Professor of Physics

John McGreevy, PhD
Assistant Professor of Physics

Jocelyn Monroe, PhD
Assistant Professor of Physics
(On leave)

Robert Simcoe, PhD
Assistant Professor of Physics

Joshua Winn, PhD
Class of '42 Career Development Assistant Professor of Physics
(On leave, fall)

Martin Zwierlein, PhD
Assistant Professor of Physics

Senior Lecturers

Peter Dourmashkin, PhD
Eric Hudson, PhD
George S. F. Stephans, PhD

Lecturer

Sean Robinson, PhD

Technical Instructors

Andrew Neely, BS
Eli Sidman, BS
Matthew Stratfuss, BS

Research Staff

Senior Research Scientists

Thomas William Donnelly, PhD
Earl S. Marmar, PhD
Frank E. Taylor, PhD
Richard J. Temkin, PhD

Professors Emeriti

Michel Baranger, PhD
Professor of Physics, Emeritus

Ahmet Nihat Berker, PhD
Professor of Physics, Emeritus

Aron Myron Bernstein, PhD
Professor of Physics, Emeritus

Robert J. Birgeneau, PhD
Professor of Physics, Emeritus

Hale Van Dorn Bradt, PhD
Professor of Physics, Emeritus

Bernard Flood Burke, PhD
Professor of Physics, Emeritus

George Whipple Clark, PhD
Professor of Physics, Emeritus

Eric Richard Cosman, PhD
Professor of Physics, Emeritus

Peter Theodore Demos, PhD
Professor of Physics, Emeritus

Thomas H. Dupree, PhD
Professor of Physics, Emeritus

Anthony Philip French, PhD
Professor of Physics, Emeritus

Jerome Isaac Friedman, PhD
Institute Professor, Emeritus

Jeffrey Goldstone, PhD
Professor of Physics, Emeritus

Lee Grodzins, PhD
Professor of Physics, Emeritus

Kerson Huang, PhD
Professor of Physics, Emeritus

Karl Uno Ingard, PhD
Professor of Aeronautics and Astronautics and Physics, Emeritus

Ali Javan, PhD
Professor of Physics, Emeritus

Arthur Kent Kerman, PhD
Professor of Physics, Emeritus

John Gordon King, PhD
Francis Friedman Professor of Physics, Emeritus

Vera Kistiakowsky, PhD
Professor of Physics, Emeritus
Daniel Kleppner, PhD
Lester Wolfe Professor of Physics, Emeritus

George Fred Koster, PhD
Professor of Physics, Emeritus

Benjamin Lax, PhD
Professor of Physics, Emeritus

Walter Hendrik Gustav Lewin, PhD
Professor of Physics, Emeritus

Earle Leonard Lomon, PhD
Professor of Physics, Emeritus

Stanislaw Obert, PhD
Professor of Physics, Emeritus

Louis Shreve Osborne, PhD
Professor of Physics, Emeritus

Irwin Abraham Pless, PhD
Professor of Physics, Emeritus

Saul Alan Rappaport, PhD
Professor of Physics, Emeritus

Lawrence Rosenson, PhD
Professor of Physics, Emeritus

Malcom Woodrow Pershing Strandberg, PhD
Professor of Physics, Emeritus

Rainer Weiss, PhD
Professor of Physics, Emeritus

Peter Adalbert Wolff, PhD
Professor of Physics, Emeritus

Physics Industry Forum

James Edward Young, PhD
Professor of Physics, Emeritus
Part 3

Interdisciplinary Programs
Interdisciplinary Undergraduate Programs and Minors

Undergraduate Programs
- American Studies
- Ancient and Medieval Studies
- Psychology
- Women’s and Gender Studies

Minors
- Applied International Studies
- Astronomy
- Biomedical Engineering
- Energy Studies
- Psychology
- Public Policy
- Women’s and Gender Studies
- HASS Minors in Regional Studies
American Studies
American Studies at MIT offers students the opportunity to organize subjects from various fields (e.g., history, anthropology, literature, political science, music, art and architecture, and urban studies) into personally constructed interdisciplinary programs as a way of gaining an integrated understanding of American society and culture.

American Studies is a field of concentration; it is also available as the humanities component of a joint major program (the 21E and 21S degrees), or as a full major by special arrangement. American Studies majors work out a coherent program of study with an advisor, usually including two subjects each in literature and history, although variations are possible. Major programs can center on a particular interest or aim more broadly at a comprehensive knowledge of various aspects of American life and culture.

The coordinator of American Studies is Professor Christopher Capozola, Room E51-180, 617-452-4960, capozzola@mit.edu.

Ancient and Medieval Studies
Through a wide variety of subjects drawn from a number of disciplines, this program provides a curricular framework for exploring topics in ancient and medieval studies which range from the history of ideas and institutions to that of material artifacts, literature, and certain original languages. The program spans the 6,500 years between 5000 BC and 1500 AD.

This program’s goal is to develop knowledge and understanding of the more distant past both for itself, in its uniqueness, and as an object of specifically modern questions and methods of inquiry. The program has an interest in the structure of institutions and social systems, and in relationships between the social order and learned traditions, values, ideologies, and ideas. Ancient and medieval studies derive a special claim to our interest from the fact that the record is so full and multiform and that much of it is of exceptionally high quality at once in substance and form.

Ancient and Medieval Studies is available as a concentration, a minor, and as a major departure within Course 21. Individual programs are to be determined in consultation with Professor William Broadhead, Room E51-175, 617-258-6668, williamb@mit.edu.

Program in Psychology
Psychology, the study of human mental life and behavior, is represented at MIT as a program in the School of Humanities, Arts, and Social Sciences, and as a concentration within the undergraduate HASS Requirement. Faculty and subjects in psychology are found in many MIT departments, including Brain and Cognitive Sciences, Management, History, and STS.

Students who wish to concentrate in psychology take a set of subjects from these departments, chosen in consultation with the concentration officer for the Program in Psychology (details are available at the SHASS Dean’s Office).

Students who wish a more substantial education in the field may pursue a Minor in Psychology, described in further detail in the following section on minors.

In addition to taking psychology subjects, undergraduates may take advantage of a wide range of research opportunities (generally via the Undergraduate Research Opportunities Program). Students should contact UROP coordinators from specific departments about projects currently available.

Psychology exists as a major at MIT only as a major departure within Course 21.

For more information about the Program in Psychology, contact Professor Alan Hein, Room 46-2047, 617-253-5759, hein@mit.edu, or the Brain and Cognitive Sciences Undergraduate Office, Room 46-2005, 617-253-0482.

Women’s and Gender Studies Program
Women’s and Gender Studies is an interdisciplinary inquiry into the significance of gender in human society and thought, both in the United States and around the world. Drawing on 50 years of scholarly work centered on gender analysis as well as research in many traditional fields, the program explores questions such as how women and men learn their gender roles; how different societies define women and men; and how ideas of sex and gender shape and are shaped by language, individual behavior, and social institutions such as law, religion, and education. Students explore the varied roles gender has played in different cultures, times, intellectual disciplines, and forms of creative expression. Debates over sexuality, reproduction, feminism, masculinity, the roles of women in history, politics, and science, and the intersections of gender with other social categories such as race, class, ethnicity are all topics addressed within this interdisciplinary field.

Most subjects in the field of Women’s and Gender Studies are cross-listed with other departments and are available to students in a wide range of fields of study. Through classes, UROPs, and events, both undergraduate and graduate students gain new perspectives on other disciplines such as computer science, law, philosophy, theater, management, literature, urban studies, psychology, and history. Women’s and Gender Studies subjects are open to all students.

The curriculum includes a core subject, Introduction to Women’s and Gender Studies, and a selection of subjects from many departments at the Institute, listed in the Special Programs section of the MIT Subject Listing & Schedule, http://student.mit.edu/catalog/index.cgi. A full major (known as a major departure) is available by special arrangement. Women’s and Gender Studies also offers a minor program (see below) and a concentration.

For more information, contact the coordinator, Heidy M. González, Room 14E-316, 617-253-8844.

M I N O R S

Minor in Applied International Studies
MIT students expect to be full participants in the global economy and research environment. The interdisciplinary HASS Minor in Applied International Studies prepares undergraduates for this reality by integrating international learning and experiences into their course of study. The six-subject minor is organized into three areas that address key components of international education.
The first area is language and culture. Lasting economic and social relationships in an international context are only possible for those who speak the language of a foreign country and are familiar with its cultural dimensions. Therefore, this part of the minor gives students the opportunity to become competent in a foreign language and learn about the culture of a foreign country or region.

The second area is international politics, economics, and history. This area offers students a set of subjects that help them to critically understand the economic, political, cultural and historical concepts and movements that create an increasingly interconnected world. Students take two or three subjects from this area. One of these subjects focuses on a chosen geographical region of specialization.

The third area is a significant international experience. Recognizing that theoretical learning should be combined with hands-on experience, the Minor in Applied International Studies includes a required stay-abroad component that exposes students to the challenges and opportunities of working and living in another culture. Students select their options in close consultation with the minor advisor. The experience abroad will typically take place in the form of an internship, research stay, service learning opportunity (for which students do not usually receive credit), or study abroad. In addition, students are required to take at least one subject that directly prepares them for these experiences before they go, and/or helps them reflect on their experience abroad after they return to campus. Students choose one or two subjects. Please keep in mind that current lists may not include new subjects.

Tier I

Language and culture: two or three subjects that expose students to foreign languages and/or cultures, beyond first-year language subjects. At least two subjects must focus on one country or region. Consult the minor advisor for a list of approved subjects.

Tier II

Politics, economics, and history: two or three subjects, one of which must focus on the geographical area chosen in Tier I. Consult the minor advisor for a list of approved subjects.

Tier III

International experience: one or two subjects from the following group, linked to study, research, or work experiences abroad. Similar subjects may be substituted with the approval of the minor advisor:

- 21F.019 Communicating across Cultures
- 17.921J/21F.099 Independent International Research Project (at least 9 units)
- 17.199J/21F.098 Working in a Global Economy

Additional information can be obtained from Serenella Sferza, minor advisor, Center for International Studies, E40-411, 617-452-2693, ssferza@mit.edu.

Minor in Astronomy

The Minor in Astronomy, offered jointly by the Department of Earth, Atmospheric, and Planetary Sciences and the Department of Physics, covers the observational and theoretical foundations of astronomy. The minor requires seven subjects as follows:

- **Astronomy, Mathematics, and Physics**
 - *Required subjects*: 8.03, 8.282J/12.402J, 18.03 or 18.034
- **Astrophysics**
 - *Choose one*: 8.284, 8.286, 8.292J/12.330J
- **Planetary Astronomy**
 - *Choose one*: 12.008, 12.400, 12.425
- **Observations**
 - 8.287J/12.410J
- **Independent Project in Astronomy**
 - *Choose one*: 8.UR, 8.ThU, 12.UR, 12.ThU, 12.411

Four of the subjects used to satisfy the requirements for the astronomy minor may not be used to satisfy any other minor or major.

Further information on the minor may be obtained from Professor James Elliot, 54-422, 617-253-6308, jle@mit.edu.

Minor in Biomedical Engineering

An interdepartmental Minor in Biomedical Engineering is available to all undergraduate students outside the biological engineering (Course 20) major. While the total number of subjects required for the minor is eight, all science and engineering majors at MIT already take two or three of these subjects for their major. Students who are not science or engineering majors can use two of the subjects to fulfill Restricted Electives in Science and Technology requirements. The total number of additional subjects required to complete the minor is thus five or six.

The Minor in Biomedical Engineering consists of the following:

Science Core

- 5.12 Organic Chemistry I
- 5.07 Biological Chemistry I
- 7.05 General Biochemistry

Engineering Core

- 18.03 Differential Equations
- 3.016 Mathematical Methods for Materials Scientists and Engineers
 - *plus a subject that applies differential equations to solve systems or macroscopic rate problems including, but not limited to one of the following*:
 - 2.003J Modeling Dynamics and Control I
2.005 Thermal-Fluids Engineering I
3.022 Microstructural Evolution in Materials
6.002 Circuits and Electronics
10.301 Fluid Mechanics
16.003 Unified Engineering III
16.004 Unified Engineering IV
22.01 Introduction to Ionizing Radiation

Biomedical Engineering Core
Two of the following:
20.110J Thermodynamics of Biomolecular Systems
20.390J Instrumentation and Measurement for Biological Systems
20.310J Molecular, Cellular, and Tissue Biomechanics
20.320J Analysis of Biomolecular and Cellular Systems
20.330J Fields, Forces, and Flows in Biological Systems
20.340J Materials for Biomedical Applications
20.360J Tissue Engineering for Analysis, Prevention, and Treatment of Human Disease
20.361J Molecular and Engineering Aspects of Biotechnology
20.370J Cellular Biophysics
20.371J Quantitative Systems Physiology
20.390J Foundations of Computational and Systems Biology

Restricted Electives
One of the following:
20.342J Molecular Structure of Biological Materials
20.380J Biological Engineering Design
20.411J Cell-Matrix Mechanics
20.441J Biomaterials: Tissue Interactions
20.451J Design of Medical Devices and Implants
20.482J Foundations of Algorithms and Computational Techniques in Systems Biology
3.052J Nanomechanics of Materials and Biomaterials
6.555J Biomedical Signal and Image Processing
9.29J Introduction to Computational Neuroscience
9.641J Introduction to Neural Networks
10.28 Chemical-Biological Engineering Laboratory
10.29 Biological Engineering Projects Laboratory
16.400J Human Factors Engineering
16.423J Aerospace Biomedical and Life Support Engineering
22.01 Introduction to Ionizing Radiation
22.058J Radiation Systems Engineering and Tomographic Imaging

Science/Engineering Elective
One additional subject from the list of Biomedical Engineering Core electives above and one subject from the following, or two additional subjects from the list of Biomedical Engineering Core electives above (no further elective is required):
20.104J Environmental Risks for Common Disease
20.109J Laboratory Fundamentals in Biological Engineering
20.201J Mechanisms of Drug Actions
20.450J Molecular and Cellular Pathophysiology

3.034J Organic and Biomaterials Chemistry
7.021J Introduction to Experimental Biology and Communication
7.03J Genetics
7.06J Cell Biology
7.20J Human Physiology

For further information, please visit the Biological Engineering website at http://web.mit.edu/be/ or contact the BE Academic Office, Room 56-651, 617-253-1712.

Minor in Energy Studies
Energy is a fundamentally multidisciplinary topic. Transforming the world’s energy systems requires combining expertise from numerous fields in engineering and technology, natural and social science, and policy. A diversity of disciplinary perspectives is necessary to equip students to work in this complex, evolving field.

The Energy Studies Minor for undergraduates is an Institute-wide program that complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges. The minor curriculum integrates these three domains in a thoroughly multidisciplinary program. A faculty oversight committee including representatives from all five Schools oversees the Energy Studies Minor program.

The Energy Studies curriculum has two components. The first is a core that provides an integrated perspective on energy and associated environmental challenges in three domains, each with a primary focus: Energy Science Foundations (fundamental laws and principles that govern energy sources, conversion, and uses), Social Science Foundations of Energy (social scientific perspectives and tools that explain human behavior in the energy context), and Energy Technology/engineering in Context (the application of laws and principles to a specific energy context). The second component is a customized program of electives that is selected by each student in close consultation with his or her Energy Minor faculty advisors.

Core Curriculum
Energy Science Foundations
Choose one of the following options:
Option 1:
8.21 Physics of Energy

Option 2: Two subjects from the following list:
2.005J Thermal-Fluids Engineering I
or
5.60J Thermodynamics and Kinetics
6.007 Electromagnetic Energy: From Motors to Lasers
or
12.340J Global Warming Science
Social Science Foundations of Energy

Required subject:
15.031J Energy Decisions, Markets, and Policies

Energy Technology/Engineering in Context

Choose one of the following:
2.60J Fundamentals of Advanced Energy Conversion
4.42J Fundamentals of Energy in Buildings
22.081J Introduction to Sustainable Energy

Energy Electives

Choose 24 units from the following:
1.071J Global Change Science (12 units)
1.801J Environmental Law, Policy, and Economics: Pollution Prevention and Control (12 units)
2.570 Nano-to-Macro Transport Processes (12 units)
2.612 Marine Power and Propulsion (12 units)
2.627 Fundamentals of Photovoltaics (12 units)
4.401 Architectural Building Systems (12 units)
5.92J Projects in Energy (9 units)
6.061 Introduction to Electric Power Systems (12 units)
6.131 Power Electronics Laboratory (12 units)
6.701 Introduction to Nanoelectronics (12 units)
10.04J A Philosophical History of Energy (12 units)
11.162 Politics of Energy and the Environment (12 units)
11.165 Infrastructure in Crisis: Energy and Security Challenges (12 units)
11.168 Enabling an Energy-Efficient Society (12 units)
11.369J Energy Policy for a Sustainable Future (12 units)
12.213 Alternate Energy Sources (6 units)
14.42J Environmental Policy and Economics (12 units)
14.44J Energy Economics and Policy (12 units)
15.026J Global Climate Change: Economics, Science, and Policy (9 units)
15.366 Energy Ventures (12 units)
15.933 Strategic Opportunities in Energy (6 units)
22.033 Nuclear Systems Design Project (12 units)
22.06J Engineering of Nuclear Systems (12 units)
SP.775 D-Lab: Energy (9 units)
STS.032 Energy, Environment, and Society (12 units)

Students who take more than one subject from any of the core areas may count the additional coursework toward the elective requirement.

Minor in Psychology

The Program in Psychology encompasses subjects from the Department of Brain and Cognitive Sciences; Sloan School of Management; Program in Science, Technology, and Society; and other areas. It administers the HASS Minor in Psychology.

The Minor in Psychology consists of six subjects arranged in three levels of study that provide students breadth in the field as a whole and some depth in one or two areas of specialization. The three levels are as follows.

Tier I One subject:
9.00 Introduction to Psychology

Tier II Two subjects, one from any two of the following areas:
Experimental Psychology
Personality and Social Psychology
Applied Psychology

Tier III Three subjects from one or two of the following areas:
Experimental Psychology
Personality and Social Psychology
Applied Psychology

No more than three of the subjects used to satisfy the requirements for the major in brain and cognitive sciences may be used for the Minor in Psychology.

For a listing of available subjects in these areas, consult the SHASS Dean’s Office, Room 4-240, email hass-www@mit.edu, or the BCS Undergraduate Office, Room 46-2005, 617-253-0482; for information about the Psychology Program, contact the BCS Undergraduate Office.

Minor in Public Policy

Public policy is an academic field that focuses on how government action can enhance the quality of life of citizens. The interdisciplinary HASS Minor in Public Policy is intended to provide a framework for students in engineering and sciences who are interested in the role of public policy in the field of their technical expertise. Because the Course 11 major has a strong public policy element and several subjects are redundant, Course 11 majors are not eligible for the Minor in Public Policy.

The six-subject minor is organized along three dimensions. The first dimension is a foundation built on the study of market and nonmarket institutions in which public policy decisions are made and implemented. All students take two subjects that introduce them to justifications for government action—justifications that form the fundamental basis for making public policy. The second dimension is the study of the methods for assessing the impacts of policy change on policy outcomes. The purpose is to provide students with a basic understanding of the range of approaches professionals use to evaluate public policies. The third dimension is an in-depth study of policymaking in one substantive field. All minors specialize in an area of public policy, such as science and technology policy, and take three subjects within that specialty. Students may also do an internship to fulfill one part of the three-subject requirement.

Contact Amanda Graham, director, MITEI Education Office, Room E19-370K, 617-253-8995, agraham@mit.edu, or visit http://web.mit.edu/mitei/education/minor.html for more information.
Tier I Introduction to Markets, Politics, and Public Policy (two required subjects):
 11.002J/17.30J Making Public Policy
 and
 14.01 Principles of Microeconomics

Tier II Policy Analysis (one required subject):
 11.003J/17.30J Methods of Policy Analysis

Tier III Policy Concentration
Three subjects chosen in one of the following tracks:
 Social and educational policy, environmental policy, infrastructure policy, science and technology policy, labor and industrial policy, international development policy, security and defense policy, and urban and regional policy. Students may propose their own track for approval by their minor advisor; students may substitute a semester-long internship in their chosen field for one subject, with the approval of their minor advisor.

The minor advisors are Professor Andrea Campbell, Room E53-461, 617-452-2295, acampbel@mit.edu, in Political Science, and Professor Judith Layzer, Room 9-328, 617-253-5196, jlayzer@mit.edu, in Urban Studies and Planning. Students can obtain additional information from Sandra Wellford, undergraduate administrator in Urban Studies and Planning, Room 7-346A, 617-253-9403, or Tobie Weiner, undergraduate administrator in Political Science, Room E53-483, 617-253-3649, iguanatw@mit.edu.

Minor in Women’s and Gender Studies
The Minor Program in Women’s and Gender Studies is designed for students who, in addition to the focus of their major program of study, seek a fuller understanding of the ways in which gender and other constructs have shaped our understanding of ourselves and of the communities and world in which we live. The minor program consists of six Women’s and Gender Studies subjects, one of which may be taken at Harvard or Wellesley with the permission of the director, arranged into three levels of study as follows:

Tier I Required introductory subject:
 SP.401 Introduction to Women’s and Gender Studies

Tier II Four subjects, at least one of which is drawn from each category:
 Humanities and the arts
 Social and natural sciences

Tier III One advanced seminar:
 Feminist Political Thought or
 An upper-level Women’s and Gender Studies subject as determined by the director

For more information, contact the coordinator, Heidy M. González, Women’s and Gender Studies, Room 14E-316, 617-253-8844, wgs@mit.edu, or visit http://web.mit.edu/wgs/.

HASS Minors in Regional Studies
Several Minors in Regional Studies are offered at MIT: African and African Diaspora Studies, East Asian Studies, Latin American Studies, Middle Eastern Studies, and Russian Studies. These interdisciplinary programs provide MIT undergraduates with valuable opportunities to acquire knowledge of a particular country or region in conjunction with proficiency in a foreign language. This better prepares them for academic, business, and government careers in a world where regions and countries are increasingly interdependent.

Because the nature of these minors is cross-disciplinary, combining foreign language study with humanities, arts, and social sciences, they are arranged into the following four areas of study:

Area I: Language (Intermediate level)
Area II: Humanities and the Arts
Area III: Social Sciences
Area IV: Historical Studies

Students are required to take six subjects (at least three of which must be MIT subjects) in the following configuration: two language subjects, beginning at the second year or third term (Area I), and four other subjects, chosen from at least two of the other three areas. If a student already has achieved the equivalent of intermediate-level proficiency, he or she can take either two more advanced-level language subjects or two more subjects from Areas II, III, or IV in place of the intermediate language subjects. Languages not presently taught at MIT may be taken at Harvard or Wellesley, or elsewhere during the summer with the permission of the minor advisor.

Details on each of the minors are given below. Lists of subjects that are appropriate for a HASS minor in each of the regional studies, as well as additional information about minors, advisors, etc., can be obtained from the relevant minor advisor or from the SHaSS Dean’s Office, Room 4-240, 617-253-4441, email hass-www@mit.edu.

Minor in African and African Diaspora Studies
The Minor in African and African Diaspora Studies is designed for students interested in the cultures and experiences of the peoples of African descent on the continent and elsewhere. The minor includes study of economic and political systems as they reflect the African continent and areas of the African diaspora, and the histories, languages, and literatures of Africans and peoples of African descent elsewhere. All of Africa falls within the geographical scope of the minor. A student may concentrate on a particular region or on any of the broad groupings of African cultures, such as Arabic-speaking, Anglophone, Francophone, or Lusophone Africa. Equally, a student choosing to focus on the African diaspora may concentrate on any group of African-descended populations in the Americas. Students focusing on either principal area (Africa or the African diaspora) must also take at least one subject which deals with the other area or with interactions between them. The goal of the minor program is to emphasize...
the importance of Africa and people of African descent in world cultural, economic, and social developments, and to provide a balance between language, humanistic, historical, and contemporary study.

Students are expected to have two intermediate (Levels III and IV) subjects in either the official language of the region of study or in an indigenous African language. In cases where the student is specializing in Anglophone Africa or an English-speaking region of the diaspora, and does not undertake study of an indigenous language, or is a native speaker of the official language(s) of a country or region of emphasis, this component would be replaced by literature or other humanities subjects.

Additional information can be obtained from the minor advisor, Professor Elizabeth Garrels, Room 14N-323, 617-253-9688, egarrels@mit.edu, or from the SHASS Dean’s Office, Room 4-240, 617-253-4441, email hass-www@mit.edu.

Minor in East Asian Studies
The Minor in East Asian Studies is designed for students interested in the language, history, politics, and culture of Asia. East Asia includes the countries which share a common background in the Chinese classical tradition: present-day People’s Republic of China, Taiwan, Korea, Japan, and Vietnam; but the core offerings at MIT cover China and Japan. The goal of the minor program is to provide balanced coverage of language, humanistic, and social science offerings on the region and to expose students to comparative perspectives.

The language requirement can be satisfied by taking two intermediate (Levels III and IV) subjects in an East Asian language (Mandarin Chinese, Japanese, Korean, or Vietnamese). Chinese and Japanese are taught at MIT.

Additional information can be obtained from the minor advisor, Professor Emma Teng, Room 14N-421, 617-253-4536, eteng@mit.edu, or from the SHASS Dean’s Office, Room 4-240, 617-253-4441, email hass-www@mit.edu.

Minor in Latin American Studies
The Minor in Latin American Studies is designed for students interested in the languages, history, politics, and cultures of Latin America. Currently, more relevant offerings at MIT concentrate on those areas formerly colonized by Spain, although students are not required to focus their study exclusively on these areas. They are encouraged to develop a program that is both international and comparative in perspective and that takes into account the heterogeneous cultural experiences of people living in the vast territory loosely termed Latin America, as well as of those living in the United States who identify themselves as Latino.

Two language subjects beginning at Levels III and IV, either in Spanish or Portuguese, satisfy the Area I language requirement. MIT offers Levels III and IV of Spanish every semester and will begin to offer Level III of Portuguese in fall 2010 and Level IV in spring 2011. All students opting for the minor are required to take 21F.084/17551/21A.430 Introduction to Latin American Studies.

Additional information can be obtained from the minor advisor, Professor Elizabeth Garrels, Room 14N-323, 617-253-9688, egarrels@mit.edu, or from the SHASS Dean’s Office, Room 4-240, 617-253-4441, email hass-www@mit.edu.

Minor in Middle Eastern Studies
Middle Eastern Studies at MIT offers students the opportunity to explore the connections among culture, society, politics, economics, technology, and environment in the Middle East, including North Africa. MIT offers a number of subjects open to undergraduates that provide a variety of perspectives on the ancient, Islamic, and modern Middle East. The goal of the HASS Minor Program in Middle Eastern Studies is to lead the student from the basic language into survey subjects and then into more focused studies of individual countries or specific historical periods, and to encourage analysis of the main methodological and conceptual issues in Middle Eastern Studies.

Two intermediate (Levels III and IV) subjects in one of the following Middle Eastern languages are required: Arabic, Hebrew, Persian, or Turkish. Because MIT does not offer instruction in these languages, students may satisfy the Area I language requirement at Harvard University or Wellesley College. They may satisfy the language requirement at other institutions provided they receive permission in advance from the HASS minor advisor in Middle Eastern Studies.

Additional information can be obtained from the minor advisor, Professor Philip S. Khoury, Room 10-280, 617-253-0887, or from the SHASS Dean’s Office, Room 4-240, 617-253-4441, email hass-www@mit.edu.

Minor in Russian Studies
The Russian Regional Studies Minor is intended for students seeking an interdisciplinary program of study centered on Russia and the former Soviet Union. The historical, cultural, and political importance of Russia itself, as well as the nature of MIT’s subject offerings, suggest a primary concentration on that particular country, the dominant element in the former Soviet Union. The program is, however, regional in spirit, given both the multinational and multicultural role of the Russian Republic and the likelihood that other former Soviet Republics choose to remain in political and economic association with it.

Two intermediate (Levels III and IV) subjects in the Russian language are required to satisfy Area I. These subjects are not offered at MIT, but may be taken at Harvard University or Wellesley College through cross-registration. For more information, see Undergraduate Education in Part 1.

Additional information can be obtained from the minor advisor, Professor Elizabeth Wood, Room E51-282, 617-253-3255, or from the SHASS Dean’s Office, Room 4-240, 617-253-4441, email hass-www@mit.edu.
<table>
<thead>
<tr>
<th>Interdisciplinary Graduate Programs</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation for Design and Optimization</td>
<td>280</td>
</tr>
<tr>
<td>Leaders for Global Operations</td>
<td>280</td>
</tr>
<tr>
<td>Operations Research</td>
<td>281</td>
</tr>
<tr>
<td>Polymer Science and Technology</td>
<td>281</td>
</tr>
<tr>
<td>System Design and Management</td>
<td>281</td>
</tr>
<tr>
<td>Technology and Policy</td>
<td>282</td>
</tr>
<tr>
<td>Computational and Systems Biology</td>
<td>283</td>
</tr>
<tr>
<td>Harvard-MIT Division of Health Sciences and Technology</td>
<td>285</td>
</tr>
<tr>
<td>Joint Program with Woods Hole Oceanographic Institution</td>
<td>291</td>
</tr>
<tr>
<td>Microbiology</td>
<td>293</td>
</tr>
<tr>
<td>Transportation</td>
<td>295</td>
</tr>
</tbody>
</table>
Interdisciplinary Graduate Degrees

Computation for Design and Optimization
SM Computation for Design and Optimization
PhD Computational and Systems Biology

Computation for Design and Optimization Program
Computation for Design and Optimization (CDO) is an interdisciplinary master’s degree program that provides students with a strong foundation in computational methods for the design and operation of complex engineered and scientific systems. The CDO program is administered by the Center for Computational Engineering.

The CDO program educates students in the formulation, analysis, implementation, and application of computational approaches to designing and operating engineered systems. The curriculum’s common core serves all engineering disciplines, and an elective component focuses on particular applications. The program emphasizes:

- Breadth through introductory courses in numerical analysis and simulation, and optimization
- Depth in optimization methods and numerical methods for partial differential equations
- Multidisciplinary aspects of computation
- Hands-on experience through projects, assignments, and a master’s thesis

Participating faculty come from the Schools of Engineering, Science, and Management, including the Departments of Aeronautics and Astronautics, Biological Engineering, Chemical Engineering, Civil and Environmental Engineering, Electrical Engineering and Computer Science, Engineering Systems, Mathematics, Mechanical Engineering, and Nuclear Science and Engineering.

The research interests of CDO faculty cover a great variety of computationally intensive areas in engineering, science, and mathematics. Recent research has included such far-ranging topics as micromachined devices, guidance/control systems, imaging systems, distribution networks, telecommunications systems, and transportation systems. CDO faculty research encompasses applications in areas such as aircraft design, materials design, manufacturing operations scheduling, and applied optimization in operations and industrial engineering.

Inquiries
For further information about the CDO program, contact Laura Koller, Room 35-329, 617-253-3725, cdo_info@mit.edu; or visit http://mit.edu/cdo-program/.

Leaders for Global Operations Program
The Leaders for Global Operations (LGO) program is an educational and research partnership among global operations companies and MIT’s School of Engineering and the MIT Sloan School of Management. Its objective is to discover, codify, teach, and otherwise disseminate guiding principles for world-class manufacturing and operations.
The LGO program combines graduate education in engineering and management for those with two or more years of work experience who aspire to leadership positions in manufacturing or operations companies. A required 6.5-month internship provides opportunity to complete a research project on site at one of LGO’s partner companies. The internship leads to a dual-degree thesis, culminating in two master’s degrees—an SM in management or an MBA, and an SM in engineering. The program is offered jointly through the MIT Sloan School of Management and the School of Engineering master’s programs in:

- Aeronautics and Astronautics
- Biological Engineering
- Chemical Engineering
- Civil and Environmental Engineering
- Electrical Engineering and Computer Science
- Engineering Systems
- Materials Science and Engineering
- Mechanical Engineering

For additional information, see the program description under Engineering Systems Division or the MIT Sloan School of Management, or visit http://lgo.mit.edu/.

Operations Research Programs

Operations research (OR) is the discipline of applying advanced analytical methods to help make better decisions. It uses mathematical modeling, analysis, and optimization in a holistic approach to improving our knowledge of systems and designing useful, efficient systems. Its applications range from engineering to management, and from industry to the public sector.

Operations research has helped advance the mathematics of optimization, applied probability, and statistics. OR researchers, collaborating with colleagues in related fields, have created innovative methods for pricing goods and services, and for marketing them. They have contributed to improving transportation, developing new financial instruments and auctions, and analyzing biological and medical information, as well as many more areas. In today’s complex and interconnected world, the rigorous techniques and methodologies of operations research have become especially important aids to informed decision making.

The Operations Research Center (ORC) coordinates an SM program and a PhD program, providing a strong background in OR theory as well as the practical techniques used in building models for a wide variety of applications.

Founded as an interdepartmental program, the Operations Research Center has maintained its interdisciplinary roots. Its faculty comes from nine different departments at MIT, including the Sloan School of Management, five of the engineering departments, the Department of Mathematics, the Department of Economics, and the Department of Urban Studies and Planning.

For further information, contact Laura Rose, Room E40-143, 617-253-9303, lrose@mit.edu.

Program in Polymer Science and Technology

The Schools of Engineering and Science have established a graduate-level Program in Polymer Science and Technology (PPST). It is open to qualified students admitted to the graduate program(s) of one of the following four MIT departments: Chemical Engineering, Chemistry, Materials Science and Engineering, and/or Mechanical Engineering.

PPST consists of an initial academic phase in which all students participate (regardless of previous background and research interest); followed by research in a selected area of specialization. The program leads to the doctoral degree; if desired, a master’s degree can be obtained through the student’s home department.

The core curriculum, taken by all students, provides a common base in the field of polymers. It is broad, rigorous, and covers both elementary and advanced subjects spanning the entire range from the molecular level to the continuum. This curriculum takes up the first two terms in the graduate program.

The transition from the academic phase to research is marked by the qualifying exam, which consists of both oral and written sections. The exams are offered at the end of each spring term and are based on the PPST core curriculum. Successful completion of the exam leads to selection of a research project and the preparation and defense of a thesis proposal.

Any participating faculty member at MIT can act as a research supervisor. The thesis supervisor(s) advises the graduate student on a continuing basis throughout the time of the research project. Completion and successful defense of the thesis before PPST and departmental faculty fulfill the requirements for the doctoral degree.

For more information, including admission and financial aid procedures, contact the director, Professor Robert Cohen, Room 66-554, 617-253-3777, or visit http://web.mit.edu/PPST/.

System Design and Management Program

MIT’s System Design and Management (SDM) program, offered jointly by the School of Engineering and the MIT Sloan School of Management, is a master’s program for technical professionals seeking to build upon their backgrounds and experience in order to advance to positions of leadership in their profession.

The program leads to a Master of Science in Engineering and Management and represents a partnership of industry, government, and MIT for educating technically grounded leaders of 21st-century enterprises. It is MIT’s first degree program to be offered with a distance learning option in addition to a full-time in-residence option.

For additional information, see the program description under Engineering Systems Division or the Sloan School of Management in Part 2, or visit http://sdm.mit.edu/.
Technology and Policy Program
The Master of Science in Technology and Policy is an engineering research degree with a strong focus on the role of technology in policy formulation, analysis, and evaluation. The Technology and Policy Program (TPP) curriculum provides a solid grounding in technology and policy by combining advanced subjects in a student’s chosen technical field with courses in economics, politics, and law, and by requiring completion of a research thesis. To prepare participants for effective professional practice, TPP stresses effective leadership and communication. It also encourages students to participate in TPP’s summer internship program, which places students in government and industry in the United States and around the world.

Many students combine the TPP curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning.

For additional information, see the program description under Engineering Systems Division in Part 2, or visit http://web.mit.edu/tpp/.
The field of computational and systems biology represents an integration of concepts and ideas from the biological sciences, engineering disciplines, and computer science. Recent advances in biology, including the human genome project and massively parallel approaches to probing biological samples, have created new opportunities to understand biological problems from a systems perspective. Systems modeling and design are well established in engineering disciplines but are relatively new to biology. Advances in computational and systems biology require multidisciplinary teams with skill in applying principles and tools from engineering and computer science to solve problems in biology and medicine. To provide education in this emerging field, the Computational and Systems Biology (CSB) program integrates MIT’s world-renowned disciplines in biology, engineering, mathematics, and computer science. Graduates of the program will be uniquely prepared to make novel discoveries, develop new methods, and establish new paradigms. They will also be well-positioned to assume critical leadership roles in both academia and industry, where this field is becoming increasingly important.

Computational and systems biology, as practiced at MIT, is organized around “the 3 Ds” of description, distillation, and design. In many research programs, systematic data collection is used to create detailed molecular- or cellular-level descriptions of a system in one or more defined states. Given the complexity of biological systems and the number of interacting components and parameters, system modeling is usually conducted with the aim of distilling the essential or most important subsystems, components, and parameters, and of obtaining simplified models that retain the ability to accurately predict system behavior under a wide range of conditions. Distillation of the system can increase the interpretability of the models in relation to evolutionary and engineering principles such as robustness, modularity, and evolvability. The resulting models may also serve to facilitate rational design of perturbations to test understanding of the system or to change system behavior (e.g., for therapeutic intervention), as well as efforts to design related systems or systems composed of similar biological components.

More than 90 faculty members at the Institute participate in MIT’s Computational and Systems Biology Initiative (CSBI). These investigators span nearly all departments in the School of Science and the School of Engineering, providing CSB students the opportunity to pursue thesis research in a wide variety of different laboratories. It is also possible for students to arrange collaborative thesis projects with joint supervision from faculty members with different areas of expertise. Areas of active research include computational biology and bioinformatics, gene and protein networks, regulatory genomics, molecular biophysics, instrumentation engineering, cell and tissue engineering, predictive toxicology and metabolic engineering, imaging and image informatics, nanobiology and microsystems, biological design and synthetic biology, neurosystems biology, and cancer biology.

The CSB PhD program is an Institute-wide program that has been jointly developed by the Departments of Biology, Electrical Engineering and Computer Science, and Biological Engineering. The program integrates biology, engineering, and computation to address complex problems in biological systems, and CSB PhD students have the opportunity to work with CSBi faculty from across the Institute. The curriculum has a strong emphasis on foundational material to encourage students to become creators of future tools and technologies, rather than merely practitioners of current approaches. Applicants must have an undergraduate degree in biology (or a related field), chemistry, computer science, mathematics, statistics, physics, or an engineering discipline, with dual-emphasis degrees encouraged.

All students pursue a core curriculum that includes classes in biology and computational biology, along with a class in computational and systems biology based on the scientific literature. Advanced electives in science and engineering enhance both the breadth and depth of each graduate’s education. During their first year, in addition to coursework, students carry out rotations in research groups to gain a broader exposure to work at the frontier of this field, and to identify a suitable laboratory in which to conduct thesis research. CSB students also serve as teaching assistants during one semester in the second year to further develop their communication skills and to facilitate their interactions across disciplines. Students also participate in training in the responsible conduct of research to prepare them for the complexities and demands of modern scientific research. The total length of the program, including coursework, qualifying examinations, thesis research, and preparation of the thesis is roughly five years.

Curriculum

The CSB curriculum has two components. The first is a core that provides foundational knowledge of both biology and computational biology. The second is a customized program of electives that are selected by each student in close consultation with members of the CSB graduate committee. The goal is to allow students broad latitude in defining their individual area of interest, while at the same time providing oversight and guidance to ensure that training is rigorous and thorough.

Core Curriculum

The core curriculum consists of three classroom subjects plus a set of three research rotations in different research groups. The classroom subjects fall into three areas described below.

Modern Biology (One Subject): A term of modern biology at MIT strengthens the biology base of all students in the program. Subjects in cell biology, molecular biology, neurobiology, biochemistry, or genetics fulfill this requirement. The particular course taken by each student will depend on their background and will be determined in consultation with graduate committee members.

Computational Biology (One Subject): A term of computational biology provides students with a background in the application of computation to biology, including analysis and modeling of sequence, structural, and systems data. This requirement can be fulfilled by 7.91J/20.490j Foundations of Computational and Systems Biology.

Topics in Computational and Systems Biology (One Subject): All first-year students in the program participate in CSB.100J/7.89j Topics in Computational and Systems Biology, an exploration of problems and approaches in the field of computational and systems biology
through in-depth discussion and critical analysis of selected primary research papers. This subject is restricted to first-year PhD students in CSB or related fields in order to build a strong community among the class. It is the only subject in the program with such a limitation.

Research Group Rotations (Three Rotations):
To assist students with lab selection and provide a range of research activities in computational and systems biology, students participate in three research rotations of one to two months’ duration during their first year. Students are encouraged to gain experience in experimental and computational approaches taken across different disciplines at MIT.

Advanced Electives
The requirement of four advanced electives is designed to develop both breadth and depth. The electives add to the base of the diversified core and contribute strength in areas related to student interest and research direction. To develop depth, two of the four advanced electives must be in the same research area or department. To develop breadth, at least one of the electives must be from an engineering discipline and at least one from biological sciences (including chemistry). Each student designs a program of advanced electives that satisfies the distribution and area requirements in close consultation with members of the graduate committee.

Additional Subjects: As is typical for students in other doctoral programs at MIT, CSB PhD students may take classes beyond the required diversified core and advanced electives described above. These additional subjects can be used to add breadth or depth to the proposed curriculum, and might be useful to explore advanced topics considered for the thesis research in later years. The CSB Graduate Committee will work with each graduate student to develop a path through the curriculum appropriate for his or her background and research interests.

Qualifying Exams: In addition to coursework and a research thesis, each student must pass a written and an oral qualifying examination at the end of the second year or the beginning of the third year. The written examination involves preparing a research proposal based on the student’s thesis research, and presenting the proposal to the examination committee. This process provides a strong foundation for the thesis, incorporating new research ideas and refinement of the scope of the research project. The oral examination is based on the coursework taken and on related published literature. The qualifying exams are designed to develop and demonstrate depth in a selected area (the area of the thesis research) as well as breadth of knowledge across the field of computational and systems biology.

FACULTY AND STAFF

CSB Graduate Committee
Christopher Burge, PhD
Whitehead Career Development Professor of Biology
Chair of the Committee

Mark Bathe, PhD
Assistant Professor of Biological Engineering

Ernest Fraenkel, PhD
Assistant Professor of Biological Engineering

Alan Davis Grossman, PhD
Praecis Professor of Biology

Amy E. Keating, PhD
Sizer Career Development Associate Professor of Biology

Aviv Regev, PhD
Burroughs Wellcome Fund Career Development Assistant Professor of Biology

Joel Voldman, PhD
Associate Professor of Electrical Engineering

Ron Weiss, PhD
Associate Professor of Computer Science and Biological Engineering

Forest White, PhD
Associate Professor of Biological Engineering

Jacob K. White, PhD
Cecil H. Green Professor of Electrical Engineering

Mehmet Fatih Yanik, PhD
Robert J. Shillman Career Development Associate Professor of Electrical Engineering
HARVARD-MIT DIVISION OF HEALTH SCIENCES AND TECHNOLOGY

Founded in 1970, the Harvard-MIT Division of Health Sciences and Technology (HST) is one of the oldest and largest biomedical engineering and physician-scientist training programs in the United States and the longest-standing collaboration between Harvard and MIT.

HST’s unique interdisciplinary educational program brings engineering as well as the physical and biological sciences from the scientist’s bench to the patient’s bedside. Conversely, it brings clinical insight from the patient’s bedside to the laboratory bench. In this way, HST students are trained to have deep understanding of engineering, physical sciences, and the biological sciences, complemented with hands-on experience in the clinic or in industry; and they become conversant with the underlying quantitative and molecular aspects of medicine and biomedical science. Within the division, more than 400 graduate students work with eminent faculty and affiliated faculty members from throughout the MIT and Harvard communities.

In addition to its outstanding record of accomplishment for research in human health care, HST educational programs are distinguished by three key elements:

- A strong quantitative orientation
- Required hands-on experience in a clinical or industry setting
- A focused interdisciplinary research project

HST offers seven multidisciplinary options for graduate study:

- Biomedical Enterprise Master’s Program
- Master of Engineering in Biomedical Engineering
- Medical Sciences MD Program
- Medical Engineering and Medical Physics Doctoral Program
- Speech and Hearing Bioscience and Technology Doctoral Program
- Biomedical Informatics Training Program
- Graduate Education in Medical Sciences Certificate Program

MASTER’S PROGRAMS

Biomedical Enterprise Program
Launched in 2002 as a collaboration with the MIT Sloan School of Management, HST’s Biomedical Enterprise Program (BEP) is designed for individuals with business experience and a strong foundation in science and engineering. BEP prepares students for leadership roles in the transfer of new technologies from concept through product development to clinical adoption in the context of existing companies or newly established ventures.

Acknowledging that medical innovations in laboratory research and clinical care benefit society only when they become commercial products and services, BEP offers a unique curriculum that leverages the strengths of HST, MIT Sloan, Harvard Medical School (HMS), and the affiliated hospitals. BEP students take preclinical and engineering courses alongside HST’s MD and PhD students, and business courses with other MIT Sloan students. They participate in unique integrative courses designed to address the specific needs of starting, growing, and managing a biomedical enterprise. These courses were developed and are taught by a team of HST and Sloan faculty, including several local entrepreneurs. Also included in the curriculum is a hands-on hospital-based clinical experience that pairs students with physician-scientists and provides insight into the hospital environment and patient care.

BEP offers two dual-degree options for individuals who need training in both management and science, and a one-year degree option for business executives who already have a graduate degree in management. The dual-degree option leads to an MBA or SM degree from MIT Sloan and an SM degree from HST. The single-degree option leads to the SM degree from HST.

Further information is available at http://bep.mit.edu/ or by contacting bep@mit.edu.

Master of Health Sciences and Technology
HST offers a general master’s degree program that can be coupled to other HST degree programs, such as the MD degree described below. To accommodate a wide range of student interests, the curriculum for the Master of Health Sciences and Technology degree is determined by agreement between the student and his or her advisor, and approval by HST’s Graduate Committee. There are no specific requirements other than the Institute requirement for 66 subject units and a thesis. In each case, the Institute requirement for the master’s degree must be satisfied. Further information can be obtained from HST’s Academic Office, Room E25-518, 617-253-7470.

Master of Engineering in Biomedical Engineering
The Master of Engineering (MEng) in Biomedical Engineering aims to educate students at the interface between engineering and biology or medicine, preparing them for leadership positions in the medical products, pharmaceutical, and biotechnology industries. The five-year program leads to a bachelor’s degree in a science or engineering discipline and a Master of Engineering in Biomedical Engineering. The program emphasizes engineering applications in systems physiology and clinical medicine; it is of particular value to students interested in applying biomedical engineering to the basic understanding of disease processes in the post-genomic era, and is designed for individuals desiring a medical and clinical focus in their careers.

Students take subjects that enable them to apply engineering expertise to problems in the medical and clinical sciences. Admission to HST’s MEng program is open only to current MIT undergraduate students and requires candidates to demonstrate adequate quantitative and engineering credentials through coursework as part of their undergraduate degree program. Students interested in applying should submit a standard MIT graduate application by the end of their junior year.

In addition to satisfying the undergraduate requirements of their departmental program, candidates also are expected to complete subjects in differential equations (18.03); organic chemistry (5.12); biochemistry (7.05 or 5.07); and one engineering transport or systems subject (e.g., 2.005, 3.185, 6.002, 10.310).

More detailed program objectives and the requirements can be found on the HST website, http://hst.mit.edu/.
DOCTORAL PROGRAMS

Medical Sciences
HST’s Medical Sciences Program leads to the MD degree from Harvard Medical School. It is oriented toward students with a strong interest and background in quantitative science, especially in the biological, physical, engineering, and chemical sciences. The subjects in human biology developed for this curriculum represent the joint efforts of life scientists, physicians, physical scientists, and engineers from the faculties of Harvard and MIT.

The programs of study are designed to meet the interests and needs of the individual student. The student is encouraged to pursue advanced study in areas of interest that may complement the subjects offered in the division. Such study may be undertaken as part of the MD degree requirements or may be pursued in a program that combines the MD with a master’s or doctoral degree. HST students join the students of the regular Harvard Medical School curriculum in the clinical clerkships.

Because HST is committed to educating physicians who have a deep understanding of the scientific basis of medicine and who are well equipped for an interdisciplinary research career, HST encourages students in the MD curriculum to devote time to research and requires a thesis for completion of the degree. Many MD students desire even more research training than is possible during the standard four-year MD curriculum. For such students, one option is to pursue a formal PhD program in addition to an MD program. Another option expands the MD program to five or more years in order to include a major research training component. This option may lead to a master’s degree in some sciences and technology in addition to the MD degree.

The general requirements for a master’s degree at MIT are given under Graduate Education in Part 1. The subject requirements must be in addition to the minimum number of units required for the MD degree. Subjects may be chosen in scientific, technical, or clinical areas relevant to the student’s research area. Thesis research may be conducted at MIT, Harvard, or at Harvard-affiliated teaching hospitals. The completed thesis must be approved by the thesis supervisor and submitted to HST’s Graduate Committee. The master’s thesis simultaneously fulfills the thesis requirement for HST’s MD degree. The two degrees are not formally linked; the MD degree is not a prerequisite for the master’s degree.

Further details on the Medical Sciences Program and application forms may be obtained from the Office of Admissions, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115. Applications must be submitted by October 15 of the year before desired matriculation. For further information, candidates can contact HST’s medical sciences admissions coordinator at hst-md-admissions@mit.edu.

Medical Engineering and Medical Physics
The Medical Engineering and Medical Physics (MEMP) Program is a five-to-seven–year program that leads to the PhD in Medical Engineering and Medical Physics awarded by MIT or by the Harvard Faculty of Arts and Sciences. The program trains students as engineers or physical scientists who also have extensive knowledge of the medical sciences. By understanding engineering and physical science applications, as well as their clinical implications, graduates of this program are well positioned to define new questions and formulate novel approaches in biomedical research.

The MEMP program is founded on a philosophy of openness and collaboration, characteristics that encourage innovative and independent thinking and creativity. This philosophy is fostered by the unique environment in which MEMP students study. While each MEMP student has depth in one classical discipline of engineering or physical science, the collective community has students in all disciplines. MEMP students also have peers with diverse career paths in medicine, science, engineering, business, and government. This community promotes an open exchange of ideas and exposes students to different perspectives on the health sciences. Moreover, MEMP students have access to research opportunities in labs at Harvard, MIT, and the Harvard teaching hospitals. Students can do research with faculty at any of these institutions and have many opportunities through classes, events, and projects to interact with faculty from all of these institutions.

The program’s academic curriculum includes three phases that prepare students to be medical innovators who will advance human health. First, HST provides MEMP students with a thorough graduate education in a classical discipline of engineering or physical science. Each student selects a concentration area, such as mechanical engineering, chemistry and chemical engineering, materials science, electrical engineering, computer science, physics, aeronautics and astronautics, or nuclear engineering, and completes substantial coursework in this discipline.

Students then become conversant in the biological sciences through preclinical coursework followed by a series of clinical experiences. They acquire a hands-on understanding of clinical care, medical decision making, and the role of technology in medical practice both in the classroom and in patient care. Because the interface of technology and clinical medicine represents a continuum that extends from the molecular to the whole-organism levels, MEMP offers two distinct but related curricular sequences in the biomedical sciences: the cellular and molecular medicine sequence and the systems physiology and medicine sequence.

Finally, MEMP students investigate important problems at the interfaces of science, technology, and clinical medicine through individualized research projects that prepare them to undertake independent research. MEMP students have the opportunity to perform thesis research in laboratories at MIT, Harvard, and the Harvard affiliated teaching hospitals.

Bioinformatics and integrative genomics (BIG), neuroimaging and bioastronautics are areas of specialization within MEMP for which HST offers specially designed training programs. MEMP candidates may choose to apply through MIT, Harvard, or both. Those applying to MEMP through MIT should submit a single application. Those applying to MEMP through Harvard must also apply to the School of Engineering and Applied Sciences or the Biophysics Program. Additional information about applying to MEMP is available at http://hst.mit.edu/public/admissions/.
Speech and Hearing Bioscience and Technology

HST’s doctoral program in Speech and Hearing Bioscience and Technology (SHBT), formerly Speech and Hearing Sciences, prepares students with an undergraduate background in science or engineering to have a broad acquaintance with the field of speech and hearing, and to develop specialized knowledge that focuses on a particular approach in research. The only program of its type in the country—and the only doctoral training program funded in this area by the National Institutes of Health—SHBT is designed to develop research scientists who can apply the concepts and methods of the physical and biological sciences to basic and clinical problems in speech and hearing using innovative research. No other research training program provides the multidisciplinary depth and breadth offered by SHBT. The five-to-seven-year program leads to a PhD in speech and hearing bioscience and technology from MIT. SHBT’s more than 50 participating faculty members represent 10 academic departments from Harvard and MIT, with research facilities at MIT, Harvard University, Harvard Medical School and affiliated teaching hospitals, and the Massachusetts Eye and Ear Infirmary (MEEI). The small class size of this unique program ensures personalized and high-quality training by a diverse and dedicated faculty from the two institutions.

SHBT’s curriculum provides an effective method of training researchers by introducing the physical and biological bases of speech and hearing mechanisms involved in the communications process. While SHBT seeks to develop research scientists rather than clinical practitioners, there is a strong emphasis on providing students with exposure to clinical problems, approaches, and techniques. Graduates are thoroughly prepared for successful careers in basic and applied research in industry, universities, or government laboratories involved with biological and synthetic communication systems.

Typically, a student’s first two years in the program are devoted to coursework, which is supplemented by significant exposure to various research projects. Courses in the first year assume familiarity with calculus and differential equations, college-level physics, probability and statistics, and biology. The core curriculum covers the anatomical, acoustical, physiological, perceptual, and cognitive basics, as well as the clinical approaches to speech and hearing problems. The early introduction of important concepts in acoustics, anatomy, and physiology provides a solid base from which to pursue individual research interests. Early in the curriculum, students are introduced to various research laboratories that use different approaches to solving speech and hearing problems. This involvement in research provides an immediate application of classroom subjects. Students work with research advisors to develop a thorough understanding of basic concepts and tools in their fields of concentration. Later, students participate in subjects that require them to apply basic concepts to clinical problems and scientific research. Throughout the curriculum, special attention is devoted to developing personal integrity, scientific values, and scholarly practice. With faculty guidance, each student plans a concentration tailored to the student’s particular interest.

By the end of their second year, students identify an area of professional interest and choose a research project that forms the basis for their doctoral thesis. SHBT research in the speech and hearing sciences focuses on the biological and physical mechanisms underlying human communication by spoken language. The processes addressed by these sciences include the physical acoustics of sound and the perceptual and neurophysiological bases of hearing, as well as the linguistic, cognitive, and motor levels of processing by talkers and listeners.

Applicants to the program should have a bachelor’s degree in physical science, biology, psychology, linguistics, communication sciences and disorders, engineering, computer science, or a related field. Superior analytical skills are strongly recommended for all applicants. Additional information may be obtained at http://web.mit.edu/shbt/ or by contacting Dr. Christopher Shera, Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, shera@mit.edu, or Professor Dennis Freeman, Department of Electrical Engineering and Computer Science, Room 36-899, freeman@mit.edu.

Training Programs

In addition to the specialized training programs designed as tracks within the Medical Engineering Medical Physics Doctoral Program, described above, HST offers two training programs in specific areas.

Biomedical Informatics Program

Biomedical informatics is concerned with the cognitive, information-processing, and communication tasks of medical practice, education, and research. It includes the information sciences and technology needed to support those tasks. The field is intrinsically interdisciplinary, drawing together all traditional medical disciplines, the science and technology of computing, biostatistics, epidemiology, decision sciences, and health care policy and management. In addition to a focus on clinical practice, additional areas of emphasis are in bioinformatics, and in informatics related to health services research.

HST’s predoctoral and postdoctoral training program in biomedical informatics offers fellowships to qualified US citizens or permanent residents. Several training options are offered: the Master of Science in Biomedical Informatics from HST; the PhD in Computer Science from MIT’s Department of Electrical Engineering and Computer Science; the PhD in Health Decision Science in the Department of Health Policy and Management at the Harvard School of Public Health; and research fellowship training at biomedical informatics laboratories in Boston-area hospitals carried out in conjunction with the HST Biomedical Informatics Master’s Program. The master’s program is available only to individuals who already have advanced training in the health sciences (e.g., a doctoral degree in medicine, dentistry, nursing, veterinary medicine, clinical psychology, or a PhD in a medical relevant field such as physiology).

The combined training program offers several opportunities for education, research, and interaction among the various training sites. Course offerings at MIT and Harvard, as well as a variety of seminars, journal clubs, and other opportunities to exchange information, provide all trainees with opportunities to learn about the work at various laboratories and affiliated insti-
tutions, as well as the broader field of biomedical and health informatics.

Predoctoral fellowship applicants must concurrently apply for admission to MIT or a Harvard doctoral degree program. For more information about the Biomedical Informatics Training Program, visit http://bmi.boston.org/ or contact Dr. Alexa T. McCray, director, BIRT Fellowship Program, Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA 02115, training@bmi.boston.org.

Graduate Education in Medical Sciences Certificate Program

The MIT Graduate Education in Medical Sciences (GEMS) Training Program is a part-time certificate program that can be taken concurrently with doctoral studies and research by students in the Schools of Engineering and Science to gain exposure to biomedical and clinical sciences, including translational medicine. This educational experience for PhD graduate students in the sciences and engineering fields addresses a national need articulated by the Howard Hughes Medical Institute: the growing gap between advances in basic biology and the translation of those advances into medically relevant therapies and tools for the improvement of human health.

The GEMS training program aims to integrate medical knowledge into graduate education at MIT by training a select group of PhD students to bridge the widening chasm between concept and functional execution with a supplementary curriculum that entails: (1) a human pathology course, including molecular and cellular mechanisms of disease, (2) a medical pathophysiology course, a kaleidoscope of HST’s pathophysiology curriculum, (3) a student-individualized clinical experience, working with experienced mentors who move seamlessly between clinical medicine and basic biological research, (4) a seminar showcasing examples of translation, and (5) HST’s Graduate Seminar—attended by all HST PhD candidates—focusing on professional skills needed to succeed in interdisciplinary research (ethics, responsible conduct of research, communication, etc.). GEMS participants will gain an understanding of the elements of translation, appreciate the science and art of medicine in a way that cannot be conveyed by textbooks, and develop relationships with students and faculty in the broad biomedical community.

Inquiries

Additional information on degree programs, admissions, and financial aid can be obtained from HST’s Academic Office, Room E25-518, 617-253-7470.

Faculty and Staff

Faculty and Teaching Staff

Ram Sasisekharan, PhD
Edward Hood Taplin Professor of Health Sciences and Technology and Biological Engineering, MIT
Director
David E. Cohen, MD, PhD
Associate Professor of Medicine and Health Sciences and Technology, HMS
Physician and Director of Hepatology, BWH, HMS
Director

Professors (Primary Appointment at MIT)

Sangeeta N. Bhatia, MD, PhD
Professor of Health Sciences and Technology and of Electrical Engineering and Computer Science
Howard Hughes Medical Investigator
Associate Member, Broad Institute

George B. Benedek, PhD
Alfred H. Caspary Professor of Physics and Biological Physics and Health Sciences and Technology

Louis D. Braida, PhD
Henry Ellis Warren Professor of Electrical Engineering and Health Sciences and Technology

Emery N. Brown, MD, PhD
Professor of Health Sciences and Technology and of Computational Neuroscience, MIT

Warren M. Zapol Professor of Anaesthesia, MGH

Richard J. Cohen, MD, PhD
Whitaker Professor in Biomedical Engineering

Ernest G. Cravalho, PhD
Professor of Mechanical Engineering and Health Sciences and Technology

Elazer Edelman, MD, PhD
Thomas D. and Virginia W. Cabot Professor of Health Sciences and Technology, MIT

Professor of Medicine, BWH

Professors (Primary Appointment at HMS and Affiliated Hospitals)

Dennis M. Freeman, PhD
Professor of Electrical Engineering
John D. E. Gabrielli, PhD
Grover Hermann Professor of Health Sciences and Technology
Professor of Brain and Cognitive Sciences
Lee Gehrke, PhD
Hermann von Helmholtz Professor of Health Sciences and Technology, MIT
Professor of Microbiology and Molecular Genetics, HMS
Martha L. Gray, PhD
J. W. Kieckhefer Professor of Medical and Electrical Engineering
David E. Housman, PhD
Ludwig Professor of Biology
Robert S. Langer Jr., ScD
Kenneth J. Germeshausen Professor of Chemical and Biomedical Engineering and Health Sciences and Technology
Institute Professor

Roger G. Mark, MD, PhD
Distinguished Professor in Health Sciences and Technology and Electrical Engineering and Computer Science

Peter Szolovits, PhD
Professor of Computer Science and Engineering and Health Sciences and Technology

Richard J. Wurtman, MD
Cecil H. Green Distinguished Professor of Neuropharmacology and Health Sciences and Technology

Laurence R. Young, ScD
Apollo Program Professor of Astronautics and Health Sciences and Technology

Professors (Primary Appointment at HMS and Affiliated Hospitals)

R. Rox Anderson, MD
Professor of Dermatology and Health Sciences and Technology, MGH

Joseph V. Bonventre, MD, PhD
Samuel A. Levine Professor of Medicine and Health Sciences and Technology, BWH

Thomas N. Byrne, MD
Clinical Professor of Neurology and Health Sciences and Technology, MGH
Lee Gehrke, PhD
Hermann von Helmholtz Professor of Health Sciences and Technology, MIT
Professor of Microbiology and Molecular Genetics, HMS

John J. Guinan, Jr., PhD
Professor of Otology and Laryngology, MEEI

Robert D. Howe, PhD
Gordon McKay Professor of Engineering, Harvard University

Isaac S. Kohane, MD, PhD
Professor of Pediatrics and Health Sciences and Technology, CHB

M. Charles Liberman, PhD
Professor of Otology and Laryngology and Health Sciences and Technology, MEEI

Bruce R. Rosen, MD, PhD
Professor of Radiology and Health Sciences and Technology, MGH

John J. Rosowski, PhD
Professor of Otology and Laryngology and Health Sciences and Technology, MEEI

Robert H. Rubin, MD
Gordon and Marjorie Osborne Professor of Health Sciences and Technology, HST
Professor of Medicine, BWH

Frederick J. Schoen, MD, PhD
Professor of Pathology and Health Sciences and Technology, BWH

Lee H. Schwamm, MD
Professor of Neurology, MGH

Brian Seed, PhD
Professor of Genetics and Health Sciences and Technology, MGH

Daniel C. Shannon, MD
Professor of Pediatrics and Health Sciences and Technology, MGH

A. G. Sorensen, MD
Professor of Radiology and Health Sciences and Technology, MGH

Mehmet Toner, PhD
Professor of Surgery and Health Sciences and Technology, MGH

Martin L. Yarmush, MD, PhD
Helen Andrus Benedict Professor of Surgery, Biological Chemistry, and Molecular Pharmacology, MGH

Associate Professors (Primary Appointment at MIT)
Elfar Adalsteinsson, PhD
Associate Professor of Health Sciences and Technology and of Electrical Engineering and Computer Science

Hugh M. Herr, PhD
Associate Professor in Media Arts and Sciences, and Health Sciences and Technology

Leonid A. Mirny, PhD
Associate Professor of Health Sciences and Technology and Physics

Collin M. Stultz, MD, PhD
W. M. Keck Career Development Associate Professor of Health Sciences and Technology and of Electrical Engineering and Computer Science

Associate Professors (Primary Appointment at HMS and Affiliated Hospitals)
Kamran Badizadegan, MD
Associate Professor of Pathology and Health Sciences and Technology, MGH

Brett Bouma, PhD
Associate Professor of Dermatology and Health Sciences and Technology, MGH

M. Christian Brown, PhD
Associate Professor of Otology and Laryngology, MEEI

Martha Bulyk, PhD
Associate Professor of Medicine, Pathology, and Health Sciences and Technology, BWH

Deborah Burstein, PhD
Associate Professor of Radiology and Health Sciences and Technology, BIDMC

W. H. Churchill Jr., MD
Associate Professor of Medicine and Health Sciences and Technology, BWH

Bertrand Delgutte, PhD
Associate Professor of Otology and Laryngology and Health Sciences and Technology, MEEI

Donald K. Eddington, PhD
Associate Professor of Otology and Laryngology and Health Sciences and Technology, MEEI

Robert E. Hillman, PhD
Associate Professor of Surgery and Health Sciences and Technology, MGH

Jennifer R. Melcher, PhD
Associate Professor of Otology and Laryngology and Health Sciences and Technology, MEEI

Richard N. Mitchell, MD, PhD
Associate Professor of Pathology and Health Sciences and Technology, BWH
Associate Master for MD Program

Christopher A. Shera, PhD
Associate Professor of Otology and Laryngology and Health Sciences and Technology, MEEI

Shamil R. Sunyaev, PhD
Associate Professor of Medicine and Assistant Professor of Health Sciences and Technology, BWH

Assistant Professors (Primary Appointment at HMS and Affiliated Hospitals)
Utkan Demirci, PhD
Assistant Professor of Medicine and Health Sciences and Technology, BWH

Jeffrey M. Karp, PhD
Assistant Professor of Medicine and Health Sciences and Technology, BWH

Alireza Khademhosseini, PhD
Assistant Professor in Medicine and Health Sciences and Technology, BWH

Shiladitya Sengupta, PhD
Assistant Professor of Medicine and Health Sciences and Technology, BWH

Jagesh V. Shah, PhD
Assistant Professor of Systems Biology, Medicine, and Health Sciences and Technology, BWH

Senior Lecturers
Stephen K. Burns, PhD
Teodoro F. Dagi, MD
Howard L. Golub, MD, PhD
Stanley N. Lapidus
Lecturers
Laurence I. Alpert, MD
Richard I. Anders, JD
Jeffrey S. Behrens, MS, MBA
Carl M. Berke, PhD
Jeffrey Blander, ScD
Jonathan P. Gertler, MD
Linda C. Hemphill, MD
Jonathan L. Jackson
Jacob Joseph, MD
Steven M. Lulich, PhD
Marc Joshua Tolkoff, SM
Timothy A. Wagner, PhD

Research Staff

Senior Research Scientists
Stan N. Finkelstein, MD
James C. Weaver, PhD

Principal Research Scientists
Jane-Jane Chen, PhD
Julie E. Greenberg, PhD
Chi-Sang Poon, PhD

Research Scientists
Natalie Artzi, PhD
Mercedes Balcells-Camps, PhD
T. R. Gowrishankar, PhD
Sandra March-Riera, PhD
Hyoungshin Park, PhD
Rahul Raman, PhD
Andrew Reisner, PhD
Gang Song, PhD
Gregory H. Underhill, PhD

Research Engineers
Michael B. Craig
Michelle L. Farley
Ramsubramanian Kaundinya, PhD
Li-Wei H. Lehman, PhD
George B. Moody
Daniel J. Scott, PhD
Mahadevan Venkataraman

Professors Emeriti
Walter H. Abelmann, MD
Professor of Medicine, Emeritus, HMS
Director, Alumni Affairs

Nelson Yuan-sheng Kiang, PhD
Professor of Physiology, Emeritus, HMS
Eaton-Peabody Professor of Health Sciences and Technology, Emeritus, MIT

Robert S. Lees, MD
Professor of Health Sciences and Technology, Emeritus, MIT

Irving M. London, MD
Professor of Medicine, Emeritus, HMS
Professor of Biology, Emeritus, MIT

Kenneth N. Stevens, ScD
Clarence J. Lebel Professor of Electrical Engineering and Health Sciences and Technology, Emeritus, MIT
MIT and the Woods Hole Oceanographic Institution (WHOI) on Cape Cod offer joint doctoral degrees in oceanography and doctoral, professional, and master’s degrees in oceanographic engineering.

Graduate study in oceanography encompasses virtually all of the basic sciences as they apply to the marine environment: physics, chemistry, geology, geophysics, and biology. Applied ocean science and engineering allows for concentration in the major engineering fields of civil and environmental, mechanical, and electrical engineering.

The graduate programs administered by joint MIT/WHOI committees draw from the faculty and staff of both institutions. Students accepted to the Joint Program have access to the extensive intellectual and physical resources available for advanced study at both Woods Hole and MIT.

The Joint Program involves several departments at MIT—Earth, Atmospheric, and Planetary Sciences and Biology in the School of Science; and Civil and Environmental Engineering, Electrical Engineering and Computer Science, and Mechanical Engineering in the School of Engineering.

Financial aid, offered as research assistantships or fellowships to most entering graduate students, is sufficient to cover tuition and fees and provide a stipend. Upon admission, students register in the appropriate MIT department and at WHOI simultaneously, and are assigned academic advisors at each institution. Because the Joint Program is not affiliated with any one particular MIT department, students who wish to be considered for the program must indicate their intent on the front of their applications.

Research at WHOI is devoted to using the basic sciences and engineering to gain a better understanding of the marine environment. Some 200 scientists and engineers and a support staff of about 600 work in laboratories located in the village of Woods Hole and on the nearby Quissett Campus. Another 75 people operate three research vessels (ranging from 177 to 279 feet in length), the deep-diving submersible ALVIN, and smaller coastal vessels. WHOI also has remotely-operated research vehicles and autonomous underwater vehicles. Computer services provided within WHOI include links to other institutions and to national networks.

A videoconferencing system between MIT and Woods Hole provides interactive transmission for classes, meetings, and other joint events. Specialized research facilities include the National Ocean Sciences Accelerator Mass Spectrometry Facility and the North-East Regional Ion Microprobe Facility. The library facilities shared with the Marine Biological Laboratory are supplemented by collections of the Northeast Fisheries Center of the National Marine Fisheries Service and the US Geological Survey’s Office of Marine Resources Branch of Atlantic Geology, all located in Woods Hole. The village is situated on the southwest corner of Cape Cod, about 80 miles from Boston.

Subjects, seminars, and opportunities for research participation are offered at both MIT and WHOI. Place of residence is determined by the student’s selected program of study and research interests, and transportation is provided between institutions. Students have the opportunity to participate in oceanographic cruises during graduate study.

The faculty of MIT, together with the WHOI scientific staff, offer a wide variety of formal and informal subjects in various aspects of oceanography and areas directly applicable to ocean science and engineering; both faculties are equally involved in all levels of instruction. The subjects are supplemented by numerous seminars, directed studies, and cross-registration privileges with Harvard, Brown, and the Boston University Marine Program. Complete listings can be found in the subject descriptions of each individual department.

Chemical Oceanography

Chemical oceanographers study the chemical composition of the marine environment and the processes that have produced the present composition of sea water and sediments. Principal research areas include water column geochemistry, sedimentary geochemistry, seawater-basalt interactions, and atmospheric chemistry. The departments of Earth, Atmospheric, and Planetary Sciences and Civil and Environmental Engineering offer programs with WHOI in chemical oceanography and marine geochemistry. These programs lead to the Doctor of Science or Doctor of Philosophy.

Marine Geology and Geophysics

The goal of Marine Geology and Geophysics is to understand the physical and chemical processes that determine the structure and evolution of the ocean basins and their margins. Research is being conducted in a wide range of specialties including micropaleontology, paleoceanography, petrology and volcanic processes, seismology, gravity, magnetics, heat flow, sediment dynamics, and isotope geology. The Department of Earth, Atmospheric, and Planetary Sciences at MIT offers programs with WHOI in marine geology and geophysics which lead to the Doctor of Science or Doctor of Philosophy.

Biological Oceanography

Biological oceanography seeks to describe and understand the biological processes which are active in the marine and bordering environments. The research of biological oceanographers is diverse, including ecology, toxicology, biochemistry, animal behavior and physiology, and molecular biology. The programs in biological oceanography are coordinated by the Department of Biology and WHOI, and may involve research in other MIT departments such as the Department of Civil and Environmental Engineering. The programs lead to the Doctor of Science or Doctor of Philosophy.
Applied Ocean Science and Engineering
Applied ocean science and engineering involves the application of physics and the engineering sciences to the study of oceanic processes and the design of instruments, systems, and structures required to observe, measure, and work in the ocean. The departments of Civil and Environmental Engineering, Electrical Engineering and Computer Science, and Mechanical Engineering offer joint programs with WHOI in oceanographic engineering. The programs lead to the master’s degree, engineer’s degree, Doctor of Science, or Doctor of Philosophy.

Inquiries
Application for admission to the Joint Program in Oceanography and Applied Ocean Science and Engineering with the Woods Hole Oceanographic Institution should be made on the MIT graduate application form, which may be obtained from the Graduate Admissions Office at MIT. Requests for further information may be addressed to the MIT/WHOI Joint Program, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, 508-289-2219, or to the MIT Joint Program Office, Room 54-911, 617-253-7544. More information is available at http://mit.whoi.edu/.
The study of microbes has been critical in our current understanding of basic biological processes, evolution, and the functions of the biosphere, and has contributed to numerous fields of engineering. Microbes have the amazing ability to grow in extreme conditions, to grow slowly or rapidly, and to readily exchange DNA. They are essential for life as we know it, but can also be agents of disease. They are instrumental in shaping the environment, in evolution, and in modern biotechnology. Microbes are amenable to virtually all modern approaches in science and engineering. As such, they provide natural engineering laboratories for creating new capabilities for industry (e.g., pharmaceuticals, chemicals, energy) and are the foundation of pioneering efforts in synthetic biology, i.e., building life from its component parts. Effective study of microbes and their applications demands multiple interdisciplinary approaches that cross all scales of biological organization, from molecules to vast ecosystems.

Research in microbiology is going on throughout MIT and involves more than 50 faculty. These faculty are from several departments in both the Schools of Science and Engineering, including Biology; Biological Engineering; Chemical Engineering; Chemistry; Civil and Environmental Engineering; Earth, Atmospheric and Planetary Sciences; Electrical Engineering and Computer Science; Materials Sciences and Engineering; and Physics. Many labs take multiple approaches to studying and manipulating microbial systems and the expertise and research covers a wide range of areas, including biochemistry, biotechnology, cell and molecular biology, chemical and biological engineering, computational biology, ecology, environmental biology, evolutionary biology, genetics, genomics, geobiology, immunology, pathogenesis, structural biology, synthetic biology, systems biology, and virology. The Graduate Program in Microbiology—a new, interdepartmental, and interdisciplinary initiative at MIT—integrates educational resources across the participating departments to build connections among faculty with shared interests and to build an educational community for training students in the study of microbial systems.

Interdisciplinary training in microbiology is in increasing demand in both public and private sectors. This program provides a broad exposure to underlying elements of modern microbiological research and engineering as well as in-depth research experience in specific areas of microbiology. Program graduates will be prepared to work in a range of fields in microbial science and engineering, and will have excellent career options in academia, industry, and government.

CURRICULUM

The major components of the training program are required coursework, elective coursework, rotations and thesis research, teaching, training in the ethical conduct of research, and qualifying exams.

Required Subjects

- 7.492J Methods and Problems in Microbiology
- 7.493J Microbial Genetics and Evolution
- 7.499 Research Rotations in Microbiology
- 7.57 Quantitative Biology for Graduate Students
 - One of the following biochemistry subjects:
 - 7.51 Principles of Biochemical Analysis
 - 7.80 Biological Chemistry II

Elective Subjects

Students must take three elective subjects, totaling 36 units, from the following list. Electives can be chosen to provide depth in a specific area of interest or additional breadth in training. Subjects from some other areas may also fulfill the requirement, with the approval of the Graduate Education committee.

- 1.89 Environmental Microbiology
- 5.062 Principles of Bioinorganic Chemistry
- 5.451 Chemistry of Biomolecules and Natural Product Pathways
- 5.50 Enzymes: Structure and Function
- 5.52 Advanced Biological Chemistry
- 5.55 Chemical Tools for Assessing Biological Function
- 5.64 Biophysical Chemistry
- 5.65 Molecular Imaging
- 5.78 Biophysical Chemistry Techniques
- 6.874 Computational Systems Biology
- 7.26/7.66 Molecular Basis of Infectious Disease
- 7.56 Foundations of Cell Biology
- 7.58 Molecular Biology
- 7.62 Microbial Physiology
- 7.63 Immunology
- 7.70 Regulation of Gene Expression
- 7.75/5.77J Topics in Metabolic Biochemistry
- 7.91/20.490J Foundations of Computational and Systems Biology
- 8.591/7.81J Systems Biology
- 10.542 Biochemical Engineering
- 10.544 Metabolic and Cell Engineering
- 10.546J/5.70J/20.465J Statistical Thermodynamics with Applications to Biological Systems
- 10.977 Advances in Bioinformatics and Metabolic Engineering
- 20.106J Systems Microbiology
- 20.440 Analysis of Biological Networks
- 20.450 Molecular and Cellular Pathophysiology
- 20.485 Tools for Assessing Biological Function
- HST.508 Quantitative Genomics

Rotations and Thesis Research

During the first year, students will rotate through three labs of MIT faculty that participate in the Microbiology Graduate Program. These rotations will help provide students broad exposure to microbiology research and will be used to select a lab for their thesis research by the end of the first year. Given the interdisciplinary nature of the program and many research programs, students may be able to work jointly with more than one research supervisor.

Teaching Experience

Learning to effectively communicate scientific ideas is an important skill. Students in the Microbiology program will have an opportunity to improve their communication skills through teaching. Each student will serve as a teaching assistant for one term in an undergraduate or graduate subject related to microbiology. This will typically take place in the second year.
Training in the Ethical Conduct of Research
All students will participate in a course on the ethical conduct of research. This will typically take place during the first year.

Qualifying Exams
Students will proceed to PhD candidacy after successful completion of a qualifying exam, typically during the second year. Students will submit a written research proposal in the style of a grant or fellowship application based on their planned thesis project. Students will then present and discuss the research proposal with a small committee of faculty.

STUDENT ADVISING
In the first year, students will be advised by members of the graduate committee. Once students join a thesis lab, the research mentor will be the primary advisor. Early in the second year, students will form a thesis committee and meet at least annually. The committee will consist of faculty with expertise in the student’s area of research and collectively provide the breadth expected by the program. The thesis committee will primarily provide advice on research. In addition, in the student’s early years the thesis committee will also provide advice on coursework to ensure that students have the appropriate breadth and depth for their educational program. In later years, the graduate and thesis committees will also provide students with advice on career options.

FINANCIAL SUPPORT AND FELLOWSHIPS
Students in the program will be financially supported throughout their training. This support includes tuition, stipend, and health insurance. All students in the program will receive a stipend that is sufficient to support living in the Cambridge/Boston area. The stipend will be approximately the same as for graduate students in other MIT departments, approximately $30,000 in 2010–2011.

During the first year, students are supported by the Microbiology program. In subsequent years, students will be supported as research assistants in their thesis lab.

Although students will be supported, they are strongly encouraged to apply for fellowships.

INQUIRIES
For further information about the Graduate Program in Microbiology, contact Bonnie Lee Whang, Room 68-139, microbiology@mit.edu, or visit http://microbiology.mit.edu/.
MIT provides students with a broad range of opportunities for transportation-related education. Courses and classes span the School of Engineering, the Sloan School of Management, and the School of Architecture and Planning, with many activities covering interdisciplinary topics that prepare students for future industry, government, or academic careers.

A variety of graduate degrees are available to students interested in transportation studies and research, including a master's program and a doctoral program in transportation, described below, and a Master of Engineering in Logistics, described under Engineering Systems Division in Part 2.

Opportunities are also available for students to obtain dual master's degrees. Students who wish to pursue this option must follow the regular admissions procedure to be admitted to each degree program. Common dual degree pairings include the Master of Science in Transportation with:

- Master of Science in Technology and Policy
- Master of Science in Operations Research
- Master of City Planning

Information on requirements for dual degrees can be found in the section on General Degree Requirements in Part 1.

MASTER OF SCIENCE IN TRANSPORTATION

The Master of Science in Transportation (MST) program is based on the premise that a common set of analytical approaches and methodologies can be applied to solve a range of transportation problems. The MST provides a common basis for addressing a wide range of problems while allowing enough flexibility to accommodate students with diverse backgrounds and interests.

Students in the MST program must complete 66 units of coursework plus a master's thesis. Coursework includes two required core subjects and at least three additional transportation or related subjects. Generally, the three additional subjects relate to an area of specialization, although this is not required. Common areas of specialization include urban transportation, air transportation, planning methods, logistics, and policy. The MST degree usually takes up to two years to complete.

Course Requirements

Core Subjects

Two 12-unit subjects that reflect the interdisciplinary, systems nature of the program's educational approach, offered in the fall term:

- 1.200 Transportation Systems Analysis: Performance and Optimization
- 1.201 Transportation Systems Analysis: Demand and Economics

Individually Designed Program

Three subjects totaling at least 30 units, selected by the student to further his or her educational objectives in the field of transportation. Established program areas include:

- Air transportation
- Transportation analysis and planning methods
- Transportation logistics
- Transportation management
- Transportation policy
- Urban transportation

Specific subjects approved for these program areas are listed at http://cee.mit.edu/graduate/transportation/areas/. Some students use the individually designed program to deepen their understanding of a selected area of interest, others may choose to emphasize breadth rather than depth in their studies.

For all students, at least one of the selected subjects should address policy. At least two of the designated subjects should be clearly focused on transportation, while the third can be in a field that supports transportation, for example, a subject covering methods used in transportation drawn from fields such as economics, operations research, political science, or management.

Policy Requirement

To fulfill the policy requirement, students can choose a transportation policy subject, a transportation subject with substantial policy content (nominally half), or a policy subject with little or no transportation content. A list of subjects that meet these criteria can be found at http://cee.mit.edu/graduate/transportation/degreerequirements/.

Information Technology Requirement

Graduates of the MST program are expected to have a working knowledge of information technology, as this is a prerequisite for functioning as a transportation professional. The information technology requirement can be satisfied by taking either 1.264J Database, Internet, and Systems Integration Technologies (recommended for most students) or 1.001 Introduction to Computers and Engineering Problem Solving. Requests to waive this requirement based on prior coursework must be submitted in writing to Professor Nigel Wilson.

Thesis Requirement

Students must complete a research-based thesis on a topic of their choice that has been approved by the thesis supervisor. Students should enroll in the minimum requirement of 24 (1.THG) thesis units. Thesis units do not count toward the 66 units required for completion of the MST degree.

For more information, see the full MST program description at http://cee.mit.edu/graduate/mst/.

Admission

An undergraduate degree in engineering is not necessary for admission to the Master of Science in Transportation program, but applicants are expected to have an aptitude for analytical thinking. Backgrounds in the physical or social sciences, urban planning, management, and many other disciplines are equally appropriate foundations for the program.

The only specific subjects required for admission are two subjects in calculus: one in economics and one in probability. One or more of these subjects may be completed simultaneously with application to the program, and acceptance is then conditional on satisfactory completion of these prerequisites. Applicants should have roughly the equivalent of the following MIT subjects: 18.01 and 18.02 in calculus, 14.01 in microeconomics, and either 6.041 or 1.010 in probability/statistics.

All applicants are required to submit Graduate Record Examination (GRE) scores;
applicants whose native language is not English are required to submit a Test of English as a Foreign Language (TOEFL) score. Applicants to the Master of Science in Transportation degree program must achieve a score of at least 250 (computer-based) on the TOEFL.

FUNDING

Funding for MST students is usually offered to about 80 percent of each incoming class. A limited number of fellowships are offered each year, but more often funding takes the form of a research assistantship (RA). A student with RA funding typically works with a faculty member on a research project for 15–30 hours a week. The research that is conducted on that project generally becomes the topic of the student’s thesis.

To learn more about current transportation research at MIT, visit http://cee.mit.edu/research/transportation/, http://cee.mit.edu/research/projects#transportation, and http://cee.mit.edu/research/projects#or.

Funding for RAs is awarded as either a half or full appointment. An award of a full RA (about 30 hours of work per week) covers the student’s tuition for the academic year and provides a monthly stipend to cover living expenses. A half RA (approximately 15 hours of work per week) covers half of the student’s tuition for the academic year and provides half of the regular monthly stipend.

Students who are not awarded financial aid at the time of admission may seek funding through other sources.

DOCTOR OF PHILOSOPHY IN TRANSPORTATION

The interdisciplinary doctoral program in transportation provides a structured and direct follow-on doctoral program for students enrolled in the Master of Science in Transportation or other transportation-related master’s degree programs offered at MIT or elsewhere. The interdisciplinary structure allows students great flexibility in developing individual programs of study that cross both disciplinary and departmental lines. The program is administered by a faculty committee responsible for admissions, establishment and oversight of program requirements, and conduct of the general examination and dissertation defense.

The interdisciplinary doctoral program in transportation requires completion of at least 150 units of coursework in a program of study proposed by the student, the successful completion of a general examination consisting of both written and oral components, and the submission and defense of an acceptable dissertation. The program of study includes a doctoral core program consisting of at least 66 units that represent the student’s area of specialization. At least two of the core subjects should be methodological subjects and two should be transportation subjects.

Graduates of the interdisciplinary doctoral program receive a PhD in Transportation, although students may petition for other MIT graduate fields of study as their degree designation, subject to approval by the Transportation Education Committee.

INQUIRIES

Questions about and applications to graduate programs in transportation should be directed to Professor Nigel Wilson, chair of the Transportation Education Committee, Department of Civil and Environmental Engineering, Room 1-290, nhmw@mit.edu.
Interdisciplinary research can be an invaluable way to broaden a student’s education. Through the Undergraduate Research Opportunities Program, undergraduates discover avenues for participation in research projects that can count toward their major, including possibilities for thesis work. The interdisciplinary programs and facilities described in this section also provide significant opportunities for graduate students.

MIT Centers, Labs, and Programs

- Center for Archaeological Materials 298
- Center for Biomedical Engineering 298
- Center for Biomedical Innovation 298
- Center for Collective Intelligence 299
- Center for Computational Engineering 299
- Center for Computational Research in Economics and Management Science 299
- Center for Educational Computing Initiatives 299
- Center for Energy and Environmental Policy Research 299
- Center for Environmental Health Sciences 300
- Center for Global Change Science 300
- Center for International Studies 300
- Center for Materials Science and Engineering 301
- Center for Real Estate 302
- Center for Technology, Policy, and Industrial Development 302
- Center for Transportation and Logistics 303
- Clinical Research Center 303
- Computer Science and Artificial Intelligence Laboratory 303
- Deshpande Center for Technological Innovation 304
- Division of Comparative Medicine 304
- Francis Bitter Magnet Laboratory 304
- Haystack Observatory 304
- Institute for Soldier Nanotechnologies 305
- Institute for Work and Employment Research 305
- Joint Program on the Science and Policy of Global Change 305
- Knight Science Journalism Fellows Program 306
- Koch Institute for Integrative Cancer Research 306
- Laboratory for Financial Engineering 306
- Laboratory for Information and Decision Systems 307
- Laboratory for Manufacturing and Productivity 307
- Laboratory for Nuclear Science 307
- Lean Advancement Initiative 308
- Legatum Center for Development and Entrepreneurship 308
- Lincoln Laboratory 308
- Materials Processing Center 308
- McGovern Institute for Brain Research 309
- Media Laboratory 309
- Microsystems Technology Laboratories 309
- Middle East Program at MIT 310
- MIT Center for Digital Business 310
- MIT Energy Initiative 310
- MIT Entrepreneurship Center 311
- MIT Kavli Institute for Astrophysics and Space Research 311
- MIT Portugal Program 312
- MIT Professional Education 312
- MIT Sea Grant College Program 312
- Nuclear Reactor Laboratory 313
- Operations Research Center 313
- Picower Institute for Learning and Memory 313
- Plasma Science and Fusion Center 314
- Productivity from Information Technology Initiative 314
- Program in Art, Culture, and Technology 314
- Research Laboratory of Electronics 315
- Singapore-MIT Alliance 315
- Spectroscopy Laboratory 315
- System Dynamics Group 316
- Technology and Development Program 316
- Transportation@MIT 316
- Whitaker College of Health Sciences and Technology 316
- Women’s and Gender Studies Program 317

Other Affiliations

- Broad Institute of MIT and Harvard 317
- Draper Laboratory 317
- Whitehead Institute for Biomedical Research 318
MIT CENTERS, LABS, AND PROGRAMS

Many undergraduates find opportunities to participate in the research activity of MIT's interdisciplinary centers, laboratories, and programs through the Undergraduate Research Opportunities Program. For graduate students, interdisciplinary research opportunities can often lead to thesis topics—and research assistantships—as well as advanced degrees.

Some interdepartmental educational programs have been approved for graduate students by the Committee on Graduate Programs. Students must be admitted by a regular academic department in order to participate in one of these programs (with the exception of the Operations Research Center, which accepts students directly). Each has a standing faculty committee that administers the program, but degrees in the field of study are granted by the student's department of registration. The program descriptions in this section indicate any advanced degrees that may be offered.

Center for Archaeological Materials

The purpose of the center is to encourage incorporation of the natural sciences and engineering in the normal pursuit of anthropological, archaeological, and art historical inquiry.

The center's particular emphasis is on examining and explaining the nature of prehistoric and non-industrial technologies, especially those technologies of unusual importance in the development of ancient and pre-industrial societies. The center considers not only technologies of subsistence, communication, and production, but technologies whose purposes are largely symbolic, such as information-bearing technologies of art.

The center is concerned with the remains of human activities in the past and the exploration of the imprint of these activities on the environment: what people did in the environment and what the environment was like. Determination of palaeoecologies—climates, floral and faunal populations, food chains, and so forth—provides a strong research focus. The center uses as its evidence all of material culture, and explores cultural and environmental materials through the most up-to-date methods common to chemistry, physics, biology, geology, and materials science and engineering, in conjunction with appropriate mathematical and statistical analyses.

The center's teaching and research programs incorporate materials science and engineering among the range of methods that archaeologists use to try to render culture history, cultural lifeways, and culture process from what little is preserved of society's material culture. Research activities are carried out in a network of materials laboratories that include metallurgy, ceramics, photomicrography, and computation. The center emphasizes rigorous laboratory study of artifacts and other kinds of cultural remains to determine the nature and structure of the materials of which they are composed and the extraction and processing regimes they have undergone.

Open to graduate students and senior undergraduates, the center offers graduate-level subjects in the Graduate Archaeological Science Laboratory. Subjects are heavily laboratory-oriented and often cover a single class of materials (e.g., ceramics or metals), or a method for interpreting archaeological data (e.g., computers in archaeology).

The Center for Archaeological Materials is administered by the Office of the Provost. Further information about the center may be obtained from the director, Professor Heather Lechtman, Department of Materials Science and Engineering, Room 8-138, 617-253-1375.

http://web.mit.edu/cmrae/cmrae_home.htm

Center for Biomedical Engineering

The Center for Biomedical Engineering (CBE) was established to enhance and coordinate research and education at the interface of engineering with biology, emphasizing bioengineering based on molecular and cellular biology.

CBE initiatives involve faculty and students from a variety of MIT departments in the Schools of Science and Engineering along with associates at Boston-area medical schools.

Core laboratory facilities in real-time PCR, biomolecular modeling and engineering, biomolecular binding interactions, cell and molecular mechanics, cellular responses, cell culture, 2-photon microscopy, and quick freeze-deep etch cryo fixation facilities for cells and tissues are available to enhance teaching and research capabilities that combine engineering and life science perspectives. For further information on these facilities, contact Dr. Shuguang Zhang, CBE associate director for facilities, 617-258-7514.

CBE's Industrial Advisory Board includes representatives from member companies from the bioengineering and health care community and provides an interface for student recruiting into the bioengineering industrial community.

http://web.mit.edu/cbe/www/

Center for Biomedical Innovation

Launched in 2005, the MIT Center for Biomedical Innovation (CBI) is a collaboration among the MIT Schools of Engineering, Management, and Science, and the Harvard-MIT Division of Health Sciences and Technology (HST). CBI's mission is to improve global health by overcoming obstacles to the development and implementation of biomedical innovations.

CBI conducts collaborative research within a "safe haven" environment, with participation from faculty and students from MIT and Harvard, as well as senior scientists and executives from industry and government. Our primary areas of interest include:

- Safety assessment—Improve predictability in preclinical and clinical assessment and postmarketing surveillance through better use of informatics tools and data
- Research and development redesign—Enhance productivity through new collaboration and research models
- Manufacturing and distribution systems—Rationalize the supply chain and implement quality-by-design
- Risk management (economic and regulatory)—Apply systematic approaches that anticipate evolution in personalized health care, regulatory change, and reimbursement

CBI also offers graduate courses and sponsors lectures focused on emerging issues in biomedical innovation. This portfolio of educational initiatives is designed to address the need for scientific, technical, and managerial expertise required for innovating in the healthcare industries.

For more information, contact the Center for Biomedical Innovation, Room NE20-382, 617-253-0257, fax 617-253-0257, cbi@mit.edu.

http://web.mit.edu/cbi/
Center for Collective Intelligence
The MIT Center for Collective Intelligence brings together faculty from across MIT to conduct research on how new communications technologies, especially the internet, now allow huge numbers of people all over the planet to work together in new ways. The center’s basic research question is: How can people and computers be connected so that—collectively—they act more intelligently than any individuals, groups, or computers have ever done before?

This first-of-its-kind research effort draws on the strengths of many diverse organizations across MIT including the MIT Media Lab, the Computer Science and Artificial Intelligence Laboratory, the Department of Brain and Cognitive Sciences, and the MIT Sloan School of Management.

The Center for Collective Intelligence is directed by Professor Thomas W. Malone. For further information, contact Robert Laubacher, 617-253-0526, rjl@mit.edu.

http://cci.mit.edu/

Center for Computational Engineering
The broad mission of the Center for Computational Engineering (CCE) is to support computational engineering at MIT. The center is comprised of faculty and research partners from across the School of Engineering as well as other departments and units involved in computational engineering (CE) research and education around the Institute.

Our research focus is on computational approaches for engineering problems, the formulation and implementation of new approaches that are more efficient and capable, and the informed application of existing approaches to important engineering questions. Our emphasis is on the development of the “next generation” of CE innovators and CE innovations.

CCE oversees a master’s program in Computation for Design and Optimization. This is an interdisciplinary program that provides students with a strong foundation in computational methods for the design and operation of complex engineered and scientific systems.

For more information about the Center for Computational Engineering, contact Debra Blanchard, Room 3-264, 617-258-5808, dblrnc@mit.edu. For more information about the Computation for Design and Optimization program, contact Laura Koller, Room 35-329, 617-253-3725, cdo_info@mit.edu. http://computationalengineering.mit.edu/

Center for Computational Research in Economics and Management Science
This center advances knowledge about modeling in economics, finance, statistics, and management, bringing together researchers from disciplines such as econometrics, statistics, computer science, and operations research to focus on the algorithmic research and related software development that provide a basis for today’s advanced modeling techniques. Current research is focused on nonparametric modeling; robust statistics and data-mining; statistical learning; variable and feature selection; risk measurement and portfolio optimization in finance, data visualization, bioinformatics; and the analysis of health and drug surveillance data.

For further information contact Professor Roy E. Welsch, director, Room E53-383, 617-253-6601, rwelsch@mit.edu.

Center for Educational Computing Initiatives
The Center for Educational Computing Initiatives (CECI) is an interdisciplinary research center that focuses on advanced technologies emerging for educational uses. Research at CECI involves the development of innovative technologies, the application of technologies to specific learning objectives, and the evaluation of the effectiveness of new technologies. Recent CECI projects have focused on the educational application of visualization, support for remote instrumentation, and the management of large scientific databases. CECI also evaluates how computer technology affects education, particularly how computer applications improve the quality of education.

Examples of CECI’s current projects include:

- The Technology-Enabled Active Learning (TEAL) project. TEAL has reformed introductory physics education at MIT. It is designed to help students develop better intuition about, and conceptual models of, physical phenomena. This new approach to teaching is centered on active learning. It offers a highly collaborative, hands-on environment that makes extensive use of desktop experiments, educational technology, and computer-aided analysis of experimental data, giving students direct experience with basic physical phenomena such as electrical and magnetic fields. In a new initiative, CECI is partnering with Physics Department faculty to situate innovative field visualizations in a virtual-world setting. This work permits student avatars to enter the visualizations and to solve problems by actively measuring and modifying the fields.

- The ILabs project (http://icampus.mit.edu/projects/index.shtml) is developing a web-services-based platform for the implementation of physical laboratories that can be operated remotely over the internet. This project, originally funded by Microsoft, has created an open specification and reference implementation of a software development kit. The software is used by laboratories in various departments at MIT and at an increasing number of universities around the world.

- CECI is contributing to the CENSAM project (http://censam.mit.edu/), a collaborative effort between MIT and the government of Singapore to construct an integrated computer model of the Singaporean environment based on real-time sensing and advanced modeling techniques. CECI is building on its experience with web-service and database middleware to design a software infrastructure to facilitate the exchange of data between researchers and to increase data longevity and availability.

Undergraduates may participate in CECI projects through the Undergraduate Research Opportunities Program.

For further information, contact Dr. Judson Harward, Room 9-317, 617-253-7896, jud@mit.edu.

http://ceci.mit.edu/

Center for Energy and Environmental Policy Research
The Center for Energy and Environmental Policy Research (CEEDPR) conducts policy-related research in energy and environmental economics, drawing on faculty and student resources from the Sloan School of Management, the MIT Department of Economics, and the MIT Energy Initiative. The center’s distinguishing characteristic is its dedication to high-quality,
empirically-grounded economic analysis of corporate and public policy issues. An important component of CEERP is the Joint Program on the Science and Policy of Global Change conducted with the MIT Center for Global Change Science.

For over 30 years, CEERP has made important contributions to the analysis of energy markets, the organization and regulation of energy industries, and environmental problems. CEERP’s current research focuses on emissions markets, electric utility restructuring, financing investments and the role of risk in energy and environmental problems, and the effectiveness of environmental regulation.

Professor Richard Schmalensee, of the MIT Sloan School of Management, is the center’s director. For more information, contact the executive director, John Parsons, E19-411, 617-324-3745, jparsons@mit.edu. http://web.mit.edu/ceerp/www/

Center for Environmental Health Sciences
The Center for Environmental Health Sciences (CEHS) applies a broad range of cutting-edge technologies to the goal of studying the biological effects of exposure to environmental agents in order to understand, and predict, how such exposures affect human health.

CEHS is funded by the National Institute of Environmental Health Sciences. Its research programs, organized in five research themes, pose challenging interdisciplinary problems for graduate and undergraduate students working with 35 CEHS members of MIT and Harvard University.

The five research themes are: DNA damage, DNA repair, and mutagenesis; inflammation chemistry and biology; microbes and disease susceptibility; bioengineering for toxicology; and exposure and response. These research activities are supported by four facilities cores—Bioanalytical, Genomics and Imaging, Animal Models, and Integrative Health Science—that provide state-of-the-art tools and technologies for solving environmental health problems.

At MIT, graduate and undergraduate courses in molecular and systems toxicology are offered through the Department of Biological Engineering; CEHS also partners with many departments in the Schools of Science and Engineering to create cross-disciplinary opportunities in environmental health science and engineering. The Applied Biosciences PhD program based in the Department of Biological Engineering integrates chemistry, molecular biology, and genetics with bioengineering approaches to the understanding of how organisms respond to environmental agents.

For further information, contact Professor Leona Samson, Room 56-235, 617-258-7813, lsamson@mit.edu.

http://cehs.mit.edu/

Center for Global Change Science
The Center for Global Change Science (CGCS) seeks to better understand the natural mechanisms in ocean, atmosphere, and land systems that together control the Earth’s climate, and to apply improved knowledge to problems of predicting climate changes. The center utilizes theory, observations, and numerical models of the Earth’s basic physical and biogeochemical processes to investigate climate phenomena, the linkages among them, and their potential feedbacks in a changing climate. The center’s main foci are global climate processes, climate observations, and past climate variations.

CGCS was founded in 1990 to foster cooperative effort among faculty, students, and research scientists in meteorology, oceanography, hydrology, atmospheric sciences, climate physics, chemistry, biology, ecology, and satellite remote sensing. Participants are drawn primarily from the departments of Earth, Atmospheric, and Planetary Sciences; Civil and Environmental Engineering; Biology; and Electrical Engineering and Computer Science. The major research initiatives in CGCS are the MIT Climate Modeling Initiative (CMI), the Advanced Global Atmospheric Gases Experiment (AGAGE), and the MIT Joint Program on the Science and Policy of Global Change (described later in this chapter). Through the latter, CGCS sustains substantial collaborative effort with faculty, students, and researchers in Economics, Political Science, Urban Studies and Planning, the Sloan School of Management, the Engineering Systems Division, and the MIT Energy Initiative.

CMI is a cooperative enterprise among CGCS scientists to develop a new generation model of the atmosphere, land, and ocean for study of the climate of the Earth. A focus of CMI is the MITgcm, a dynamical model that can be used to study both the atmosphere and ocean. The approach encompasses elements of computational fluid dynamics, statistics, meteorology, oceanography, and computer science, and exploits the latest understanding of geophysical and biogeochemical processes and new developments in algorithms, computing technology, and software design.

AGAGE measures greenhouse gases globally and infers their sources and sinks using inverse methods. It is distinguished by its capability to measure over the globe at high frequency almost all of the important gas species in the Montreal Protocol (e.g., CFCs, HCFCs) to protect the ozone layer and almost all of the significant non-CO2 gases in the Kyoto Protocol (e.g., HFCs, methane, and nitrous oxide) to mitigate climate change.

Professor Ronald Prinn of the Department of Earth, Atmospheric, and Planetary Sciences is the CGCS director. Contact the CGCS office at Room 54-1312, 617-253-4902, fax 617-253-0354, cgcs@mit.edu.

http://web.mit.edu/cgcs/

Center for International Studies
The Center for International Studies (CIS) supports and promotes international research and education at MIT.

CIS includes 100 members of the MIT faculty and staff, mainly drawn from the departments of Political Science and Urban Studies and Planning, and visiting scholars from around the world. We sponsor formal programs, multidisciplinary working groups and numerous public events. While CIS does not offer courses, students engage with the center’s faculty and staff as colleagues in research, dissertation students, participants in a range of events, and enthusiastic interns in the MIT Science and Technology Initiative (MISTI), the groundbreaking international education program. The center also provides other services to MIT students: internships, other opportunities to work in programs, and help with finding resources for research.

Within CIS is the MIT Security Studies Program (SSP), a graduate-level research and educational program. SSP’s teaching ties are with the Political Science Department. Courses offered emphasize grand strategy, the causes and prevention of international and civil conflict, military technology, nuclear proliferation, bureaucratic politics, national security, budgetary issues, and security issues in Asia. A special feature of the program is the integration of knowledge on technology with knowledge from the social sciences in the study of international security problems.
The MIT International Science and Technology Initiative, better known as MISTI, connects MIT students and faculty with research and innovation around the world. MIT’s largest international program, MISTI is a pioneer in applied international studies. Through country programs in Brazil, China, France, Germany, India, Israel, Italy, Japan, Mexico, and Spain, MISTI matches more than 400 MIT students with internships and research abroad each year in companies, research labs, and universities. MISTI Global Seed funds provide funding for faculty to jump-start international projects and encourage student involvement in faculty-led international research.

For more information, contact the program at Room E40-428, 617-258-0385, or visit http://web.mit.edu/misti/.

Seminar XXI is an educational program for senior military officers, government and NGO officials, and executives in the national security policy community. The program’s objective is to provide future leaders of that community with enhanced analytic skills for understanding foreign countries and the relations among them. The fundamental criterion for fellows is that candidates should reach top decision-making levels in the next three to five years.

The program explores key policy issues by examining countries and problems critical to American interests through a variety of paradigmatic lenses.

For more information, contact Tisha Gomes, Room E40-417, 617-258-6862, fax 617-258-7044, tishag@mit.edu.

The Program on Human Rights and Justice, an interdisciplinary program created by CIS and the Department of Urban Studies and Planning, focuses on teaching, research, and application in human rights, and provides a forum on human rights issues at MIT. The activities of the program include research projects and placing interns in intergovernmental organizations, private sector, and nongovernmental organizations worldwide.

For more information, contact phmj@mit.edu.

The Inter-University Committee on International Migration, created 30 years ago, organizes the Myron Weiner seminar series, honoring the late MIT professor and pioneer in migration studies. The committee also undertakes other projects on an ad hoc basis. Member institutions are Boston University, Brandeis University, the Fletcher School of Law and Diplomacy, Harvard, MIT, Tufts University, and Wellesley College. The committee is hosted at MIT by CIS.

For more information, email cis-migration@mit.edu.

The Program on Emerging Technologies (PoET) is a collaborative effort between the School of Engineering and the School of Humanities, Arts, and Social Sciences. Researchers at the Center for International Studies work together with colleagues from the Engineering Systems Division, the Technology and Policy Program, the Department of Political Science, and the Program in Science, Technology, and Society. With current, future, and historical focuses, research efforts address diverse implications of emerging technologies and how responses to anticipated policy or societal impacts may shape the way in which those technologies are developed.

For more information, contact Rebecca Ochoa, E40-444D, 617-253-8306, fax 617-253-9330, rochoa@mit.edu.

The Persian Gulf Initiative was launched in 2005 and has now held workshops on political violence, stability and legitimacy, energy security, the regional impacts of the Iraq war, and other topics. It sponsors research such as the Iraq mortality study, publications, and public forums, several of which have been held in Washington, DC, and New York.

For more information, contact Casey Johnson-Houlihan, E40-445, 617-258-8550, caseyj@mit.edu.

The briefing paper series, Audits of the Conventional Wisdom on US foreign policy, is part of the center’s public education program. Begun in spring 2005, the audits feature empirical analysis of pressing global issues, authored by MIT and guest scholars. They appear on the CIS website.

CIS manages the MIT-Japan International Studies Fund Grants, intended for advanced doctoral students at MIT working in close collaboration with faculty members on any international aspect of energy, environment, and international affairs.

Among the public events sponsored by CIS are the Starr Forum, the Emile Bustani Middle East Seminar, and the Security Studies Seminar Series. The Starr Forum mounts major public events for the MIT community and the broader public. The center’s website is also a source of information and analysis, news about CIS activities, and a fellowship database. Audits of Conventional Wisdom, the Foreign Policy Index, recent op-eds and articles by CIS scholars, videos of talks, and other resources are found online.

Each year the center appoints as visiting fellows a few academics and government officials, both from the United States and abroad. Supported by their universities, governments, or foundations, these fellows work on problems relevant to the center’s research and training interests. The Robert Wilhelm Visiting Fellow in International Studies is a distinguished visitor with extensive experience in government. The Elizabeth Neuffer Fellow is a woman journalist who reports on human rights and social justice.

For more information, contact executive director John Tirman, Room E40-447, 617-253-9861, tirman@mit.edu.

Center for Materials Science and Engineering

The Center for Materials Science and Engineering (CMSE), one of a nationwide network of Materials Research Science and Engineering Centers funded by the National Science Foundation, fosters collaborative interdisciplinary research and education in the fundamental science of materials and in the engineering of materials for long-range applications.

CMSE supports collaborations among MIT faculty and students from different disciplines, as well as between MIT researchers and researchers of other universities, industry, and government and nonprofit laboratories, and encourages collaborative research through interdisciplinary research groups (IRGs), shared experimental facilities (SEFs), infrastructure enhancement, and outreach programs.

The IRGs are composed of teams of MIT faculty, students, and postdoctoral associates from different disciplines who investigate fundamental scientific questions and engineering problems. More than 30 faculty members, representing ten different departments, are engaged in CMSE research in the following areas:
Nanomaterials for biological engineering
Nanomaterials for electrochemical energy storage and conversion
States of frustrated and correlated materials
Mechanomutable heteronanomaterials
Nanostructured fibers

CMSE provides state-of-the-art instruments, maintained and supervised by trained staff, in its SEFs. This equipment is available to MIT investigators, including students, and researchers from other universities, industry, and research labs.

Facilities provide instrumentation to carry out electron microscopy; thermal, optical, and surface analysis; crystal growth; X-ray diffraction; neutron powder diffraction; X-ray scattering; and neutron scattering. They also provide technical training in the operation of these instruments to graduate and undergraduate students.

CMSE directly supports approximately 15 UROP students each year to participate in its research. Another 15 undergraduates from other universities spend the summer performing materials research on campus through the Summer Research Internship Program, jointly sponsored by CMSE and the Materials Processing Center.

The center does not offer a degree program or subjects for academic credit. Student registration is handled by academic departments.

Other education and outreach programs sponsored by CMSE include a science and engineering summer day camp for seventh- and eighth-grade students from two Cambridge public schools and a summer research program for a small number of junior high and high school science teachers.

For further information, contact the center’s administrative office, Room 13-2106, 617-253-6850, fax 617-258-6478.

Center for Real Estate
The Center for Real Estate provides an intellectual focus for research on issues affecting the real estate industry. Faculty associated with the center are drawn from the departments of Architecture, Urban Studies and Planning, Civil and Environmental Engineering, Economics, and the MIT Sloan School of Management.

The center’s research initiatives cover a range of disciplines and areas of application within real estate, and all offer synergy between the real world of practice and MIT’s faculty and research capabilities.

New Century Development is the center’s initiative aimed at understanding and improving the real estate development process in the 21st century. This initiative is interdisciplinary and international in scope, providing avenues to link across various departments at MIT, and between MIT and the community of professional practice engaged in building the developments of the future.

The Housing Affordability Initiative identifies ways in which MIT can make a unique, policy-relevant contribution to the challenges posed by the high cost of housing in eastern Massachusetts and elsewhere. Initial projects include the development of a multidimensional, micro-level housing affordability index that could help policy makers allocate funds and marshal political support for new housing development at the local level.

The Commercial Real Estate Data Laboratory provides a space (both virtual and real) for quantitative tools for measuring commercial real estate performance. The focus of research includes investment performance, management or operational performance, and environmental or social performance.

The center encourages interaction between members of the real estate industry and the academic community through seminars, colloquia, lectures, and a series of non-credit professional development courses offered through the Professional Development Institute.

The center is supported in part through corporate partnerships and individuals active in the real estate industry.

The center also serves as the home for the Master of Science in Real Estate Development (MSRED) program, an interdepartmental degree program that combines education in design, planning, construction, management, finance, and marketing. It prepares students to assume positions of responsibility in private real estate companies, financial institutions, government agencies, nonprofit development organizations, and consulting firms. The program requires 11 months of intensive study.

For further information about the center or the Master of Science in Real Estate Development, contact Tony Ciochetti, chairman and director, Center for Real Estate, Room W31-310.

Center for Technology, Policy, and Industrial Development
MIT’s Center for Technology, Policy, and Industrial Development (CTPID) is an interdisciplinary research and educational center addressing global technology and policy issues through sustained partnerships with industry, government, and academia. These partnerships are aimed at supporting global economic growth and advancing policies that preserve the environment and benefit society at large.

CTPID research focuses on contemporary industrial problems—such as how to build safe, affordable, and environmentally friendly automobiles—that span social, natural, and technological interests.

Current programs, often supported by several corporations, address industry issues in aerospace, automotive, engineering and construction, information quality, materials systems, mobility, technology and law, and healthcare. Other programs examine diverse issues facing a single global corporation. Applying CTPID’s interdisciplinary focus, a team—for example, of computer scientists, economists, and policy analysts—can join forces to solve whole problems, not just components of a problem.

Research from CTPID’s International Motor Vehicle Program (IMVP) resulted in The Machine That Changed the World, a book that articulated lean production techniques and transformed manufacturing worldwide. Recent books from CTPID’s diverse programs include The Second Century: Reconnecting Customer and Value Chain through Build-to-Order, Lean Enterprise Value: Insights from MIT’s Lean Aerospace Initiative, Future Cities: Dynamics and Sustainability, and Broadband: Bringing Home the Bits.

Center programs include the Ford-MIT Alliance, IMVP, Lean Advancement Initiative, Lean Sustainment Initiative, Information Quality Program (MIT IQ), Materials Systems Laboratory, and the Technology and Law Program.

Established in 1985, CTPID’s 45 faculty and researchers are drawn from MIT’s Schools of Engineering, Management, and Humanities, Arts, and Social Sciences, and from peer institutions. Affiliated scholars come from universities including Harvard, Chicago, Tokyo, and Université de Paris XII. Pragmatic knowledge comes from over 40 sponsors, including Toyota Motor Corporation, Ford Motor Company, Raytheon Company, BAE...
Systems, Inc., the Boeing Company, the US Air Force, the US Army, and the National Science Foundation.

Sustained by MIT’s intellectual resources and interdisciplinary tools, CTPID’s mission is to develop new knowledge, advanced technological strategies, and innovative partnerships that support global industrial growth, social well-being, and environmental health.

For further information, contact the acting director, Joel Moses, Room E40-257, 617-253-8592.

http://web.mit.edu/ctpid/www/

Center for Transportation and Logistics

The MIT Center for Transportation and Logistics (MIT CTL), part of the Engineering Systems Division, is a world leader in supply chain management and transportation education and research. MIT CTL engages in three principal activities: research, outreach, and education.

Research. The center’s world-renowned research programs directly involve over 75 faculty and research staff from a wide range of academic disciplines, as well as researchers in various affiliate organizations around the world. MIT CTL has three main research programs: Supply Chain Management and Logistics, Transportation, and the impact of aging on mobility, health, and wellness.

Supply Chain Management and Logistics projects include Carbon Efficient Supply Chains; AgeLab; Demand Management; FreightLab; Scenario Planning; Strategy Alignment; Supply Chain 2020: The Future of the Supply Chain; Supply Chain Innovation in Emerging Markets; Supply Chain Security; the National Cooperative Highway Research Program’s Future Freight Flows; and Supply Chain Network Risk Management.

Transportation programs and projects include the New England University Transportation Center, the MIT Program in Intelligent Transportation Systems, and the National Center of Excellence for Aviation Operations Research.

The MIT AgeLab conducts research to improve quality of life for older adults and those who care for them, creating new ideas and translating technology into practical applications.

Outreach. MIT CTL partners with industry to turn the center’s innovative research into market-winning applications. MIT CTL currently has more than 50 corporate partners worldwide who participate in events, interact with researchers, and contribute to and help steer research projects.

Education. MIT CTL’s top-ranked academic programs include the MIT Supply Chain Management master’s program; the PhD program in Logistics and Supply Chain Management; and the MIT-Zaragoza International Logistics program, which offers graduate education in logistics and certifies in various logistics-related disciplines.

Through MIT CTL, MIT is the lead university in Federal Region I of the University Transportation Centers program administered by the US Department of Transportation, which provides graduate fellowships in transportation, research and teaching assistantships, and undergraduate research opportunities.

For further information on the Center for Transportation and Logistics and its programs, see Engineering Systems Division in Part 2.

http://ctl.mit.edu/

Clinical Research Center

The MIT Catalyst Clinical Research Center is an NIH-funded research facility on campus that provides an infrastructure for interested scientists to perform biomedical and nutritional research involving human subjects.

Its mission is to support the translation of basic science discoveries into clinical (human) research that may improve the lives of patients and their families. Its existence allows students at all levels to gain experience with human subjects and human disease. Research projects in progress are in the areas of psychiatry, neurology, endocrinology, human nutrition and metabolism, psychiatry, neurology, biomechanical engineering, and obesity. Disorders under study include autism, dyslexia, ADHD, depression, bipolar disorder, anxiety, social anxiety disorder, and schizophrenia. Most projects involve collaboration between physicians and clinical research scientists, and often involve local hospitals.

The facilities of the center are open to all departments in the Institute, and its principal investigators are faculty members and research scientists from many different departments. The center has state-of-the-art instruments and supports processing of samples. The specialty of clinical research nursing, whose focus is the care of the research participant, provides expertise in the operationalization of research protocols. This practice may include study design consultation, study implementation, data acquisition and processing, safety monitoring, data management, and subject education.

Research opportunities are available for undergraduate and graduate students contemplating careers in the medical sciences. The Undergraduate Research Opportunities Program (UROP) allows undergraduate students the opportunity to participate in the research process at the Clinical Research Center—either for credit, pay, or on a volunteer basis.

For further information, contact the program codirectors, Drs. John Gabrieli and Ravi Thadhani, or the administrative director, Sheila McCabe, Room 46-2005, 617-253-9335.

http://web.mit.edu/crc/

Computer Science and Artificial Intelligence Laboratory

The Computer Science and Artificial Intelligence Laboratory (CSAIL) pursues fundamental research across the entire breadth of computer science and artificial intelligence. CSAIL is committed to leading the field both in new theoretical approaches and in the creation of applications that have broad societal impact.

CSAIL’s current research activities span three principal areas:

Artificial Intelligence (AI). This area of research aims to understand and develop systems—living and artificial—capable of intelligent reasoning, perception, and behavior. Specific research includes core AI computational biology, computer graphics, computer vision, human language technology, machine learning, medical informatics, robotics, and the semantic web.

Systems. This area of research aims to discover common principles, models, metrics, and tools of computer systems, both hardware and software. Specific research includes compilers, computer architecture and chip design, operating systems, programming languages, and computer networks.

Theory. This area of research studies the mathematics of computation and its consequences. Specific research includes algorithms, complexity theory, computational geometry, cryptography, distrust computing, information security, and quantum computing.
Deshpande Center for Technological Innovation

The Deshpande Center was established at the MIT School of Engineering to increase the impact of MIT technologies in the marketplace. Founded with an initial donation from Jaishree and Desh Deshpande, the Deshpande Center supports a wide range of emerging technologies including biotechnology, biomedical devices, information technology, new materials, tiny tech, and energy innovations.

Since 2002, the Deshpande Center has awarded $10 million in Ignition and Innovation Grants to support more than 80 MIT faculty-led projects. The objective of the funding is to nurture ideas with market potential and reduce the uncertainty around them so that an external party would invest in the technology. In addition to the funding, the grants bring with them publicity, mentoring, and connections with the business community.

This funding is enabling MIT faculty and their students to pursue exciting new avenues of research on novel technologies. As a result, over 20 projects have spun out of the center as independent startups, having collectively raised more than $180M in outside financing from top-tier venture capital firms and other investors.

There are two ways for students to get involved in projects funded by the Deshpande Center.

1. i-Teams (Innovation Teams). i-Teams is a course that selects ambitious and highly qualified students interested in helping to bring to market leading-edge technologies from MIT’s world-renowned research laboratories. The students join teams dedicated to evaluating commercial feasibility and creating go-to-market strategies for technologies within the Deshpande Center portfolio. The course is taught jointly through the Sloan School of Management and the School of Engineering. More information can be found on the web at http://web.mit.edu/deshpandecenter/iteams/index.html.

2. Deshpande Center Grant Program. The grant program identifies and supports MIT research that can address important market opportunities. To support this research, the center awards Ignition Grants and Innovation Grants (ranging from $50,000 to $250,000 per project) to MIT faculty. Students may participate through a thesis or research assistantship in the laboratory of a faculty member. A portfolio of projects, including faculty contact information, can be found on the web at http://web.mit.edu/deshpandecenter/portfolio.html.

The executive director of the Deshpande Center is Leon Sandler. The faculty director of the Deshpande Center is Professor Charles L. Cooney. For more information, contact the Deshpande Center, Room 1-229, 617-253-0943, deshpandecenter@mit.edu. http://web.mit.edu/deshpandecenter/

Division of Comparative Medicine

The Division of Comparative Medicine has three basic missions: education, research, and the provision of comprehensive animal husbandry, clinical, and diagnostic services for all research animals at MIT. The division serves as the centralized animal resource on campus and provides the necessary expertise for investigators conducting biomedical research using animal models.

Division staff members educate the MIT research community in the biology and use of research animals as models for biomedical research. The division provides online training materials for researchers working with animals as well as one-on-one training based on individual requirements. Division members teach graduate-level courses in the Department of Biological Engineering and provide mentorship for graduate students.

With an NIH-funded postdoctoral training program for veterinarians specializing in biomedical research, the major long-range goal of the research at the division is to develop animal models or in vitro systems that are pertinent to biomedical research. The division is internationally recognized for characterizing new Helicobacter species and studying the relationship of Helicobacter to diseases that are prevalent throughout the world. http://web.mit.edu/comp-med/

Francis Bitter Magnet Laboratory

The Francis Bitter Magnet Laboratory conducts a program of research and development in science and engineering in areas involving magnetic fields, focused primarily on magnetic resonance.

High-field, high-resolution nuclear magnetic resonance (700, 750, and 900 MHz) and electron paramagnetic resonance (140 GHz) spectrometers are used for studies of molecules of biological interest and in areas of materials science. Spectrometers are made available on a routine basis in a collaborative and user mode to research groups from other MIT departments and institutions worldwide. In addition the laboratory operates pulsed magnets (giving fields up to 68 tesla).

Collaborative research programs are carried out with the departments of Physics, Electrical Engineering and Computer Science, Mechanical Engineering, Nuclear Science and Engineering, Materials Science and Engineering, Chemistry, and with the Plasma Fusion Center. These collaborative programs include participation by undergraduates and graduates working on theses. Undergraduate students in the Undergraduate Research Opportunities Program and others are also employed.

For information, contact the director, Professor Robert Griffin, Room NW14-3220, 617-253-5478. http://web.mit.edu/fbml/cmr/

Haystack Observatory

MIT Haystack Observatory provides opportunities for undergraduate and graduate student research in radio astronomy, geodesy, and atmospheric sciences.

Haystack Observatory has long had a worldwide leadership position in the development and use of the Very Long Baseline (VLBI) technique, which uses a global array of radio telescopes to make high-resolution observations of galactic and extragalactic radio sources and to do precision geodetic studies of the Earth’s plate tectonics and motions in space. Using
radio-telescopes at Haystack and elsewhere around the world, Haystack supports strong programs in both science and technology using VLBI, including unique mm-wavelength observations of the center of our galaxy to probe down to the size of the presumed black hole located there.

High-power radars using 46-m and 67-m antennas are used, in conjunction with a variety of other techniques, to study the structure and dynamics of Earth’s upper atmosphere. Emphasis is given to the study of the effects of geomagnetic storms induced by solar disturbances on Earth’s ionosphere. Haystack researchers also study thermal effects in the upper atmosphere, including signatures associated with global climate change.

A strong instrumentation development program is conducted at Haystack Observatory, particularly in the areas of wideband signal processing and high-rate data acquisition. Current applications include the design of large radio arrays to enhance the collecting area for radio observations, as well as ultra-broadband receiving systems for VLBI measurements.

Observatory researchers are currently leading the development of an array spanning 80–300 MHz called the Murchison Widefield Array in collaboration with the MIT Kavli Institute and others, which will be built in Western Australia. This innovative array offers rich opportunities for research in cosmology, astrophysics, and heliospheric science, and will open a broad new discovery space. Haystack scientists and engineers also are participating in the development of a new large array called the Square Kilometer Array for various astronomical studies.

Opportunities exist for students to get involved in all these projects and use the facility instrumentation for research investigations.

The Haystack Observatory is located in Westford, MA, about 35 miles northwest of Cambridge. For further information, contact Dr. Colin Lonsdale, MIT Haystack Observatory, Route 40, Westford, MA 01886, 781-981-5542, clonsdale@haystack.mit.edu.

http://www.haystack.mit.edu/

Institute for Soldier Nanotechnologies
Since 2002, MIT has hosted the Institute for Soldier Nanotechnologies (ISN), an interdisciplinary research center established under contract with the US Army. ISN’s mission is to develop nanomaterials and related nanotechnologies that will dramatically improve the protection and survivability of soldiers.

The ultimate goal is to create a 21st-century battlesuit that combines high-tech capabilities with light weight and comfort. Imagine a bullet-proof jumpsuit, no thicker than ordinary spandex, that monitors health, eases injuries, communicates automatically, and maybe even lends superhuman abilities. It’s a long-range vision of how technology can make soldiers less vulnerable to enemy and environmental threats.

ISN research is mostly conducted by graduate students completing theses, by postdoctoral researchers, and by undergraduates working through the Undergraduate Research Opportunities Program (UROP). These researchers work in a 40,000-sq-ft facility on the MIT campus equipped with state-of-the-art laboratories designed and built for nanotech research.

Another unique feature of ISN is that most theses are co-supervised by two or more faculty members representing different areas of technical expertise. Currently, affiliated faculty come from 10 MIT departments, including Biology, Biological Engineering, Materials Science and Engineering, Mechanical Engineering, Chemical Engineering, Electrical Engineering and Computer Science, Aeronautics and Astronautics, Chemistry, Mathematics, Physics, and the Harvard-MIT Division of Health Sciences and Technology.

In addition, many projects involve the participation of visiting experts both from industry and from Army laboratories and centers of excellence. These experts often bring practical perspectives that contribute significantly to the rich learning environment at ISN.

Students seeking to perform thesis or UROP research in ISN should contact affiliated faculty within their own department. Information may also be obtained from ISN at 617-324-4700 or isn@mit.edu.

http://web.mit.edu/isn/

Institute for Work and Employment Research
The Institute for Work and Employment Research (IWER) is an MIT-wide multidisciplinary research and educational unit located within MIT Sloan School of Management and the Engineering Systems Division. Since its establishment in 1937 (as the MIT Industrial Relations Section), IWER has conducted research devoted to the full range of issues related to work, labor and employment relations, human resource management, labor market issues, and related public policies. Participating faculty are drawn from the Sloan School and the departments of Economics, Political Science, and Urban Studies and Planning.

IWER faculty and graduate students conduct research on the broad range of issues related to the role of work and employment in the contemporary economy and society, including labor-management relations, human resource strategies and practices in both mature and new entrepreneurial organizations, work and family relationships, human capital and corporate governance, labor market theory and policy analysis, the changing nature of work and occupations, negotiations theory and practice, dispute resolution, and labor and employment policy. Together with colleagues at Stanford and several other universities, IWER faculty recently launched a major study of employment standards in global supply chains.

The institute administers a PhD program and fellowships primarily for students enrolled in the MIT Sloan PhD program, but students from other departments at MIT are encouraged to become members of IWER, participate in weekly seminars, and work closely with faculty members. The seminar series on Changes and Challenges in the World of Work is held every Tuesday, bringing together faculty and students at MIT and in the Boston area to discuss work in progress and serving as a major focal point for interest in this field.

IWER’s codirectors are Thomas A. Kochan and Paul Osterman. For more information, contact Patti Newman, Room E52-580, 617-258-8360, fax 617-253-7696, iwer@mit.edu.

http://mitsloan.mit.edu/iwer/

Joint Program on the Science and Policy of Global Change
The Joint Program on the Science and Policy of Global Change conducts research and analysis on issues of global environmental change, with a concentration on climate, and communicates the results to the research community, policymakers, and the public. The program’s work focuses on the integration of natural and social science aspects of the climate issue to produce analyses relevant to ongoing national and international discussions. The effort involves an interactive group of faculty, staff, and student researchers.
The Joint Program combines the capabilities of two complementary interdisciplinary research centers: the Center for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEP). Resources of the parent centers are strengthened by links to the Marine Biological Laboratory’s Ecosystems Center in Woods Hole, MA; the MIT Climate Modeling Initiative; and other MIT environmental programs. Cooperative efforts engage the program with leading research institutions and nonprofit organizations worldwide. Financial support is provided by an international group of sponsors from government organizations, foundations, and industry.

The program’s cornerstone is the MIT Integrated Global System Model (IGSM) of economic and environmental change. IGSM is a comprehensive research tool for analyzing potential anthropogenic global climate change and its social and environmental consequences. It includes consideration of climate science, technical change, and economic and social science in an interacting set of computer models designed for study of the sensitivities and uncertainties that are crucial to policy evaluation.

Program members communicate research results and interpret policy relevance of analytical work through many professional activities, including publications, workshops, corporate and public briefings, and media interviews. Special briefings from program members have been requested by the US Congress and federal and state agencies, by governments working through their ministries and international organizations, and by independent research panels. Information is also communicated directly to international and national policy-making bodies, and to other investigators, through the program’s semiannual MIT Global Change Forum.

Professors Henry Jacoby, of the MIT Sloan School of Management, and Ronald Prinn, of the Department of Earth, Atmospheric, and Planetary Sciences, codirect the program. For further information, contact the program office, Room E19-411, 617-253-7492, fax 617-253-9845, globalchange@mit.edu.

Knight Science Journalism Fellows Program

Knight Science Journalism Fellowships are designed for mid-career journalists who cover science, technology, medicine, or the environment for the general public. The program offers fellowships to reporters, writers, editors, producers, illustrators, and photographers.

Journalists who are selected spend one academic year on campus, taking courses at MIT and Harvard, participating in twice-a-week seminars with top researchers, visiting laboratories, going on field trips, and pursuing independent projects.

Science journalists face some of the most difficult challenges of reporting. They must convey complex, technical subjects in direct, simple terms to readers and viewers who demand—and have a right to—accurate, fair, and clear information about scientific developments that affect not only their views of the world, but their lives and livelihoods.

Reporting both the news and its implications is further complicated by the naturally advancing complexity of science.

Knight Fellowships are designed to help journalists face these challenges by widening their knowledge of science and technology and deepening their understanding of how these fields interact with society. Also, they provide an opportunity for journalists to re-examine old ways of practicing their craft and to develop new ways.

The John S. and James L. Knight Foundation is the principal sponsor of the fellowships, the only nine-month, mid-career program reserved for science journalists. The fellowships are part of MIT’s Program in Science, Technology, and Society.

For further information, contact Philip Hilts, director, Room E19-623, 617-253-3442, philpts@mit.edu.

http://web.mit.edu/knight-science/

Koch Institute for Integrative Cancer Research

The David H. Koch Institute for Integrative Cancer Research at MIT, the former Center for Cancer Research, partially supported by the National Cancer Institute, provides facilities for interdisciplinary work in many areas of fundamental cancer research, including molecular, cellular, and developmental biology; immunology; nanotechnology; and diverse applications of biomedical engineering. With a $100 million gift from David H. Koch, MIT is building a new cancer research center—scheduled to open in 2010—that will bring together scientists and engineers under one roof to develop new and powerful ways to detect, diagnose, treat, and manage cancer.

The Koch Institute draws its faculty from both the School of Science and the School of Engineering. Graduate students typically enroll in the departmental program, but students in any MIT department may ask to do doctoral thesis research under the supervision of the institute’s faculty. If accepted, they may be eligible for support as research assistants.

Opportunities for undergraduate research are available through the Undergraduate Research Opportunities Program. Occasional seminars on cancer research, offered as public colloquia, are also available.

For further information, contact the director, Professor Tyler Jacks, Room E17-110, 617-253-6403.

http://web.mit.edu/ki/

Laboratory for Financial Engineering

The techniques of financial engineering have become indispensable to a wide spectrum of business activities, including investment banking, commercial banking, corporate finance, capital budgeting, portfolio management, risk management, and financial consulting and planning.

The principal focus of the Laboratory for Financial Engineering (LFE) is the quantitative analysis of financial markets using mathematical, statistical, and computational models. The goal of LFE is not only to spur advances in financial engineering, but also to develop better ways to teach students and executives how to apply financial technology in corporate settings.

Students are encouraged to participate in current research projects, which include the empirical validation and implementation of financial asset pricing models, the pricing and hedging of options and other derivative securities, risk management and control, trading technology and market microstructure, nonlinear models of financial time series, neural-network and other nonparametric estimation techniques, high-performance computing, and public policy implications of financial technology. LFE is a research lab for students currently enrolled at MIT and does not offer any degree programs.

Professor Andrew W. Lo is the director of the laboratory. For further information, contact Sara Salem, Room E52-450, 617-253-9745, fax 617-258-6855, ssalem@mit.edu.

http://lfe.mit.edu/
Laboratory for Information and Decision Systems
The Laboratory for Information and Decision Systems (LIDS) is an interdisciplinary laboratory for research and education in systems, communication, and control. LIDS is staffed by faculty, research scientists, and graduate students from the departments of Electrical Engineering and Computer Science, Aeronautics and Astronautics, and Mechanical Engineering, as well as the Sloan School of Management. Research at LIDS falls into four main areas.

Research in Communication and Networks includes fundamental work on networks, information theory, and communication theory. The work extends to applications in satellite, wireless and optical communications, and data networks. The objective is to develop the scientific base needed to design efficient, robust, and architecturally clean data communication networks. Topics of current interest include network architectures at all layers; power control; multiple antenna techniques; network coding; media access control protocols; routing in optical, wireless, and satellite networks; quality of service control; failure recovery; topological design; and the use of pricing as a mechanism for efficient resource allocation.

The Statistical Signal Processing group analyzes complex systems, phenomena, and data subject to uncertainty and statistical variability. Research ranges from basic theory, methodologies, and algorithms to challenging applications in a broad array of fields. Applications for this research include multi-sensor data assimilation for oceanography, hydrology, and meteorology; biomedical image analysis; object recognition and computer vision; and coordinated sensing and processing of large, distributed arrays of micro-sensors.

Work in Optimization looks at analytical and computational methods for solving optimization problems arising in engineering and operations research. It has applications in communication networks, control theory, power systems, and computer-aided manufacturing. In addition to linear, nonlinear, dynamic, convex, and network programming, the solution of large-scale problems, including the application of neuro-dynamic programming methods, are also emphasized.

Control and System Theory group deals with problems related to complete systems analysis design, including learning and system identification, controller design and optimization, and basic analysis of distributed systems involving the interaction of information and control. Theoretical research quantifies the fundamental limitations and capabilities of learning and feedback control for various classes of systems in the presence of dynamic uncertainty. Application-oriented work includes control architectures for single and multiple unmanned aerial vehicles and controllers for piloting epitaxy in semiconductor manufacturing. Modeling aspects of the nervous system, conducted in collaboration with other laboratories are also a focus.

For further information about LIDS, contact the director, Professor Vincent W. S. Chan, Room 32-D608, 617-253-2142.

Laboratory for Manufacturing and Productivity
The Laboratory for Manufacturing and Productivity (LMP) is an interdisciplinary center for education and research in manufacturing and productivity at MIT. The laboratory seeks to establish a rational foundation for manufacturing based on a systematic understanding of the complex interactions among the many areas of manufacturing. The three major objectives are: (1) the development of the fundamental principles of manufacturing processes, equipment, and systems; (2) the application of those principles to the manufacturing; and (3) the education of engineering leaders.

The laboratory draws upon faculty and staff mainly from the Department of Mechanical Engineering, but participates in wide-ranging programs that involve many other departments and programs at MIT. Since its establishment in 1977, LMP’s research program has contributed to innovation in manufacturing processes and equipment, and has nurtured a greater understanding of planning, design, and production operations.

LMP’s three research focus areas are micro- and nano-scale manufacturing processes and equipment, manufacturing systems and information technology, and sustainability, including photovoltaics and environmentally benign manufacturing.

Opportunities for undergraduate and graduate students are available for thesis research and Undergraduate Research Opportunities Program projects, as are a limited number of postdoctoral research positions.

For additional information, contact the director, Professor Jung-Hoon Chun, Room 35-233, 617-253-1759.

Laboratory for Nuclear Science
Research in the Laboratory for Nuclear Science is directed at understanding the structures and interactions of the fundamental constituents of matter. The laboratory supports research interests of faculty in the Department of Physics by maintaining and administering facilities for studies of nuclear and particle physics. The laboratory operates the Bates Linear Accelerator Center, the Bates High Performance Research Computing Facility, and supports the Center for Theoretical Physics. In addition, the laboratory operates the MIT Central Machine Shop.

Theoretical research in both nuclear and particle physics is carried out within the Center for Theoretical Physics, described below. Another theoretical program investigates the properties of high-energy plasmas. In the nuclear physics experimental program, experiments continue at the Thomas Jefferson National Accelerator Facility, with polarized protons using RHIC at Brookhaven National Laboratory, and with neutrons at the Los Alamos Neutron Science Center. A continuation of the Bates electromagnetic program at higher energies is being implemented at the DESY accelerator in Germany. The high-energy particle physics program involves completing experiments at the Fermi National Accelerator Laboratory (FNAL). A new program of experiments with both high-energy protons and heavy ions is now under way at the Large Hadron Collider at CERN in Switzerland. An experimental apparatus is scheduled for launch to the International Space Station in July 2010 to look for antimatter in space and dark matter detector development. Properties of neutrinos are being explored through experiments at FNAL, Karlsruhe, Germany, and Chooz, France.

Students participate in the entire range of research programs in fulfilling their graduate and undergraduate degree requirements or as participants in the Undergraduate Research Opportunities Program (UROP). For further information contact the director, Professor R. Milner, Room 26-505, 617-253-2395.

The William H. Bates Linear Accelerator Center is operated by the Laboratory for Nuclear Science as a research and engineering center with particular emphasis on accelerator science and technology, attracting
faculty from across the Schools of Science and Engineering. Current efforts include the development of new techniques for interaction of lasers with particle beams, including optical cooling; design, construction, and testing of new detector systems; the design of the high-luminosity electron-ion collider eRHIC; and the development of Bates as a high-intensity photon radiation source. Bates is also the site of efforts to develop new techniques for screening of cargo for dangerous materials and for proton radiation for cancer therapy.

Students participate both through UROP projects and through under-graduate and graduate thesis work. For further information contact the director, Professor R. Redwine, Room 26-453, 617-253-3600.

The Center for Theoretical Physics is engaged in a broad range of fundamental research activities in theoretical nuclear and particle physics, including study of the fundamental constituents of matter and the theory that governs them, the structure and interactions of nuclei and hadrons, electroweak physics, lattice hadron physics, field theory, string theory and quantum gravity, many-body physics, mathematical physics, cosmology, and quantum computation.

Students participate both through undergraduate UROP research and graduate thesis research. For further information contact the director, Professor E. Farhi, Room 8-323, 617-253-4871.

http://www-ins.mit.edu/

Lean Advancement Initiative

The Lean Advancement Initiative (LAi) is a research consortium that enables the focused and accelerated transformation of complex enterprises. LAi has members from industry, government, and academia and collaboratively engages all of its stakeholders to develop and institutionalize principles, processes, behaviors, and tools for enterprise excellence. Started in 1993, LAi resides within the Center for Technology, Policy and Industrial Development of the Engineering Systems Division (ESD) in the School of Engineering. Faculty from the Department of Aeronautics and Astronautics, ESD, and the MIT Sloan School of Management participate in LAi research. LAi has produced 25 case studies, 18 working/white papers, and 122 conference papers. More than 170 graduate students from Aeronautics and Astronautics, ESD, Mechanical Engineering, Sloan School of Management, and other programs have completed master’s and doctoral theses within LAi.

LAi conducts its research in close collaboration with its industry and government members and has developed an array of tools to help its members assess and analyze their enterprises. These products include, but are not limited to, Lean Enterprise Self-Assessment Tool, Enterprise Transformation Roadmap, Enterprise Value Stream Mapping and Analysis, Systems Engineering Leading Indicators Guide, Enterprise Strategic Analysis for Transformation.

LAi’s Educational Network (EdNet) is an international group of more than 40 universities and colleges that develop and deploy curricula based on LAi’s latest research, practical knowledge, and member best practices. These curricula include: LAI Lean Academy®, LAI Lean Engineering Seminar™, LAI Lean Healthcare Academy™, Lean Enterprise Value Short Course, and customized courses.

LAi captured major findings in its 2003 award-winning book Lean Enterprise Value: Insights from MIT’s Lean Aerospace Initiative. Further information about LAi is available on the LAi website.

http://lean.mit.edu/

Legatum Center for Development and Entrepreneurship

The Legatum Center for Development and Entrepreneurship at MIT was founded on the belief that economic progress and good governance in low-income countries emerge from entrepreneurship and innovations that empower ordinary citizens.

The center administers a highly competitive fellowship program for MIT graduate students who intend to launch enterprises in low-income countries. The fellowship provides financial and academic support including seminars and networking dinners with leaders in the entrepreneurial sphere. Throughout the school year, the center organizes conferences and a lecture series, which are open to the MIT and Cambridge community. For more information, contact legatum@mit.edu

http://legatum.mit.edu/

Lincoln Laboratory

MIT’s Lincoln Laboratory, in Lexington, MA, is a federally sponsored center for research and development in advanced technologies in support of national security applications.

Lincoln Laboratory’s activities focus on design and development of complex systems, many of them incorporating new technologies, devices, and components.

Specific programs include optical and RF communications; missile defense technology; digital signal processing; embedded computer systems; image processing; space, air, and surface surveillance; biological defense sensors and systems; environmental monitoring; and air traffic control.

Research also is conducted in optics, solid-state devices, radar systems, decision support, and information technology.

Opportunities for research are available to MIT faculty members and qualified students. Inquiries may be directed to Bernadette Johnson, chief technology officer, LIN 53-132, MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420-9108, 781-981-7020, or bernadette@ll.mit.edu

http://www.ll.mit.edu/

Materials Processing Center

The Materials Processing Center (MPC), an interdisciplinary center within the School of Engineering, provides an environment where industry, government, and academia can collaborate to identify and address multidisciplinary issues in materials processing and manufacturing.

MPC focuses on strengthening and enhancing its intellectual community, increasing industrial outreach, and creating partnerships with industry to focus on research and education. These partnerships address current issues in all materials sectors, but especially in energy, information technology, transportation, primary materials, construction, biotechnology, and technologies for sustainability.

MPC cosponsors the MPC/CMS Summer Scholar Program, inviting outstanding undergraduate students nationwide to participate in ongoing MIT materials research. The program has brought hundreds of college juniors and seniors to conduct graduate-level materials research.

With its Industry Collegium, MPC acts as the primary window to industry for MIT’s broad materials research community. Collegium member companies benefit from this liaison with MIT in many ways. Publications promoting materials processing activities at MIT are distributed widely to industrial and government contacts. MPC sponsors a major workshop involving both students and faculty during its Materials Day celebration.
each fall. In cooperation with MIT’s Industrial Liaison Program, MPC and the Microphotonics Center also provide a forum for industrial representatives to discuss their needs and problems one-on-one with MIT faculty and researchers. MPC also encourages exchanges between academia and industry, through visiting scientists, adjunct faculty appointments, and industrial internship educational opportunities.

The Microphotonics Center is a center within MPC that builds interdisciplinary teams focused on advancing basic materials science and emerging technology in integrated photonic systems. It serves as a research community in which industry, government, and academia collaborate to create new materials, structures, and architectures for the emerging “micro-photonics platform”—the menu of on-chip and circuit-board level devices and components that will comprise future optoelectronics for computing, imaging, and learning. The Microphotonics Industry Consortium creates a proactive forum where scientists, engineers, and strategists from industry and MIT can work as partners in exploring and pursuing innovative microphotonics research and development.

For more information, contact Mark Beals, associate director, Room 12-007, 617-253-2129, mbeals@mit.edu.

McGovern Institute for Brain Research
The McGovern Institute for Brain Research at MIT is a research and teaching institute committed to meeting two great challenges of modern science: understanding how the brain works and discovering new ways to prevent or treat brain disorders.

Research at the McGovern Institute is organized around three broad themes: perception, cognition, and action. Together these themes correspond to the flow of information through the brain—from the sensory systems that receive and interpret input, to the higher regions that underlie cognition, and finally to the motor systems that control our actions. Our research employs the full range of modern neuroscience techniques, from molecular genetics to functional neuroimaging and computational modeling. A deeper knowledge of the human brain will have profound implications, both for our understanding of our own minds and for the treatment of the many brain diseases that lead to human suffering.

The institute currently has 13 principal investigators and will expand to 16 investigators within the next few years. All McGovern Institute faculty members hold dual appointments in departments at MIT. Each of our faculty members leads a research team, and the institute as a whole comprises a community of more than 200 researchers and support staff.

The main focus for undergraduate neuroscience education at MIT is Course 9, leading to the Bachelor of Science in Brain and Cognitive Sciences. There are many opportunities for undergrads to work in McGovern labs, for example through the MIT Undergraduate Research Opportunities Program.

The McGovern Institute does not operate its own graduate program. Instead, graduate students must enroll in one of the departmental or interdepartmental graduate programs at MIT. The majority of graduate students within the McGovern Institute are enrolled in the Brain and Cognitive Sciences graduate program.

For more information about undergraduate and graduate opportunities at the McGovern Institute, visit http://mcgovern.mit.edu/work-here/types-of-positions/. To learn more about the institute, contact the director, Dr. Robert Desimone, Room 46-3160, 617-324-0639.

Media Laboratory
The Media Laboratory is about people, computation, and quality of life in a digital age. True to the vision of its founders, the laboratory continues to focus on the study, invention, and creative use of “enabling technologies for learning and expression by people and machines.” Its work is rooted in modern communication, computer science, and natural and human sciences, and its academic program is intimately linked with research. Media Arts and Sciences, the academic program linked to the laboratory, can be thought of as exploring the technical, cognitive, and aesthetic bases of satisfying human interaction as mediated by technology.

Computers and computation are the most prominent common denominators of this multidisciplinary merger of previously separate domains. The birthplace of multimedia computing, the laboratory is engaged in research that includes computing culture, electronic publishing, software agents, multi-modal interfaces, structured audio, digital and networked video, constructionist learning, conversational computing, pervasive computing, tangible media, personalized media, gender- and age-based computing, metadata representations, common-sense computing, personal fabrication, affective computing, and silicon biology.

The activities of the laboratory revolve around a core of learning, perceiving, and expressing. Current foci include both the means of expression (the underlying science and technology needed to merge the bits of the digital world with the atoms of the physical world) and its meaningful application to the arts (performance and the study of the principles of analysis and synthesis in computational media). Furthermore, the laboratory aims to address major social challenges (improving education, enhancing health care, and supporting community development) through the innovative design and use of new technologies.

Many of the laboratory’s research activities are conducted within the context of corporate-funded programs. The focus on corporate support reflects the laboratory’s commitment to collaborative research: a dialogue with industry (and other non-academic) partners provides a forum for ongoing professional critique; technology transfer moves research results out of the laboratory and into worldwide use. Drawing upon a broad, international base, industries represented range from electronics to entertainment, furniture to finance, and toys to telecommunications.

The graduate academic Program in Media Arts and Sciences is based within the School of Architecture and Planning. Students work closely with faculty members as well as with laboratory sponsors.

For further information, contact Frank Moss, director, Room E14-245, 617-324-3818.

Microsystems Technology Laboratories
The Microsystems Technology Laboratories (MTL) provide modern microelectronics fabrication laboratories, including cleanrooms, design and testing facilities to enable research and education in microelectronics/microfabrication technology. MTL microfabrication, testing, and computational facilities are open to the entire MIT community and researchers from other university or government laboratories, as well as limited industrial participation.

MTL facilities consist primarily of fully equipped cleanroom microfabrication laboratories and associated design, simulation, testing, and characterization infrastructure, as well as an extensive computational network, supporting a wide array of design and layout tools.

http://mpc-web.mit.edu/
Process research and device fabrication at MTL are primarily conducted in three laboratories, the Integrated Circuits Laboratory (ICL), the Technology Research Laboratory (TRL) and the Exploratory Materials Laboratory (EML). ICL is designed, equipped and staffed to serve as a highly advanced silicon integrated circuit, device, structures, and process research facility. TRL supports the development of novel process technologies and provides facilities for the fabrication of novel micro and nano-structures. EML is a highly flexible microfabrication resource with all the basic fabrication capabilities and few limitations.

More than 130 faculty and senior research staff, 550 graduate students, 150 undergraduates, and 20 postdoctoral associates are involved in ongoing activities at MTL. Approximately 55 PhD and 45 SM and MEng degrees whose primary area of research is strongly coupled to MTL facilities are awarded each academic year.

For information regarding MTL’s technical operations and capabilities, contact Dr. Vicky Diadiuk, associate director for operations, 617-253-0731, diadiuk@mtl.mit.edu. For information regarding MTL programs and other general information, contact Samuel Crooks, associate director for administration, 617-253-3978, crooks@mtl.mit.edu.

http://mtlweb.mit.edu/

Middle East Program at MIT

The Middle East Program at MIT, an interdisciplinary course of study taken in conjunction with the graduate program in a student’s chosen department, focuses on technology, development, and public policy. The program enables students with an interest in the Middle East (including North Africa and South Asia) to develop an expertise in the area within the context of a coherent program of study. It equips students with an understanding of the processes of socioeconomic change, technological development, political change, environmental management, knowledge networking, institutional development, sustainability strategies, and international business and investment patterns in the region.

The program draws on MIT’s unique strengths in science and technology to offer a course of study distinct from a conventional “area studies” approach to the Middle East. The emphasis at present is on challenges of design and development in the reconstruction of the region following violent conflicts, as well as on innovations and applications of advances in information technology and knowledge e-networking to support development objectives.

The program draws on faculty from the departments of Political Science, Civil and Environmental Engineering, and Urban Studies and Planning; the History Section; the Sloan School of Management; the Program in Science, Technology and Society; and the Aga Khan Program in Islamic Architecture.

For further information, contact Professor Nazli Choucri, Department of Political Science, Room E53-493, 617-253-6198, nchoucri@mit.edu.

MIT Center for Digital Business

The MIT Center for Digital Business was created in partnership with industry to better understand the opportunities for radical change created by the internet and related technologies. Its aim is to provide thought leadership and implement tools and frameworks for analyzing internet-enabled technology, management, and business strategy through one-to-one relationships with corporate partners. Based at the MIT Sloan School of Management, the center also draws on other MIT resources, including the World Wide Web Consortium, the Center for Information Systems Research, the Center for Collective Intelligence, the Computer Science and Artificial Intelligence Laboratory, and the Media Lab. To date the center has funded more than 70 research projects with more than $30 million in corporate support.

The center’s research is organized into four special interest groups: productivity, marketing, services, and health. Sponsors of the center participate closely in a focused research project as well as the annual conference, topical research workshops, and biweekly webinar lunches.

For more information, contact David Verrill, Room NE25-769, 617-452-3216, fax 617-452-3231, verrill@mit.edu. http://digital.mit.edu/

MIT Energy Initiative

The MIT Energy Initiative (MITEI) helps transform the global energy system to meet the needs of the future and helps build a bridge to that future by improving today’s energy systems. The four components of the MITEI program are energy research, education, campus energy management, and outreach activities. For information about MITEI programs and activities, visit http://web.mit.edu/mitei/.

Research

MITEI’s interdisciplinary research program focuses on:

- **Innovative technologies** and underlying policy analysis
- **Transformational technologies** to develop alternative energy sources that can supplement and displace fossil fuels, including the associated economic, management, social science, and policy dimensions
- **Global systems** to meet energy and environmental challenges
- **Tools** to enable innovation, transformation, and simulation of global energy systems

MITEI addresses a critical link in the energy innovation chain, pairing MIT’s research teams with industry members who are responsible for moving the products of this collaboration into the energy marketplace. The resulting enabling energy technologies have the potential to address multiple energy challenges; the delivery of energy products and services at scale; and the provision of energy products and services in highly complex policy, legal, and regulatory environments.

Education

MITEI’s education program develops cross-disciplinary learning opportunities and assists students with energy opportunities beyond the classroom. Its Education Office provides support to students through a variety of programs, including:

- An Institute-wide undergraduate Minor in Energy Studies launched in fall 2009. Overseen by a faculty committee with representatives from all five Schools, the minor complements the deep expertise obtained in a student’s major with a broad understanding of the interlinked realms of science, technology, and social sciences as they relate to energy and associated environmental challenges.
- **MITEI Energy Fellowships**
The MIT Energy Education Task Force (LFEe) is an umbrella program designed to address complex interrelationships between energy, the environment, and the economy. It supports a variety of teaching activities in all aspects of entrepreneurship, which provide a combination of project-based and theory-based learning. Project-based classes include New Enterprises, Innovation Teams, and Entrepreneurship Lab; theory-based classes include Entrepreneurial Finance, Strategic Management of Innovation and Entrepreneurship, and Dilemmas in Founding New Ventures. Over 30 subjects are offered, involving more than 25 faculty members.

All entrepreneurship subjects, described in the online MIT Subject Listing & Schedule (http://student.mit.edu/catalog/index.cgi), are open to graduate students from all MIT departments, and support the strong community of MIT entrepreneurship and innovation. Subjects frequently feature invited speakers who have significant real-world experience to share. The classes provide students with insights based on leading-edge research on entrepreneurship and related topics, such as the role of science and innovation in economic growth, and the characteristics of effective entrepreneurial firms.

The MIT E-Center supports and cooperates closely with a wide array of related organizations at MIT, including the MIT Technology Licensing Office, the Deshpande Center for Technological Innovation, the Venture Mentoring Service, the Legatum Center for Development and Entrepreneurship, and the Lemelson-MIT Program. It also supports a range of student activities including the MIT $100K Entrepreneurship Competition, the MIT Clean Energy Prize, the MIT Entrepreneurship Review, the MIT Venture Capital and Private Equity Club, the MIT Sloan Biomedical Business Club, the MIT Sloan Sales Club, MIT Sloan Entrepreneurs for International Development, the MIT Energy Club, and the MIT Sloan Energy and Environment Club.

William K. Aulet is the managing director, Professor Fiona Murray is the associate director, Professor Edward B. Roberts is the founder and chairman, and José J. Pacheco is the program manager. The MIT Entrepreneurship Center is also supported each semester by a group of entrepreneurs-in-residence who have founded high-impact innovation-based companies and organizations from scratch and provide advice to students with similar goals.

For more information, contact the MIT E-Center, Room E40-196, 617-253-8653, fax 617-253-8633, ecenter@mit.edu. http://entrepreneurship.mit.edu/

The MIT Kavli Institute for Astrophysics and Space Research (MKI) offers students, faculty, and professional research staff opportunities to participate in a broadly based program of space-related research. For example, research programs are carried out in X-ray, radio, optical, and planetary astronomy, space plasma and gravitational physics, and space engineering. Areas of research include cosmology, black holes and neutron stars, and extrasolar planets, among other topics.
Studies often involve experiments carried by the space shuttle, orbiting satellites, or deep space probes. The experimental programs are complemented by ground-based research in similar fields and by laboratory development of suitable instrumentation for the space-based and ground-based experiments. An active program of theoretical studies in astrophysics and space physics is also supported.

MIT Portugal has developed four PhD, one master’s, and three advanced studies programs in select Portuguese universities, as well as joint research projects involving faculty and students from MIT and Portugal. The program is supported by a national initiative involving Portuguese universities and research centers, which, together with MIT, targets bioengineering systems, sustainable energy systems, engineering design and advanced manufacturing, and transportation systems as key areas for economic development and societal impact.

MIT Portugal offers opportunities for MIT students in graduate research collaboration and postdoctoral research as well as sponsored lectures and public colloquia on engineering systems.

For further information, contact the program’s assistant director, Robin Lemp, Room E40-221, 617-253-0127.

http://www.mitportugal.org/

MIT Professional Education
MIT Professional Education provides short courses, semester or longer learning programs, and customized corporate programs for science and engineering professionals at all levels. Taught by renowned faculty from across the Institute, MIT Professional Education programs offer professionals the opportunity to gain crucial knowledge in specialized fields to advance their careers, help their companies, and have an impact on the world.

MIT Professional Education comprises four programs:

Advanced Study Program (ASP, http://advancedstudy.mit.edu/). Each term, professionals in engineering and technical fields come to MIT as fellows to gain knowledge and skills needed to advance their careers and bring innovative ideas and practices to their employers. While at MIT, they are enrolled as graduate students with full privileges. They plan their own academic experience, which may include courses from more than 30 disciplines, and some also arrange research opportunities with faculty in their field. Fellows earn grades, MIT credit, and an ASP certificate. Full-time fellows who complete two terms become MIT alumni.

Career Reengineering Program (http://career-reengineering.mit.edu/). This MIT faculty-designed program helps talented professionals prepare for technical career re-entry. The part-time program incorporates career and personal development, a technical skills refresher, a semester-long MIT course, and an internship or research project. Students have access to the same campus resources as full-time MIT students. They complete the program with either a job or a strategic plan to find a professional job matching their abilities and ambition.

Custom Programs (http://customprograms.mit.edu/). These are programs designed to meet company-specific training needs, and range from a single day to a year-long sequence of sessions, on or off campus. Courses are generally focused on scientific and technical leadership, combining topics from both technology and management fields. MIT Professional Education will work with companies to match their needs with custom curricula from MIT faculty who have in-depth expertise in relevant disciplines.

For more information about MIT Professional Education, contact executive director Bhaskar Pant, Room 35-433, 617-452-4362, fax 617-258-8831.

http://professionaleducation.mit.edu/

MIT Sea Grant College Program
Through innovative research, education, outreach and technology transfer, MIT Sea Grant promotes sustainable development and rigorous stewardship of our marine and coastal resources. We are part of the National Sea Grant College Program, a network of 32 programs funded by the National Oceanic and Atmospheric Administration.

http://career-reengineering.mit.edu/
Current areas of research include underwater communications, aquaculture, coastal management, and marine biotechnology. The program is also home to the Autonomous Underwater Vehicles (AUV) Laboratory, which has been revolutionary in the development and testing of state-of-the-art, low-cost AUVs since its start in 1990. Education and outreach are also integral components of all our projects.

MIT departments principally involved in Sea Grant research include Mechanical Engineering, Civil and Environmental Engineering, Chemical Engineering, and Nuclear Science and Engineering. Graduate and undergraduate students participate in most Sea Grant research projects, and support is available for UROP projects.

Sea Grant also sponsors symposia and workshops, publishes reports, and works with local governments, businesses, and organizations to transfer both technology and information to a wide range of audiences.

For more information about MIT Sea Grant, contact the director, Professor Chryssostomos Chryssostomidis, Room E38-300, 617-253-7131. http://seagrant.mit.edu/

Nuclear Reactor Laboratory
The MIT Nuclear Reactor Laboratory (NRL) is an interdepartmental center that operates a 5 MW research reactor. NRL has a distinguished history of providing faculty and students from MIT and other institutions with a state-of-the-art neutron source as well as a highly efficient and well-organized infrastructure to facilitate its use.

NRL is equipped with a wide variety of sample irradiation facilities, with fast and slow neutron fluxes up to 1014 and 5x1013 per cm2 per second; temperature-controlled in-pile facilities, a neutron diffractometer; and a fission converter facility. In-pile loops that closely simulate the environment in light water power reactors are available for corrosion and irradiation damage testing. An in-pile high-temperature irradiation facility for advanced materials studies has been successfully demonstrated to operate up to 1500 °C. An excellent medical irradiation facility with a clinically useful epithermal beam is available for patient and animal irradiations.

Other experimental facilities and instrumentation include radiochemistry laboratories; hot cells for dismantling or testing; a shielded hot box for handling and nondestructive testing of radioactive materials; nuclear detection equipment; delayed and prompt gamma activation analysis facilities; an inductively coupled plasma spectrometer (ICP-OES); and a materials characterization laboratory. A thermal hydraulic lab was established with the Nuclear Science and Engineering Department to study heat transfer properties of nanofluids for nuclear reactor and other thermal management applications.

Current research topics include applications of nuclear trace analysis to problems in the physical and engineering sciences, life sciences, geosciences, and the environment; radiation effects on materials; advanced fuels irradiation; dose and corrosion reduction in power reactors; reactor engineering; instrumentation for neutron detection; nuclear medicine, including brain cancer therapy study; and isotope production.

Undergraduates can be involved in the operation of the reactor by completing the reactor operator training program, which can lead to being employed part-time by the NRL as an NRC-licensed reactor operator, and/or utilize the reactor in research activities through special projects or senior theses. In addition, graduate thesis research can be carried on in the various research areas mentioned above.

A current summary report describing NRL activities in greater detail is available. For information, inquire at the office of the director, Dr. David E. Moncton, Room NW12-204, 617-253-8883.

http://web.mit.edu/nrl/www/

Operations Research Center
The Operations Research Center (ORC) provides academic and research opportunities for graduate students and faculty interested in an interdisciplinary field that draws upon ideas from engineering, management, and mathematics in order to apply scientific methods to decision making. ORC includes faculty participants from the Sloan School of Management, as well as from the departments of Electrical Engineering and Computer Science, Aeronautics and Astronautics, Mathematics, Civil and Environmental Engineering, Mechanical Engineering, Urban Studies and Planning, and Economics. Forty-seven faculty and 54 graduate students are affiliated with the center.

The center coordinates master’s and PhD programs in operations research, which provides a strong background in theory as well as the practical techniques used in building models for a wide variety of applications.

For further information about the Operations Research Center and its degree programs, contact Laura Rose, Room E40-143, 617-253-9303, lrose@mit.edu.

http://web.mit.edu/orc/www/

Picower Institute for Learning and Memory
The Picower Institute for Learning and Memory is an interdisciplinary research entity within MIT’s School of Science, with faculty members holding academic appointments in the Department of Brain and Cognitive Sciences, the Department of Biology, or both.

The Picower Institute’s mission is to unravel the mechanisms that drive human learning and memory, as well as related functions such as perception, attention, and consciousness. The institute offers exciting research opportunities from undergraduate to postdoctoral levels in molecular, cellular, and genetic biology, as well as in systems biology, which explores the cognitive system at the neural circuit and systems level.

Picower Institute investigators explore:

- How memory is formed through genetic, molecular, and cellular neural circuits and neural systems
- How memories of personal experiences are used in daily life and in dreams
- How neurons form synaptic connections and how those connections transmit information and change with experience
- The surprising ability of certain species to grow new brain cells in adulthood and the extraordinary plasticity or adaptability of the developing and adult brain
- The intricacies underlying the executive functions of the cerebral cortex

The institute’s highly collaborative, cross-disciplinary strategy spawns exciting joint projects among its various laboratories. Many Picower faculty also are inventors of unique technologies and techniques that are redefining the practice of neuroscience.
Plasma Science and Fusion Center

The timely development of practical fusion energy in the 21st century is arguably one of the most important challenges facing the scientific and engineering community worldwide. The Plasma Science and Fusion Center provides a focus for experimental and theoretical studies in plasma science, magnetic and inertial fusion research, and the development of related enabling technologies. The center fosters independent creativity and provides the intellectual environment for the educational training of students, research scientists, and engineers. Research activities at the Plasma Science and Fusion Center fall into five major programmatic divisions as described below.

The Alcator C-Mod Project is developing a basic understanding of the stability and transport properties of high-temperature magnetically confined toroidal plasmas at reactor-relevant conditions. Alcator C-Mod, a world-class divertor tokamak, is a compact, high-magnetic-field device (up to 8 Tesla) with record-high plasma pressure and particle densities. C-Mod’s present research program is aimed at understanding energy and particle transport at magnetic fields and densities comparable to those of future fusion reactors. In addition, it seeks to optimize plasma performance with RF heating and non-inductive current profile control using high-power RF transmitters (8 MW at 40–80 MHz) and microwaves (3 MW at 4.6 GHz frequency).

The Plasma Physics Research Division is developing the basic experimental and theoretical understanding of magnetically confined plasmas, including experimental research in magnetic reconnection in plasmas, and development of advanced and novel plasma diagnostics. The experimental facilities in this division include the Versatile Toroidal Facility for basic plasma science research, and the Levitated Dipole Experiment, a joint project with Columbia University. This experimental facility at PSFC studies the confinement, stability, heating, and transport of plasma particles and energy in a pure dipole magnetic configuration. Scientists, students, and faculty in this division also carry out world-renowned theoretical research.

The High-Energy-Density Physics Division designs and implements experiments on national facilities, such as the OMEGA laser facility at the University of Rochester Laboratory for Laser Energetics, and the National Ignition Facility at Lawrence Livermore National Facility. Recent work by this division discovered the existence of megagauss magnetic fields in laser-compressed pellets. This division also performs related theoretical calculations to study and explore the nonlinear dynamics and properties of plasmas in inertial fusion and those under the extreme conditions of density (~1000 g/cc), pressure (~1000 gigabar), and field strength (~megagauss).

The Waves and Beams Division conducts experimental and theoretical research on the physical principles of novel sources of coherent radiation ranging from the microwave to the infrared, optical, and X-ray regions of the electromagnetic spectrum. Current research includes work on the gyrotron (or cyclotron resonance maser), a novel source of millimeter wave radiation using high magnetic fields. The division also conducts research on novel concepts for high-gradient acceleration of electrons to demonstrate the principles required for future generations of electron linear accelerators. The experimental research utilizes a 25 MeV accelerator to investigate high-gradient acceleration of electrons and coherent radiation by femtosecond electron bunches.

The Fusion Technology and Engineering Division provides critical engineering support to the national fusion energy sciences program for both operating magnetic confinement fusion experiments and advanced fusion design projects. The division has extensive experience in design, analysis, development, and fabrication of advanced high-field copper and superconducting magnet technology. Present research is focused on developing second-generation high-temperature superconductors for high-field, high-current cables for fusion magnets, and for applications of superconducting DC power transmission and distribution. The division is also developing very high-field, compact cyclotron accelerators for applications such as proton radiotherapy for cancer treatment, active detection of strategic nuclear materials for protection against weapons of mass destruction, and variable energy, heavy-ion accelerators for fusion materials research.

Many academic departments are affiliated with PSFC, including the Physics, Nuclear Science and Engineering, Electrical Engineering and Computer Science, Materials Science and Engineering, Mechanical Engineering, Chemical Engineering, and Aeronautics and Astronautics. The center’s programs and laboratories provide excellent forums for training students and professional researchers, and offer world-class research facilities to faculty members from many departments. Fifty-eight graduate students are currently involved at all levels of thesis work. Undergraduates also can participate through the Undergraduate Research Opportunities Program.

For further information contact the director, Professor Miklos Porkolab, Room NW16-288, 617-253-8448, fax 617-253-0238, porkolab@psfc.mit.edu.

Productivity from Information Technology Initiative

Established in 1992, the Productivity from Information Technology (PROFIT) initiative explores how information technology can enhance productivity in both the private and public sectors. Its research spans diverse areas from finance to transportation, and from manufacturing to telecommunications. Current research efforts include knowledge acquisition (including the extraction of information from semi-structured web sources); knowledge management and integration (which includes the mapping and assembling of information across departmental, corporate, and national boundaries to suit new conditions and requirements); and knowledge dissemination.

For further information about PROFIT, contact Stuart Madnick, Room E53-321, 617-253-6671, fax 617-253-3321, smadnick@mit.edu; or Michael Siegel, Room E53-323, 617-253-2937, msiegel@mit.edu.

Program in Art, Culture and Technology

The Program in Art, Culture and Technology (ACT) operates as a critical studies and production-based laboratory connecting the arts with an advanced technological community. ACT faculty, fellows, and students engage in advanced visual studies and research by implementing both an experimental and systematic approach to creative production and transdisciplinary collaboration. As an academic and research unit, the ACT program
emphasizes both knowledge production and knowledge dissemination. In the tradition of artist and educator Gyorgy Kepes, founder of MIT’s Center for Advanced Visual Studies and an advocate of “art on a civic scale,” ACT believes in artistic leadership as a vital voice that can initiate change, a critically transformative view of the world, and a civil responsibility to enrich cultural discourse.

For further information, contact the program coordinator, Meg Rotzel, Room N52-390, 617-253-4415, fax 617-253-1660, mrotzel@mit.edu.
http://act.mit.edu/

Research Laboratory of Electronics
The Research Laboratory of Electronics (RLE) was founded in 1946 as the first of the Institute’s great modern interdepartmental research centers. Today, it is one of MIT’s largest, as well as the most diverse in intellectual interests.

RLE research is focused on seven major themes:

- Circuits, systems, signals, and communications
- Physical sciences
- Quantum computation and communication
- Photonic materials devices and systems
- Nanoscale science and engineering
- Multiscale bioengineering and biophysics
- Electromagnetics, power, and energy

Seventy-one principal investigators—of whom 59 are MIT faculty members—direct RLE’s research projects. These faculty members are drawn from nine MIT departments and divisions: Biological Engineering, Electrical Engineering and Computer Science, Engineering Systems, Mathematics, Mechanical Engineering, Materials Science and Engineering, Physics, and the Harvard-MIT Division of Health Sciences and Technology.

More than 340 MIT graduate and undergraduate students—also drawn from these departments and divisions—make RLE one of the primary environments for student learning at MIT. In fact, it is the combination of forefront research with student participation across multiple academic disciplines that characterizes the RLE culture.

In 2009, the Laboratory for Electromagnetic and Electronic Systems (LEES) was merged into RLE as part of a growing emphasis on energy-related research. Researchers affiliated with LEES are pioneers in understanding, on one hand, the theoretical basis of advanced electrical power and energy applications, and on the other, the component, circuit, and system technologies required to make such applications into practical realities.

RLE’s research efforts are supported by the most diverse sponsor base at MIT. Principal sponsors include the Department of Defense, National Institutes of Health, National Science Foundation, industry, and nonprofit foundations and organizations.

In addition, a significant share of RLE’s activities is self-funded from gifts and from the discretionary resources of the laboratory and its principal investigators. Approximately a third of RLE’s activities involves extramural collaborations with universities, institutions, and industry, making the laboratory one of MIT’s principal points of connection with peer institutions, government, and the business world.

Nearly all RLE activities take place at MIT’s main campus in Cambridge. Some also take place at the Massachusetts Eye and Ear Infirmary in Boston.

For further information, contact the director, Professor Jeffrey H. Shapiro, Room 36-419, 617-253-4279.
http://www.rle.mit.edu/

Singapore-MIT Alliance
The Singapore-MIT Alliance (SMA) is a global partnership in graduate education created by MIT, the National University of Singapore (NUS), and Nanyang Technological University (NTU). Setting a new standard for international collaboration in graduate research and education, the alliance educates young engineers to serve as leaders in a technologically advanced economy, and creates a cohort of students and faculty with creativity and entrepreneurial spirit.

The Chemical and Pharmaceutical Engineering (CPE, http://web.mit.edu/sma/students/programmes/cpe.htm) program—a cutting-edge curriculum in the fields of molecular engineering and process science focused on the pharmaceutical industry—will be offered in 2010–2011. It provides a unique opportunity to obtain dual master of science degrees, one from the Chemical Engineering Practice Program of the Chemical Engineering Department at MIT and one from NUS. The dual degrees can be completed in three academic terms of coursework, and an additional term of industrial internship. The industry internship at a practice school station is in lieu of a research thesis. This program comprises innovative courses of study that integrate a molecular-level understanding of biological and chemical phenomena with advances in process engineering for the pharmaceutical and fine chemical industries.

For more information about SMA, contact the executive director, John C. Desforge, Room 8-407, 617-452-3014.
http://web.mit.edu/sma/

Spectroscopy Laboratory
The George Russell Harrison Spectroscopy Laboratory is dedicated to advancing knowledge of the structure and dynamics of atoms and molecules and the properties of liquids, solids, and biological materials utilizing the techniques of lasers and modern spectroscopy.

An interdisciplinary department in the School of Science, the Spectroscopy Laboratory encourages participation and collaboration among staff members in various disciplines of science and engineering. At present, faculty and staff from the Departments of Chemistry, Physics, Chemical Engineering, Electrical Engineering and Computer Science, and the Harvard-MIT Division of Health Sciences and Technology pursue research projects in the laboratory. In addition, researchers from both the United States and abroad participate in the projects sponsored by the laboratory.

The Spectroscopy Laboratory houses an extensive collection of lasers for spectroscopic research. The resources are organized into eight major laboratories: Pulsed Visible/UV Spectroscopy and Kinetics; Combustion Kinetics; Tri-Model Spectroscopy and Imaging; UV, Visible, and Near IR Raman Spectroscopy; Low-Coherence Interferometry; Spectroscopy of Quantum Dots; Spectroscopy of Condensed Phases; and Picosecond Time-Resolved Spectroscopy. Major equipment includes excimer and Nd:YAG-based pulsed dye lasers, femtosecond Ti:sapphire lasers, ion laser-pumped dye lasers, CW Raman spectrometers, streak camera; and various phase microscopes.
The laboratory is a resource for researchers in both physical science and biomedical optics. The Laser Biomedical Research Center (LBRC), supported by a grant from the National Institutes of Health, is devoted to spectral diagnosis of disease and advancements in imaging techniques for cell biology and medicine. LBRC facilities are made available to researchers from universities, industry, and medical institutions.

Current research activities in the laboratory include high-resolution laser spectroscopy of excited vibrational and electronic molecular states, quantum dots, characterization of nanotubes, acoustic and thermal properties of high-pressure materials, carbon-centered radicals with O2, kinetics of intermediates in organo-metallic complexes, proton-coupled electron transfer studies, and applications of lasers in medicine, including research in diagnosis of human biological tissue, in particular detection of early stages of cancer, using laser-induced fluorescence and light-scattering spectroscopy and phase microscopy using low-coherence interferometry, and cell biology.

Many graduate and undergraduate students perform thesis research in the laboratory; Undergraduate Research Opportunities Program projects are offered in many areas of laser research.

For further information, contact the lab at Room NW14-1106, 617-253-4881.

http://web.mit.edu/spectroscopy/

System Dynamics Group
Faculty and students in the System Dynamics Group use computer simulation and other tools to understand complex dynamics in a wide range of organizations, markets, and other settings. We work with these organizations to implement and assess the benefits of new policies to improve performance. Projects include environmental sustainability, including improving public understanding of climate change and policy for the transition from internal combustion and fossil fuels to alternative vehicles; the dynamics of process improvement, new product development, and service quality; improving public health; and others. Members of the group use a wide range of methods, from ethnographic field study to formal modeling. Many of the field studies and models provide the basis for simulation studies, and applications of lasers in medicine, including research in diagnosis of human biological tissue, in particular detection of early stages of cancer, using laser-induced fluorescence and light-scattering spectroscopy and phase microscopy using low-coherence interferometry, and cell biology.

Many graduate and undergraduate students perform thesis research in the laboratory; Undergraduate Research Opportunities Program projects are offered in many areas of laser research.

For further information, contact John Sterman, Room E53-351, 617-253-1951, fax 617-258-7579, jsterman@mit.edu.

http://sysdyn.clexchange.org/

Technology and Development Program
The Technology and Development Program (TDP) provides a focus at MIT for interdisciplinary research and education related to the role of science and technology in the socioeconomic growth of newly industrialized countries.

TDP promotes an awareness among faculty and students of the relationships among science, technology, and development; provides a focal point for the activities of faculty, students, and visiting scholars interested in the field of technology and development; and serves as a resource for organizations outside MIT (government, academic, private sector) that wish to explore the Institute’s understanding of socioeconomic and technical challenges facing the newly industrialized nations.

TDP is administered by faculty executive committees which oversee the activities of each program. TDP currently is engaged in programs in Thailand and Abu Dhabi. The primary emphasis of each program is on institution building. Through research, education, and industrial outreach activities, the program provides opportunities for industry, government; and academia to pool their resources and enhance the domestic socioeconomic growth of the host country. In addition, TDP is intellectually involved with the Global Infrastructure Fund of Japan and with the Centro de Integración Fluvial de Sur América, Colombia, as well as other initiatives, such as the Disaster Relief Network.

TDP provides educational and research opportunities for master’s candidates interested in specific areas of technology and development. Admission to MIT must first be obtained from the appropriate academic department. The student should then submit a proposal for study to the TDP policy committee for approval. Details of the program are available upon request. Students may receive financial support in the form of research assistantships associated with current TDP research projects.

Further information about the program may be obtained from the director, Professor Fred Moavenzadeh, Room 1-173, 617-253-7178.

http://web.mit.edu/mit-tdp/www/

Transportation@MIT
The greatest wave of mass mobility is yet to come, and it represents a potential economic, health, and ecological disaster on a global scale. In 2009, to address the grand challenge of future mobility, MIT researchers launched Transportation@MIT, a partnership of MIT’s School of Engineering, the Sloan School of Management, and the School of Architecture and Planning. Representing 15 departments, this team of over 240 faculty and senior research are already engaged in transportation-related research. The initiative’s purpose is urgent and impactful: to mobilize MIT’s resources to transform global transportation systems and meet the environmental and mobility needs of the 21st century.

Transportation@MIT is building on MIT’s rich tradition of transportation education, which includes a Master of Engineering in Logistics, described in Engineering Systems Division in Part 2, and a Master of Science and a Doctor of Philosophy in Transportation, described in Interdisciplinary Graduate Programs in Part 3. Weekly seminars highlighting current MIT transportation research engage this community of faculty, research staff, and students. At these seminars, students are introduced to potential applications and interdisciplinary collaborations for their work in their vast fields of transportation research.

http://transportation.mit.edu/

Whitaker College of Health Sciences and Technology
In 1977, MIT established the Whitaker College of Health Sciences and Technology to provide an academic and administrative focus for the development of health-related activities at the Institute.

Many faculty members involved in the educational and research programs of Whitaker College hold joint appointments in the college and in other schools, departments, and interdisciplinary laboratories at MIT.

Whitaker College includes the Center for Environmental Health Sciences, the Harvard-MIT Division of Health Sciences and Technology (HST), and the Division of Comparative Medicine.
There are several graduate programs in Whitaker College. HST offers a number of graduate degree options that focus on different aspects of engineering and the biomedical sciences:

- The Program in Medical Engineering and Medical Physics leads to the PhD or ScD degree from MIT or the Harvard Faculty of Arts and Sciences.
- The Medical Sciences Program leads to the MD degree from Harvard Medical School.
- The Speech and Hearing Bioscience and Technology Program leads to the PhD or ScD degree from MIT.
- The Biomedical Enterprise Program leads to the SM in Health Sciences and Technology through HST.
- The Master of Engineering in Biomedical Engineering leads to the MEng degree through HST.
- The Biomedical Informatics Training Program offers predoctoral and postdoctoral options from MIT and Harvard. Fellows have the option of pursuing the SM in Biomedical Informatics through HST.
- The Graduate Education in Medical Sciences Program is a certificate program that students in the MIT Schools of Engineering and Science may take concurrently with doctoral studies and research to gain exposure to biomedical and clinical sciences, including translational medicine.

These programs are described under the Harvard-MIT Division of Health Sciences and Technology (HST), in the Interdisciplinary Graduate Programs section.

http://web.mit.edu/vpr/www/whitaker.html

Women’s and Gender Studies Program

The Program in Women’s and Gender Studies (WGS) offers unique opportunities for interdisciplinary study and research for both undergraduate and graduate students. The primary objective of WGS is to promote new research about the role of gender in all academic disciplines as well as to incorporate the experiences, perceptions, and intellectual contributions of women into existing curricula. It offers new perspectives in fields as diverse as anthropology, history, biology, psychology, performance, engineering, and literature.

Undergraduates can choose a concentration or a minor in WGS and can petition for a major departure in WGS. The curriculum includes a core subject, Introduction to Women’s and Gender Studies, and a selection of subjects from many departments at the Institute. Special independent study topics and UROP projects can be arranged.

Several regular subjects are offered for graduate credit, and graduate students may also enroll in courses offered through the Graduate Consortium in Women’s Studies. See the section on Graduate Education in Part 1 for more information.

For more information, contact the coordinator, Heidy M. González, Room 14E-316, 617-253-8844.

http://web.mit.edu/wgs/

Other Affiliations

Broad Institute of MIT and Harvard

Founded in 2003 and launched in 2004, the Broad Institute of MIT and Harvard seeks to transform medicine by empowering creative and energetic scientists of all disciplines from across the MIT, Harvard, and the Harvard-affiliated hospital communities to work together to address even the most difficult challenges in biomedical research.

Investigators at the Broad Institute come from all of its partner institutions, many of whom are faculty members at MIT or Harvard. Currently there are six core faculty members at Broad, with their primary labs located at Broad, and over 150 associate members, with their primary labs located at one of the universities or hospitals.

The Broad Institute is also home to many postdoctoral and graduate students who perform some or all of their research at the Broad Institute, although graduate students earn their degrees from their respective home institutions. In addition, the Broad Institute offers numerous research opportunities for undergraduate and high school students. To learn more about these programs, visit the Broad website.

The Broad Institute primary research labs are at 7 Cambridge Center, across the street from MIT’s Biology Department and adjacent to the Whitehead Institute, and at 320 Charles Street.

Further information may be obtained through Broad Communications, 7 Cambridge Center, Cambridge, MA 02142, 617-714-7000. http://www.broadinstitute.org/

Draper Laboratory

The Charles Stark Draper Laboratory (formerly the Instrumentation Laboratory) separated from MIT in 1973 to become an independent not-for-profit research and educational organization.

Mechanisms exist to permit the continuation of joint research activities and to allow the laboratory to continue its unique contributions to the Institute’s educational program. Opportunities are available in the Course 6-A program, Space Grant, other programs, and for part-time employment. Research assistantships, denoted as Draper fellows, for SM and PhD candidates are described in the Graduate Education Manual. Copies are available from the Office of the Dean for Graduate Education, Room 3-138, 617-253-4860, and from department graduate offices.

The laboratory’s pioneering work in instrumentation has led to the development of highly precise sensors and ultra-reliable systems on which the world depends for safe and accurate guidance, navigation, and control. Much of Draper’s current research involves measurement, analysis, simulation, and control of complex dynamic systems, such as in robotics and autonomous vehicles. Draper is also applying its core competencies to a wide spectrum of applications, such as information systems, biomedical engineering, and commercial space systems.

A number of MIT faculty members maintain a close association with the laboratory, and thesis research opportunities exist that fulfill the residency requirement for an MIT degree in all phases of systems engineering, including basic theory, material sciences, mathematical analysis, computer studies, component design and evaluation (mechanical, electrical, and optical), and system synthesis. Students are in direct daily contact with the professional staff of engineers and scientists of the laboratory, and thus learn to appreciate the economic and human as well as the technical
aspects of a system. Undergraduate and graduate students also may be employed by the laboratory and work directly on a project.

Adjacent to the main campus, Draper Laboratory is located at 555 Tech Square, Cambridge, MA 02139-3582. Information may be obtained by contacting Linda Fuhrman, 617-258-3259, or sending an email to ed@draper.com.

http://www.draper.com/

Whitehead Institute for Biomedical Research

Whitehead Institute for Biomedical Research provides educational and research opportunities for graduate and undergraduate students in the biological sciences.

A nonprofit, independent research institution, Whitehead is affiliated with MIT through its members, who hold faculty positions at MIT. A small number of junior investigators also hold positions at Whitehead Institute as part of the Whitehead Fellows program.

Whitehead’s research excellence is nurtured by the collaborative spirit of its faculty and the creativity and dedication of its graduate students and postdoctoral scientists. Whitehead’s primary focus is basic science, with an emphasis on molecular and cell biology, genetics and genomics, and developmental biology. Specific areas of inquiry at Whitehead include cancer, transgenic science, stem cells, regenerative biology, genetics, genomics, membrane biology, vertebrate development, and neurological disorders.

The institute is engaged in research collaborations with numerous academic and industrial partners. These partnerships expand the scope of Whitehead research, as well as aid the translation of basic research into advances in disease prevention, diagnosis, and therapy.

Whitehead also supports a suite of programs that foster high school science education, and public engagement with science and technology. Students and postdoctoral candidates interested in science education and community outreach are encouraged to participate in these programs.

Each year, a number of graduate students pursue PhD degrees at Whitehead Institute through the Department of Biology. Undergraduate students pursue research objectives through MIT’s Undergraduate Research Opportunities Program.

Further information may be obtained through Communications and Public Affairs, Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142-1479, 617-258-5183.

http://www.whitehead.mit.edu/
A
abroad, studying, 44–46. See also year away programs
absences from class or examinations, 70
academic advisors, 33
academic calendar, 6–9
academic conduct, 74
academic credits. See credit hours for subjects
academic organization, 18
academic performance. See grading and academic performance
academic procedures, 69–77. See also policies and procedures
academic programs, 16–17
undergraduate, 17, 31–35
access to student records, 76–77
accreditation, 2, 17
ACT tests, 52
activities, cocurricular, 20, 43
administration, 18
admissions
graduate education, 62–63
transfer students, 52
undergraduate education, 51
application for financial aid, 55–56
applied biosciences track (biological engineering), 119–120
applied International Studies, Minor in, 202, 216, 273–274
archaeological Materials, Center for, 298
archaeology and Materials, Minor in, 160
architecture. See also School of architecture and Planning
Art, Culture, and Technology Program, 20, 85
Arts, 20–22. See also HaSS-arts subjects
architecture, Department of, 83–90
architecture, Master of, 59
atmospheric sciences, 253–258
Department of Aeronautics and Astronautics, 105–116
Kavli Institute for Astrophysics and Space Research, 311–312
lean advancement Initiative, 114, 308
African and African Diaspora Studies, Minor in, 277–278
Aga Khan Program for Islamic Architecture, 84–85, 88
Aesthetic Laboratory, 154, 303
Air Force ROTC, 48–49
Alcator C-Mod Project, 185, 314
Alliance for Global Sustainability (AGS), 311
alumni, 18
Freshman/Alumni Summer Internship Program, 47
American Studies concentration, 273
AMP Mechanical Behavior of Materials Laboratory, 174
Analysis Group for Regional Energy Alternatives, 311
Ancient and Medieval Studies, 273
Anthropology program, 190–191
application for admissions
graduate education, 62–63
transfer students, 52
undergraduate education, 51
application for financial aid, 55–56
applied biosciences track (biological engineering), 119–120
Applied International Studies, Minor in, 202, 216, 273–274
applied mathematics, 260
applied ocean science and engineering, 292
Archaeological Materials, Center for, 298
Archaeology and Materials, Minor in, 160
architecture. See also School of architecture and Planning
Architectural Design program, 83
Center for Real Estate, 81, 302
Department of Architecture, 83–90
Department of Urban Studies and Planning, 93–99
minor programs in, 35, 86–87
School of Architecture and Planning, about, 81–82
Architecture, Department of, 83–90
Program in Art, Culture, and Technology, 20, 85
Architecture, Master of, 59
Army ROTC, 49–50
Art, Culture, and Technology Program, 20, 85, 314–315
Art and Design, Bachelor of Science in, 84–85
Arthur Gelb Laboratory, 105
artificial intelligence, 303
Artist-in-Residence Program, 21–22
arts, 20–22. See also HASS-Arts subjects
Program in Art, Culture, and Technology, 20, 85, 314–315
HASS-Arts subjects, 38
HASS-D subjects, 39–40
literary arts, 21
Foreign Languages and Literatures Section, 199–201
Literature Section, 211–212
media arts, 21. See also Media Laboratory
Comparative Media Studies program, 192–194
freshman program in, 32
minor programs in, 35–36
music. See music
theater arts, 21
HASS Arts subjects, 38–39
HASS-D subjects, 39
Music and Theater Arts Section, 213–215
visual arts, 21
assistantships, 66
aeronautics and astronautics, 112–113
biology, 241
brain and cognitive sciences, 246
chemistry, 251
earth, atmospheric, and planetary sciences, 256
economics, 197
electrical engineering and computer science, 144
management, 231
materials science and engineering, 163
mathematics, 262
mechanical engineering, 173–174
nuclear science and engineering, 185
Woods Hole Oceanographic Institution, 291–292
Association of Student Activities (ASA), 20
astronautics. See aerospace and astronautics
Astronomy, Minor in, 266, 274
Athena Computing Environment, 27
athletics, 22–23
athletic facilities, 15, 23, 42
Physical Education Requirement, 42
atmospheric sciences, 253–258
Minor in Astronomy, 266, 274
Audits of the Conventional Wisdom, 301
Auto-ID Laboratory, 174
B
bachelor’s degrees. See also specific course or academic subject
General Institute Requirements, 36–42
simultaneous with master’s degree, 60
with two majors, 34
Bio- and Polymeric Materials program, 161
biochemistry, 239
INDEX

bioengineering, 176
 biological engineering specialty, 119
 mechanical engineering specialty, 167
Bioinstrumentation Laboratory, 176
Biological Engineering, Department of, 117–122
biology
 biological oceanography, 291
 computational and systems biology, 239
 Computational and Systems Biology Initiative, 239, 283–284
 Department of Biological Engineering, 117–122
 Department of Biology, 239–243
 Institute requirement in, 36
 interdisciplinary microbiology program, 293–294
Biological Engineering, Master of, 274–275
Biomechanics and Human Rehabilitation, Newman Laboratory for, 176
Biomechanics of Cells and Biomolecules, Laboratory for, 176
Biomedical Engineering, Center for, 298
Biomedical Enterprise Program, 285
Biomedical Informatics Program, 287–288
Biomedical Innovation, Center for, 298
biomedical studies
 aerospace study and, 112
 Biomedical Engineering, Master of Engineering in, 285
 Biomedical Enterprise Program, 285
 Biomedical Informatics Program, 287–288
 Center for Biomedical Engineering, 298
 Center for Biomedical Innovation, 298
 Minor in Biomedical Engineering, 274–275
 Whitehead Institute for Biomedical Research, 318
 biophysical chemistry, 239
 board of trustees (Corporation), 18
Boston, about, 15–16
Boston University cross-registration, 61
Building Technology, Master of Science in, 88
buildings at MIT, 13
business administration. See Master of Business Administration degree
Business Administration, Master of, 59, 228–230
C
 calendar (academic), 6–9
 Cambridge, about, 15–16
 Cambridge-MIT Exchange (CME), 265
 Cambridge-MIT Undergraduate Student Exchange Program, 44–45
 campus, about, 13–16
 computing environment, 27
dining, 23
ingredient, 25–26, 55
housing, 23–24
 tours, 51
 Campus Energy Activities, 311
 Campus Energy Task Force, 311
campus life, 20–29
campus media, 23
cancer research, institute for. See Koch Institute for Integrative Cancer Research
CANES. See Center for Advanced Nuclear Energy Systems
career and professional advising, 47
career options, undergraduate, 47–51
Career Reengineering Program, 312
Careers Office. See Global Education and Career Development Center (geCDC)
catalysis and reaction engineering, 125–126
CDO. See Computation for Design and Optimization program
CEEPR. See Center for Energy and Environmental Policy Research
 cell biology, 239
cellular neuroscience, 244, 246
CENSAM project, 299
Center for Advanced Nuclear Energy Systems
Center for Archaeological Materials, 298
center for Biomedical Engineering, 298
Center for Biomedical Innovation, 298
center for Collective Intelligence, 299
center for Computational Engineering, 299
center for Computational Research in Economics and Management Science, 299
center for Digital Business, 310
center for Educational Computing Initiatives, 299
center for Energy and Propulsion Research, 175
Center for Engineering Systems Fundamentals, 153
Center for Environmental Health Sciences, 138, 300
Center for Environmental Sensing and Modeling, 137
Center for Global Change Science, 138, 256–257
Center for International Studies, 300–301
Center for Materials Science and Engineering, 301–302
Center for Nonlinear Science, 174
Center for Ocean Engineering, 175–176
Center for Real Estate, 81, 302
Center for Reflective Community Practice (CRCP). See Community Innovators Lab (CoLab)
Center for Technology, Policy, and Industrial Development, 153, 302–303
Center for Theoretical Physics, 308
Center for Transportation & Logistics, 153–154, 303
Center for Work, Family, and Personal Life, 24
centers at MIT, 298–318. See also specific center by name
civil and environmental engineering, 137–138
civil and environmental engineering specialty, 119
civil and environmental engineering systems, 153–154
clerical, administrative, and management, 226–227
chemical engineering, 174–176
chemical oceanography, 291
cognition and manipulation, 312
chemical oceanography, 291
climates, 298
Coding for Change, 299
computer science, 239
computation for design and optimization program, 47
computational and systems biology, 239
Computational and Systems Biology Initiative, 239, 293–294
computing center, 27
Computing environment, 27
computing center, 27
courses. See subjects
courses in college planning and development, 47
core subjects, 29
Craftsman School, 60
Cross-Institutional programs, 198
Cross-McGill exchange (CMG), 265
cross-registration. See university cross-registration
cross-registration agreements
 at MIT, 40
 with Brandeis University, 61
 with Boston University, 61
 with Cambridge University, 61
 with Harvard University, 61
 with Imperial College, 61
 with MIT, 298
 with Princeton University, 61
 with Stanford University, 61
 with Tufts University, 61
 with University of Cambridge, 61
 with University of Toronto, 61
cross-registration agreements, 29
 agreements. See also specific institution
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
cross-registration agreements, 47
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
cross-registration agreements, 70
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
cross-registration agreements, 131
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
cross-registration agreements, 175
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
cross-registration agreements, 228
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
cross-registration agreements, 230
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
cross-registration agreements, 288
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
cross-registration agreements, 303
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
cross-registration agreements, 318
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
cross-registration agreements, 319
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
cross-registration agreements, 320
 agreements with
 Brandeis University, 61
 Boston University, 61
 Cambridge University, 61
 Harvard University, 61
 Imperial College, 61
 MIT, 298
 Princeton University, 61
 Stanford University, 61
 Tufts University, 61
 University of Cambridge, 61
 University of Toronto, 61
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clubs, cocurricular</td>
<td>20, 43</td>
</tr>
<tr>
<td>CME</td>
<td>See cross-registration programs</td>
</tr>
<tr>
<td>CMI (Climate Modeling Initiative)</td>
<td>300</td>
</tr>
<tr>
<td>CMSE</td>
<td>See Center for Materials Science and Engineering</td>
</tr>
<tr>
<td>coastal engineering</td>
<td>135</td>
</tr>
<tr>
<td>cocurricular activities</td>
<td>20, 43</td>
</tr>
<tr>
<td>cognitive sciences</td>
<td>See Brain and Cognitive Sciences, Department of</td>
</tr>
<tr>
<td>Collective Intelligence, Center for</td>
<td>299</td>
</tr>
<tr>
<td>College Program (Naval ROTC)</td>
<td>50</td>
</tr>
<tr>
<td>college transfer admissions</td>
<td>52</td>
</tr>
<tr>
<td>Commercial Real Estate Data Laboratory</td>
<td>302</td>
</tr>
<tr>
<td>Committee on Academic Performance (CA)</td>
<td>72</td>
</tr>
<tr>
<td>Communication and Networks group (LIDS)</td>
<td>307</td>
</tr>
<tr>
<td>Communication Requirement</td>
<td>37–38</td>
</tr>
<tr>
<td>Community Innovators Lab (CoLab)</td>
<td>98</td>
</tr>
<tr>
<td>community service</td>
<td>28, 55</td>
</tr>
<tr>
<td>Comparative Media Studies program</td>
<td>192–194</td>
</tr>
<tr>
<td>complaint procedures</td>
<td>76, 77</td>
</tr>
<tr>
<td>Complex Systems Research Lab</td>
<td>113</td>
</tr>
<tr>
<td>Composite Materials and Nondestructive Evaluation Laboratory</td>
<td>174</td>
</tr>
<tr>
<td>computation and cognitive science</td>
<td>245</td>
</tr>
<tr>
<td>Computation for Design and Optimization program</td>
<td>112, 144, 232, 280</td>
</tr>
<tr>
<td>Computation group (architecture and planning)</td>
<td>83–84</td>
</tr>
<tr>
<td>computational and systems biology</td>
<td>239</td>
</tr>
<tr>
<td>Computational and Systems Biology (CSB) Initiative</td>
<td>239, 283–284</td>
</tr>
<tr>
<td>Computational Engineering, Center for</td>
<td>299</td>
</tr>
<tr>
<td>Computational Research in Economics and Management Science, Center for</td>
<td>299</td>
</tr>
<tr>
<td>computer studies</td>
<td>Center for Digital Business</td>
</tr>
<tr>
<td>Computer Science and Artificial Intelligence Laboratory</td>
<td>303–304</td>
</tr>
<tr>
<td>Department of Electrical Engineering and Computer Science</td>
<td>140–149</td>
</tr>
<tr>
<td>Computer-Aided Design Laboratory</td>
<td>174</td>
</tr>
<tr>
<td>computing environment on campus</td>
<td>27</td>
</tr>
<tr>
<td>Concourse Program</td>
<td>31–32</td>
</tr>
<tr>
<td>conduct, academic</td>
<td>74</td>
</tr>
<tr>
<td>conduct, personal</td>
<td>74–76</td>
</tr>
<tr>
<td>Control and Systems Theory group (LIDS)</td>
<td>307</td>
</tr>
<tr>
<td>Controls, Instrumentation, and Robotics area</td>
<td>166, 175</td>
</tr>
<tr>
<td>cooperative program tuition</td>
<td>53, 64</td>
</tr>
<tr>
<td>Corporation (board of trustees)</td>
<td>18</td>
</tr>
<tr>
<td>corrections to student records</td>
<td>77</td>
</tr>
<tr>
<td>costs</td>
<td>See financial aid; tuition and costs</td>
</tr>
<tr>
<td>Council for the Arts</td>
<td>22</td>
</tr>
<tr>
<td>counseling</td>
<td>See advising and counseling</td>
</tr>
<tr>
<td>Course (major) selection</td>
<td>34</td>
</tr>
<tr>
<td>See also double majors</td>
<td></td>
</tr>
<tr>
<td>Course Catalog, online</td>
<td>2</td>
</tr>
<tr>
<td>course materials, shared</td>
<td>28</td>
</tr>
<tr>
<td>course requirements, index of</td>
<td>4</td>
</tr>
<tr>
<td>courses, list of</td>
<td>interdisciplinary, 280</td>
</tr>
<tr>
<td>School of Architecture and Planning</td>
<td>83</td>
</tr>
<tr>
<td>School of Engineering</td>
<td>103–104</td>
</tr>
<tr>
<td>School of Humanities, Arts, and Social Sciences</td>
<td>189</td>
</tr>
<tr>
<td>School of Science</td>
<td>238</td>
</tr>
<tr>
<td>Sloan School of Management</td>
<td>227</td>
</tr>
<tr>
<td>creative writing</td>
<td>See literary arts</td>
</tr>
<tr>
<td>credit hours for subjects</td>
<td>69</td>
</tr>
<tr>
<td>Independent Activities Period (IAP)</td>
<td>43</td>
</tr>
<tr>
<td>limit for freshmen</td>
<td>33</td>
</tr>
<tr>
<td>load of subjects (undergraduates)</td>
<td>72</td>
</tr>
<tr>
<td>study abroad and</td>
<td>45</td>
</tr>
<tr>
<td>cross-registration programs</td>
<td>graduate education, 61–62</td>
</tr>
<tr>
<td>undergraduate education, 46–47</td>
<td></td>
</tr>
<tr>
<td>Cryogenic Engineering Laboratory, 175</td>
<td></td>
</tr>
<tr>
<td>CSB</td>
<td>See Computational and Systems Biology (CSB) Initiative</td>
</tr>
<tr>
<td>Cultural and Social Studies (HASS-D category)</td>
<td>40</td>
</tr>
<tr>
<td>cultural studies</td>
<td>40</td>
</tr>
<tr>
<td>HASS Minors in Regional Studies</td>
<td>277–278</td>
</tr>
<tr>
<td>Minor in Applied International Studies</td>
<td>202, 216, 273–274</td>
</tr>
<tr>
<td>Custom Programs (professional education)</td>
<td>312</td>
</tr>
<tr>
<td>degrees</td>
<td>See bachelor’s degrees; five-year programs; entries at interdisciplinary programs; master’s degrees; minor programs</td>
</tr>
<tr>
<td>Department of Architecture</td>
<td></td>
</tr>
<tr>
<td>Program in Art, Culture, and Technology</td>
<td>20, 85, 314–315</td>
</tr>
<tr>
<td>departmental exchange programs</td>
<td>45</td>
</tr>
<tr>
<td>Deshpande Center for Technological Innovation</td>
<td>304</td>
</tr>
<tr>
<td>Design and Computation program</td>
<td>89</td>
</tr>
<tr>
<td>Design Studio (aeronautics and astronautics)</td>
<td>105</td>
</tr>
<tr>
<td>developmental biology</td>
<td>239–240</td>
</tr>
<tr>
<td>Dining Dollars</td>
<td>23</td>
</tr>
<tr>
<td>dining on campus</td>
<td>23</td>
</tr>
<tr>
<td>directory information</td>
<td>2, 77</td>
</tr>
<tr>
<td>disabilities services</td>
<td>24</td>
</tr>
<tr>
<td>Disabilities Services Office (DSO)</td>
<td>24</td>
</tr>
<tr>
<td>disciplinary actions</td>
<td>76</td>
</tr>
<tr>
<td>disclosure of student records</td>
<td>76–77</td>
</tr>
<tr>
<td>dishonesty, academic</td>
<td>74</td>
</tr>
<tr>
<td>Division of Comparative Medicine</td>
<td>304</td>
</tr>
<tr>
<td>doctoral degrees</td>
<td>60–61. See also graduate education programs; specific course or academic subject</td>
</tr>
<tr>
<td>Domestic Year away status</td>
<td>46</td>
</tr>
<tr>
<td>dorms</td>
<td>See housing</td>
</tr>
<tr>
<td>double majors</td>
<td>34</td>
</tr>
<tr>
<td>with aeronautics and astronautics</td>
<td>109–110</td>
</tr>
<tr>
<td>earth, atmospheric, and planetary sciences</td>
<td>253</td>
</tr>
<tr>
<td>Science, Technology, and Society program</td>
<td>259</td>
</tr>
<tr>
<td>double master’s degrees</td>
<td>59–60</td>
</tr>
<tr>
<td>architecture and city planning</td>
<td>88, 97</td>
</tr>
<tr>
<td>city planning and real estate development</td>
<td>97</td>
</tr>
<tr>
<td>city planning and transportation</td>
<td>97</td>
</tr>
<tr>
<td>management and engineering</td>
<td>230–231</td>
</tr>
<tr>
<td>materials science and engineering</td>
<td>163</td>
</tr>
<tr>
<td>Draper Laboratory</td>
<td>112–113, 317–318</td>
</tr>
<tr>
<td>DSpace repository</td>
<td>27</td>
</tr>
<tr>
<td>dual degrees</td>
<td>master’s and SB degrees</td>
</tr>
<tr>
<td>two master’s degrees. See double master’s degrees</td>
<td></td>
</tr>
<tr>
<td>DUSP</td>
<td>See Urban Studies and Planning, Department of</td>
</tr>
<tr>
<td>E</td>
<td>early action (admissions)</td>
</tr>
<tr>
<td>Earth Resources Laboratory</td>
<td>256</td>
</tr>
<tr>
<td>earth sciences</td>
<td>253–258</td>
</tr>
<tr>
<td>Earth System Initiative</td>
<td>138</td>
</tr>
<tr>
<td>East Asian Studies, Minor in</td>
<td>278</td>
</tr>
<tr>
<td>E-Center</td>
<td>226, 311</td>
</tr>
</tbody>
</table>
INDEX

economics
 Department of Economics, 195–198
 Minor in Applied International Studies, 202, 216, 273–274
Edgerton Center, 44
education records, privacy of, 76–77
education subjects, 47
 MIT Professional Education, 312
Educational Computing Initiatives, Center for, 299
Educational Network (EdNet), 308
elective subjects, 34, 40
 School-Wide Elective subjects, 102
Electrical Engineering and Computer Science, Department of, 140–149
 electrochemical energy laboratory, 175
Electronic, Photonic, and Magnetic Materials program, 161
electronics, research laboratory of, 315
emergency closing, 71
Emerging, Fundamental, and Computational Studies in Materials Science, 162
Emerging Technologies, Program on (PoET), 301
employment (as financial aid), 55, 66
 employment of graduate students, 64
 employment recruiting program, 47
 employment research, 305
end-of-term tests and assignments, 71
Energy and the Environment, Laboratory for, 137–138, 311
Energy Initiative (MITEI), 310–311
 energy studies, 310–311
 Center for Energy and Environmental Policy Research, 299–300
 Center for Energy and Propulsion Research, 175
 chemical engineering, 127
 Electrochemical Energy Laboratory, 175
 Laboratory for Energy and the Environment, 137–138, 311
 mechanical engineering and, 166–167
 Minor in Energy Studies, 275–276
nuclear. See nuclear energy
engineering, 100–186
bioengineering, 176
 biological engineering specialty, 119
 mechanical engineering specialty, 167
 Department of Aeronautics and Astronautics, 105–116
 Department of Biological Engineering, 117–122
 Department of Chemical Engineering, 123–130
 Department of Civil and Environmental Engineering, 131–139
 Department of Electrical Engineering and Computer Science, 140–149
 Department of Materials Science and Engineering, 157–165
 Department of Mechanical Engineering, 166–180
 Department of Nuclear Science and Engineering, 181–186
 Engineering Systems Division (ESD), 150–156
 human-systems engineering, 153
 Medical Engineering and Medical Physics program, 286
 Minor in Biomedical Engineering, 274–275
 minor programs in, 35
 School-Wide Elective subjects, 102
 Engineering, Master of, 59
 Engineering Systems Division (ESD), 150–156
 Engineering Systems Fundamentals, Center for, 153
 engineer's degrees, 60
 English language proficiency, 52, 62
 IELTS (English Language Testing System), 136
 English Language Testing System (IELTS), 150
 entrance examinations, 52
 Entrepreneurship Center, 226, 311
environmental chemistry, 135
environmental fluid mechanics, 135
Environmental Health Sciences, Center for, 138
Environmental Policy and Planning group, 96
Environmental Sensing and Modeling, Center for, 137
 environmental studies
 Center for Energy and Environmental Policy Research, 299–300
 Center for Environmental Health Sciences, 300
 Center for Global Change Science, 138, 256, 300
 chemical engineering and, 127
 Department of Civil and Environmental Engineering, 131–139
 Environmental Planning Certificate, 97
 Joint Program on the Science and Policy of Global Change, 305–306
 Laboratory for Energy and the Environment, 137–138, 311
 Minor in Toxicology and Environmental Health, 117–118
 equal opportunity policy, 2
 examination policies, 70–72
 exchange programs, 44–46
 excused absences, 70
expenses. See tuition and costs
 Experimental Study Group (ESG), 32
 exploratory subjects, sophomore, 44
 extracurricular activities. See also cocurricular activities
 ROTC Programs, 50
F
 faculty, about, 13
 Faculty & Staff Directory, 2
failing grades. See grading and academic performance
family housing, 26
Federal Community Service Program, 55
Federal Direct Loan Program, 66
Federal Direct Student Loan Program, 66
Federal Direct Subsidized Loan, 66
fees, 54, 64. See also tuition and costs
 fellowships and grants, 55, 56, 65–66
 aeronautics and astronautics, 112–113
 biology, 241
 brain and cognitive sciences, 246
 chemistry, 251
 earth, atmospheric, and planetary sciences, 256
 economics, 197
 electrical engineering and computer science, 144
 mechanical engineering, 173–174
 MIT Sloan Fellows Program in Innovation and Global Leadership, 231–232
 nuclear science and engineering, 185
 public-service grants, 28
Field and Space Robotics Laboratory, 175
final examinations, 70, 71
Finance, Master of, 230
finance degree, 230
financial aid, 54, 55–56. See also assistantships
 graduate education, 65–67
 ROTC Programs, 48
 scholarships. See scholarships
 study abroad and, 45
 undergraduate education, 55–56
Financial Engineering, Laboratory for, 306
Financial Hold policy, 54–55
Finite Element Research Group, 174
five-year programs
 chemical engineering, 125
 earth, atmospheric, and planetary sciences, 253
 nuclear science and engineering, 183
 flight transportation programs, 112
fluid mechanics, environmental, 135
foreign language to satisfy HASS-D requirement, 39
Foreign Languages and Literatures Section, 199–201
Francis Bitter Magnet Laboratory, 304
fraternities, 24–25
French, Minor Program in, 199
French, Minor Program in, 199–200
Freshman advising Seminars, 43–44
Freshman Essay Evaluation (FEE), 37
freshman year, 31–33
admissions, 51–52
application for financial aid, 55
Communication Requirement, 37
cross-departmental engineering opportunities, 31–33
Freshman/Alumni Summer Internship Program, 47
full-time status, 69
fusion technology, 181
G
Gas Turbine laboratory, 113
gender studies, 273, 277, 317
General Institute Requirements, undergraduate, 34, 36–42
General Military Course (gMC), 49
genetics, 240
geophysics, 291
George R. Wallace, Jr. Astrophysical Observatory, 256
George R. Wallace, Jr. Geophysical Observatory, 256–257
George Russell Harrison Spectroscopy Laboratory, 315–316
gotechnology engineering, 136
Gerhard Neumann Hangar, 105
German, Minor Program in, 199–200
GIRs. See General Institute Requirements, undergraduate
Global Change Science, Center for, 137–138, 256, 300
Global Education and Career Development Center (GECDC), 47, 58. See also study abroad
Global Education Office, 47
grading and academic performance, 72–74
graduates, 33
Independent Activities Period (IAP), 43
junior-senior P/D/F option, 44
Graduate Academic Performance Group (GAPG), 72
Graduate Consortium in Women’s Studies, 61–62
Graduate Education in Medical Sciences Certificate Program, 288
graduate education programs, 17, 58–67. See also specific course
academic standards, 72
admissions, 62–63
financial aid, 65–67
general degree requirements, 58–61
interdisciplinary, 279–296
medical requirements, 67
with other universities, 61–62
tuition and costs, 63–65
viewing grade reports, 74
graduate housing, 26
graduate interdisciplinary programs. See interdisciplinary programs, graduate
graduate residents, 67
graduate student government, 29
graduate students, about, 13
Graduate Students Office. See Office of the Dean for
Graduate Education
graduation
employment and life after, 47
payment of tuition and, 54–55, 65
process of, 74
ROTC Programs and, 49, 50
grants. See fellowships and grants
grievance procedures, 76
GSC. See graduate student government
Harassment policy, 74–75
Harvard University cross-registration, 46, 61
Harvard-MIT Division of Health Sciences and Technology, 285–290
HASS-D subjects, 39–40. See also arts; social sciences
bachelor’s degree requirements, 38–40
Minor in Applied International Studies, 273–274
Minors in Regional Studies, 277–278
HASS Requirement, 38–39
Hatsopoulos Microfluids Laboratory, 174
Haystack Observatory, 304–305
hazing policy, 75
health insurance, student, 53, 56, 63, 67
health plan for students, 28
health sciences
Center for Environmental Health Sciences, 138, 300
Harvard-MIT Division of Health Sciences and Technology, 285–290
Koch Institute for Integrative Cancer Research, 14, 306
McGovern Institute for Brain Research, 309
Whitaker College of Health Sciences and Technology, 316–317
hidden grades, 33
High-Energy-Density Physics Division, 314
Historical Studies (HASS-D category), 40
history, 202–203
History, Theory, and Criticism (architecture), 84, 88
Minor in Applied International Studies, 202, 216, 273–274
honesty, 74
House Dining Membership program, 23
housing, 25–27
removal of services, 55
Housing, Community, and Economic Development (HCED) group, 96
Housing Affordability Initiative, 302
HSEA (human-systems engineering), 153
HTC (History, Theory, and Criticism), 84, 88
Human and Machine Haptics, 176
Human Rights and Justice, Program on, 301
Humanities, Department of, 204–206
humanities, minor programs in, 35–36, 188, 199–201
humanities subjects. See also HASS requirement
human-systems engineering (HSEA), 153
hydrology, 136
I
IAP-Madrid Program, 45
IDEAS Competition, 28
IELTS (English Language Testing System), 62, 150
iLabs project, 299
immunology, 240
inclement weather, emergency closing for, 71
Independent Activities Period (IAP), 42–43, 58
independent living groups, 24–25
Infinite Corridor, 16
Information and Decision Systems, Laboratory for, 307
information services and technology
aerospace Information Sector, 105–106
d’Arbeloff Laboratory for Information Systems and Technology, 175
Information Services and Technology (IS&T)
department, 27
Laboratory for Information and Decision Systems, 307
Productivity from Information Technology Initiative, 314
Innovation Teams course, 304
installment payment arrangements, 54, 65
Institute for Soldier Nanotechnologies, 305
Institute for Work and Employment Research, 305
institute houses (undergraduate), 25
Institute requirements. See General Institute Requirements, undergraduate
insurance. See health insurance, student
Integrated global System Model, 306
integrity, 74
interdepartment research programs engineering, 102
humanities, 188
interdisciplinary programs, graduate, 279–296
aeronautics and astronautics, 112
archaeological materials, 162
civil and environmental engineering, 136–137
Computation for Design and Optimization program, 113, 144, 232, 280
degrees offered, 280
Division of Health Sciences and Technology, 285–290
LGO. See Leaders for Global Operations (LGO) program
mechanical engineering, 173
microbiology, 293–294
operations research programs, 281, 313
Program in Polymer Science and Technology, 129, 281
psychology, 246, 273
science and engineering, 237
System Design and Management Program (SDM), 101, 112, 115–152, 230, 281
Technology and Policy, Master of Science in, 112, 128, 145, 150, 163, 282
transportation, 98, 295–296
interdisciplinary programs, undergraduate, 273
International Center for Air Transportation, 114
International Consortium for Medical Imaging Technology, 176
International Development Group (IDG), 96–97
International Motor Vehicle Program (IMVP), 302
International Science and Technology Initiative (MISTI), 45, 301
international students
financial aid, 55–56, 66
graduate admissions, 62
undergraduate admissions, 52
international studies
Center for International Studies, 300–301
Middle Eastern studies, 278, 310
Minor in Applied International Studies, 202, 216, 273–274
International Studies, Center for, 300–301
internship tuition, 53, 64
internships, summer
aeronautics and astronautics, 110
civil and environmental engineering, 133–134
internships abroad, 47
Interphase, 51
Inter-University Committee on International Migration, 301
intramural athletics, 23
IT. See information services and technology I-Teams course, 304
Japanese, Minor Program in, 200–201
joint programs
anthropology, 190
chemical engineering, 125
foreign language, 201
history, 202
Joint Program on Science and Policy of Global Change, 305–306
literature, 212
materials science and engineering, 162–163
music and theater arts, 213
oceanography. See Woods Hole Oceanographic Institution
science, technology, and society, 219
science and policy of global change, 256
study at other universities, 44–47
journalism, 306
Junior-Senior P/D/F option, 44
junior-year Communication Requirement, 37
Kavli Institute for Astrophysics and Space Research, 311–312
Knight Science Journalism Fellows Program, 306
Koch Institute for Integrative Cancer Research, 14, 306
Koch School of Chemical Engineering Practice, 128
L
Laboratory for Advanced Materials, 157
Laboratory for Biomechanics of Cells and Biomolecules, 176
Laboratory for Electromagnetic and Electronic Systems (LEES), 315
Laboratory for Energy and the Environment (LFEES), 137–138, 311
Laboratory for Financial Engineering, 306
Laboratory for Information and Decision Systems, 307
Laboratory for Manufacturing and Productivity, 174, 307
Laboratory for Nuclear Science, 307–308
Laboratory Requirement, 41–42
labs at MIT, 298–318. See also specific laboratory by name
aeronautics and astronautics, 112–115
civil and environmental engineering, 136–138
division of health sciences and technology, 285–290
earth, atmospheric, and planetary sciences, 256–257
engineering systems, 153–154
mechanical engineering, 174–176
nuclear science and engineering, 185
School of Science, 238
LAI. See Koch Institute for Integrative Cancer Research; Lean Advancement Initiative
language proficiency requirements
English language, 52, 64
graduate education, 61
IELTS (English Language Testing System), 136
language studies. See also literary arts
Foreign Languages and Literatures Section, 199–201
Language, Thought, and Value (HaSS-D category), 39
Minor in Applied International Studies, 202, 216, 273–274
late fees for tuition and other charges, 54
Latin American Studies, Minor in, 278
Lean Advancement Initiative, 114, 308
Learning Laboratory for Complex Systems, 105
Legatum Center for Development and Entrepreneurship, 308
Levitated Dipole Experiment, 185
LFEES. See Laboratory for Energy and the Environment
LGO. See Leaders for Global Operations (LGO) program
libraries, 27
life sciences, 237
Lincoln Laboratory, 308
Linear Accelerator Center, 307–308
Linguistics and Philosophy, Department of, 207–210
List Visual Arts Center, 22
Literary and Textual Studies (HASS-D category), 39
literary arts, 21. See also arts
Foreign Languages and Literatures Section, 199–201
Literature Section, 211–212
literature Section, 211–212
living costs, graduate students, 64
living groups, 24–25
load of subjects (undergraduates), 72
loans, 55, 66
logistics, Master of engineering in, 151

M
Madrid Program, 45
Magnetic Resonance Laboratory, 185
major Course of study, 34
Man Vehicle laboratory, 114
management
Entrepreneurship Center, 226, 311
management science, 228–230
management studies, 230–231
minor programs in, 35
MIT Sloan Fellows Program in Innovation and Global Leadership, 231–232
Sloan School of Management, 225–235
Management Studies, Master of Science in, 59, 230
manufacturing
Laboratory for Manufacturing and Productivity, 174, 307
labs and centers at MIT, 174–176
Master of Engineering degree, 166, 170–171
Manufacturing and Productivity, Laboratory for, 174, 307
MAP (Midcareer Acceleration Program). See Short Programs (professional education)
M.Arch. degree. See Master of Architecture degree
marine engineering, 172
marine geology and geophysics, 291
Martin Center for Engineering Design, 175
MAS. See Media Arts and Sciences, Program in
Massachusetts College of Art cross-registration, 46–47
Massachusetts Space Grant Consortium, 110
Master in City Planning degree, 59, 60
Master of Architecture degree, 59
Master of Business Administration degree, 59, 228–230
Master of Engineering degree, 59
Master of Finance degree, 230
Master of Science degree, 59
in Building Technology, 88
in Management Studies, 59, 230
in Real Estate Development (MSRED), 302
in Technology and Policy, 112, 128, 145, 150, 163, 282
in Transportation, 136, 295–296
in Visual Studies, 88
master’s degrees. See also graduate education programs; specific course or academic subject general requirements, 59–60
simultaneous, 34, 37–38
simultaneous with bachelor’s degree, 60
Materials Processing Center, 308–309
materials studies
chemical engineering, 126–127
civil and environmental engineering, 136
Materials Science and Engineering, Center for, 301–302
Materials Science and Engineering, Department of, 157–165
mathematics
Department of Mathematics, 259–263
Institute requirement in, 36–37
MBA. See Master of Business Administration degree
McGovern Institute for Brain Research, 309
MCP. See Master in City Planning degree
meals (on campus), 23
costs. See room and board
Mechanical Engineering, Department of, 166, 170–171
Mechanics: Modeling, experimentation, and Computation, 166, 174
media, campus, 23
media arts, 21. See also arts; Media Laboratory
Comparative Media Studies program, 32, 91–92
Media Laboratory, 32, 81, 309
Medical Imaging Technology, International Consortium for, 176
medical plan for students, 28
Medical Report forms, 56, 67
medical requirements for students, 56, 67
medical sciences, 286
Koch Institute for Integrative Cancer Research, 14, 306
McGovern Institute for Brain Research, 309
medical services, 27–28
MEng. See Master of Engineering degree
microbiology, 240
environmental microbiology, 135–136
interdisciplinary graduate program, 293–294
microelectromechanical systems, 167, 176
Microphotonics Center, 309
Microsystems Technology Laboratories, 309–310
Midcareer Acceleration Program. See Short Programs (professional education)
Middle Eastern studies, 278, 310
Military Science and Leadership Program, 49
military training. See ROTC Programs
minor programs, 34–35, 61, 273–278. See also specific academic subject
in humanities, 35–36, 188, 199–201
in regional studies, 277–278
miscellaneous fees, 54, 64. See also tuition and costs
mission statement of MIT, 13
MISTI (MIT International Science and Technology Initiative), 45, 301
MIT Alumni Association, 18
MIT Corporation, 18
MIT Energy Initiative (MITeI), 310–311
MIT Kavli Institute for Astrophysics and Space Research, 311–312
MIT Medical, 27
MIT Museum, 22
MIT Press, 23
MIT Professional Education, 312
MIT Sloan Management Review, 227
MITeI, 310–311
MIT-Japan International Studies Fund grants, 301
MIT-Portugal Program, 312
MKI. See Kavli Institute for astrophysics and Space research
MMEC. See Mechanics: Modeling, Experimentation, and Computation
molecular computation, 125
molecular neuroscience, 246
molecular structure, 239
motor vehicle policies, 23–24
MPP. See MIT-Portugal Program
MTL. See Microsystems Technology Laboratories
music, 21. See also arts
HASS-D subjects, 39
HASS Requirement, 39
Music and Theater Arts Section, 213–215

nano/micro science and technology, 167, 176
Institute for Soldier Nanotechnologies, 305
nanostructures (chemical engineering), 127
aval architecture and marine engineering, 172, 173
Naval Construction and Engineering program, 172, 173
Naval ROTC, 50–51
neurobiology, 240
neuroscience, 244–248
New Century Development initiative, 302
Newman laboratory for Biomechanics and Human Rehabilitation, 176
newsletter, student, 23
nondiscrimination policy, 2
Nonlinear Science, Center for, 174
Nonlinear Systems Laboratory, 175
non-passing grades, defined, 73
non-payment policies, 54
nonresident doctoral thesis research status, 61, 64
nuclear energy. See also energy studies
Center for Advanced Nuclear Energy Systems, 311
Department of Nuclear Science and Engineering, 181–186
Laboratory for Nuclear Science, 307–308
Nuclear Reactor Laboratory, 185, 313
Nuclear Science and Engineering, Department of, 181–186
Nuclear Science, Laboratory for, 307–308

Ocean Engineering, Center of, 175–176
ocean science and engineering, 167, 172, 175–176
Center for Ocean Engineering, 175–176
Master of Science degree, 172
OCW. See OpenCourseWare concept
off-campus housing, 26–27
off-campus misconduct, 75
off-campus opportunities. See also joint programs study at other universities, 44–47
Office of the Arts, 22
Office of the Dean for Graduate Education, 58
officers at MIT, 18
OpenCourseWare concept, 28
Operations Research Center, 313
operations research programs, 281
Optimization group (LIDS), 307
ORC. See Operations Research Center organizing IAP activities, 43
Pappalardo Laboratory for Micro/Nano Engineering, 176
parenting resources, 24
Park Center for Complex Systems, 175
parking facilities, 23–24
Parsons Laboratory, 137
Partnership for Air Transportation Noise and Emissions Reduction (PARTNER), 114
pass/fail. See grading and academic performance
passing grades, defined, 72–73. See also grading and academic performance
payment of tuition and other charges, 54–55, 64–65
Payment Plan, 54, 65
People Directory, 2
performance. See grading and academic performance
performing arts. See arts; music; theater arts
Persian Gulf Initiative, 301
personal conduct, 74–76
personal support, 20
philosophy studies, 207–210
Physical Education Requirement, 42
Physical Imagination, 20–21
physical oceanography, 291
physics
Department of Physics, 264–269
Institute requirement in, 37
Medical Engineering and Medical Physics program, 286
Physics, Department of, 264–269
Physics Research Division, 314
Picower Institute for Learning and Memory, 313–314
Pierce Laboratory, 137
PLAN newsletter, 81
planetary sciences, 253–258
Minor in Astronomy, 266, 274
Planning, Bachelor of Science in, 93–95
plasma physics and fusion technology, 181
Plasma Science and Fusion Center, 185, 314
PLAZmA Digital Gallery, 81
PoET (Program on Emerging Technologies), 301
Policies and procedures
academic credits. See credit hours for subjects
admissions. See admissions
costs. See financial aid; tuition and costs
General Institute Requirements, undergraduate, 36–42
grading. See grading and academic performance
integrity and conduct, 74–76
medical requirements, 56
nondiscrimination, 2
privacy of student records, 76–77
registration, 69–70
residence hall regulations, 25–27
term regulations and examination policies, 70–72
unpaid balances, 54–55
who determines, 18
political science
Department of Political Science, 216–218
Minor in Applied International Studies, 202, 216, 273–274
polymers, 126, 129
Bio- and Polymeric Materials program, 161
Program in Polymer Science and Technology, 129, 281
Portugal Program, 312
PPST. See Program in Polymer Science and Technology
Practice School, Chemical Engineering, 128
practice-school programs, 53, 64
Precision Engineering Laboratory, 175
Precision Systems Design and Manufacturing, 175
Preprofessional Advising, 47
preregistration, 69
prerequisites for subjects, 69
president, welcome from, 5
privacy of student records, 76–77
product design, manufacturing, and development, 166, 174–175
Productivity from Information Technology Initiative, 314
professional advising, 47
Professional Education, 312
professional options, undergraduate, 47–51
proficiency requirements. See English language proficiency
Program in Art, Culture, and Technology, 20, 85, 314–315
Program in Computational and Systems Biology, 239, 283–284

326
Program in Media Arts and Sciences, 32, 91–92
Science, Technology, and Society program, 219–221
Science Requirement, 36–37
Science, Master of. See Master of Science degree
Science, Technology, and Society Program, 219–221
SDM. See System Design and Management Program (SDM)
Sea Grant College Program, 312–313
Seamans Laboratory, 105
secondary school preparation, 51
Security Studies Program, 300–301
Seminar XL, 33
Seminar XXI, 301
service learning, 28
Edgerton Center, 44
service work, 20
sexual harassment, policy on, 74–75
SFS. See Student Financial Services
Short Programs (professional education), 312
Simmons Hall, 15
simultaneous master’s degrees, 59–60
architecture and city planning, 88, 97
city planning and real estate development, 97
city planning and transportation, 97
management and engineering, 230–231
materials science and engineering, 163
Singapore-MIT Alliance, 315
S-Lab (Sustainability Lab), 226
Sloan Automotive Laboratory, 175, 311
Sloan School of Management, 225–235
degrees offered, 227
MIT Sloan Fellows Program in Innovation and Global Leadership, 231–232
SM degree. See Master of Science degree
SMA. See Singapore-MIT Alliance
SMFA cross-registration, 46–47
snow days, 71
social sciences. See also HASS-D subjects
minor programs in, 35–36, 273–274, 276–278
Psychology program, 246, 273
society. See also international studies
Department of Political Science, 216–218
Human Rights and Justice, Program on, 301
Science, Technology, and Society program, 219–221
women’s studies
Graduate Consortium in Women’s Studies, 61–62
Women’s and Gender Studies Program, 273, 277, 317
Soldier Nanotechnologies, Institute for, 305
sophomore year
Communication Requirement, 37
exploratory subjects, 44
Undergraduate Practice Opportunities Program (UPOP), 101, 110, 134, 170
sororities, 24–25
space research. See aerospace and astronautics
Space Systems Laboratory, 114
Spanish, Minor Program in, 201
Special Program for Urban and Regional Studies of Developing Areas (SPURS), 98
special student status
admissions, 52–53
graduate admissions, 62–63
tuition charges, 53, 63
undergraduate admissions, 43
Spectroscopy Laboratory, 315–316
Speech and Hearing Bioscience and Technology, 287
SSC (Student Services Center), 29
SSP (Security Studies Program), 300–301
staff
as graduate students, 63
organization of, 18
Stat Center, 14
Statistical Signal Processing group, 307
STEP (Scheller Teacher Education Program). See TEP
Structural and Environmental Materials program, 161–162
structure and materials studies, 136
STS. See Science, Technology, and Society program
student activities, 20
Student Activity Fee, 53
Student Art Association, 22
student conduct, 74–76
student costs. See tuition and costs
Student Directory, 2
student employment, 55, 66–67
Student Exchange Program, 44–45
Student Extended Insurance Plan, 53, 56, 63, 67
student family housing, 26
Student Financial Services (SFS), 54, 55
billing issues, 65
Student Employment, 55, 66–67
student government, 29
student health insurance, 53, 56, 63, 76
Student Health Plan, 28, 56, 67
Student House, 25–26
Student Information Policy, 76–77
Student Medical Plan, 56, 67
student publications, 23
student records, privacy of, 76–77
Student Services Center (SSC), 29
student status, 69. See also special student status
student support, 20
advising and counselling
academic advisors, 33
careers, 47
child care and parenting, 24
disabilities services, 24
full-time and part-time, 69
medical services, 27–28
Student Support Services, 20
students, about, 13
study abroad, 44–46. See also year away programs
study at other universities, 44–47
subjects
credit hours. See credit hours for subjects
HASS-D subjects, 39–40
prerequisites, 69
summer internships
aeronautics and astronautics, 110
civil and environmental engineering, 133–134
Summer Session, 2
supply chain management, 154
Supply Chain Management and Logistics project, 303
surface and materials chemistry, 126–127
Sustainability Lab (S-Lab), 226
SWE. See School-Wide Elective subjects
swim requirement, 42
System Design and Management Program (SDM), 101, 112, 144, 151–152, 230, 281
System Dynamics Group, 316
systems design and simulation (chemical engineering), 127–128
systems neuroscience, 244, 246
T
TAs. See teaching assistantships
Teacher Education Program (TEP), 47–48, 93
teaching assistantships, 66
aeronautics and astronautics, 112–113
biology, 241
brain and cognitive sciences, 246
chemistry, 251
earth, atmospheric, and planetary sciences, 256
economics, 197
electrical engineering and computer science, 144
management, 231
materials science and engineering, 163
mathematics, 262
mechanical engineering, 173–174
nuclear science and engineering, 185
teaching materials, shared, 28
TEAL (Technology-Enabled Active Learning) project, 299
TechCAS account, 23
Technology, Policy, and Industrial Development, Center for, 302–303
Technology and Development Program, 316
Technology and Policy, Master of Science in, 112, 128, 145, 150, 163, 282
Technology Children’s Centers (TCC), 24
Technology Laboratory for Advanced Materials and Structures, 114
Technology-Enabled Active Learning (TEAL) project, 299
TEP. See Teacher Education Program
term away programs, 44–46
term regulations, 70–72
terrascope Program, 32–33
theatre arts, 21. See also arts
HASS-D subjects, 39
HASS Requirement subjects, 38–39
Music and Theater Arts Section, 213–215
theoretical mathematics, 260
Theoretical Physics, Center for, 308
thermodynamics, 125
TOEFL tests, 52, 62
Toxicology and Environmental Health, Minor in, 117–118
TPP. See Technology and Policy, Master of Science in traineeships, 65–66
training programs, HST, 287–288
transcripts of grade reports, 74
transfer students
application for admissions, 52
application for financial aid, 55
transport processes and thermodynamics, 125
transportation, 295–296
Center for Transportation & Logistics, 153–154, 303
Doctor of Philosophy, 296
Master of Science, 136, 295–296
Transportation@MIT, 316
Tufts University cross-registration, 61
tuition and costs. See also financial aid
graduate education, 63–65
graduate student living costs, 64
housing, 25–26
during Independent Activities Period (IAP), 43
payment of, 54–55
scholarships. See scholarships
undergraduate education, 53–55

U
UA. See undergraduate student government
undergraduate academic and research options, 36–42
undergraduate education programs, 31–56. See also specific course
academic and research options, 42–47
academic programs, 17, 31–35
academic standards, 72
admissions, 51–53
career and professional options, 47–51
costs, 53–55
financial aid, 55–56
General Institute Requirements, 36–42
medical requirements, 56
undergraduate housing, 25–26
undergraduate interdisciplinary programs, 273
Undergraduate Practice Opportunities Program (UPOP), 101, 110, 134, 170
Undergraduate Research Opportunities Program (UROP), 43, 110
undergraduate seminars, 43–44
undergraduate student government, 29
undergraduate students, about, 13
Unified Engineering, 107
Universidad Complutense de Madrid, 45
Universidad Politécnica de Madrid, 45
unpaid balances, policy on, 54–55, 65
UPOP. See Undergraduate Practice Opportunities Program (UPOP)
upperclass students, financial aid for, 56
Urban Information Systems (UIS), 97
urban studies, 196
Department of Urban Studies and Planning, 93–99
Urban Design Certificate, 88, 97
Urban Studies and Planning, Department of, 93–99

V
varsity athletics, 22–23, 42
Vehicle Technologies Sector (aerospace), 106
Versatile Toroidal Facility, 185
Veterans’ Benefits, 56, 67
visual arts, 21. See also arts
Master of Science in Visual Studies, 88
Visual and Performing Arts (HASS-D category), 39
voter registration, 76

W
WAC (Writing Across the Curriculum), 223
Wallace Astrophysical Observatory, 256
Wallace Geophysical Observatory, 256–257
Waves and Beams Division, 314
WebSIS website, 29
Wellesley cross-registration, 46, 61
WGS (Women’s and Gender Studies program), 273, 317
Whitaker College of Health Sciences and Technology, 316–317
Whitehead Institute for Biomedical Research, 318
William H. Bates Linear Accelerator Center, 307–308
wind tunnel, 115
WMBR radio station, 23
Wolk Gallery, 81
women’s studies
Graduate Consortium in Women’s Studies, 61–62
Women’s and Gender Studies Program, 273, 277, 317
Woods Hole Oceanographic Institution, 291–292
biology studies, 241
civil and environmental engineering, 137
earth, atmospheric, and planetary sciences, 254
electrical engineering and computer science, 144
mechanical engineering, 173
Work and Employment Research, Institute for, 305
work-study, 55, 66–67
Wright Brothers Wind Tunnel, 115
writing
Communication Requirement, 37–38
creative. See literary arts
journalism, 306
Writing and Humanistic Studies program, 222–224
Writing Across the Curriculum, 223
Writing and Communication Center, 222
Writing and Humanistic Studies program, 222–224

Y
year away programs, 44–46, 110
About the Cover

Cover design by Forsythe Design
Photos by Eric Schmiedl

Credits

Text design by Wilcox Design
Composed in Meta by MIT's Reference Publications Office using Adobe InDesign™
Printed and bound by Hess Print Solutions, Brimfield, OH, on Manistique 100™ 35 pound 100% recycled paper and 10 point coated recycled cover stock

Photos

Page 5: Donna Coveney
Pages 10–11: Stuart Darsch
Page 12: Christopher Harting
Page 14: Patricia Sampson
Page 15: ©Andy Ryan
Page 16: Matt T. Yourst
Page 17: Stuart Darsch
Page 18: Patricia Sampson
Page 19: Patricia Sampson
Page 30: Christopher Harting
Page 57: Stuart Darsch
Page 68: Stuart Darsch

Pages 78–79: Christopher Harting
Page 80: Christopher Harting
Page 100: Christopher Harting
Page 187: Stuart Darsch
Page 225: Christopher Harting
Page 236: Christopher Harting
Pages 270–271: Stuart Darsch
Page 272: Christopher Harting
Page 279: Christopher Harting
Page 297: Stuart Darsch
MIT Campus Map

Welcome to MIT

In MIT's numbering system, the location of each room on the campus is indicated by its room number. In a typical room number, such as 7-121, the number preceding the hyphen is the building number; the first digit following the hyphen is the floor; and the last digits, the room. Thus Room 7-121 is in Building 7, on the first floor; Room 7-321 is directly above it, on the third floor.

On the main campus, buildings east of the Great Dome (Building 10) have even numbers; those to the west have odd numbers. You won't find Building 6 next to Building 5, for example. In addition, buildings west of Massachusetts Avenue are designated W; those north of the Conrail tracks, N; those east of Ames Street, E; and those north of the railroad and west of Massachusetts Avenue, NW.

An interactive map of MIT can be found at http://whereis.mit.edu/.
Visitor information

As parking is limited and regulations are aggressively enforced, visitors are strongly encouraged to use public transportation.

By public transportation, MBTA (“The T”) 🚊

A parking garage at Alewife Station (Routes 2 and 16 at the Cambridge/Belmont/Arlington line) allows access to the Red Line subway. Take the Red Line from Alewife Station in Cambridge or from Park Street Station in Boston to Kendall/MIT or the Central Square Station, both of which are within walking distance of MIT.

There is regular MBTA bus #91 service along Massachusetts Avenue from MIT to Boston and Harvard Square.

From Logan Airport by MBTA 🚌

Taxi fare is about $20–$30. To travel by subway, at Logan Airport take the airport shuttle bus that runs to the Blue Line Subway Station. Take the Blue Line to the Government/Central Station and go upstairs to board the Green Line Trolley to Park Street. At Park Street Station go downstairs to board the Red Line Subway going outbound towards Alewife and exit at Kendall/MIT or Central Square Station.

By car from Logan Airport 🚗

Leaving the airport follow the signs to the Summer Tunnel. Entry to the tunnel is in the right lane for Storrow Drive North. Continue in the right lane following the Storrow Drive West signs. Exiting the tunnel you will see the Massachusetts Eye and Ear Infirmary on your left and the Charles River on your right. Keep to the right and continue to follow the Storrow Drive West signs.

After passing under the Arthur Fiedler pedestrian walkway, change to the left lane and take exit for Massachusetts Avenue/ Cambridge (I-290). Bear right and cross the Harvard Bridge. MIT’s main entrance at 77 Massachusetts Avenue will be on your right, at the third set of traffic lights.

By car from Route I-93 or Southeast Expressway 🚗

Take exit 26. Keep in the right lane, follow the Storrow Drive West signs. After passing under the Arthur Fiedler pedestrian walkway, change to the left lane and take exit for Massachusetts Avenue/ Cambridge (I-290). Bear right and cross the Harvard Bridge. MIT’s main entrance at 77 Massachusetts Avenue will be on your right, at the third set of traffic lights.

By car from Route I-90 🚗

Take the Cambridge/Allston Exit (18) on the left off the Massachusetts Turnpike (Interstate 90). Bear right at the end of the ramp and go through two sets of traffic lights. Follow the signs to Cambridge. Cross the River Street Bridge and continue straight ahead for about one mile to Central Square. Turn right onto Massachusetts Avenue. MIT’s main entrance, 77 Massachusetts Avenue, is about one-half mile down on the left.

By car from Route I-95 🚗

Low the I-93 directions to MIT as given. From the south take I-90 off of I-95 and follow the I-90 directions to MIT as given.

Call a taxi 🚕

Yellow Cab: 617-492-0500

Parking 🚗

MIT P – MIT permit parking

Campus telephones 📞

MIT House telephones are located in many of the campus buildings including the Student Center (map section D). To reach an office extension from a house telephone dial the last 5 digits (i.e. 3-4795) of the number. There are pay telephones in the Student Center (map section D), as well as other locations around the campus. To contact a person, department, or residence at MIT, dial 9 from a house phone of 617-253-1000 from a pay telephone.

Campus tours 🎭

Tours of campus: 11:00 a.m. and 3:00 p.m. weekdays except holidays. Tours leave from 77 Massachusetts Avenue, Lobby 7 (map section D). Admissions Office undergraduate information sessions: 10:00 am and 2:00 pm (preceding tour) from mid-March through mid-December except holidays. Confirm at http://web.mit.edu/admissions/.

Dining on campus 🍽

Snacks and meals are available in the Student Center (map section D) and in the Stata Center (map section E). There are restaurants and small eating places in the Kendall Square area of the campus and in the local hotels adjacent to the campus.

The MIT Press 📚

One of the country’s largest university presses, the MIT Press publishes books and journals distributed throughout the world. Its titles include professional, reference, and scholarly books; graduate and undergraduate texts; and books for general audiences. The MIT Press Bookstore is located at 292 Main Street (map section F).

MIT events and exhibits 🎫

The MIT Events Calendar is available online at http://events.mit.edu.

A map giving locations of the public art in MIT’s Permanent Collection, overseen by the List Visual Arts Center, may be found at http://web.mit.edu/庐art.

The following 24-hour numbers are available for recorded information on current arts events:

Concerts 617-253-9800

List Visual Arts Center 617-253-4880

MIT Museum 617-253-4444

Theater Arts 617-253-4720

Student Center facilities 🛎

W20 - 84 Massachusetts Avenue (map section D)

Bank, 1st floor

Cafeteria, 2nd floor

Campus Police/event registration desk, basement

Cleaners, basement

Conor Moran Lounge, 5th floor

Copy Technology Center, 1st floor

Food Market/convenience store, 1st floor

Game Room, 1st floor

Hair salons, basement

Manager, Campus Activities Complex, 5th floor

MIT Card Services, basement

Optical Store, basement

Parking and Transportation Office, basement

Post Office (B.S.), basement

Restaurants, 1st and 2nd floors

Stratton Lounge, Catherine N., 2nd and 3rd floors

Tech Coop, 1st floor (no textbooks)

Wiener Student Art Gallery, 2nd floor

For more information 📚

Massachusetts Institute of Technology

Information Center

Room 7-121

Telephone 617-253-4795

http://web.mit.edu

77 Massachusetts Avenue

Cambridge, MA 02139-4307