Part 2

Degree Programs and Requirements
<table>
<thead>
<tr>
<th>School of Architecture and Planning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>110</td>
</tr>
<tr>
<td>Media Arts and Sciences</td>
<td>121</td>
</tr>
<tr>
<td>Urban Studies and Planning</td>
<td>123</td>
</tr>
<tr>
<td>School of Engineering</td>
<td>130</td>
</tr>
<tr>
<td>Aeronautics and Astronautics</td>
<td>136</td>
</tr>
<tr>
<td>Biological Engineering Division</td>
<td>148</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>155</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>163</td>
</tr>
<tr>
<td>Computational and Systems Biology</td>
<td>172</td>
</tr>
<tr>
<td>Electrical Engineering and Computer</td>
<td>174</td>
</tr>
<tr>
<td>Science</td>
<td></td>
</tr>
<tr>
<td>Engineering Systems Division</td>
<td>185</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>192</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>202</td>
</tr>
<tr>
<td>Nuclear Science and Engineering</td>
<td>215</td>
</tr>
<tr>
<td>Ocean Engineering</td>
<td>222</td>
</tr>
<tr>
<td>School of Humanities, Arts, and Social Sciences</td>
<td>223</td>
</tr>
<tr>
<td>Anthropology</td>
<td>226</td>
</tr>
<tr>
<td>Comparative Media Studies</td>
<td>228</td>
</tr>
<tr>
<td>Economics</td>
<td>231</td>
</tr>
<tr>
<td>Foreign Languages and Literatures</td>
<td>235</td>
</tr>
<tr>
<td>History</td>
<td>238</td>
</tr>
<tr>
<td>Humanities</td>
<td>240</td>
</tr>
<tr>
<td>Linguistics and Philosophy</td>
<td>243</td>
</tr>
<tr>
<td>Literature</td>
<td>247</td>
</tr>
<tr>
<td>Music and Theater Arts</td>
<td>249</td>
</tr>
<tr>
<td>Political Science</td>
<td>252</td>
</tr>
<tr>
<td>Science, Technology, and Society</td>
<td>256</td>
</tr>
<tr>
<td>Writing and Humanistic Studies</td>
<td>259</td>
</tr>
<tr>
<td>Interdisciplinary Programs</td>
<td>262</td>
</tr>
<tr>
<td>HASS Minors in Regional Studies</td>
<td>264</td>
</tr>
<tr>
<td>Sloan School of Management</td>
<td>266</td>
</tr>
<tr>
<td>Management</td>
<td>269</td>
</tr>
<tr>
<td>School of Science</td>
<td>278</td>
</tr>
<tr>
<td>Biology</td>
<td>281</td>
</tr>
<tr>
<td>Brain and Cognitive Sciences</td>
<td>286</td>
</tr>
<tr>
<td>Chemistry</td>
<td>291</td>
</tr>
<tr>
<td>Earth, Atmospheric, and Planetary Sciences</td>
<td>295</td>
</tr>
<tr>
<td>Mathematics</td>
<td>302</td>
</tr>
<tr>
<td>Physics</td>
<td>307</td>
</tr>
<tr>
<td>Whitaker College of Health Sciences and Technology</td>
<td>314</td>
</tr>
<tr>
<td>Harvard-MIT Division of Health Sciences and Technology</td>
<td>316</td>
</tr>
<tr>
<td>Joint Program with the Woods Hole Oceanographic Institution</td>
<td>323</td>
</tr>
</tbody>
</table>
The School of Architecture and Planning—like all great academic institutions—is an extraordinarily complex, diverse, sometimes contentious, always evolving and transforming place. There are, however, some widely shared beliefs and values that give the School its unique character and direction. We are committed to sustaining and enhancing the quality of the human environment at all scales, from the personal to the global. We value design excellence, technological inventiveness, and imaginative scholarship. And we believe that design and policy interventions should be grounded in unwavering commitment to equity, social justice, and making a positive difference in the everyday lives of real people.
The School of Architecture and Planning provides a rich array of courses through the Department of Architecture, the Department of Urban Studies and Planning and through the Program in Media Arts and Sciences. The School is united by some widely shared beliefs and values that give it a unique character and direction. We are committed to sustaining and enhancing the quality of the human environment at all scales, from the personal to the global. We value design excellence, technological inventiveness, and imaginative scholarship. And we believe that design and policy interventions should be grounded in unwavering commitment to equity, social justice, and making a positive difference in the everyday lives of real people.

History
The School of Architecture and Planning builds on pioneering traditions. The first university instruction in architecture in the United States began at MIT in 1865, introducing America to the rigorous training in design previously restricted to European academies. When it was established in 1932, the program in city planning was the second in the country. At mid-century the School moved away from the Beaux-Arts traditions of its founders to become a leader in the introduction of Modernism to American architecture.

The Center for Real Estate was established in 1983 to improve the quality of the built environment and to promote informed professional practice in the real estate industry. It is the home of the first one-year master’s degree program in real estate development and a respected summer institute of professional development courses. Media Arts and Sciences, the youngest of the School’s programs, was established in 1987; the outgrowth of the innovative research carried out at the Media Laboratory housed since 1985 in the Wiesner Building.

The School’s tradition of diversity goes back to its early years. The Department of Architecture graduated its first woman, Sophia Hayden, in 1890. Three years later, MIT’s Robert R. Taylor, who went on to design most of the buildings on the original Tuskegee Institute campus, became the first African-American graduate of an American architecture program.

The School’s long tradition of international relationships has endured through great technological and intellectual changes. Many on the nineteenth-century faculty had traveled to Paris to study at the influential École des Beaux-Arts. Today’s faculty and students may be engaged in bringing urban planning expertise to new metropolises in the developing world, or in collaborative studio design projects linking universities oceans apart by electronic media.

Facilities
The School was reintegrated into the central building complex through extensive renovations of the core studios and offices of the Departments of Architecture and of Urban Studies and Planning. The renovations were undertaken over the last ten years to provide more flexible and sociable space equipped with state-of-the-art electronic capabilities. The School is currently planning to reunite the Department of Architecture’s distant offices and undergraduate studios with those in the main complex.

Directions
The School is vitally concerned with understanding and responding to today’s complex interactions of local as well as underserved communities and cultures with systems of global interconnection, and with preparing students to work in a world where time and distance are electronically compressed. It is advancing curriculum emphasizing research programs that promote social awareness while using the latest technology.

Along these lines, the Department of Urban Studies and Planning, in collaboration with the Center for International Studies, developed the MIT Program on Human Rights and Justice (PHR). The goal of the program is to create a cutting-edge interdisciplinary environment for research, teaching, curricular development and real-world application in human rights, especially relating to the global economy and science and technology. It is the first human rights program in a leading technology school and the first in the world with a specific focus on the human rights aspects of economic, scientific and technological developments. Cross-cultural dimensions of human welfare, security and dignity animate all the activities of the program.

Interdepartmental Programs
School faculty members take leading roles in three of MIT’s major interdisciplinary units, which are discussed in detail in the Interdisciplinary Research and Study section of Part 1: Center for Advanced Visual Studies, Center for Real Estate, and the Media Laboratory.

The Rotch Library of Architecture and Planning and its Visual Collections are vital resources for the School. Rotch is among the leading libraries of its kind in North America, and its renovation and expansion was awarded the 1993 Harleston Parker Medal for “most beautiful building” in greater Boston by the Boston Society of Architects.

The general Institute support for cross-registration at Harvard University gives professional students the opportunity to enrich their education at the Graduate School of Design and the Kennedy School of Government, among other areas.

Publications
The School of Architecture and Planning’s regular newsletter, Plan, is published online and in print by the Dean’s Office, Room 7-231, 77 Massachusetts Avenue, Cambridge, MA 02139-4307. The Departments of Architecture and of Urban Studies and Planning, as well as the Center for Real Estate and the Media Laboratory, publish a wide range of newsletters and periodicals and can be contacted directly.
Degrees Offered in the School of Architecture and Planning

Architecture Course 4

<table>
<thead>
<tr>
<th>Degree</th>
<th>Program</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>MArch</td>
<td>Architecture Studies</td>
</tr>
<tr>
<td>SMArch</td>
<td>SMBT</td>
<td>Building Technology</td>
</tr>
<tr>
<td>SMArch</td>
<td>SMM_visS</td>
<td>Visual Studies</td>
</tr>
<tr>
<td>MArch/MCP</td>
<td>Simultaneous degree in Architecture and City Planning</td>
<td></td>
</tr>
<tr>
<td>MArch/MCP</td>
<td>Simultaneous degree in Real Estate Development</td>
<td></td>
</tr>
<tr>
<td>SMArchS/MCP</td>
<td>Simultaneous degree in Architecture and City Planning</td>
<td></td>
</tr>
<tr>
<td>SMArchS/MCP</td>
<td>Simultaneous degree in Real Estate Development</td>
<td></td>
</tr>
<tr>
<td>Urban Design Certificate</td>
<td>Architecture: History and Theory of Architecture</td>
<td></td>
</tr>
<tr>
<td>PhD</td>
<td>Architecture: History and Theory of Art</td>
<td></td>
</tr>
<tr>
<td>PhD</td>
<td>Architecture: Design Technology</td>
<td></td>
</tr>
<tr>
<td>PhD</td>
<td>Architecture: Design and Computation</td>
<td></td>
</tr>
<tr>
<td>PhD</td>
<td>Architecture: Building Technology</td>
<td></td>
</tr>
</tbody>
</table>

Media Arts and Sciences Course MAS

<table>
<thead>
<tr>
<th>Degree</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Media Technology</td>
</tr>
<tr>
<td>SM</td>
<td>Media Arts and Sciences</td>
</tr>
<tr>
<td>PhD</td>
<td>Media Arts and Sciences</td>
</tr>
</tbody>
</table>

Urban Studies and Planning Course 11

<table>
<thead>
<tr>
<th>Degree</th>
<th>Program</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB</td>
<td>MCP</td>
<td>City Planning</td>
</tr>
<tr>
<td>MCP</td>
<td>SM</td>
<td>Urban Studies and Planning</td>
</tr>
<tr>
<td>MCP/SMArchS</td>
<td>Simultaneous degree in Architecture and City Planning</td>
<td></td>
</tr>
<tr>
<td>MCP/MArch</td>
<td>Simultaneous degree in Architecture and City Planning</td>
<td></td>
</tr>
<tr>
<td>MCP/MST</td>
<td>Simultaneous degree in City Planning and Transportation</td>
<td></td>
</tr>
<tr>
<td>MCP/MSRED</td>
<td>Simultaneous degree in City Planning and Real Estate Development</td>
<td></td>
</tr>
<tr>
<td>Urban Design Certificate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhD</td>
<td>Urban and Regional Planning</td>
<td></td>
</tr>
<tr>
<td>PhD</td>
<td>Urban and Regional Studies</td>
<td></td>
</tr>
</tbody>
</table>

Center for Real Estate

<table>
<thead>
<tr>
<th>Degree</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRED</td>
<td>Real Estate Development</td>
</tr>
</tbody>
</table>

Notes: Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.

Several departments also offer undesignated degrees, which lead to the Bachelor of Science without departmental designation. The curricula for these programs offer students opportunities to pursue broader programs of study than can be accommodated within a four-year departmental program.

Office of the Dean

Adèle Naudé Santos, AA, MA
Professor of Architecture and Urban Studies and Planning
Dean

Diane E. Davis, BA, MA, PhD
Professor of Urban Studies and Planning
Associate Dean

Diane McLaughlin, MBA
Assistant Dean for Finance and Administration

Kathleen M. Luce, EdM
Assistant Dean for Resource Development and External Relations

James Harrington, MS, MArch
Facilities Manager
The Department of Architecture conceives of architecture as a discipline as well as a profession. Five semi-autonomous, graduate degree–granting “discipline groups” provide an architectural education that is as complex as the field itself. Each discipline group is supported by the other four, and all five contribute to a mutual enterprise. Students learn ways of working that draw upon the whole range of resources that architecture affords in finding and defining the expansive problems of building, as well as in proposing effective solutions. The groups are Architectural Design; Building Technology; Computation; History, Theory and Criticism of Architecture and Art (HTC); and Visual Arts.

In the several disciplines of the department, there is a substantial body of research activity. Moreover, the department’s setting within MIT permits greater depth in such technical areas as computation, new modes of design and production, materials, structure, and energy as well as in the arts, humanities and area studies. The department builds on, and contributes to, such valuable institutional commitments.

The department offers six degree programs: the Bachelor of Science in Art and Design, Master of Architecture, Master of Science in Architecture Studies, Master of Science in Building Technology, Master of Science in Visual Studies, and the Doctor of Philosophy.

In the United States, most state registration boards require a degree from an accredited professional degree program as a prerequisite for licensure. The National Architectural Accrediting Board (NAAB), which is the sole agency authorized to accredit US professional degree programs in architecture, recognizes three types of degrees—the Bachelor of Architecture, Master of Architecture, and Doctor of Architecture. A program may be granted a five-year, three-year, or two-year term of accreditation, depending on its degree of conformance with established educational standards.

Master’s degree programs may consist of a preprofessional undergraduate degree and a professional graduate degree, which, when earned sequentially, comprise an accredited professional education. However, the preprofessional degree is not, by itself, recognized as an accredited degree.

The Department of Architecture offers the MArch degree in programs ranging from two to three and one-half years. These professional degrees are structured to educate those who aspire to registration and licensure as architects.

The undergraduate Bachelor of Science in Art and Design is a preprofessional degree program. It is useful for those wishing a foundation in the field of architecture as preparation for either continued education in a professional degree program or for employment options in architecturally related fields.

Architectural Design is taught from a broad range of perspectives linking several common concerns: site and context, use and form, building methods and materials, and the role of the architect. Context is considered in terms of existing and historical physical form (natural and constructed) and sociological patterns of use. The architect is seen less as the sole creator of a completed building than as a participant with others in the shaping of our physical environment.

Diverse architectural design studios are offered. After establishing a basis in a core curriculum, the focus shifts to choices among design projects of ascending complexity. Introductory studios provide a basic architectural design background and help undergraduates decide whether they want to continue in architecture. Entering graduate students have a basic studio crafted for their needs. The intermediate studios provide a range of experiences of form-making in which individual faculty present their particular ways of exploring a design issue. The advanced studios give graduate students the opportunity to sharpen their skills and to develop their own attitudes of form-making. In their theses, students carry through a project of their own from concept through theory and design to a final product.

Computer resources for educational purposes are distributed in the laboratories and studios of the department and overseen by the staff of the Computer Resource Office. Students are required to learn the fundamentals of computer-aided visualization. Other computation subjects or studio work permit further experimentation with modeling techniques, graphic representations, design methods, technical analysis, prototyping, and assistance with the design process. Students may also participate in research work in these areas.

The work of the Architectural Design faculty extends beyond the studio. Workshops, lectures, seminars, and research engage the built environment, the forces that mold it, and the design process itself. The work of the faculty covers such areas as large-scale physical settings, environmental programming, the form and evaluation of cities, computation and architecture, architectural theory and design methodology, decision-making procedures in design, housing and settlement forms in developing countries, self-help processes, and design in nonwestern cultures. Central to these topics is the role of the user as an active force in the development of environments and the role of the designer as an agent in the process of human habitation.

This group offers a concentration to undergraduates in Course 4 as well as Master of Architecture and Master of Science in Architecture Studies degrees.

Building Technology includes teaching and applications of the fundamentals of technology as well as research in technology for the next generation of buildings. Topics include building structures, materials, industrialized building systems, appropriate technology for developing countries, sustainable design, new indoor air quality technologies, and development of computational methods for research and design through visualization of building performance in its many aspects. Subjects include fundamentals of technology, applications to buildings, laboratories, and independent research projects. For example, students may study problems of energy resources and technologies and use this knowledge to design physical environments or buildings for the next decade that embody current research concepts. Research facilities include the Building Technology Laboratory, a full-scale indoor environmental chamber, as well as computer work stations. Research facilities of other departments such as Mechanical and Civil and Environmental Engineering are also used in joint research projects.

This group offers a concentration to undergraduates in Course 4 as well as a Master of Science in Building Technology (SMBT) and a doctoral degree with emphasis on building technology.

The Computation group teaches diverse subjects dealing with theory, history, methods, and applications of computation and digital
The aim is to cover the many facets of a rapidly changing and growing area with in-depth, agenda-setting research and teaching. Topics taught cover the description, generation, and construction of architectural and urban form and other designed artifacts using computational means, including computer visualization, rendering, and modeling; generative theories, strategies, and software for design synthesis and analysis; and digital fabrication and construction processes and technologies. Students are encouraged to acquire both the technical skills and the theoretical and conceptual foundations to rethink and challenge the limits of current design processes and practices, and to consider the social and cultural implications of their positions.

The Computation group offers subjects at the graduate and undergraduate levels. It is responsible for a concentration in the Master of Science in Architecture Studies (SMArchS) program, and for a doctoral program. SMArchS and PhD students are encouraged to take subjects in other discipline areas as a means to explore and develop their interests.

The History, Theory, and Criticism of Architecture and Art group teaches subjects dealing with the history of art and architecture. Offerings range in content and method. Some study questions internal to the discipline of architecture, while others seek contexts in social, political, and intellectual history. Some are motivated by questions derived from the problems of contemporary practice. Others take their organization from a body of historical material investigated in ways that develop skills of analysis applicable to a wide range of topics. The group teaches subjects from the Renaissance forward in time, focusing on materials that are both abstract and concrete, with scales that range from the architectural drawing to the urban environment. There is a special emphasis on topics of modern art and architecture.

HTC offers a concentration to undergraduates in Course 4 and a HASS concentration and minor in the history of architecture to all MIT undergraduates. There is a doctoral program with emphasis on the history, theory, and criticism of art and architecture, and students in the Master of Science in Architecture Studies program may choose to concentrate in HTC.

The Visual Arts group offers a diverse range of subjects in studio practice. Emphasis is placed on the development of the student’s ideas in relation to experimental media. Discussion in contemporary art and theory complements studio production.

This group offers a concentration to undergraduates in Course 4 and a HASS concentration in the visual arts to all undergraduates. It also offers a graduate major leading to a Master of Science in Visual Studies. Undergraduate and graduate subjects are also offered to students from other disciplines who would like to experiment in the visual arts.

More information about the Department of Architecture and its programs can be found on the department’s home page. The URL is http://architecture.mit.edu/.

UNDERGRADUATE STUDY

The Department of Architecture offers two undergraduate courses of study. They provide a broad undergraduate education for students who have clear professional goals and for those who desire a solid foundation for a number of possible careers. Course 4 leads to the Bachelor of Science in Art and Design, and Course 4-B leads to the Bachelor of Science.

Bachelor of Science in Art and Design/ Course 4

Course 4 offers a flexible program for students in four possible discipline streams: visual arts; architectural design; building technology; and history, theory, and criticism of architecture and art. Within a clear framework, students develop individual courses of study best suited to their needs and interests.

The requirements for the SB in Art and Design (BSAD) curriculum begin with an introductory subject, 4.101 Experiencing Architecture Studio, designed to be taken by freshmen and sophomores. The remaining core subjects include beginning work in the arts, computation, architectural design, building technology, and the history of architecture and art.

Students should discuss their educational interests and plans with a faculty advisor not later than the beginning of the fall term of their junior year. The department has prepared handouts which give the subject requirements for each of its four discipline streams. Each area of concentration provides a variety of subjects from which to choose, as well as an opportunity to get deeply involved in a particular subfield. The Department offers a foreign exchange study program with Delft University of Technology for architecture design seniors in fall term. An optional senior thesis may be taken in the final year.

The vast majority of BSAD candidates choose the architectural design discipline stream, which includes sequential studios. The approach fosters investigation and discussion in the development of sensitivity to the built environment. These sensibilities are linked to values and responsibilities to the community at large. The design studio is a place not only where technical and analytical skills are developed, but a place of synthesis and invention using the elements of architectural form: material, structure, construction, light, sound, memory, and place. This is the process that characterizes the architectural education and what the studio sequence explores.

Students who plan to continue their studies for the graduate degree, Master of Architecture, must apply for admission to the graduate MArch program. Students who have fulfilled the requirements for the Architectural Design discipline stream of the Bachelor of Science in Art and Design normally are able to satisfy the requirements for the MArch in two and one half years if they include in their undergraduate program a sufficient number of professional subjects. This requires careful use of a student’s unrestricted electives.

Eligible BSAD Architectural Design discipline stream students may apply for early admission to the MA program after the first term of the junior year. If accepted to the MA program early, students are normally able to satisfy the requirements of the degree in two years of graduate study following successful completion of the BSAD. Consult the department for details.

Students who intend to continue with graduate studies in the visual arts, building technology, and history, theory, and criticism of architecture should consult with an appropriate faculty member to design a program of study which establishes the basis for graduate study.
Bachelor of Science/Course 4-B

Course 4-B is offered for students who find that their basic intellectual commitments are to subjects within the Department of Architecture but whose educational objectives cut across departmental boundaries. These students may, with the approval of the department, plan a course of study that meets their individual needs and interests while including the fundamental areas within the department. For example, students might create a coherent program combining subjects in architecture with subjects in urban studies and planning, computer science, systems analysis, acoustics, etc.

As early as possible, students should discuss their interests and intended programs with their advisor and departmental faculty members. A student who wishes to follow Course 4-B must initially register as a Course 4 major. By the end of the sophomore year, the student is expected to submit to the department a proposal that includes a statement of educational goals, a list of subjects to be taken to fulfill these goals (72 units), and a timetable of when the subjects will be taken. When the proposal is approved by the Department of Architecture Undergraduate Curriculum Committee, the student may officially switch to the 4-B major.

The Course 4-B curriculum is similar to Course 4 in that the six core subjects that are to be taken primarily in the freshman and sophomore years are 4.101, 4.104, 4.206, 4.302, 4.401 and 4.605. During the junior and senior years, the approved interdisciplinary course of study is pursued.

Undergraduates in either the Course 4 or Course 4-B major program of the Department of Architecture may, upon consultation with a faculty advisor, exercise flexibility in scheduling completion of the General Institute Requirements. It should be emphasized, however, that any program of studies that involves postponing first-year physics and mathematics limits the possibilities of transferring easily to (or taking advanced subjects in) those departments that presuppose the completion of most of the General Institute Science Requirements by the end of the sophomore year.

Bachelor of Science in Art and Design/Course 4

General Institute Requirements (GiRs)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement (one subject can be satisfied by a subject in the Departmental Program)*</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects:</td>
<td>75</td>
</tr>
<tr>
<td>4.101 Experiencing Architectural Studio, 12</td>
<td></td>
</tr>
<tr>
<td>4.104 Architectural Studio: Intentions, 15; 4.101, CI-M</td>
<td></td>
</tr>
<tr>
<td>4.302 BSAD Foundations in the Visual Arts, 12</td>
<td></td>
</tr>
<tr>
<td>4.401 Introduction to Building Technology, 12</td>
<td></td>
</tr>
<tr>
<td>4.500 Introduction to Design Computing, 12</td>
<td></td>
</tr>
<tr>
<td>4.605 Introduction to the History and Theory of Architecture, 12, HASS-D, CI-M</td>
<td></td>
</tr>
</tbody>
</table>

Discipline Stream Subjects

By the beginning of their junior year, students are expected to begin concentrating in one of the four discipline streams.

Architectural Design Discipline Stream

<table>
<thead>
<tr>
<th>Subject</th>
<th>Unit Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.125 Architectural Studio: Building in Landscapes, 21; 4.104, 4.302, 4.401, 4.500, 4.605</td>
<td>75–78</td>
</tr>
<tr>
<td>4.126 Architectural Studio: Building in Cities, 21; 4.125</td>
<td></td>
</tr>
<tr>
<td>4.440 Basic Structural Design, 12, REST; 8.02, 18.02</td>
<td></td>
</tr>
<tr>
<td>plus 4.731 or 4.132 Architectural Design Level II, 21; 4.125, 4.126, 4.440</td>
<td></td>
</tr>
<tr>
<td>or Two subjects from any of the other three discipline streams, both in the same area</td>
<td></td>
</tr>
</tbody>
</table>

Visual Arts Discipline Stream

<table>
<thead>
<tr>
<th>Subject</th>
<th>Unit Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.322 Introduction to Sculpture, 12, HASS; 4.301, 4.302*</td>
<td>84</td>
</tr>
<tr>
<td>4.341 Introduction to Photography and Related Media, 12, HASS; 4.301, 4.302*</td>
<td></td>
</tr>
<tr>
<td>4.351 Introduction to Video, 12, HASS; 4.301, 4.302*</td>
<td></td>
</tr>
<tr>
<td>One intermediate-level subject in Visual Arts</td>
<td></td>
</tr>
<tr>
<td>One advanced-level subject in Visual Arts</td>
<td></td>
</tr>
<tr>
<td>plus One of the following subjects:</td>
<td></td>
</tr>
<tr>
<td>4.601 Introduction to Art History, 12, HASS-D</td>
<td></td>
</tr>
<tr>
<td>4.602 Modern Art and Mass Culture, 12, HASS-D, CI-H</td>
<td></td>
</tr>
<tr>
<td>4.614 Religious Architecture and Islamic Cultures, 12, HASS-D</td>
<td></td>
</tr>
<tr>
<td>plus One additional subject in History, Theory, and Criticism of Art and Architecture</td>
<td></td>
</tr>
</tbody>
</table>

Building Technology Discipline Stream

<table>
<thead>
<tr>
<th>Subject</th>
<th>Unit Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.411 Building Technology Laboratory, 12, LAB; 8.02, 18.02</td>
<td>81–84</td>
</tr>
<tr>
<td>4.421 Fundamentals of Energy in Buildings, 12, REST; 8.01, 18.02</td>
<td></td>
</tr>
<tr>
<td>4.440 Basic Structural Design, 12, REST; 8.02, 18.02</td>
<td></td>
</tr>
<tr>
<td>One additional subject in Building Technology</td>
<td></td>
</tr>
<tr>
<td>plus 4.125 Architectural Studio: Building in Landscapes, 21; 4.104, 4.302, 4.401, 4.500, 4.605</td>
<td></td>
</tr>
<tr>
<td>or Two additional subjects in Building Technology</td>
<td></td>
</tr>
<tr>
<td>plus One additional subject from any of the other three discipline streams.</td>
<td></td>
</tr>
</tbody>
</table>
History, Theory, and Criticism of Art and Architecture Discipline Stream

4.601 Introduction to Art History, 12, HASS-D
4.602 Modern Art and Mass Culture, 12, HASS-D, CI-H
or
4.614 Religious Architecture and Islamic Cultures, 12, HASS-D

plus
Three additional subjects in History, Theory, and Criticism of Art and Architecture

plus
One of the following subjects:
4.322 Introduction to Sculpture, 12, HASS; 4.301, 4.302*
4.345 Introduction to Photography and Related Media, 12, HASS; 4.302*
4.351 Introduction to Video, 12, HASS; 4.301, 4.302*

plus
One additional subject in Visual Arts.

Departmental Program Units That also Satisfy the GIRs

(24)

Unrestricted Electives

48–57

Total Units Beyond the GIRs Required for SB Degree

183

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

* Alternate prerequisites are listed in the subject description.
(1) Only two subjects required by the department may also satisfy the General Institute Requirements. Students in the Visual Arts departmental discipline stream may not have a HASS concentration in Visual Arts; nor may History, Theory, and Criticism of Art and Architecture discipline stream students concentrate in the HASS field of History of Art and Architecture.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

Minor Programs

The requirements for a **Minor in Architecture** are as follows:

4.101 Experiencing Architecture Studio
4.104 Architecture Studio: Intentions
4.605 Introduction to the History and Theory of Architecture
and either
4.401 Introduction to Building Technology (taken before 4.125)
4.125 Architecture Studio: Building in Landscapes
or
Three subjects chosen from the following list:
Up to two from: 4.211J, 4.250J
Up to two from: 4.301, 4.305, 4.322, 4.341, 4.351, 4.366
Up to two from: 4.401, 4.411, 4.42J, 4.440
Up to two from: 4.500, 4.501, 4.520, 4.522

The **Minor in the History of Art and Architecture**, considered a HASS minor, is designed to enable students to concentrate on the historical, theoretical, and critical issues associated with artistic and architectural production. Introductions to the historical framework and stylistic conventions of art and architectural history are followed by more concentrated study of particular periods and theoretical problems in visual culture and in cultural history in general.

The minor program consists of six subjects arranged into three levels of study and chosen as follows:

Tier I

Two subjects:
4.601 Introduction to Art History
or
4.602 Modern Art and Mass Culture

Tier II

Three subjects chosen from the following list, with no more than two subjects from either the history of art or the history of architecture:

4.605 Introduction to the History and Theory of Architecture
or
4.614 Religious Architecture and Islamic Cultures

4.606 Visual Perception and Art
4.613 Civic and Residential Islamic Architecture
4.615 The Architecture of Cairo
4.631 Gender, Space, and Architecture
4.635 Renaissance Architecture
4.641 19th-Century Art
4.645 Selected Topics in Architecture: 1750–Present
4.648 Advanced Topics in Visual Culture
4.651 20th-Century Art
4.665 Contemporary Architecture and Critical Debate
4.671 Nationalism, Internationalism, Globalism in Modern Art
4.673 Installation Art

Tier III

One subject:
4.609 Seminar in the History of Art and Architecture
or
Other advanced seminar in the history of art and/or architecture with permission of the HASS field advisor.

For a general description of the minor program, see Undergraduate Education in Part 1.

GRADUATE STUDY

The Department of Architecture offers five graduate degree programs—the Master of Architecture, Master of Science in Architecture Studies, Master of Science in Building Technology, Master of Science in Visual Studies, and the Doctor of Philosophy.

The Master of Architecture is awarded to students who complete a program, accredited by the National Architectural Accrediting Board,
that is an essential step toward licensure for architectural practice.

The Master of Science in Architecture Studies program stresses research and inquiry in the built environment; the degree is meant both for students who already have their first professional architecture degree and those whose previous education orient them toward nonprofessional graduate study in architecture.

The Master of Science in Building Technology program is run jointly by the Departments of Architecture, Civil and Environmental Engineering, and Mechanical Engineering. It is meant for students who intend to make a career in this field.

The Master of Science in Visual Studies focuses on the development of critical and visionary positions of artistic practice in the context of an advanced technological and scientific community. Central to the curriculum is the potential for creating links with programs in architecture, urbanism, technology, and media studies. Students are challenged to expand their artistic practice by questioning the historical, cultural, social and ethical implications of their work. Discussion in contemporary theory and criticism complements studio production.

The PhD program is an advanced degree program initiated in the area of History, Theory, and Criticism, and has been expanded to the areas of Building Technology and Computation.

Master of Architecture
The Master of Architecture is awarded upon the satisfactory completion of an approved program of at least 164 units, of which 96 units must be in H-level subjects, and an acceptable thesis. Those who have not yet studied in a department of architecture require three and one-half academic years of residence to fulfill the requirements for the MArch degree.

Advanced standing is possible for students who have taken architectural design at an accredited school of architecture. Students who have majored in architectural design at a “4 plus 2” architecture school, including MIT, may have the time to complete the program reduced to two and one-half or, rarely, even two years depending on their academic experience and accomplishments.

The professional MArch program is seen as being diverse and open-ended with many views of an appropriate theory and practice of architecture available, yet with a general set of shared concerns. These include a commitment to design, a concern for the behavior of people and their participation in creating architecture, an interest in inquiry and criticism, a view of the environment as a living and developing phenomenon, an interest in the relation between the built environment and institutions, a regard for the material processes of building, and a concern for the spatial and temporal contexts of buildings.

Architectural design studios are the center of the MArch degree program. Students must recognize that there are many possible professional roles, and therefore must assume much of the responsibility for structuring their own educational programs. While the professional curriculum specifies that a student study a range of subjects in several interrelated fields, students in the MArch program have some choice within each of the study areas offered in the department, and are required to develop a concentration in a self-determined area.

Master of Science in Architecture Studies
This program is designed to provide a climate for research and inquiry that stresses the investigative component of understanding the built environment. It is open to students with professional degrees in architecture and, more rarely, to other university graduates. The SMArchS degree is awarded upon satisfactory completion of an approved program of study of 96 units, 42 of which will be H-level subjects, and the completion of an acceptable thesis. The degree requires two full academic years of residency.

The program has a strong interest in the methods of inquiry, development and testing of knowledge, and the building and application of theory as it pertains to the built environment. It allows students to specialize in areas in which they wish to obtain particular abilities. There are several areas of study.

In Architecture and Urbanism, areas of faculty interest include theory of urban form and urban design strategies linked to the institutions that effect urban change.

The Aga Khan Program for Islamic Architecture supports a small number of students interested in pursuing research on architecture and urbanism in the Islamic world. Faculty interests include Islamic architectural and urban history and historiography, strategies for preservation, and the critique of contemporary design in Islamic countries.

The mission of Computation is to promote a rethinking of technique in relation to architectural form, as well as to challenge conventional distinctions between physical and virtual environments. Research focuses on new means for describing, representing, and generating architectural form; for modeling physical processes; and for facilitating communication.

Building Technology focuses on the intersection of design and technical issues for buildings that positively contribute to a more humane and environmentally responsible built world. Research within the group addresses innovative materials and assemblies, low-energy strategies, and structures.

A few students can enter the area of History, Theory, and Criticism where they work alongside doctoral students in the study of Western (19th and 20th centuries) architecture and methodology issues that inform or link historical and practical work.

In all these areas, related subjects are available in the Department of Urban Studies and Planning, in other departments at MIT, and at Harvard.

About 60 percent of the students in the SMArchS program come from outside the United States; this encourages the exchange of ideas across cultures. Students often use a site in their home countries as a base for their theses.

Simultaneous Master’s Degrees in Architecture and City Planning
Students who have been admitted to either the Department of Urban Studies and Planning or the Department of Architecture can propose a program of joint work in the two fields that will lead to the simultaneous awarding of two degrees. Degree combinations may be MArch/MCP or SMArchS/MCP. A student must apply by January 1 before beginning the last full year of graduate study for the first degree: SMArchS and MCP students must apply during the spring admissions process. All candidates for simultaneous degrees must meet the requirements of both degrees, but may submit a joint thesis.
Urban Design Certificate
Students in the MCP, MArch, or SMArchS programs who complete a specific curriculum in urban design are awarded a Certificate in Urban Design. The curriculum includes subjects in both Architecture and Planning. For further information, contact Charlotte Liu, Room 10-485, MIT, Cambridge, MA 02139-4307, 617-253-5115.

Master of Science in Building Technology
This program provides a focus for graduate students interested in the development and application of advanced technology for buildings. Students in this program take relevant subjects in basic engineering disciplines along with subjects which apply these topics to buildings. The program is open to qualified students with a degree in engineering or in architecture with a substantial background in technology.

The program concentrates on the development of the next generation of technology for buildings as well as the innovative application of state-of-the-art concepts to building systems. Research programs, in many cases jointly carried out with faculty and students in the School of Engineering, include sustainable building design, natural ventilation and indoor air quality, innovative materials and structures, and computational simulation of building behavior.

The SMBT degree is generally completed in two years, requires 66 units of coursework (42 of which must be H-level graduate credit), and the completion of an acceptable thesis.

Master of Science in Visual Studies
The Visual Arts Program focuses on the development of analytical and visionary strategies in artistic practice within the context of the advanced technological and scientific community of MIT. The program offers an intellectual and studio environment for innovative, experimental, and critical art-making.

Students are challenged to expand their artistic practices through informed and articulate focus on the historical, cultural, social, existential, and ethical implications of their projects. In-depth examination of works in progress, as well as readings and discussions complement artistic production. Workshops, seminars, lectures, project reviews, tutorials, public presentations, and exhibitions are the core of the education method of the program.

Areas of investigation include media art, expanded video, photography, and digital art, as well as public art, performance, sculpture, design, and the art related to science, technology, and technoculture. Central to the curriculum of the program is the capacity for creating links with MIT research units, departments, programs, and centers in architectural design, history, theory and criticism, urban planning, media arts and sciences, computer science, engineering, and others.

The SMVisS degree is completed in two years, requires 150 units of coursework (105 of which must be H-level graduate credit), and the completion of an acceptable thesis.

Doctor of Philosophy
The PhD in Architecture may be pursued in one of four separate areas: (1) History and Theory of Architecture, (2) History and Theory of Art, (3) Building Technology, or (4) Computation.

The PhD program in the area of History, Theory, and Criticism of Architecture and Art emphasizes the study of Western (nineteenth and twentieth centuries) and Islamic art, architecture and urbanism, and methodological issues that inform or link historical and practical work.

The doctoral program in Building Technology is interdepartmental, with important components in the Departments of Civil and Environmental Engineering and Mechanical Engineering. Research programs include sustainable building design, controls, natural ventilation and indoor air quality, innovative materials and structures, and computational simulation of building behavior.

The PhD program in Computation is broadly conceived around computational ideas and digital technologies as they pertain to the understanding, description, generation, and construction of architectural form. Research topics include the mathematical foundations of shape and shape representation; generative tools for design synthesis; advanced modeling and visualization techniques; rapid prototyping and CAD/CAM technologies for physical fabrication; and the analysis of the design process and its enhancement through supporting technologies and work spaces. The mission of the program is to enrich design from a computational perspective, with clear implications for teaching and practice.

Admission and degree requirements vary somewhat in the specific areas listed above, and may be obtained from the Department of Architecture headquarters, or in correspondence with the separate areas. The residency requirement for the PhD is a minimum of two full academic years. However, advanced standing awarded at admission may reduce this to three terms for students with a prior MIT degree. Completion of all of the requirements for the PhD—including the dissertation—is usually accomplished in five years.

Each student admitted to work for the PhD should consult closely with one principal professor in his or her area to develop a general plan of study. In all three areas, progress toward the PhD follows a sequence of required subject work, qualifying papers, general examinations, and dissertation research, writing, and defense. Students are encouraged to take subjects appropriate to their study plans in other departments at MIT, and at Harvard.

Inquiries
Further information concerning undergraduate and graduate academic programs in the department, admissions, financial aid, and assistantships may be obtained from the Department of Architecture, Room 7-337, MIT, Cambridge, MA 02139-4307, 617-253-7387. Visit the web page at http://architecture.mit.edu/.

Faculty and Staff
Faculty and Teaching Staff
Yung Ho Chang, MArch
Professor of Architecture
Head of the Department

Professors
Stanford Anderson, MArch, PhD
Professor of History and Architecture
(On leave, fall)

Julian Beinart, BArch, MCP, MArch
Professor of Architecture

John de Monchaux, MArch
Professor of Architecture and Urban Planning
Michael Dennis, BArch
Professor of Architecture

Leon R Glicksman, PhD
George Macomber Professor of Construction Management
Professor of Building Technology

Mark Jarzombek, DiplArch, PhD
Professor of History and Architecture
(On leave, fall)

Joan Jonas, MFA
Professor of Visual Arts

Terry Knight, PhD
Professor of Design and Computation
(On leave, spring)

William J. Mitchell, MS
Professor of Architecture and Media Arts and Sciences
(On leave)

Leslie Keith Norford, PhD
Professor of Building Technology
(On leave, spring)

William Lyman Porter, MArch, PhD
Professor of Architecture without Tenure (retired)

Adèle Naudé Santos, MAUD, MArch, MCP
Professor of Architecture and Urban Planning
Dean, School of Architecture and Planning

Anne Whiston Spirn, PhD
Professor of Landscape Architecture and Planning

George Stiny, PhD
Professor of Design and Computation

Jan Wampler, MArch
Professor of Architecture

Krzysztof Wodiczko, MFA
Professor of Visual Arts
(Fall)

Associate Professors

Ute Meta Bauer, Dipl. of Fine Arts
Associate Professor of Visual Arts

Arindam Dutta, PhD
Associate Professor of the History of Architecture

John Fernandez, MArch
Associate Professor of Architecture and Building Technology

David Hodes Friedman, PhD
Associate Professor of the History of Architecture
(On leave, spring)

Mark Goulthorpe, BArch
Associate Professor of Design

Bill Hubbard, Jr., MAAS
Adjunct Associate Professor of Architecture

Wendy Jacob, MFA
Associate Professor of Visual Arts

Caroline Jones, PhD
Associate Professor of the History of Art
(On leave)

Takehiko Nagakura, MArch, PhD
Associate Professor of Design and Computation

Ann M. Pendleton-Jullian, BArch, MArch
Associate Professor of Architecture

Nasser Rabbat, BArch, MArch, PhD
Associate Professor of the History of Architecture

Aga Khan Professor

Andrew Scott, BArch
Associate Professor of Architecture

Heqhnar Watenpaugh, PhD
Aga Khan Associate Professor of the History of Architecture
(On leave, spring)

J. Meejin Yoon, MAUD
Class of 1948 Career Development Professor
Associate Professor of Architecture
(On leave, spring)

Assistant Professors

Marilyne Andersen, MSc, PhD
Assistant Professor of Building Technology
(On leave, fall)

Alexander d’Hooghe, MAUD, PhD
Assistant Professor of Architecture and Urbanism

Paul Lukez, MArch
Assistant Professor of Architectural Design
(On leave, fall)

Erika Naginski, PhD
Alfred Henry and Jean Morrison Hayes Career Development Chair
Assistant Professor of the History of Art

John Ochsendorf, PhD
Assistant Professor of Building Technology

Lawrence Sass, PhD
Cecil and Ida Green Career Development Assistant Professor of Computation and Design

Visiting Professors

Edward Allen, MArch
Visiting Professor (fall)

Martha Buskirk, PhD
Visiting Associate Professor (fall)

Jesús Escobar, PhD
Visiting Associate Professor (spring)

Michael Ann Holly, PhD
Visiting Professor (spring)

Sanford Kwinter, PhD
Visiting Associate Professor (spring)

Keith Moxey, PhD
Visiting Professor (spring)

Senior Lecturers

Fernando Domeyko, DiplArch
Shun Kanda, BArch, MArch

Lecturers

Hansy Luz Better, MArch (fall, IAP)
Stephen Diamond, MArch (fall)
Andrea Frank, MFA (fall)
Joe Gibbons, MFA (fall)
Alan Joslin, MArch (fall)
Carl Rosenberg, MArch (spring)
Julia Scher, MFA (fall)
Joel Turkel, MArch (fall)

Technical Instructor

Christopher Dewart, BA

Research Staff

Principal Research Associate

Reinhard Goethert, MArch, PhD

Principal Research Scientist

Kent Larson, BArch

Research Scientist

Stephen Intille, PhD
Administrative Staff
Renée Caso, BA
Degree Administrator
Rebecca Chamberlain, MSM
Administrative Officer
Thomas Fitzgerald, BS
Network Manager
Nancy Jones, BA
Degree Administrator
Anne W Simunovic, BA
Assistant to Department Head

Professors Emeriti
Wayne V. Andersen, PhD
Professor of the History of Art, Emeritus
Richard H. Bolt, PhD
Adjunct Professor, Emeritus
Eduardo Fernando Catalano, MArch
Professor of Architecture, Emeritus
Eric Dluhosch, MArch, PhD
Professor of Building Technology, Emeritus
Richard Filipowski, BA
Associate Professor of Visual Design, Emeritus
Leon Bennett Groisser, ScD
Professor of Structures, Emeritus
N. John Habraken, BI
Professor of Architecture, Emeritus
Sandra Howell, PhD
Professor of Behavioral Science in Architecture, Emerita
Edward Levine, MA, PhD
Professor of Visual Arts, Emeritus
John Randolph Myer, BArch
Professor of Architecture, Emeritus
Otto Piene, MA
Professor of Visual Design, Emeritus
Maurice Keith Smith, BArch
Professor of Architecture, Emeritus
Chester Lee Sprague, MArch
Associate Professor of Architecture, Emeritus
Waclaw Piotr Zalewski, DTechSci
Professor of Structures, Emeritus
At MIT, the term media arts and sciences signifies the study, invention, and creative use of technologies to enable understanding and expression by people and machines. The field is rooted in communications and the computer and cognitive sciences, drawing heavily upon design and the expressive arts. The program offers undergraduate and graduate subjects (listed under MAS in Part 3) and graduate study leading to the master’s and doctoral degrees. Its academic programs are intimately linked with the research programs of the Media Laboratory.

UNDERGRADUATE STUDY

The program’s undergraduate curriculum continues to evolve. Most of the subjects are project oriented and relate to ongoing research areas within the Media Laboratory. Certain graduate subjects are open to advanced undergraduates—see the subject descriptions for details.

The MAS Alternative Freshman Year Program emphasizes project-oriented work as well as the connections between current research and traditional MIT first-year subjects. Students in this program attend mainstream lectures for core freshman subjects but take recitations led by Media Laboratory researchers and participate in research through the Undergraduate Research Opportunities Program.

All undergraduate students who wish to take full advantage of the educational experience offered by Media Arts and Sciences are encouraged to participate in UROP at the Media Laboratory; first-year students participating in UROP are strongly encouraged to register for MAS.111 Introduction to Research in Media Arts and Sciences.

GRADUATE STUDY

Media Arts and Sciences offers graduate studies leading to the Master of Science and Doctor of Philosophy in Media Arts and Sciences. Students from a wide variety of backgrounds, including electrical engineering, physics, computer science, cognitive science, art and design, and the learning sciences are encouraged to apply.

Students in the master’s program are expected to have advanced placement or an MIT experience with computer programming. Four semesters of residence are required, of which one may be a summer semester. The degree is awarded upon completion of a satisfactory research thesis.

Progress towards the PhD degree begins with a proseminar and follows with a program of advanced classes and faculty-supervised research that students begin in their first year. These lead, in turn, to the development of a program of original and significant research within one of the Media Laboratory’s research groups, and the completion and oral defense of a dissertation on that research.

Research Assistantships

The Program in Media Arts and Sciences offers financial assistance to all successful applicants in the form of research assistantships, which are themselves an important part of the educational program. Assistantships require participation in research programs within the Media Laboratory. Research assistants normally register for two subjects per semester and receive academic credit for part of their research activities.

Inquiries

Additional information about the programs in Media Arts and Sciences, graduate admissions, research programs, and research assistantships may be obtained from Pat Solakoff, MIT, 20 Ames Street, Room E15-401, Cambridge, MA 02139-4307; telephone 617-253-5114, fax 617-253-8542, email mas@media.mit.edu.

FACULTY AND STAFF

Faculty and Teaching Staff

Mitchel Resnick, PhD
Associate Professor of Media Arts and Sciences
LEGO Papert Career Development Professor of Learning Research
Acting Head, Program in Media Arts and Sciences

Professors

Tod Machover, MM
Professor of Music and Media

William J. Mitchell, BArch, MEdes, MA
Professor of Architecture and Media Arts and Sciences
Alexander W. Dreyfous, Jr. (1954) Professor of Media Arts and Sciences
Nicholas Negroponte, MArch
Wiesner Professor of Media Technology
Chair, Media Laboratory
Alex Pentland, PhD
Toshiba Professor of Media Arts and Sciences
Rosalind Picard, ScD
Professor of Media Arts and Sciences
Barry Vercoe, DMA
Professor of Media Arts and Sciences

Associate Professors

Neil Gershfenfeld, PhD
Associate Professor of Media Arts and Sciences
Hiroshi Ishii, PhD
Associate Professor of Media Arts and Sciences
Joseph Jacobson, PhD
Associate Professor of Media Arts and Sciences
John Maeda, PhD
Associate Professor of Design and Computation
Rudge (1948) and Nancy Allen Professor of Media Arts and Sciences
Patricia Maes, PhD
Associate Professor of Media Technology
Deb Roy, PhD
Associate Professor of Media Arts and Sciences
AT&T Career Development Professor of Media Arts and Sciences
Joseph Paradiso, PhD
Associate Professor of Media Arts and Sciences
Sony Corporation Career Development Professor of Media Arts and Sciences
Ted Selker, PhD
Associate Professor of Media Arts and Sciences
Benesse Career Development Professor of Research in Education

Assistant Professors

Cynthia Breazeal, ScD
Assistant Professor of Media Arts and Sciences
LG Career Development Professor of Media Arts and Sciences
Chris Csikszentmihályi, MFA
Assistant Professor of Media Arts and Sciences
Muriel R. Cooper Career Development Professor

Judith Donath, PhD
Assistant Professor of Media Arts and Sciences
Asahi Broadcasting Corporation Career
Development Professor of Research in Education

Hugh Herr, PhD
Assistant Professor of Media Arts and Sciences
NEC Career Development Professor of Computers
and Communications

Research Staff

Senior Research Scientists

Walter Bender, MSVS
Executive Director, Media Laboratory

Andrew Lippman, PhD

Principal Research Associates/Scientists

V. Michael Bove, Jr., PhD
Glorianna Davenport, MA
Christopher Schmandt, MSVS

Research Associates/Scientists

David Cavallo, PhD
Henry Lieberman, PhD

Administrative Staff

Linda Peterson
Director, Academic Program Administration

Pat Solakoff
Administrative Assistant

Professors Emeriti

Marvin Minsky, PhD
Professor of Media Arts and Sciences, Emeritus

Seymour Papert, PhD
Professor of Education and Media Technology, Emeritus
The Department of Urban Studies and Planning (DUSP) offers several degree and nondegree programs: Bachelor of Science in Planning; Master in City Planning (MCP); Master of Science in Urban Studies and Planning; Doctorate in Urban Studies and Planning; the Special Program in Urban and Regional Studies (for mid-career professionals from less developed areas); the Center for Reflective Community Practice (for mid-career professionals from communities of color in the United States); the Urban Design Certificate, offered jointly with the Department of Architecture; and special student status for part-time mid-career professionals interested in taking individual subjects.

City and regional planners in the United States and other parts of the world are involved not only in physical and economic development, but also in management of the environmental, social, and design consequences of development. They engage in a variety of activities aimed at shaping the pattern of human settlements, and at providing people with housing, public services, employment opportunities, and other crucial support systems that comprise a decent living environment. Planning encompasses not just a concern for the structure and experience of the built environment, but also a desire to harness the social, economic, political, and technological forces that give meaning to the everyday lives of men and women in residential, work, and recreational settings. Planners operate at the neighborhood, metropolitan, state, national, or international level, in both the public and the private sectors. Their tasks are the same: to help frame the issues and problems that receive attention; to formulate and implement projects, programs, and policies responsive to individual and group needs; and to work with and for various communities in allocating economic and physical resources most efficiently and most equitably.

Planners are often described as “generalists with a specialty.” The specialties offered at MIT include city design and development; housing, community, and economic development; international development and regional planning; and environmental policy and planning, as well as cross-cutting opportunities to study urban information systems and transportation. These planning specialties can be distinguished by the geographic levels at which decision making takes place—neighborhood, city, region, state, national, and global. Subspecialties have also been described in terms of the roles that planners are called upon to play, such as manager, designer, regulator, advocate, educator, evaluator, or futurist. The Department of Urban Studies and Planning is committed to educating planners who can advocate on behalf of underrepresented constituencies.

A focus on the development of practice-related skills is central to the department’s mission, particularly for students in the MCP professional degree program. Acquiring these skills and integrating them with classroom knowledge are advanced through the department’s field-based practicum subjects and research, and through internship programs. In fieldwork, students acquire competence by engaging in practice and then bringing field experiences back into the academic setting for reflection and discussion. Students may work with community organizations, government agencies, or private firms under the direction of faculty members involved in field-based projects with outside clients. In some cases, stipends may be available for fieldwork or internship programs.

During the month of January, the Department of Urban Studies and Planning offers a series of “mini-subjects” in specialized fields not covered by the regular curriculum, including both noncredit and for-credit offerings.

Specific opportunities for concentration and specialization available to students are detailed in the descriptions of the degree programs that follow.

Undergraduate Study

The Department of Urban Studies and Planning offers a Bachelor of Science in Planning, a HASS Minor in Urban Studies and Planning, a HASS Minor in Public Policy, and a variety of HASS concentrations. There is also an accelerated SB/MCP program which allows exceptional students to complete their undergraduate and master’s degree work in five years.

Bachelor of Science in Planning/ Course 11

The Department of Urban Studies and Planning offers an interdisciplinary preprofessional undergraduate major designed to prepare students for careers in both the public and the private sectors. The major also provides a foundation for students intending to do graduate work in law, public policy, development, urban design, management, and planning itself. The subjects in the major teach students the ways in which the tools of economics, policy analysis, political science, and design can be brought to bear on critical social and environmental problems in the United States and abroad. In addition, students learn the special skills and responsibilities of planners who seek to promote efficient and equitable change.

After satisfying the core requirements listed below, students must use their planned electives to pursue one of the following tracks: urban and environmental planning, urban studies, or urban regional policy. The required laboratory—based in the department’s Computer Resource Laboratory—deals with issues common to these three areas. In the laboratory subject, students explore the ways in which emerging technology can be employed to support better government decision making.

Students are encouraged to develop a program that will strengthen analytic skills and broaden their intellectual perspectives, on the one hand, yet will test these insights in real-world applications, on the other. Students must undertake a senior project that synthesizes what they have learned. Such a project may be a focused analysis of a policy issue, a report on a problem-solving experience from an internship, other fieldwork, or social science research on urban affairs.

Five-Year SB-MCP Option

MIT undergraduate majors may apply for admission to the department’s Master in City Planning Program in their junior year. Students accepted into the five-year program receive both the Bachelor of Science and the Master in City Planning at the end of five years. Admission is limited to those undergraduates who have demonstrated exceptional professional promise. More information on the five-year program can be obtained from Sandra Wellford, undergraduate administrator, Room 7-346A, MIT, Cambridge, MA 02139-4307, 617-253-9403.
Minor Program in Urban Studies and Planning
The six-subject Minor in Urban Studies and Planning offers students the opportunity to explore issues in urban studies and planning in some depth. Students initially take two Tier I subjects that establish the governmental, economic, and urban design contexts for local, urban, and regional decision making. Next, students choose three Tier II elective subjects, which provide an opportunity to focus on urban and environmental policy issues or to study urban problems and institutions. Where undergraduate electives are unavailable in the student’s field of interest, the student may choose from a variety of graduate courses, subject to the instructor’s permission. Finally, students take 11.123 Big Plans, which aims at a reflective synthesis of past and present efforts to implement large projects and policies. Students are encouraged to craft a minor that reflects their own particular interests within the general parameters of the minor program requirements and in consultation with the minor advisor.

Tier I Two subjects:
11.001J Introduction to Urban Design and Development
and
11.002J Fundamentals of Public Policy

Tier II Three subjects from the following:
11.007 Public Policy Disputes
11.011 The Art and Science of Negotiation
11.013J American Urban History I
11.018 Solving the Infrastructure Crisis
11.020 Poverty, Public Policy, and Controversy
11.024 Great Cities
11.026J Downtown
11.102J Theories of Economic Development
11.122 Society and Environment
11.126 Economics of Education

Tier III Big Plans

Bachelor of Science in Planning/Course 11

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [four subjects can be satisfied by subjects in the Departmental Program]</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 11.186 in the Departmental Program]</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree

| 17 |

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H);
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Units

<table>
<thead>
<tr>
<th>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
</tr>
</tbody>
</table>

All of the following:

- 11.001J Introduction to Urban Design and Development, 12, HASS
- 11.002J Fundamentals of Public Policy, 12, HASS-D, CI-H
- 11.123 Big Plans, 9, HASS
- 11.102J Theories of Economic Development, 12, HASS, 14.01, 14.02
- 11.122 Society and Environment, 12, HASS
- 1.011 Project Evaluation, 9
- 1.041J Engineering System Design, 12, 1.011

Planned Electives

Majors in Course 11 select one stream from the following three options. Within the selected stream, students must take 57 units of coursework.

Urban and Environmental Planning

- 11.007 Public Policy Disputes, 12, HASS
- 11.014J American Urban History II, 9, HASS
- 11.016J The City, 12, HASS, CI-H
- 11.026J Downtown, 9, HASS
- 11.102J Theories of Economic Development, 12, HASS, 14.01, 14.02
- 11.122J Society and Environment, 12, HASS
- 1.011 Project Evaluation, 9
- 1.041J Engineering System Design, 12, 1.011

Urban Studies

- 11.013J American Urban History I, 9, HASS
- 11.014J American Urban History II, 9, HASS
- 11.015J Riots, Strikes, and Conspiracies in American History, 12, HASS-D, CI-H
- 11.020J Poverty, Public Policy, and Controversy, 12, HASS-D, CI-H
- 11.023J Bridging Cultural and Racial Differences, 12, HASS
- 11.024J Great Cities, 9, HASS
- 11.026J Downtown, 9, HASS
- 11.102J Theories of Economic Development, 12, HASS, 14.01, 14.02
- 11.330J Theory of City Form, units arranged

Urban and Regional Public Policy

- 11.003J Methods of Public Policy Analysis, 12, HASS, 11.002J, 17.30J, 24.01
- 11.011J The Art and Science of Negotiation, 12, HASS
- 11.020J Poverty, Public Policy, and Controversy, 12, HASS-D, CI-H
- 11.102J Theories of Economic Development, 12, HASS, 14.01, 14.02
- 11.166J Law, Social Movements, and Public Policy, 12, HASS

Urban Field Experience

Declared majors may elect to take the optional urban field experience subject, which is taught as a seminar in the fall continuing with a trip during IAP. This subject may be taken multiple times as the content differs each year, but it may only be counted once as a planned elective.

- 11.194J Special Topics in Urban Studies and Planning, units arranged
Minor Program in Public Policy

Public policy is an academic field that focuses on how government action can be best utilized to enhance the quality of life of citizens. The interdisciplinary HASS Minor in Public Policy is intended to provide a single framework for students in engineering and sciences who are interested in the role of public policy in the field of their technical expertise. The six-subject minor is organized along three dimensions.

The first dimension is a foundation built on the study of market and nonmarket institutions in which public policy decisions are made and implemented. All students take two subjects that introduce them to justifications for government action—justifications that form the fundamental basis for making public policy. The second is the study of the methodologies of analyzing and assessing the impacts of policy change on policy outcomes. The purpose is to provide a basic level of competence so that students are knowledgeable about the range of approaches that professionals use to analyze public policies. The third is an in-depth study of policymaking in one substantive field. All minors select an area of public policy specialty, such as science and technology policy, and take three subjects within that area of specialty. Students also have the possibility of doing an internship in order to fulfill one part of the three-subject requirement. Course 11 majors are not eligible for the public policy minor. Additional information can be obtained from Sandra Wellford, undergraduate administrator, Room 7-346A, MIT, Cambridge, MA 02139-4307, 617-253-9403.

Tier I Introduction to Markets, Politics, and Public Policy (two required subjects)
11.002J/17.30 J Fundamentals of Public Policy and
14.01 Principles of Microeconomics

Tier II Policy Analysis (one required subject)
11.003J/17.303 J Methods of Policy Analysis

Tier III Policy Concentration
Three subjects chosen in one of the following tracks: social and educational policy, environmental policy, infrastructure policy, science and technology policy, labor and industrial policy, international development policy, security and defense policy, and urban and regional policy. Students may propose their own track for approval by their minor advisor; students may substitute a semester-long internship in their chosen field for one subject, with the approval of their minor advisor.

HASST Concentrations

DUSP offers clusters of subjects that satisfy the Institute requirement. These three-subject clusters allow students either to develop competence within a specific discipline or to explore a particular policy problem. Six areas are suggested: designing the urban environment, environmental policy, urban history, policy analysis and urban problems, legal issues and social change, and education. Plans for an international development cluster are now underway. Sample programs are available from Sandra Wellford, undergraduate administrator, Room 7-346A, MIT, Cambridge, MA 02139-4307, 617-253-4409.

The DUSP concentration focusing on education can also lead to Massachusetts Certification in math and science at the middle and high school levels, if two additional subjects are taken at Wellesley. More information is available from Eric Klopfer, Room 10-339, MIT, Cambridge, MA 02139-4307, 617-253-2025.

Graduate Study

The Department of Urban Studies and Planning offers graduate work leading to the Master in City Planning and the Doctor of Philosophy. In conjunction with the Center for Real Estate, the department also offers a Master of Science in Real Estate Development. These programs are open to students with varying backgrounds. Urban studies, city planning, architecture, urban design, environmental planning, political science, civil engineering, economics, sociology, geography, law, management, and public administration all offer suitable preparation.

For further information concerning academic programs in the department, applications for admission, and financial aid, contact Graduate Admissions, Room 7-346, MIT, Cambridge, MA 02139-4307, 617-253-9403.

Master in City Planning

The principal professional degree in the planning field is the Master in City Planning (MCP). The Department of Urban Studies and Planning provides graduate education for men and women who will assume professional roles in public and private agencies, firms, and international institutions, in the United States and abroad. The department seeks to provide MCP students with the skills and specialized knowledge needed to fill traditional as well as emerging planning roles.

The two-year Master in City Planning Program emphasizes mastery of the tools necessary for effective practice and is therefore distinct from undergraduate liberal arts programs in urban affairs. An intensive course of study stresses skills for intervention in five areas of
subspecialization: city design and development; environmental policy and planning; housing, community, and economic development; international development and regional planning; and planning support systems. The master’s program is accredited by the American Planning Association.

A student’s plan of study in the MCP Program is set forth in a program statement developed jointly by the student and faculty advisor after the first semester. The program statement describes the purposes and goals of study, the proposed schedule of subjects, the manner in which competence in a specialization is developed, and an indication of a possible thesis topic. The program statement is submitted at the end of the first semester of study to the MCP Committee, which monitors each student’s progress.

Degree Requirements. Students are expected to take a minimum of 36 credit units each term (about three subjects), yielding at least 126 total units, in addition to the thesis.

A collection of subjects and requirements to be taken during the student’s two years in the MCP program constitute a “core experience” viewed as central to the professional program. The core subjects and requirements include the following:

- Students must also complete at least one core practicum subject, selected from an approved list, during the two-year program.
- In addition, 11.203 Microeconomics and 11.220 Quantitative Reasoning and Statistical Methods for Planning I are required for students who do not demonstrate proficiency in these areas.
- Finally, students are encouraged to take a writing course based on their level of writing proficiency.

MCP students select an area of specialization by the end of the first semester, tailored to the individual student’s interests. Specializations within the department are described below. As part of the core, students are required to take an introductory subject to one of the five specialization areas of the department in the first semester. During the fall of the second year, students are required to take a thesis preparation seminar in their area of specialization.

The **City Design and Development** group is concerned with shaping the built and natural environment of cities and suburbs. Graduates work in a variety of private, public, and non-profit roles: as developers, planning and design consultants, municipal and regional planners, managers of public programs to improve the environment, advocates of historic preservation and public art, and planners of transportation systems. The group is closely associated with faculty and students in the Department of Architecture and the Center for Real Estate, and many subjects are cross-listed with these programs.

While the educational offerings are diverse and every student can develop unique competence in the area, there are at least three clusters of skills in city design and development: land use planning, for those who wish to work as municipal planners or consultants, or wish to be involved in planning large-scale development projects in the United States and abroad; urban design, for those who wish to be involved in shaping the public realm; and urban development, for those who wish to manage development projects for private or public sector organizations.

An Urban Design Certificate is offered to students who complete a specific curriculum of subjects in the Urban Studies and Planning and Architecture departments. There are also opportunities for dual professional degrees in architecture and planning.

The **Environmental Policy** group emphasizes the study of the legal, institutional, and economic tools with which society conserves and manages its environmental resources. Areas of concern include the role of science in environmental policy making, pollution prevention, land use planning, environmental impact assessment, sustainable development and adaptive ecosystem management, environmental justice, global environmental treaty making, environmental regulation, and the mediation of environmental disputes. Students examine the interactions between built and natural systems, techniques for describing and evaluating changes in environmental quality, approaches to environmental policy analysis, and mechanisms for assessing the choices posed by the environmental impacts of new technology in local, state, national, and international contexts.

The **Housing, Community, and Economic Development (HCED)** group focuses on the design, location, organization, and financing of housing, economic, and community development programs and the capital and labor markets that impact such development at the local level. Specifically, the group is concerned with understanding how public policy and private markets affect housing, economic development, and the local economy; employing techniques for assessing community needs, including housing, community services facilities, and sources of jobs; and developing and implementing programs, policies, and strategies that are directed at meeting these needs. HCED places a strong emphasis on practice and effective action at the state, local, and neighborhood levels and emphasizes that strategic analysis of the institutional context within which action occurs is central to such effectiveness.

The **International Development and Regional Planning (IDRP)** group draws on the experiences of developing and newly industrializing countries throughout the world as the basis for advice about planning at the local and regional levels. IDRP provides students with an integrated view of the institutional, historical, economic, technological, and socio-political factors that have shaped successful planning experiences, and how they translate into action. Class content and faculty expertise include local and regional economic development, regional planning (including decentralization), finance, and project evaluation; housing, human settlements, and infrastructure services (transportation, telecommunications, water, sewerage); institutions of economic growth and industrialization and industrial policies (including privatization); and poverty-reducing and employment-increasing interventions, including informal sector, nongovernment organizations, and small enterprises; comparative urban and regional policy; property rights, collective action and common property issues (water, forestry, grazing, agriculture); and human rights.

The **Urban Information Systems (UIS)** is a cross-cutting group that connects faculty, staff, and students with shared interests in how information and communication technologies are impacting urban planning. Some are studying...
the complex relationships underlying urban spatial structure and land use, transportation, and environmental interactions. Others are building neighborhood information systems, modeling urban futures, facilitating public participation in planning processes, or experimenting with e-neighborships, community building, and the formation of social capital. Much of UIS’s work involves the development and use of planning-related software and the spatial analysis tools and systems (such as GIS and distributed geoprocessing) that are increasingly important parts of metropolitan information infrastructures. However, interests go beyond the development and use of specific technologies and extend to an examination of the ripple effects of computing, communications, and digital spatial information on current planning practices and on the meaning and value of the communities and planning institutions that are formed.

All students are required to submit a thesis on a topic of their choice. The department encourages MCP students to avoid the traditional perception of the thesis as a “mini-dissertation,” and to think instead of a client-oriented, professional document that bridges academic and professional concerns. While most of the thesis work occurs during the last semester of the second year, students are urged to begin the process of defining a thesis topic early in the second year through their participation in a required thesis preparation seminar.

Students in the MCP Program are encouraged to integrate fieldwork and internships with academic coursework. The Department of Urban Studies and Planning provides a variety of individual and group field placements involving varying degrees of faculty participation and supervision. Academic credit is awarded for field experience, although some students choose instead to participate in the work-study financial aid program. The department also sponsors a variety of seminars in which students have an opportunity to reflect on their field experiences.

Simultaneous Master’s Degrees in City Planning and Architecture

Students who have been admitted to either the Department of Urban Studies and Planning or the Department of Architecture can propose a program of joint work in the two fields that will lead to the simultaneous awarding of two degrees. Degree combinations may be MCP/MArch or MCP/SMArchS. A student must apply by the January deadline prior to beginning the last full year of graduate study for the first degree: MCP and SMArchS. Students must apply during their first year at MIT (by the end of the first semester); MArch students must apply during or before their second year. Students are first approved by the Dual Degree Committee and then considered during the spring admissions process. All candidates for simultaneous degrees must meet the requirements of both degrees, but may submit a joint thesis.

Simultaneous Master’s Degrees in City Planning and Transportation

Students who have been admitted to study for the Master in City Planning or the Master of Science in Transportation may apply to the other program during their first year of study and propose a program of joint work in the two fields that will lead to the simultaneous awarding of two degrees. Details of this program are provided in the section on the Center for Transportation and Logistics, described under the Engineering Systems Division in Part 2.

Simultaneous Master’s Degrees in City Planning and Real Estate Development

Students who have been admitted to the Master in City Planning Program or the Master of Science in Real Estate Development Program may apply to the other program during their first year of study and propose a program of joint work in the two fields that will lead to the simultaneous awarding of two degrees. Information on this program is given under the School of Architecture and Planning at the beginning of this section. Students may submit a joint thesis.

Doctor of Philosophy

The PhD is the advanced research degree in planning or urban studies. Admission requirements are substantially the same as for the master’s degree, but more emphasis is placed on academic preparation and research interests in the student’s proposed area of specialization.

The doctoral program emphasizes the development of fundamental research competence and flexibility in the exploration of questions that no single academic discipline can answer. Students work under the mentorship of a faculty advisor. They may center their activities on any subfield in which the faculty have expertise.

After successful completion of coursework, students are required to take oral and written general exams in two fields: a broad intellectual discipline (city design and development, international development economics, public policy, planning information systems, or urban and regional economics) and an area to which this is applied (neighborhood and community development, housing and real estate development, labor and employment policy, negotiation and dispute resolution, or regional development and transportation). After finishing the general examinations, each PhD candidate must write a doctoral dissertation which gives evidence of the capacity to do independent and innovative research.

Doctoral candidates require between two and four terms of study in residence before taking their examinations and beginning their dissertations. A minimum of 72 units (for students with a master’s degree), plus 36 units for the dissertation (a minimum of 108 units) is required for the PhD degree.

Interested and qualified students can undertake joint doctoral programs with the Department of Political Science or the Department of Economics.

Master of Science in Urban Studies and Planning

Under special circumstances, admission may be granted to candidates seeking the Master of Science degree. The general requirements for the SM degree are given in Part 1. In addition, the department requires a letter from a DUSP faculty member indicating willingness to advise the thesis. The letter should be included with the application. For further information concerning the SM option, contact Graduate Admissions, Room 7-346, (617) 253-9403.

Urban Design Certificate

Students in the MCP, MArch, or SMArchS program who complete a specific curriculum in urban design are awarded a Certificate in Urban Design. The curriculum includes subjects in both Architecture and Planning. For further information contact the CDD office, Room 10-485, MIT, Cambridge, MA 02139-4307, 617-253-5115.
Nondegree Programs
A limited number of nondegree students are admitted to the department each term. This special student status is especially designed for professionals interested in developing specialized skills, but is also available to others.

The Center for Reflective Community Practice (CRCP) promotes social justice by expanding access to and engagement with the knowledge developed by people working on the ground in disenfranchised, low-income communities. CRCP aims to both empower and learn from those individuals who, in the face of injustice, inequality, and exclusion, have dedicated themselves to making their communities healthier and more vibrant places to live. The knowledge that is formed in the face of struggles to create lasting change, by those who are least served by society, is significant, sophisticated, and essential for framing and solving today’s most urgent social problems.

By focusing its efforts on helping community practitioners “know what they know,” CRCP has successfully supported resident-directed change in underserved communities across the United States since 1998. Today CRCP hosts a variety of projects and guides the community-based work of up to 20 fellows each year. CRCP advances the use of practitioner and community knowledge through three strategic pathways:

• Identifying, documenting, and organizing practitioner and community knowledge developed through on-the-ground social justice work.
• Building opportunities and practical methods for community practitioners to use to engage their peers and others they wish to influence with the knowledge arising from their community practice.
• Analyzing and communicating the value and merits of practitioner and community knowledge to broad audiences.

CRCP is located in Room 7-307. Further information can be found on the CRCP website at http://crcp.mit.edu/, by emailing crcp@mit.edu, or calling 617-253-3216.

The Special Program for Urban and Regional Studies of Developing Areas (SPURS) provides an opportunity for a small number of highly qualified mid-career professionals from developing countries to spend a year at MIT studying the problems of urban and regional change in the broad context of international development. SPURS is an intentionally flexible program, offering the option of a nondegree or an MS degree program. For further information contact Nimfa DeLeon, SPURS, Room 10-400, MIT, Cambridge, MA 02139-4307, 617-253-3215 or visit our website at http://web.mit.edu/spurs/www/.

Faculty and Teaching Staff
Lawrence Vale, SMArchS, DPhil
Professor of Urban Design and Planning MacVicar Faculty Fellow
Head of the Department

Professors
Alice H. Amsden, PhD
Barton L. Weller Professor of Political Economy Professor of Political Economy
(On leave, spring)
Brian A. Ciochetti, PhD
Professor of the Practice of Real Estate CRE Eastman Chair
Phillip Clay, PhD
Professor of Urban Studies and Planning Chancellor, MIT
Diane E. Davis, PhD
Professor of Political Sociology Associate Dean, School of Architecture and Planning
Cochair, Undergraduate Program
John de Monchaux, MArch
Professor of Architecture and Planning
Joseph Ferreira, Jr., PhD
Professor of Urban Planning and Operations Research
Dennis Frenchman, MCP, MArch
Professor of the Practice of Urban Design
Robert M. Fogelson, PhD
Professor of Urban Studies and History Cochair, Undergraduate Program
Ralph Gakenheimer, MRP, PhD
Professor of Urban Planning

David Geltner, PhD
George Macomber Professor of Real Estate Finance
Director, Center for Real Estate
Langley C. Keyes, PhD
Ford Professor of City and Regional Planning Chair, MCP Committee
Frank Levy, PhD
Daniel Rose Professor of Urban Economics Chair, PhD Program
Paul Osterman, PhD
NTU Professor of Human Resources and Management Deputy Dean, MIT Sloan School of Management
Karen R. Polenske, PhD
Professor of Regional Political Economy and Planning
Martin Rein, MSW, PhD
Professor of Social Policy
Bishwapiya Sanyal, MCP, PhD
Ford International Professor
Professor of Urban and Regional Planning Director, Special Program for Urban and Regional Studies in Developing Countries
J. Mark Schuster, PhD
Professor of Urban Cultural Policy
Anne Spirn, MLA
Professor of Landscape Architecture and Planning
Lawrence E. Susskind, MCP, PhD
Ford Professor of Urban and Environmental Planning
Judith Tendler, PhD
Professor of Political Economy
William C. Wheaton, PhD
Professor of Political Economy

Associate Professors
Eran Ben-Joseph, PhD
Associate Professor of Landscape Architecture and Planning
Xavier de Souza Briggs
Associate Professor of Community Development and Public Policy
Eric Klopfer, PhD
Associate Professor of Education
Director, Teacher Education Program
Joseph R. and Rita P. Scheller Career
Development Chair

Ceasar McDowell, MEd, EdD
Associate Professor of the Practice of Community
Development
Director, Center for Reflective Community
Practice

Balakrishnan Rajagopal, SJD
Associate Professor of Law and Development
Ford International Career Development Chair

J. Phillip Thompson, PhD
Associate Professor of Urban Politics and
Community Development

Assistant Professors
JoAnn Carmin, PhD
Charles H. and Ann Spaulding Career
Development Chair
Assistant Professor of Environmental Policy and
Planning
(On leave, fall)

Lynn Fisher, PhD
Assistant Professor of Real Estate
(On leave, spring)

Lorlene Hoyt, PhD
Assistant Professor of Technology and Planning
Edward H. and Joyce Linde Career Development
Chair
(On leave, spring)

Annette Kim, PhD
Assistant Professor of Urban and Regional
Planning
(On leave)

Judith Layzer, PhD
Assistant Professor of Environmental Policy
(On leave, spring)

Adjunct Professors
Richard Sennett, PhD
Bemis Adjunct Professor of Sociology and Urban
Studies

Terry Szold, MRP
Adjunct Associate Professor of Land Use
Planning

Senior Lecturer
Karl Seidman, MPP

Lecturers
Cherie Abbanat, MCP
Paula Anzer, MCP
James Hamilton, SM
Sandra Lambert, MPA
W. Tod McGrath, MBA
Rhonda Ryznar, PhD
Susan Silberberg, MCP (On leave, fall)
Gloria Schuck, PhD
Elliot Surkin, LLB

Principal Research Scientists
Christie Baxter, PhD
David Laws, PhD
Thomas Piper, MArch

Research Scientist
Carlo Ratti, PhD
Director, SENSEable City Lab

Visiting Faculty and Scholars
Ciro Biderman, PhD
Visiting Scholar
Manuel Castells, PhD
Distinguished Visiting Professor of Sociology
and Planning
Lois Craig, BA
Visiting Senior Lecturer
Amrita Daniere, PhD
Visiting Associate Professor
Tali Hatuka, PhD
Postdoctoral Fellow
Yu Hung Hong, PhD
Visiting Assistant Professor
Herman Karl, PhD
Visiting Lecturer
Sam Bass Warner, PhD
Visiting Professor of Urban History

Administrative Staff
Paula Anzer, MCP
Special Assistant to the Department Head

Mary Jane Daly, MCP
Director, Professional Development

Duncan Kincaid, MArch
Director, Computer Resource Network

Sandra Wellford
Academic Advisor, Student Services

Karen Yegian, MBA
Administrative Officer

Phil Thompson, MArch
Network Administrator

Sponsored Research Staff
Joy Amulya, EdD

Nimfa Deleon, BS
Administrator, SPURS

Lee Farrow, MS
Director, Boston Community Learning Project

Holly Kosisky, BA
Administrator, CRCP

Professors Emeriti
Bernard J. Frieden, MCP, PhD
Ford Professor of Urban Development, Emeritus

Gary Hack, MArch, MUP, PhD
Professor of Urban Design, Emeritus

Frank Jones, MBA
Ford Professor of Urban Affairs, Emeritus

Melvin H. King, MEd
Director, Community Fellows Program, Emeritus

Tunney F. Lee, BArch
Professor of Architecture and Urban Studies and
Planning, Emeritus

Gary Marx, PhD
Professor of Sociology, Emeritus

Lisa Redfield Peattie, PhD
Professor of Urban Anthropology, Emerita

Senior Lecturer

Clarence G. Williams, PhD
Adjunct Professor of Urban Studies and
Planning, Emeritus
Leadership through Technical Excellence and Innovation

The primary objectives of the School of Engineering at MIT are to educate and prepare men and women for leadership in industry, government, and educational institutions; to prepare them for purposeful and thoughtful creation and utilization of knowledge and technology to improve the human condition; to advance the knowledge base of engineering; to advance the knowledge base of the engineering professions; and to influence the future directions of engineering education and practice.

The educational programs in the School emphasize the understanding of fundamental principles; facility with experimental, computational, and analytical methods; development of skill in the creative processes of engineering, such as design; development as individuals and professionals; and the development of a self-confidence and versatility of mind that prepare the individual for a lifetime of learning and professional growth.
By creating, developing, organizing, and managing complex technologies and products, engineers play a crucial role in contributing to the betterment of humanity and in shaping our world. Seeking solutions to the most difficult challenges of our day in the context of physical, economic, human, political, legal, and cultural realities makes engineering a tremendously exciting endeavor. In a world increasingly influenced by scientific and technological innovation, engineers can provide important leadership to society.

The enormous influence of technology on all functions of society has created a large demand for engineering graduates, not only to enter the professional practice of engineering, but to bring the strengths of an engineering education to related fields such as law, medicine, management, and government. Never have the challenges and opportunities for careers in engineering been more exciting or more critical to the long-term well-being of society than they are today.

The primary objectives of the School of Engineering are to educate and prepare men and women for leadership in industry, government, and educational institutions; to advance the knowledge base of the engineering professions; and to influence the future directions of engineering education and practice.

Educational programs of the School emphasize understanding of fundamental principles; facility with experimental, computational, and analytical methods; development of skill in the creative processes of engineering such as design; and the development of a self-confidence and versatility of mind that prepare the individual for a lifetime of learning and professional growth.

The first-year curriculum for undergraduates encompasses study of physics, chemistry, mathematics, biology, and humanities/arts/social sciences, while still offering students many opportunities to make contact with engineering through undergraduate seminars, research opportunities, and elective subjects. In the second year, students typically continue these studies with subjects leading toward the fulfillment of the Restricted Electives in Science and Technology Requirement; Laboratory Requirement; and Humanities, Arts, and Social Sciences Requirement. An undergraduate student normally becomes affiliated with a particular department at the beginning of the sophomore year, and works closely with an advisor from that department or program.

A student with an interest in engineering is encouraged to become involved with one of the engineering departments even during the freshman year, for example, through the Undergraduate Research Opportunities Program, or the Freshman Advising Seminars.

Many opportunities exist for individual initiatives. For example, a significant number of students combine their primary undergraduate degrees with a second undergraduate degree in another area, such as management, political science, economics, one of the sciences, or another area of engineering. Others organize their programs in order to receive undergraduate and graduate degrees simultaneously. A series of minor programs from across the Institute is also available. In some cases, completing the undergraduate degree requirements in less than four years is possible. Refer to the section on Undergraduate Education in Part 1 for details.

History

Engineering education has been at the core of the Institute’s mission since its founding in 1861. MIT created the contemporary model of engineering education grounded in a dynamic, changing base of science. MIT pioneered the modern model of the research university, with externally sponsored research programs and a matrix of departments, laboratories, and centers working across disciplines. MIT also created entire new fields: chemical engineering, sanitary engineering, naval architecture, and marine engineering, as well as the first course in aeronautical engineering.

The School has also distinguished itself as a leader in engineering education, teaching applied, hands-on engineering. The School created one of the first industrial internship programs (the School of Chemical Engineering Practice) and recently launched the Undergraduate Practice Opportunities Program. The School continues to pioneer programs that partner with industry or other universities, such as the Singapore-MIT Alliance, Project iCampus, and the Leaders for Manufacturing and the System Design and Management programs of which the latter two offer professional master’s degrees for practicing engineers (see the section on Engineering Systems Division).

Today, nearly all of the School’s departments are ranked at the top of their respective fields. The eight academic departments and two divisions are home to the School’s approximately 355 faculty members, slightly over one-third of the Institute’s total faculty. Among the most distinguished in the nation, the School’s faculty and research staff constitute about five percent of the membership of the National Academy of Engineering.

Roughly four in every seven undergraduates with declared majors and 45 percent of all graduate students are in the School of Engineering.

New Directions

In recent years, the School of Engineering has introduced several pioneering educational and research programs that both reflect and seek to lead current trends in education and technology. Programs range from international educational collaborations to research in cutting-edge technologies such as nanotechnology and biological engineering.

Based on the premise that biology will be as important to technology and society in this century as physics and chemistry have been in the last, and that environmental health issues will influence these developments, the School of Engineering formed the Division of Bioengineering and Environmental Health in 1998, subsequently renamed the Biological Engineering Division.

Also in 1998, a second division was created, the Engineering Systems Division, to pursue the study of complex technological systems and products considered in their broader environmental, financial, legal, organizational, and political contexts. In December 2002 the Division announced the Institute’s first two graduate programs in Engineering Systems, a master’s and doctoral program. These programs serve as a model to broaden engineering education and expand the scope and practice of engineering overall.

Through its involvement with the Singapore-MIT Alliance (SMA), a collaboration among MIT, the National University of Singapore, and Nanyang Technological University, the School of Engineering is pioneering an innovative approach to global engineering education and research. Founded in 1998, SMA utilizes advanced communications technologies in what may be the largest distance education collaboration in the world today. SMA offers
graduate degree programs in advanced materials for micro- and nanosystems, innovation in manufacturing systems and technology, molecular engineering of biological and chemical systems, computer science, and high performance computation for engineered systems.

An alliance between MIT and Microsoft Research begun in late 1999, Project iCampus aims to enhance university education through information technology. It has sponsored over 30 cooperative projects among members of Microsoft Research and students, faculty, and researchers at MIT particularly in engineering. In addition to those projects that MIT faculty have proposed and managed, iCampus has awarded more than $750,000 to projects run by MIT students, both undergraduate and graduate. Nearly half the student-led projects aim to improve the environment at the Institute through the use of technology.

In 2001, the Lemelson-MIT Program moved from the Sloan School of Management to officially join the School of Engineering. The nine-year-old program is a nationwide educational initiative whose mission is to generate excitement about invention, innovation, and entrepreneurship through its annual awards and outreach activities. The program awards the $500,000 Lemelson-MIT Prize for invention, the Lemelson-MIT Lifetime Achievement Award, and the $30,000 Lemelson-MIT Student Prize. In addition to granting these awards, the program instituted InvenTeam grants to support a non-competitive, team-based approach to invention and innovation among high school students.

Also in 2001, the School of Engineering created the Undergraduate Practice Opportunities Program to provide MIT undergraduates with greater awareness of and readiness for the realities of engineering practice. Engineering sophomores in the program develop these through a combination of co-curricular learning opportunities and meaningful summer work experiences in industry and government.

A new initiative established in 2002, Terrascope is a joint venture of the Schools of Engineering and Science. One of MIT’s learning communities for first year students, Terrascope uses the study of our Earth system as a context for learning basic science and engineering concepts. Students apply those concepts in creative ways to understand the interdependent physical and biological processes that shape our planet, and to design strategies to ensure a sustainable environment for the future.

Also, the School added the Deshpande Center for Technological Innovation to enhance the development of novel technologies. It supports leading-edge research on emerging technologies and helps bridge the gap between the laboratory and the marketplace. Through research grants, market mentoring, Ignition Forums, faculty entrepreneurship workshops, and its annual IdeaStream Symposium, the center cultivates interactions between the Institute and the New England emerging-tech community and helps accelerate the commercialization of innovative technologies at MIT.

The latest addition to the School of Engineering is its Office of Professional Education Programs, an umbrella organization for activities associated with lifelong learning. It offers unique programs for alumni and professionals from the MIT faculty. Options include full- or part-time on-campus programs, a wide range of summer short courses, and innovative offerings utilizing both traditional and electronic delivery methods. Current programs include the Advanced Study Program, the Professional Institute, and MIT World.

Interdepartmental Programs
Within the School of Engineering, a student may develop a program that satisfies his or her own intellectual and professional objectives. A student interested in an interdepartmental program should study the departmental descriptions and review the section on Interdisciplinary Research and Study in Part 1 for more information on these programs, centers, and laboratories.

Cross-Departmental Undergraduate Opportunities
The School of Engineering administers several cross-departmental undergraduate educational opportunities including Terrascope, Concourse (See the section on Cross-Departmental Undergraduate Opportunities in Part 1 for more information on these programs), and the Undergraduate Practice Opportunities Program. Concourse is a collaborative effort for freshman students among the Schools of Engineering; Science; and Humanities, Arts, and Social Sciences. The Concourse program is composed of many science core classes as well as a variety of humanities offerings that, when brought together with selected professors, not only satisfies most of the General Institute Requirements, but also provides a solid foundation for any studies in any department at MIT. Although Concourse is a part of the School of Engineering at MIT, it is not limited to science or engineering. The Concourse faculty is devoted to integrating science with liberal arts to show the significance of one in the other, to provide a well-balanced academic load, and to expose freshmen to the various departments at MIT. See the section on Cross-Departmental Undergraduate Opportunities in Part 1 for more information.

School-Wide Electives
The School of Engineering also offers a set of School-Wide Elective (SWE) subjects, each of which is of interest to students from a number of departments in the School. A School-Wide Elective subject may integrate knowl-
edge from several disciplines and illustrate the commonality of the intellectual underpinnings of the departments in the School of Engineering. An SWE subject may be the interface between the academic program of the School of Engineering and programs of other Schools at MIT; be a service subject to engineering students and other students; and be germane to many engineering students without being central to any one departmental program. Please note that registration for these subjects takes place through one of the departmental numbers. For complete subject descriptions and a list of the departmental numbers for each SWE subject, refer to the SWE subject listings at the end of Part 3.

Undergraduate SWE subjects include the following:
- Inventions and Patents
- Management in Engineering
- UPOP IAP Workshop
- UPOP Summer Practice Experience
- UPOP Reflective Learning Experience

Graduate SWE subjects include:
- Application of Technology in Energy and the Environment (H-level graduate credit)
- Engineering Systems Analysis for Design (H-level graduate credit)
- Engineering Risk-Benefit Analysis (H-level graduate credit)
- Innovation Teams

Undergraduate Practice Opportunities Program
The Undergraduate Practice Opportunities Program (UPOP) is sponsored by the School of Engineering and administered through the Office of the Dean of Engineering. Professor Dick K.P. Yue, associate dean of engineering, is the faculty director. Open to all School of Engineering sophomores, this innovative program aims to provide all engineering students the opportunity to appreciate engineering practice outside the academic context, through activities emphasizing a combination of knowledge, practice and reflection. UPOP consists of four parts: an intensive one-week engineering practice workshop offered during IAP; extensive pre-employment workshops taught by MIT alumni during the spring; 10 to 12 weeks of meaningful summer employment; and, in the following fall, assessment interviews with staff members and roundtable meetings with other UPOP students, alumni, and faculty to reflect on the summer experience.

The engineering practice workshop, led by faculty from the School of Engineering and the Sloan School of Management, focuses on the realities of engineering practice and emphasizes fundamental abilities: applying technical skills, communication, teamwork, leadership and self-awareness. The curriculum has been designed to be highly interactive, involving students in case studies, simulations, and role-play. Students receive three units of academic credit upon successful completion of the course.

The UPOP Summer Practice Experience allows students to gain experience in the entire job cycle, from recruiting to the actual job experience and is followed by the assessment and reflection process. The UPOP staff helps facilitate the matching of students and employers for 10 to 12-week internships in traditional and start-up companies, nonprofit organizations, and government agencies. Students are required to keep a journal during their internship. Upon completion of the summer practice, both students and employers complete assessments of the summer experience and the program as a whole, and students receive one unit of academic credit.

Students are paid directly by their employer companies for the summer internships. The companies do not pay UPOP any fees, and there are no obligations on either side regarding further employment.

Additional information on the program may be obtained from the Engineering department in which the student is registered or from Christopher Resto, director, Undergraduate Practice Opportunities Program, MIT, Room 12-188, Cambridge, MA 02139, 617-452-5099, fax 617-253-8457; email cresto@mit.edu, or see the website at http://web.mit.edu/engineering/upop/.

Office of the Dean
Thomas L. Magnanti
Institute Professor
Dean
Dick K.P. Yue
Professor of Hydrodynamics and Ocean Engineering
Associate Dean
Sheila M. Kanode
Assistant Dean for Finance and Personnel
Anthony St. George
Assistant Dean for Development and Communications
Donna R. Savicki
Assistant Dean for Administration
Catherine Avril
Director of Communications
Deborah Cohen
Development Officer
Barbara Masi
Director of Education Assessment
Irene Miller
Manager of Faculty Diversity Searches
Karl W. Reid
Executive Director, Engineering Special Programs
Nicole Stark
Coordinator, Saturday Engineering, Enrichment and Discovery Academy
Brian Tavares
Financial Administrator

School Professors
Nicholas A. Ashford
Professor of Technology and Policy
Lawrence L. Bucciarelli, Emeritus
Professor of Engineering and Technology Studies
Degrees Offered in the School of Engineering

Aeronautics and Astronautics Course 16
- **SB**: Aerospace Engineering
- **SB**: Aerospace Engineering with Information Technology
- **SM**: Aeronautics and Astronautics
- **SM/MBA**: Engineering/Management—dual degree with Leaders for Manufacturing Program
- **Engineer**: Aeronautics and Astronautics
- **PhD, ScD**: Aeroacoustics
- **PhD, ScD**: Aerodynamics
- **PhD, ScD**: Aeronautics and Astronautics
- **PhD, ScD**: Aerospace Systems
- **PhD, ScD**: Aircraft Propulsion
- **PhD, ScD**: Aeromechanics
- **PhD, ScD**: Biomedical Engineering
- **PhD, ScD**: Computational Fluid Dynamics
- **PhD, ScD**: Computer Systems
- **PhD, ScD**: Dynamics Energy Conversion
- **PhD, ScD**: Estimation and Control
- **PhD, ScD**: Flight Transportation
- **PhD, ScD**: Fluid Mechanics
- **PhD, ScD**: Gas Turbines
- **PhD, ScD**: Gas Turbine Structures
- **PhD, ScD**: Instrumentation
- **PhD, ScD**: Materials Engineering
- **PhD, ScD**: Materials Science and Engineering
- **PhD, ScD**: Materials Science
- **PhD, ScD**: Matr...
<table>
<thead>
<tr>
<th>Course</th>
<th>Department</th>
<th>Level</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Nuclear Engineering</td>
<td>SB</td>
<td>Nuclear Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM</td>
<td>Nuclear Engineering</td>
</tr>
<tr>
<td></td>
<td>Nuclear Engineer</td>
<td>PhD, ScD</td>
<td></td>
</tr>
</tbody>
</table>

Ocean Engineering **Course 13**
(For qualifying students registered at MIT by September 2005)

<table>
<thead>
<tr>
<th>Course</th>
<th>Department</th>
<th>Level</th>
<th>Program</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ocean Engineering</td>
<td>SB</td>
<td>Ocean Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM</td>
<td>Ocean Engineering</td>
</tr>
<tr>
<td></td>
<td>Naval Engineering and Marine Engineering</td>
<td>SM</td>
<td>Naval Engineering and Marine Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM</td>
<td>Ocean Systems Management</td>
</tr>
<tr>
<td></td>
<td>Engineering/Management—dual degree with Leaders for Manufacturing Program</td>
<td>SM/MBA</td>
<td>Engineering/Management—dual degree with Leaders for Manufacturing Program</td>
</tr>
<tr>
<td></td>
<td>Ocean Engineer</td>
<td>MEng</td>
<td>Ocean Engineering</td>
</tr>
<tr>
<td></td>
<td>Naval Engineer</td>
<td></td>
<td>Oceanographic Engineering (jointly with WHOI)</td>
</tr>
<tr>
<td></td>
<td>PhD, ScD</td>
<td></td>
<td>Oceanographic Engineering (jointly with WHOI)</td>
</tr>
</tbody>
</table>

Computation for Design and Optimization
<table>
<thead>
<tr>
<th>Course</th>
<th>Department</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Computation for Design and Optimization</td>
<td>SM</td>
</tr>
</tbody>
</table>

Note: Many departments make it possible for a graduate student to pursue a simultaneous master’s degree. Several departments also offer undesignated degrees, which lead to the Bachelor of Science without departmental designation. The curricula for these programs offer students opportunities to pursue broader programs of study than can be accommodated within a four-year departmental program.
The mission of the Department of Aeronautics and Astronautics is to prepare engineers for success and leadership in the conception, design, implementation, and operation of aerospace and related engineering systems. This is achieved through a commitment to educational excellence; to the creation, development, and application of the technologies critical to aerospace vehicle and information engineering; and to the architecture and engineering of complex high-performance systems.

Graduates with an aerospace engineering degree will find career opportunities in commercial and military aircraft and spacecraft engineering, space exploration, the air transportation and space-based telecommunication industries, teaching, research, military service, and many related technology-intensive fields such as transportation, information, and the environment. A demanding technical education with a strong emphasis on understanding complex systems has also proved to be excellent preparation for careers in business, law, medicine, and public service.

Aerospace engineering centers on the design of extremely sophisticated machines ranging from vertical take-off aircraft and jet transports to rockets and spacecraft. Internal to these vehicles are modern software, information, and navigation systems. The vehicles themselves are part of larger transportation and communication systems. Critical disciplines and technologies in this field include the mechanics and physics of fluids; structures and materials; propulsion and energy conversion; information, communication, control, and estimation; humans, automation, and autonomy; and avionics. An increasingly important feature of the field is the ability to architect and engineer the complex engineering systems built upon these disciplines and technologies. Central objectives of the educational program are to teach students how to learn, how to use basic principles to solve engineering problems, and how to foresee the consequences of their solutions and designs. A faculty of approximately 35 men and women teaches and interacts with students at all degree levels.

The department has recently undertaken a comprehensive review of its degree programs in light of the rapid global changes in technology and society. The academic programs based in engineering science have been revised to be technically rigorous while set in the context of modern engineering: the conception, design, implementation and operation (CDIO) of products and systems which must provide performance in an economically competitive and environmentally acceptable way. These requirements, and a new emphasis on understanding how individuals learn, have resulted in a reshaping of the department’s degree programs and teaching methods.

The Bachelor of Science (SB) degree is a four-year program designed to prepare the graduate for an entry level position in the aerospace field and for further education at the master’s level. Two degrees are available, one that emphasizes the disciplines that relate to the engineering of aerospace vehicles and a second that defines a specialization in aerospace information technology. Both degrees retain a deep emphasis on the fundamentals and provide strong integration with the overarching CDIO context. The program includes an opportunity for a year abroad. See the section Undergraduate Study for further details.

The Bachelor of Science (SB) degree is a four-year program designed to prepare the graduate for an entry level position in the aerospace field and for further education at the master’s level. Two degrees are available, one that emphasizes the disciplines that relate to the engineering of aerospace vehicles and a second that defines a specialization in aerospace information technology. Both degrees retain a deep emphasis on the fundamentals and provide strong integration with the overarching CDIO context. The program includes an opportunity for a year abroad. See the section Undergraduate Study for further details.

The Master of Science (SM) degree is a one- to two-year program of graduate study with a beginning research or design experience represented by the SM thesis.

The department is an active participant and sponsor of the System Design and Management Program (SDM) which leads to a Master of Science in Engineering and Management. This is a program for professional engineers who seek to build upon their technical backgrounds to become a new breed of technical leaders, with the blend of engineering and management skills required to conceive and create today’s increasingly complex products and systems.

Finally, the department offers the doctoral degree which emphasizes in-depth study with a significant research project in a focused area. Students are admitted to the doctoral program upon passing the qualifying examination. The doctoral degree is awarded after completion of an individual course of study, passing the general examinations, and submission and defense of a thesis embodying an original research contribution.

The faculty and students are engaged in approximately 200 research projects organized into 10 departmental laboratories and centers, including the Aerospace Computational Design Laboratory, Complex Systems Laboratory, Gas Turbine Laboratory, Information and Control Laboratory, International Center for Air Transportation, Lean Aerospace Initiative, Man Vehicle Laboratory, Space Systems Laboratory, Technology Laboratory for Advanced Materials and Structures, and Wright Brothers Wind Tunnel.

See the Research Laboratories and Activities section below for information on specific research agenda. Many of the department’s research projects are open to undergraduates through the Undergraduate Research Opportunities Program. In addition, research activities in other MIT laboratories and centers are open to students registered in Aeronautics and Astronautics.

The department recently constructed a Learning Laboratory for Complex Systems, focused on our Conceive-Design-Implement-Operate strategy for complex high-performance engineering systems and products. This Learning Laboratory provides enhanced opportunities for hands-on learning experiences that are closely integrated to the department’s educational curriculum. There are several new facilities in the Learning Laboratory dedicated for student use. The Arthur Gelb Laboratory features a modern machine shop, a composites fabrication facility, an electronics design lab, and a large team projects area with worktables and equipment for student projects. The Robert C. Seamans Jr. Laboratory is a community study area with meeting and discussion rooms, a design/conference room equipped for sophisticated videoconferencing, IT, and audio-visual systems, and a comprehensive aerospace library. The Design Studio provides computers and telecommunications resources to facilitate concurrent engineering sessions and televised distance learning. Our Hangar includes student-operated low-speed and supersonic wind tunnels, an array of computers equipped with flight simulation software, engineering hardware displays, and workspace for large-scale student projects.

Other facilities are also available to students in the department. These include the undergraduate projects laboratory with a machine shop, bench space, wind tunnels, data acquisition and testing equipment; Athena workstations for computing; the student lounge; and the Aero-Astro branch of the MIT libraries.
Sectors of Instruction

The department’s faculty is organized into three sectors of instruction. Typically, a faculty member teaches both undergraduate and graduate subjects in one or more of the sectors. The following descriptions of each sector introduce the undergraduate and graduate degree programs outlined in subsequent sections. Refer to Part 3 for specific subject descriptions.

Information Sector

A majority of the aerospace systems of the future will either center on or critically depend upon information technology, and all will exploit information technology to an increasing extent. The missions of many aerospace systems are fundamentally centered on gathering, processing, and transmitting information. Examples where information technology is central include communication satellites, surveillance and reconnaissance aircraft and satellites, planetary rovers, global positioning satellites, the air transportation system, and integrated defense systems. Other aerospace systems also must rely on information technology-intensive subsystems to provide important onboard functions, including fly-by-wire flight control, autonomous or semi-autonomous guidance and control, cooperative action including flight in formations or swarms, and health monitoring systems. Furthermore, almost every aircraft or satellite is one system within a larger system. Information plays a central role in the interoperability of systems within a system-of-systems. Recognizing the dominant and growing role information plays in aerospace, the Department of Aeronautics and Astronautics formed the Information Sector in the fall of 2004, integrating faculty members from the previous Information and Control and Systems Research Laboratory, and Center for Innovation in Product Development. Many of the department faculty in this sector are also associated with the Engineering Systems Division.

Faculty members in the Information Sector teach and perform research on a broad range of areas including the disciplines of guidance, navigation, control, autonomy, communication, networks, and real-time mission-critical software and hardware. In many instances, the functions provided by aerospace information systems are critical to life or mission success. The complex nature of an aerospace system can either be simplified by the use of information technologies or can become significantly more complicated through the misuse of information technologies. Hence, safety, fault-tolerance, verification, and validation are significant areas of inquiry. Ongoing research in this sector includes command and control of multiple unmanned/autonomous vehicles, space and airborne communication systems and networks, and software development methods for flight and mission-critical systems, investigation of air traffic management, and application of control to smart systems.

The Information Sector has strong linkages to the department’s Aerospace Systems Sector, particularly with issues related to how humans interact with aerospace vehicles. Other common interests include the safety aspects of large, mission-critical software systems, the design and operation of air transportation systems, and the design and operation of satellite systems. The sector also has linkages to the Vehicles Technology Sector. Current interests include research on unmanned aerial vehicles and smart structures. Moreover, the sector maintains linkages to the Electrical Engineering and Computer Science Department and the Engineering Systems Division through joint teaching and collaborative research in communication, networks, control, robotic systems, optimization, numerical techniques, and algorithms.

Aerospace Systems Sector

This sector is responsible for instruction and research in systems engineering, a discipline that denotes the methodologies used in the architecting, design, manufacture, and operation of the highly complex and demanding systems in the field of aeronautics and astronautics. The sector consists of faculty members with research specialties in this area, as well as faculty affiliates representing the full disciplinary strength of the department.

The systems approach considers all factors important to the performance, economic viability, manufacture, acceptability, and operation of engineering systems—technical, social, environmental, production, financial, and safety aspects—and attempts to find optimal or best-value tradeoffs among them while considering risk and uncertainty. The systems engineer must deal simultaneously with these factors, whether the objective is the transport of passengers in commercial aircraft, orbital communications, or the exploration of space, among others.

This sector addresses issues related to how humans interact with aerospace vehicles, including information-related and life-support aspects. Safety, fault-tolerance, verification, and validation are significant areas of inquiry. Ongoing research in the sector includes investigation of air traffic management, distributed satellite systems, enterprise architecture, integrated design of space-based optical systems, micro-gravity research into human physiology and technology maturation, and software development methods for flight and mission-critical systems.

Students interested in systems engineering should develop a strong background in some of the disciplines that support systems analysis, such as probability, statistics, optimization, operations research, manufacturing, and economics. Research labs associated with the activities of this sector include the Man Vehicle Laboratory, Space Systems Laboratory, Lean Aerospace Initiative, International Center in Air Transportation, Operations Research Center, Complex Systems Research Laboratory, and Center for Innovation in Product Development. Many of the department faculty in this sector are also associated with the Engineering Systems Division.

Vehicle Technologies Sector

The faculty in this sector is responsible for teaching and research in the fields of fluid mechanics, propulsion, materials, and structures—technologies needed for the design of aerospace vehicles. Although these can be considered disciplinary fields, the faculty emphasizes interdisciplinary approaches in its teaching and research.

The intellectual breadth of the sector is wide, with a span of activities reaching from fundamental engineering science to design techniques, to measurement technology, to the detailed engineering of complex vehicle components and systems. Topics of interest include the computational design of fluid, material, and structural systems; heat transfer, aerodynamics, and fluid dynamics; reduced order modeling of unsteady fluid flows and structures in aerospace devices; structural dynamic analysis and control; turbomachinery; robust design of propulsion and energy system components; electric and chemical space propulsion; gas turbine engine design; propulsion system integration; aerospace noise, emissions, and environmen-
tal impact; microelectromechanical systems; multi-scale modeling and simulation of advanced materials: engineered materials, failure mechanisms, and structural life monitoring; and biofluid mechanics.

The sector includes several large interdisciplinary projects, including the Silent Aircraft Initiative and the MIT Micro Engine Project. Research laboratories affiliated with the sector include the Aerospace Computational Design Laboratory, FAA/NASA Center of Excellence: Partnership for Air Transportation Noise and Emissions Reduction, the Gas Turbine Laboratory, the Space Propulsion Laboratory, and the Technology Laboratory for Advanced Materials and Structures.

UNDERGRADUATE STUDY

Bachelor of Science in Aerospace Engineering/Course 16-1 or Aerospace Engineering with Information Technology/Course 16-2

Undergraduate study in the department leads to either the Bachelor of Science in Aerospace Engineering (Course 16-1) or the Bachelor of Science in Aerospace Engineering with Information Technology (Course 16-2) at the end of four years. The curriculum provides flexibility to meet the needs of professionals in aerospace activities ranging from fundamental research to responsible engineering direction of large enterprises.

The required undergraduate curriculum provides a core around which the student can build to become a practicing engineer upon receipt of either undergraduate degree, to continue on to graduate studies in any of the specialties, or to continue in other fields as well. The curriculum includes the General Institute Requirements described in the section on Undergraduate Education in Part 1 and the departmental program.

The departmental program includes a fall-spring-fall sequence of subjects called Unified Engineering, Dynamics, and Principles of Automatic Control; a Thermal Energy subject; professional area subjects; an experimental projects laboratory; and a capstone design subject. The program also includes the subjects Differential Equations and Probabilistic Systems Analysis.

The department has initiated a major effort aimed at making the conception-design-imple-
Design and analysis, the study of engineering materials, structural dynamics, and propulsion and energy conversion from both fluid/thermal (gas turbines and rockets) and electrical devices.

The subjects listed as Aerospace Information Technology are in the broad disciplinary area of information, which plays an ever increasing role in modern aircraft and spacecraft. This includes feedback, control, estimation, control of flight vehicles, software engineering, human factors engineering, aerospace communications and digital systems, the way in which humans interact with the vehicle, through manual control and supervisory control of telerobotic processes (e.g., modern cockpit systems and human centered automation) and how planning and real time decisions are made by machines.

Subjects in aerospace information technology are taught in both the Departments of Aeronautics and Astronautics and Electrical Engineering and Computer Science.

The capstone subjects serve to integrate the various disciplines and emphasize the Conceive-Design-Implement-Operate context of our curriculum. They also satisfy the Institute requirement as Communication-Intensive (CI-M) subjects. The vehicle and system design subjects (16.82 and 16.83) require student teams to apply their undergraduate knowledge to the design of an aircraft or spacecraft system. One of these two subjects is required and is typically taken in the second term of the junior year or in the senior year. The rest of the capstone requirement is met by one of three 18-unit subject sequences: 16.621 and 16.622 Experimental Projects I and II; or 16.821 Flight Vehicle Development; or 16.831 and 16.832 Space Systems Development I and II. These sequences satisfy the Institute laboratory requirement. In 16.821 and 16.831/16.832 students build and operate the vehicles or systems developed in 16.82 and 16.83. In 16.621/16.622, students conceive, design, and execute an original experimental research project in collaboration with a partner and a faculty advisor.

To take full advantage of the General Institute Requirements and required electives, the department recommends the following: 3.091 for the chemistry requirement; the ecology option of the biology requirement; subjects in economics (14.01) and writing (21W.780) as part of the HASS Requirement; and elective subjects such as 16.00 Introduction to Aerospace and Design.

Departmental Program Units That also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.410 Principles of Autonomy and Decision Making</td>
<td>12</td>
</tr>
<tr>
<td>16.82 Flight Vehicle Engineering</td>
<td>12, CI-M</td>
</tr>
<tr>
<td>16.83 Space Systems Engineering</td>
<td>12, CI-M</td>
</tr>
</tbody>
</table>

Plus one of the following three sequences:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.621 Experimental Projects I</td>
<td>6, 6.041, 16.06, 16.07</td>
</tr>
<tr>
<td>16.622 Experimental Projects II</td>
<td>12, LAB, CI-M, 16.621 or 16.821 Flight Vehicle Development</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.832 Space Systems Development II</td>
<td>6, LAB; 16.831</td>
</tr>
</tbody>
</table>

Total Units Beyond the GIRs Required for SB Degree

198

Notes

* Alternate prerequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
Part 1

Program (UPOP) is a program sponsored by the Office of the Dean of Engineering. Open to all School of Engineering sophomores, this program provides students an opportunity to develop engineering and business skills while working in industry, non-profit organizations, or government agencies. UPOP consists of three parts: an intensive one week engineering practice workshop offered during IAP, 10-12 weeks of summer employment, and a written report and oral presentation in the fall. Students are paid during their periods of residence at the participating companies and also receive academic credit in the program. There are no obligations on either side regarding further employment. For more information, please contact Barbara Lechner in the Aero/Astro Academic Programs Office, Room 33-208, 617-258-7243, blechner@mit.edu.

Double Degree Program
Students may pursue two SB degrees under the Double Degree Program outlined in the section on Undergraduate Education in Part 1. In particular, some students may wish to combine a professional education in aeronautics and astronautics with a liberal education that links the development and practice of science and engineering to their social, economic, historical, and cultural contexts. For them, the Department of Aeronautics and Astronautics and the Program in Science, Technology, and Society offer a double degree program that combines majors in both fields. For a detailed description of that integrated degree program, refer to the description of the Program in Science, Technology, and Society later in this section.

Undergraduate Opportunities
The following programs exist to broaden the opportunities available to undergraduate students.

Undergraduate Research Opportunities Program
To take full advantage of the unique research environment of MIT, undergraduates are encouraged to become involved in the research activities of the department through the Undergraduate Research Opportunities Program (UROP). Many of the faculty actively seek undergraduates to become a part of their research teams. Specific areas of research opportunity are outlined in the section Research Laboratories and Activities below. For more information, please contact Marie Stuppard in the Aero/Astro Academic Programs Office, Room 33-208, 617-253-2279, mas@mit.edu.

Undergraduate Practice Opportunities Program
The Undergraduate Practice Opportunities Program (UPOP) is a program sponsored by the School of Engineering and administered through the Office of the Dean of Engineering. Open to all School of Engineering sophomores, this program provides students an opportunity to develop engineering and business skills while working in industry, non-profit organizations, or government agencies. UPOP consists of three parts: an intensive one week engineering practice workshop offered during IAP, 10-12 weeks of summer employment, and a written report and oral presentation in the fall. Students are paid during their periods of residence at the participating companies and also receive academic credit in the program. There are no obligations on either side regarding further employment. For more information, please contact Barbara Lechner in the Aero/Astro Academic Programs Office, Room 33-208, 617-258-7243, blechner@mit.edu.

Summer Internship Program
The Summer Internship Program provides undergraduates in the Department of Aeronautics and Astronautics the opportunity to apply the skills they are learning in the classroom in paid professional positions with employers throughout the United States. Students are offered individual career advising as well as seminars on resume writing, interviewing, and the job-search process. Some students also choose to receive academic credit for their work experience by participating in a three-part educational process including preparation activity, the work experience, and reflection/evaluation activities when they return to school in the fall. For more information, please contact Barbara Lechner in the Aero/Astro Academic Programs Office, Room 33-208, 617-258-7243, blechner@mit.edu.

Year Abroad Program
The department offers its undergraduate students an optional Year Abroad Program in partnership with several foreign schools of aeronautics and astronautics. Current partner schools are: Imperial College (London), École Nationale Supérieure de L'Aéronautique et de L'Espace (ENSAL, Toulouse, France), Escuela Técnica Superior de Ingenieros Aeronáuticos (ETSIA, Madrid, Spain), Royal Technical Institute of Sweden (KTH, Stockholm), University of Stuttgart (Germany), and the Swiss Federal Institute of Technology (ETH, Zurich). The department is also participating in the Cambridge University-MIT (CME) undergraduate exchange program. Students participate in the academic cycle of the host institution and take courses in the local language. Students plan their course of study in advance; this includes securing credit commitments in exchange for satisfactory performance abroad. A grade average of B or better is normally required of participating MIT students. For more information, contact Professor Manuel Martinez-Sánchez, Room 37-341, 617-253-5633. Also refer to Undergraduate Education in Part 1 of this Bulletin for detailed information on the CME program.

Massachusetts Space Grant Consortium
MIT leads the NASA-supported Massachusetts Space Grant Consortium, collaborating with Harvard University, Wellesley College, Tufts University, Boston University, University of Massachusetts, Worcester Polytechnic Institute, the Marine Biological Laboratory, Five College Astronomy Department, the Boston Museum of Science, Northeastern University/Center for Advanced Microgravity, Materials Processing (CAMMP), the Christa McAuliffe Center/Framingham College, College of the Holy Cross, Williams College, Olin College of Engineering, and many aerospace companies and laboratories throughout the US. The program has the principal objective of stimulating and supporting student interest, especially that of women and underrepresented minorities, in space engineering and science at all educational levels, primary through graduate. The program offers a number of activities to this end, including sponsorship of undergraduate research projects, a spring undergraduate seminar on Modern Space Science and Engineering, an annual public lecture by a distinguished member of the aerospace community, summer workshops for precollege teachers, and fellowships for first-year graduate study. An important function of the program is coordinating placement of students in summer positions in industry, and nomination to the NASA summer academies. For more information, contact the program coordinator, Massachusetts Space Grant Consortium, Room 33-208, Cambridge, MA 02139-4307, 617-258-5546, masgc@mit.edu.
Inquiries
For additional information concerning academic and research programs in the department, suggested four-year undergraduate programs, and interdisciplinary programs, please contact the Department of Aeronautics and Astronautics Academic Programs Office, Room 33-208, MIT, Cambridge, MA 02139-4307, 617-253-2279, mas@mit.edu.

Graduate Study
Graduate study in the Department of Aeronautics and Astronautics includes graduate-level subjects in Course 16 and other Courses at MIT, and research work culminating in a thesis. Degrees are awarded at the master’s, engineer’s, and doctoral levels. The range of subject matter is described in the section Divisions of Instruction; subjects are listed in Part 3. The section Research Laboratories and Activities provides an overview of research interests. Detailed information may be obtained from the Department Academic Programs Office or from individual faculty members.

Entrance Requirements
In addition to the general requirements for admission to the Graduate School, applicants to the Department of Aeronautics and Astronautics should have a strong undergraduate background in the fundamentals of aerospace engineering and mathematics as described in the section Undergraduate Study. In some cases, unfulfilled entrance requirements may also be satisfied during the first year of admission to the graduate program.

International students whose language of instruction has not been English in their primary and secondary schooling must pass the Test of English as a Foreign Language (TOEFL) with a minimum score of 250/600 to be considered for admission to this department. TOEFL waivers are not accepted. No other exam fulfills this requirement.

All applicants to the graduate program in Aeronautics and Astronautics must submit the Graduate Record Examination (GRE) test results.

New graduate students are normally admitted as candidates for the degree of Master of Science. Since requirements for candidates for the Engineer in Aeronautics and Astronautics are more rigorous, admission is ordinarily considered only after the candidate has spent some time in residence at MIT.

Admission to the doctoral program is offered to students who have been accepted for graduate study and have passed the Doctoral Qualifying Examination. The qualifying examination seeks to measure the candidate’s aptitude for engineering research and understanding of the fundamental principles underlying aerospace engineering. This examination is offered once each year, during the January Independent Activities Period. Students who wish to be considered for the doctoral program must take the qualifying examination before the fourth term following initial registration in the graduate program.

The Department of Aeronautics and Astronautics requires that all entering graduate students demonstrate satisfactory English writing ability by taking the Technical Writing Diagnostic Examination offered by the Program in Writing and Humanistic Studies. The examination is usually administered during the week after the initial date of registration in graduate school, and all entering candidates must take the examination at that time. Students with deficient skills must complete remedial training specifically designed to fulfill their individual needs. The remedial training prescribed by the Writing Program must be completed by the end of the first Independent Activities Period following initial registration in the graduate program.

All incoming graduate students whose native language is not English are required to take the Department of Humanities English Evaluation Test (EET) offered at the start of each regular term. This test is a proficiency examination designed to indicate areas where deficiencies may still exist and recommend specific language subjects available at MIT.

All graduate programs in the department require one or two graduate-level mathematics subjects. The requirement is satisfied only by graduate-level subjects on the list approved by the department graduate committee. For students with a strong mathematical background, the requirement may be satisfied by taking one subject from the list of advanced math subjects approved by the graduate committee and achieving a grade of B or better. The specific choice of math subjects is arranged individually by each student in consultation with their faculty advisor.

All entering students will be provided with additional information concerning the requirements for all of the graduate degree programs in the department, including lists of recommended subjects.

Master of Science in Aeronautics and Astronautics
The general requirements for the Master of Science degree are cited in the section on General Degree Requirements for graduate students in Part 1. The specific departmental requirements include at least 66 subject units, typically in graduate subjects relevant to the candidate’s area of technical interest. Of the 66 units, 42 units must be in H-level subjects, of which at least 21 units must be in departmental subjects. To be credited toward the degree, graduate subjects that are not H-level must carry a grade of B or better. In addition, a 24-unit thesis is required beyond the 66 units of coursework. Full-time students normally must be in residence one full academic year. Special students admitted to the SM program in this department must enroll in and satisfactorily complete at least two graduate H-level subjects while in residence (i.e., after being admitted as a degree candidate) regardless of the number of subjects which have been completed before admission to the program. Students holding research assistantships typically require a longer period of residence.

Master of Science in Technology and Policy
Students interested in problems of policy, risk assessment, and strategic planning for technology may apply for the interdepartmental Master of Science Program in Technology and Policy. This program combines subjects in advanced technology in the particular field of the student’s choosing with subjects in economics, systems analysis, political science, and law. The Technology and Policy Program is described in detail under the Engineering Systems Division in Part 2. For more information, visit the website at http://tppserver.mit.edu.
Master of Science in Engineering and Management
The System Design and Management (SDM) Program is a partnership among industry, government, and the university for educating technically grounded leaders of 21st century enterprises. Jointly sponsored by the School of Engineering and the Sloan School of Management, it is MIT’s first degree program to be offered with a distance learning option in addition to a full-time in-residence option. For more information, see the program description in the Engineering Systems Division section in Part 2.

Leaders for Manufacturing Program
The Leaders for Manufacturing (LFM) Program combines graduate education in engineering and management for those with two or more years of work experience who aspire to leadership positions in manufacturing or operations companies. This rigorous 24-month program combines subjects in technology and management. A required six-and-one-half-month internship provides opportunity to complete a research project on site at one of LFM’s many partner companies. The internship leads to a dual-degree thesis, culminating in both an SM in aeronautics and astronautics and an MBA or SM in management. For more information, see the program description in the Engineering Systems Division section in Part 2.

Engineer in Aeronautics and Astronautics
The program leading to the degree of Engineer in Aeronautics and Astronautics is offered for students interested in a greater breadth of graduate subjects than is normally associated with a master’s or doctoral program, and less emphasis on research than required of doctoral candidates. The minimum study program of 162 subject units must include graduate subjects from each of the divisions of instruction, and the thesis work must have a strong engineering, as distinct from a scientific, orientation. Two years beyond the Bachelor of Science degree normally are the minimum for completion of this degree by a full-time student.

Doctor of Philosophy and Doctor of Science
The general requirements for this degree are given in the section on General Degree Requirements for graduate education in Part 1. To be considered for the doctoral program in the department, a candidate must pass the Doctoral Qualifying Examination. Other requirements for admission to the program and for the program itself are outlined in a booklet entitled The Doctoral Program. Students planning on a doctoral program should get a copy of this booklet from the Academic Programs Office as soon as they enter the department. After selecting an area for study and research, the doctoral candidate in consultation with the thesis supervisor forms a doctoral thesis committee, which assists in the formulation of the individual’s research and study programs and monitors the student’s progress. The subjects selected to fulfill the major and minor program requirements must be approved by this committee. Mastery of the major area is tested by a written and an oral General Examination administered by the doctoral thesis committee after completion of the major area subjects.

Demonstrated competence for original research at the forefront of aerospace engineering is the final and major criterion for granting the doctoral degree. The candidate’s thesis serves in part to demonstrate such competence, and on completion is defended orally in a presentation to the faculty of the department, who may then recommend the degree be awarded.

Interdisciplinary Programs
The department participates in several interdisciplinary fields at the graduate level, which are of special importance for aeronautics and astronautics in both research and the curriculum.

Biomedical Engineering
This program is available to students interested in biomedical instrumentation and physiological control systems where the disciplines involved in aeronautics and astronautics are applied to biology and medicine. Graduate study combining aerospace engineering with biomedical engineering may be pursued by departmental students in conjunction with the Harvard-MIT Division of Health Sciences and Technology (HST) SM-PhD Program in Medical Engineering and Medical Physics, or the PhD and MEng programs in the Biological Engineering Division (BE). Students wishing to pursue a degree through HST or BE must also apply to those graduate programs. At the master’s degree level, students in the department may specialize in biomedical engineering research, emphasizing space life sciences and life support, instrumentation and control, or in human factors engineering and in instrumentation and statistics. For further descriptions of these programs, please see the listing for the Center for Biomedical Engineering in the section on Centers, Labs and Programs in Part 1. Most biomedical engineering research in the Department of Aeronautics and Astronautics is conducted in the Man Vehicle Laboratory.

Flight Transportation
For students interested in a career in flight transportation, a program is available that incorporates a broader graduate education in disciplines such as economics, management, law, and operations research than is normally pursued by candidates for degrees in engineering. Graduate research emphasizes one of the four areas of flight transportation: Airport Planning and Design; Air Traffic Control; Air Transportation Systems Analysis; and Airline Economics and Management, with subjects selected appropriately from those available in the Departments of Aeronautics and Astronautics, Civil and Environmental Engineering, Economics, and the Center for Transportation Studies. A special interdepartmental program may be established for the doctoral student, or participation in the Operations Research Center Program or the Center for Transportation Studies Program may be considered—see the section on Interdisciplinary Research and Study in Part 1.

Fellowships, Research and Teaching Assistantships
Financial assistance for graduate study may be in the form of fellowships or research or teaching assistantships. Both fellowship students and research assistants work with a faculty supervisor on a specific research assignment of interest, which generally leads to a thesis. Teaching assistants are appointed to work on specific subjects of instruction.

A special relationship exists between the department and the Charles Stark Draper
Laboratory. This relationship affords fellowship opportunities for SM and PhD candidates who perform their research as an integral part of ongoing projects at the Draper Laboratory. Faculty from the department maintain close working relationships with researchers at Draper, and thesis research at Draper performed by Draper Fellows can be structured to fulfill MIT residency requirements. Further information on the Draper Laboratory can be found in the section on Interdisciplinary Research and Study in Part 1.

Inquiries
For additional information concerning academic, research, and interdisciplinary programs in the department, please contact Marie Stuppard, mas@mit.edu. For information concerning admissions, financial aid and assistantships, please contact Barbara Lechner, blechner@mit.edu, or Mary Heckbert, heckbert@mit.edu.

Research Laboratories and Activities

The department’s faculty, staff and students are engaged in a wide variety of research projects. Graduate students participate in all these research projects. Projects are also open to undergraduates through the Undergraduate Research Opportunities Program (UROP). Some projects are carried out in an unstructured environment by individual professors working with a few students. Most projects are found within the departmental laboratories and centers listed below. Faculty also undertake research in the Draper Laboratory, Lincoln Laboratory, Operations Research Center, Research Laboratory of Electronics, and the Program in Science, Technology, and Society, as well as in interdepartmental laboratories and centers listed in the introduction to the School of Engineering. Refer to the section on Interdisciplinary Research and Study in Part 1 for more detailed descriptions.

Aerospace Computational Design Laboratory

The mission of the Aerospace Computational Design Laboratory (ACDL) is to improve the design of aerospace systems through the advancement of computational methods and tools which incorporate multidisciplinary analysis and optimization, probabilistic and robust design techniques, and next-generation computational fluid dynamics. The laboratory studies a broad range of topics which focus on the design of aircraft and aircraft engines.

Complex Systems Research Lab

Increasing complexity and coupling as well as the introduction of new digital technology are introducing new challenges for engineering, operations, and sustainment. We are designing system modeling, analysis, and visualization theory and tools to assist in the design and operation of safer systems with greater capability.

To accomplish these goals, we apply a system’s approach to engineering that includes building technical foundations and knowledge and integrating these with the organizational, political and cultural aspects of system construction and operation.

While our main emphasis is aerospace systems and applications, our research results are applicable to complex systems in such domains as transportation, energy, and health. Current research projects include accident modeling and design for safety; model-based system and software engineering; reusable, component-based system architectures; interactive visualization; human-centered system design; system diagnosis and fault tolerance; system sustainment; and organizational factors in engineering and project management.

Gas Turbine Laboratory

Work in the laboratory is focused on advanced propulsion systems and turbomachinery. Activities include computational, theoretical, and experimental study of transonic turbomachines; stability of compression systems; heat transfer in turbine blading; engine noise reduction; performance enhancement of propulsive devices through embedded streamwise vorticity for both reacting and non-reacting flows; and vortical structure and unsteady flows in turbomachines. The laboratory also provides a focus for research directed at quantifying and reducing the environmental impact of aerospace systems. Major research thrusts are pollutant emissions and community noise, two areas of significant concern for current and future aircraft. Two other major research areas are work on “smart engines,” in which active control is utilized to enhance the dynamic performance of propulsion system components, and “micro engines,” i.e., gas turbine engines of millimeter diameter with blading fabricated using microfabrication techniques.

Information and Control Engineering

Experimental research is done on applied topics related to aircraft and spacecraft control, large space structures, active stabilization of flow through compressors, software engineering, detection of failures of control system components and other subjects of interest in aeronautics and astronautics. Theoretical research is pursued in such areas as estimation and system identification, failure detection and isolation, control systems which are robust to plant model uncertainties and nonlinearities, autonomous systems, and protocols for hybrid space, air and terrestrial communication networks. Much of the work in these areas is performed within the Laboratory for Information and Decision Systems.

International Center for Air Transportation

The mission of ICAT is to contribute to improving the safety and effectiveness of air transportation worldwide by education and the use of information technologies. Current areas of research interest include: advanced Air Traffic Control and Management (ATM, ATC) systems; satellite based Communication, Navigation, and Surveillance (CNS) systems in mature and developing world regions; advanced flight information systems; airline management; and operations (both flight operations and operations research). ICAT works closely with the Engineering Systems Division, the Center for Transportation Studies, and the Operations Research Center.

Lean Aerospace Initiative

The Lean Aerospace Initiative (LAI) is a research partnership among industry, government, labor, and MIT with a mission to research, develop and promulgate knowledge, principles, practices, and tools to enable and accelerate the envisioned transformation of the greater US aerospace enterprise through people and processes. Started in 1993, LAI resides within the Center for Technology, Policy and Industrial Development (CTPID) of the Engineering Systems.
Division (ESD) in the School of Engineering. The Department of Aeronautics and Astronautics faculty play a lead role in LAI. Over 100 graduate students from Aeronautics and Astronautics, ESD, Mechanical Engineering, Sloan School of Management, and other programs have completed Master and Doctoral theses with the program. LAI undertakes research in all areas related to improving enterprise processes for acquiring, designing, developing and producing aircraft, spacecraft, engines and missiles. Research is conducted in close collaboration with industry and government partners, often with on-site data collection and validation. An array of tools have been developed to help industry and government implement lean principles and practices, including the Lean Enterprise Model, The Transition to Lean Roadmaps, and the Lean Enterprise Self Assessment Tool. Major findings from the program have recently been captured in the book Lean Enterprise Value: Insights from MIT’s Lean Aerospace Initiative. Further information about LAI, including research findings, briefings, and publications, may be found at http://lean.mit.edu/.

Man Vehicle Laboratory
The laboratory’s goal is to optimize human-vehicle system effectiveness by improving our understanding of human physiological and cognitive capabilities with particular emphasis on human spaceflight. Research is interdisciplinary, utilizing techniques from manual and supervisory control, estimation, signal processing, robotics, biomechanics, cognitive psychology, artificial intelligence, sensory-motor physiology, human factors, and biostatistics. The laboratory has several experiments in development for the International Space Station, and other ground-based projects sponsored by NASA and the National Space Biomedical Institute. Research focuses on control of posture and locomotion in partial gravity, spatial orientation in both real and virtual environments, aircraft cockpit displays and controls, and physiological and human factors aspects of EVA and artificial gravity systems, and design of exploration class missions.

Space Systems Laboratory
The Space Systems Laboratory’s (SSL) mission is to develop the technology and systems analysis associated with small spacecraft, precision optical systems, and International Space Station technology research and development. The laboratory encompasses expertise in structural dynamics, control, thermal, space power, propulsion, MEMS, software development, and systems. Major activities include the development of small spacecraft thruster systems and the examination of issues associated with the distribution of function among satellites. In addition, technology is being developed for spaceflight validation in support of a new class of space-based telescope which exploits the physics of interferometry to achieve dramatic breakthroughs in angular resolution. The objective of the laboratory is to explore innovative concepts for the integration of future space systems and to train a generation of researchers and engineers conversant in this field.

Technology Laboratory for Advanced Materials and Structures
The Technology Laboratory for Advanced Materials and Structures (TELAMS), formerly known as TELAC, has provided leadership in advancing the knowledge and capabilities of the composites and structures community through education of students, original research, and interaction with the community at large. The laboratory’s emphasis on composite materials has led to research topics ranging from a basic understanding of composite materials to their behavior in specific structural configurations, with the ultimate objective of gaining a sufficient understanding of their properties and how those properties interact to determine the behavior of laminates and structures made of composite materials. Recently, the focus of the laboratory has broadened into other areas, including multi-scale modeling and simulation of the mechanics of advanced materials used in the aerospace industry, with emphasis on understanding the influence of micro-structural features of deformation and failure in their effective engineering response; computational modeling in solid mechanics and fluid-structure interaction problems; and design, fabrication, and testing of microelectromechanical systems together with their associated materials and processes.

Wright Brothers Wind Tunnel
The largest on the MIT campus, this wind tunnel has a 7x10-foot cross-section, and is capable of steady flow speeds up to 200 mph. The facility is used for graduate and undergraduate instruction and research, as well as testing for outside companies. Active research and educational programs include aerodynamics of airplanes and space vehicles and the simulation of wind loads on architectural structures. Recently, the tunnel has been involved in aerodynamic test programs for Olympic athletes and sporting equipment such as bicycles and skis.

Faculty and Staff

Faculty and Teaching Staff
Wesley L. Harris, PhD
Charles Stark Draper Professor of Aeronautics and Astronautics
Head of the Department

Professors
Edward Francis Crawley, ScD
Professor of Aeronautics and Astronautics
Professor of Engineering Systems
Director, Cambridge-MIT Institute

Vincent Wai Sum Chan, PhD
Joan and Irwin M. Jacobs Professor
Professor of Aeronautics and Astronautics
Professor of Electrical Engineering and Computer Science
Director, Laboratory for Information and Decision Systems

John Jacob Deyst, Jr., ScD
Professor of Aeronautics and Astronautics

Mark Drela, PhD
Professor of Aeronautics and Astronautics

Terry J. Kohler Professor of Fluid Dynamics

Alan Harry Epstein, PhD
Richard Cockburn Maclaurin Professor of Aeronautics and Astronautics

Edward Marc Greitzer, PhD
H. N. Slater Professor of Aeronautics and Astronautics

Steven Ray Hall, ScD
Professor of Aeronautics and Astronautics

MacVicar Faculty Fellow
Robert John Hansman, Jr., PhD
Professor of Aeronautics and Astronautics

Daniel Edgar Hastings, PhD
Professor of Aeronautics and Astronautics
Professor of Engineering Systems
Director, Engineering Systems Division

Jeffrey Alan Hoffman, PhD
Professor of the Practice of Astronautics

Paul Alfred Lagace, PhD
Professor of Aeronautics and Astronautics
MacVicar Faculty Fellow

Nancy Gail Leveson, PhD
Professor of Aeronautics and Astronautics
Professor of Engineering Systems
Director, Complex Systems Research Laboratory

Robert Liebeck, PhD
Professor of the Practice of Aerospace Engineering

Manuel Martínez-Sánchez, PhD
Professor of Aeronautics and Astronautics

Earll Morton Murman, PhD
Ford Professor of Engineering
Professor of Aeronautics and Astronautics and Engineering Systems

Dava Jean Newman, PhD
Professor of Aeronautics and Astronautics
Professor of Engineering Systems
MacVicar Faculty Fellow
Director, Technology and Policy Program

Deborah J. Nightingale, PhD
Professor of the Practice of Aeronautics and Astronautics
Codirector, Lean Aerospace Initiative

Amedeo Rodolfo Odoni, PhD
T. Wilson (1953) Professor of Aeronautics and Astronautics

Sheila Evans Widnall, ScD
Abby Rockefeller Mauzé Professor of Aeronautics and Astronautics
Institute Professor

Laurence Retman Young, ScD
Apollo Program Professor of Astronautics
Professor of Heath Sciences and Technology

Associate Professors

David Louis Darmofal, PhD
Associate Professor of Aeronautics and Astronautics
MacVicar Faculty Fellow

Eric Feron, PhD
Associate Professor of Aeronautics and Astronautics

Jonathan Patrick How, PhD
Associate Professor of Aeronautics and Astronautics

David W. Miller, ScD
Associate Professor of Aeronautics and Astronautics
Director, Space Systems Laboratory

Eytan Modiano, PhD
Associate Professor of Aeronautics and Astronautics

Karen Elizabeth Willcox, PhD
Associate Professor of Aeronautics and Astronautics

Brian Charles Williams, PhD
Associate Professor of Aeronautics and Astronautics

Moe Win, PhD
Associate Professor of Aeronautics and Astronautics

Assistant Professors

Charles Palmer Coleman, PhD
Assistant Professor of Aeronautics and Astronautics

M.L. Cummings, PhD
Assistant Professor of Aeronautics and Astronautics

Olivier Ladislas de Weck, PhD
Assistant Professor of Aeronautics and Astronautics
Assistant Professor of Engineering Systems

I. Kristina Lundqvist, PhD
Assistant Professor of Aeronautics and Astronautics

Raúl Alberto Radovitzky, PhD
Assistant Professor of Aeronautics and Astronautics

Nicholas Roy, PhD
Assistant Professor of Aeronautics and Astronautics

Zoltan Sandor Spakovszky, PhD
Assistant Professor of Aeronautics and Astronautics

Brian L. Wardle, PhD
Assistant Professor of Aeronautics and Astronautics

Annalisa Lynn Weigel, PhD
Assistant Professor of Aeronautics and Astronautics
Assistant Professor of Engineering Systems

Visiting Faculty

S. Mark Spearing, PhD
Visiting Professor

Jessica Townsend, PhD
Visiting Assistant Professor

Senior Lecturers

Richard Horace Battin, PhD
Fredric Franklin Ehrich, ScD

John I. Hsia, SB

John E. Keesee, MS, Colonel USAF (Ret)

Raymond J. Leopold, PhD

Charles McMaster Oman, PhD

Rudrapatna V. Ramnath, PhD

Peter W. Young, MS, Colonel USAF (Ret)

Lecturers

Brent Appleby, PhD

Peter Paul Belobaba, PhD

Doris R. Brodeur, PhD

Allen C. Haggerty, MS

William D. Hall, PhD

Stephen James Madden, Jr., PhD

Mats Nordlund, PhD

George Thomas Schmidt, ScD

John Tylko, Jr., SB

Joseph Yamron, SB
Academic Staff
Diane Hauer Soderholm, PhD

Technical Instructors
Todd R. Billings
Richard Frank Perdichizzi
David Robertson, BS

Research Staff

Senior Research Engineers
Charles McMaster Oman, PhD
Choon Sooi Tan, PhD

Principal Research Engineers
Gerald Roger Guenette, Jr., PhD
Robert Haines, MS
Stuart Jacobson, PhD
James Donald Paduano, PhD

Principal Research Scientists
Oleg V. Batishehev, PhD
Peter Paul Belobaba, PhD
Raymond J. Sedwick, PhD

Research Engineers
Yifang Gong, PhD
Ali A. Merchant, PhD
Terran Melconian, SM
Alan Haywood Midkiff, SM
Natalia Sizov, PhD
E. Paul Warren, BS

Research Scientists
Edmund Mun Choon Kong, PhD
Alan Natapoff, PhD
Paul D. Wooster, BSc

Research Specialists
Paul Henry Bauer, BS
John J. Kane, Jr., BS
James M. Letendre

Sponsored Research Administrative Staff
Holly Esther Anderson, BS
SharonLeah Brown, BS
Ping Mai Lee
Jennifer Leith, AB
Loretta Martinez, MEd
Angela J. Olsen, BS
Diana Irene Park
Raju Patel, MS
Susan Parker, BS

Postdoctoral Associates
James I Hileman, PhD
Gokhan Inalhan, PhD
Gelsson Loureiro, PhD
Ludovic Noels, PhD
Per-Olof Persson, PhD
Stacey D. Scott, PhD

Research Affiliates
Kim Blair, PhD
Carl A. Blaurock, PhD
Paul Jon Cefola, PhD
Paul Patrick Collins, MSc, MBA
Peter Bryanston-Cross, PhD
Javier deLuis, PhD
James Stark Draper, PhD
Heiko Hecht, PhD
Kirk E. Jordan, MS
Seth S. Kessler, PhD
Richard C. Mlake-Lye, PhD
John E. Miller, MS
Conrad Wall, III, PhD
Akira M. Yaglom, PhD
Gregory Leon Zacharias, PhD

Administrative Staff
Phyllis Anna Collymore, AA
Facilities Manager
Frederick Joseph Donovan, MS
Systems Manager
Hella Lauren Gallant, BA
Administrative Officer
Barbara Elizabeth Lechner, MSc
Director, Student Services
William Troper George Litant, BFA
Director, Communications
Anne Marie Maynard
Personnel Manager
Marie Stupbard
Academic Program Administrator

Professors Emeriti
Eugene Edzards Covert, ScD
T Wilson Professor of Aeronautics and Astronautics, Emeritus

John Dugundji, ScD
Professor of Aeronautics and Astronautics, Emeritus

Shaoul Ezekiel, ScD
Professor of Aeronautics and Astronautics and Electrical Engineering, Emeritus

Robert Louis Halfman, SM
Professor of Aeronautics and Astronautics, Emeritus

Norman Douglas Ham, ScD
Professor of Aeronautics and Astronautics, Emeritus

Walter Mark Hollister, ScD
Professor of Aeronautics and Astronautics, Emeritus

Jack Leo Kerrebrock, PhD
Professor of Aeronautics and Astronautics, Emeritus

Yao Tzu Li, ScD
Professor of Aeronautics and Astronautics, Emeritus

James Wah Mar, ScD
Professor of Aeronautics and Astronautics, Emeritus

Winston Roscoe Markey, ScD
Professor of Aeronautics and Astronautics, Emeritus

Theodore Hsueh-Huang Pian, ScD
Professor of Aeronautics and Astronautics, Emeritus

Robert Channing Seamans, Jr., ScD
Professor of Aeronautics and Astronautics, Emeritus

Thomas Brown Sheridan, ScD, D (hon)
Professor of Aeronautics and Astronautics and Engineering and Applied Psychology, Emeritus

Robert Warren Simpson, PhD
Professor of Aeronautics and Astronautics, Emeritus

Leon Trilling, PhD
Professor of Aeronautics and Astronautics, Emeritus

Harold Yehuda Wachman, PhD
Professor of Aeronautics and Astronautics, Emeritus
The mission of the Biological Engineering Division (BE) is to educate leaders and generate and communicate new knowledge at the interface of engineering and biology. Combining quantitative, physical, and integrative principles with advances in modern biology, biological engineering increases understanding of how biological systems function as both physical and chemical mechanisms, and of how they respond when perturbed by factors such as medical therapeutics, environmental agents, and genetic variation. Through this understanding, novel technologies can be created to improve human health in a variety of medical and environmental applications, and biology-based paradigms can be generated for solving problems in many diverse fields of engineering.

This program brings biology into engineering as its fourth science base, joining mathematics, chemistry, and physics as an equal partner in the foundation of engineering. It also helps the engineering disciplines deal with the impact of new processes and products relating to human health and the environment. To meet these objectives, the BE academic division consists of faculty from the key disciplines of engineering, biology, toxicology, and the physical/chemical/computational sciences who share a dedication to defining new courses and curricula at this interface.

The program’s premise is that the science of biology is as important to the development of technology and society today as physics and chemistry were in the 20th century, and that the growing ability to evaluate and monitor the properties of living organisms at the molecular, cellular, tissue, organ, and systems levels will continue to shape this development. Today a new generation of engineers and scientists is learning to address problems through their ability to measure, model, and rationally manipulate the technological and environmental factors affecting biological systems. They are applying not only engineering principles to the understanding of how biological systems operate, especially when impacted by genetic, chemical, infectious, or other interventions; but also a synthetic design perspective to creating biology-based technologies for medical diagnostics, therapeutics, and other devices, as well as for application in diverse industries unrelated to health care.

UNDERGRADUATE STUDY

Bachelor of Science in Biological Engineering

The Biological Engineering Division offers an undergraduate curriculum emphasizing engineering analysis, design, and synthesis in the study of modern biology from the molecular to the systems level. Completion of the curriculum leads to the Bachelor of Science in Biological Engineering and prepares students for careers in diverse fields ranging from the pharmaceutical and biotechnology industries to materials synthesis, microelectronics, and ecology. Graduates of the program will be prepared to enter positions in basic research or project-oriented product development, as well as graduate school or further professional study.

The required core curriculum includes a strong foundation in biological and biochemical sciences, which are integrated with engineering principles throughout the entire core. Students who wish to pursue the Bachelor of Science in Biological Engineering are encouraged to complete the Biology General Institute Requirement during freshman year and may delay completion of Physics II until the fall term of sophomore year if necessary. The optional six-unit subject Introduction to Bioengineering, offered during the spring term of freshman year, provides a framework for understanding the role of bioengineering, and the Biological Engineering SB, within the School of Engineering.

Enrollment in the Biological Engineering SB is limited at the present time, and students who wish to pursue this degree must complete the sophomore fall-term subject BE.110 Thermodynamics of Biomolecular Systems with a passing grade in order to apply for admission. This subject also fulfills an SB degree requirement in Biology. Students are also encouraged to take Organic Chemistry I and Differential Equations by the fall term of sophomore year in order to prepare for spring-term sophomore subjects in biological kinetics and programming. The sophomore spring-term curriculum also includes an introductory biological engineering laboratory subject that provides context for the lecture subjects and a strong foundation for subsequent undergraduate research in biological engineering through UROP or summer internships.

The advanced subjects required in the junior and senior years introduce additional engineering skills through lecture and laboratory subjects and culminate in a senior design project. These advanced subjects maintain the theme of molecular to systems-level analysis, design, and synthesis based on a strong integration with biology fundamentals. They also include a variety of restricted electives that allow students to develop expertise in one of four thematic areas: systems biology, pharmacology/toxicology, cell and tissue engineering, and microbial systems. Many of these advanced subjects are jointly taught with other departments in the School of Engineering or School of Science and may fulfill degree requirements in other programs.

Minor Program in Biomedical Engineering

An interdepartmental Minor in Biomedical Engineering is available to all undergraduate students. While the total number of subjects required for the minor is eight, all science and engineering majors at MIT already take two or three of these subjects for their major. Students who are not science or engineering majors can use two of the subjects to fulfill REST requirements. The total number of additional subjects required to complete the minor is thus five or six.

The Minor in Biomedical Engineering consists of the following:

Science Core

- 5.12 Organic Chemistry I
- 5.07 Biological Chemistry I
- 7.05 General Biochemistry

Engineering Core

- 18.03 Differential Equations
- 3.016 Mathematical Methods for Materials Scientists and Engineers
- a subject that applies differential equations to solve systems or macroscopic rate problems *including, but not limited to:
- 2.003 Modeling Dynamics and Control
- 2.005 Thermal-Fluids Engineering
Bachelor of Science in Biological Engineering/Course BE

<table>
<thead>
<tr>
<th>Required Core Subjects</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03 Differential Equations, 12, REST; 18.02 or 18.014</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>BE.110 Statistical Thermodynamics of Biomolecular Systems, 12; 18.02, 8.02, 3.091 or 5.112 or 5.113, 3.012 or 3.013 or 3.014</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5.12 Organic Chemistry, 12, REST; 5.111 or 5.112 or 3.091</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BE.109 Laboratory Fundamentals in Biological Engineering, 12, LAB, CI-M; 7.012 or 7.013 or 7.014, 8.01, 18.02, 5.112 or 5.113 or 3.091, 8.02</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BE.113 or 7.03 Genetics, 12; 7.012 or 7.013 or 7.014</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BE.180 Programming for Biological Engineers, 6; 18.03, BE.109, BE.320, BE.113</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BE.181 Biological Engineering Computation, 6; BE.180</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5.07 or 7.05 Biochemistry, 12, REST; 5.12</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7.06 Cell Biology, 12; 7.03 or BE.113</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BE.310 Molecular, Cellular, and Tissue Biomechanics, 12; BE.110, 18.03</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BE.320 Biomolecular Kinetics and Cellular Dynamics, 12; BE.110, 18.03</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BE.330 Fields, Forces and Flows in Biological Systems, 15; BE.310 or 6.023</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BE.390 Biological Engineering II: Instrumentation and Measurement, 15; BE.310, BE.109 or 7.02, BE.330, 2.06</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BE.380 Senior Biological Engineering Design, 12, CI-M; BE.330, BE.309</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Restricted Electives (Tracks TBD) 21–24

Course BE Units That also Satisfy the GIRs (18.03, 5.12, BE.109) 56

Unrestricted Electives 48

Total Units Beyond the GIRs Required for SB Degree 195–198

*No subject can be counted both as part of the 17-subject GIRs and as part of the 192 units required beyond the GIRs. Every subject in the student’s Departmental Program will count toward one or the other, but not both.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
Science/Engineering Elective

One additional subject from the list of BME electives above and one subject from the following, or two additional subjects from the list of BME electives above (no further elective is required):

- BE.109 Laboratory Fundamentals in Biological Engineering
- 5.310 Laboratory Chemistry
- 7.02 Introduction to Experimental Biology and Communication
- 10.702 Introductory Experimental Biology and Communication

Restricted Electives

One subject from the following:

- BE.901 Special Topics in Toxicology and Environmental Health
- BE.URG Undergraduate Research Opportunities
- 1.080 Environmental Chemistry and Biology
- 1.725J Chemicals in the Environment: Fate and Transport (TPP.51)
- 1.89 Environmental Microbiology
- 5.07 Biological Chemistry I
- 7.05 General Biochemistry
- 7.06 Cell Biology
- 7.28 Molecular Biology
- 12.807 Atmospheric Chemistry
- 5.23 Atmospheric Chemistry
- 17.32 Environmental Politics and Policy

Minor Program in Toxicology and Environmental Health

The Biological Engineering Division offers an undergraduate Minor in Toxicology and Environmental Health. The goal of this program is to meet the growing demand for undergraduates to acquire the intellectual tools needed to understand and assess the impact of new products and processes on human health, and to provide a perspective on the risks of human exposure to synthetic and natural chemicals, physical agents, and microorganisms.

Given the importance of environmental education at MIT, the program is designed to be accessible to any MIT undergraduate. The program consists of three required didactic core subjects and one laboratory subject, as well as one restricted elective. The prerequisites for the core subjects are 5.111/5.112 Principles of Chemical Science or 3.093 Introduction to Solid State Chemistry plus 7.012/7.013/7.014 Introductory Biology.

Core Subjects

Three subjects from the following:

- BE.102 Macroepiidemiology
- BE.103 Introduction to Physiological Modeling
- BE.104J Chemicals in the Environment: Toxicology and Public Health
- BE.105J Biotechnology and Engineering
- BE.106 Systems Microbiology

Laboratory Core

One subject from the following:

- BE.109 Laboratory Fundamentals in Biological Engineering
- 5.310 Laboratory Chemistry
- 7.02 Introduction to Experimental Biology and Communication
- 10.702 Introductory Experimental Biology and Communication

For further information on the undergraduate programs, please visit the Biological Engineering website at [http://web.mit.edu/be/] or contact the BE Academic Office, MIT, 77 Massachusetts Ave, Room 56-651, Cambridge, MA 02139-4307, (617) 253-1712.

GRADUATE STUDY

Doctoral Program in Biological Engineering

The Biological Engineering Division offers a PhD program—and, in certain cases, an SM degree—with two tracks, one in bioengineering and another in applied biosciences. These tracks complement one another as a reflection of the importance of approaching quantitative biological and biomedical problems from the two perspectives. Students in one track or the other may pursue research projects in any area by agreement with their research supervisor.

Graduate students in the Biological Engineering Division can carry out their research as part of a number of multi-investigator, multi-disciplinary research centers at MIT, including the Center for Biomedical Engineering, the Biotechnology Process Engineering Center, the Center for Environmental Health Sciences, and the Division of Comparative Medicine. These opportunities include collaboration with faculty in the Schools of Engineering and Science, the Center for Cancer Research, and the Whitehead Institute for Biomedical Research, along with the Harvard University School of Medicine, Harvard University School of Dental Medicine, Harvard School of Public Health, and Boston University School of Medicine.

Bioengineering Track

Students admitted to the bioengineering track typically have a bachelor’s or master’s degree in engineering. During that first year, students pursue a unified core curriculum, in which engineering approaches are used to analyze biological systems and technologies over a wide range of length and time scales. The four core bioengineering subjects are:

- BE.400 Perspectives in Biological Engineering
- BE.410 Molecular, Cellular, and Tissue Biomechanics
- BE.420 Biomolecular Kinetics and Cellular Dynamics
- BE.430 Fields, Forces, and Flows in Biological Systems

These subjects bring central engineering principles to bear on the operation of biological systems from molecular to cell to tissue/organ/device systems levels. Foundational coursework in biochemistry and molecular cell biology is required, either before admission or during the first year of graduate study.

To enhance depth and breadth, the core subjects are supplemented by electives in the biological sciences and engineering. For doctoral candidates, one of these must be a graduate-level biology subject, two must be courses from among the core graduate offerings of an established department, and another must be a subject in one of the following areas: biomaterials, biological instrumentation and measurement, and bioinformatics and computational biology. The written part of the doctoral qualifying examinations, centered on the core curriculum, is taken after the second term.
The student selects a research advisor and begins research before the end of the first year. The oral part of the doctoral qualifying exams, which focuses on the student’s area of research, is taken during the second year. Approximately five years of total residence are needed to complete the doctoral thesis and other degree requirements.

This track educates students to use engineering principles in the analysis and manipulation of biological systems, allowing them to solve problems across a spectrum of important applications. The curriculum is inherently interdisciplinary, in that it brings together engineering and biology as fundamentally as possible, and cuts across the boundaries of the traditional engineering disciplines.

The faculty members associated with this track have a wide range of research interests within bioengineering. Areas in which students may specialize include biological and physiological transport phenomena; biological imaging and functional measurement; biomolecular engineering; cell and tissue engineering; computational modeling of biological and physiological systems; bioinformatics; design, discovery and delivery of molecular therapeutics; molecular, cell, and tissue biomechanics; and new tools for genomics, proteomics, and glycomics.

Applied Biosciences Track

Students admitted to the applied biosciences track typically have a bachelor’s or master’s degree in chemistry, biology, physics, or a related field, or, with an appropriate science background, an engineering discipline. During the first year, students pursue a unified core curriculum, in which basic science approaches are applied to problems in the health and disease aspects of biomedical science. The four core subjects are:

- **BE.400** Perspectives in Biological Engineering
- **BE.420** Biomolecular Kinetics and Cellular Dynamics
- **BE.440** Analysis of Biological Networks
- **BE.450** Molecular and Cellular Pathophysiology

These subjects bring central scientific principles to bear on the operation of biological systems from molecular to cell to tissue to organismal levels. Foundational coursework in physics, calculus, organic chemistry, biochemistry, physical chemistry/biophysics/engineering, and cell biology/molecular biology/genetics is required, either before admission or during the first year of graduate study.

To enhance depth and breadth, the core subjects are supplemented by electives in science or engineering. For doctoral candidates, one of these must be a graduate-level applied bioscience subject, selected from a short list of subjects not in the core, two must be courses from among the core graduate offerings of an established department, and another must be from a short list of computational or quantitative biology subjects. The written part of the doctoral qualifying examinations, centered on the core curriculum, is taken after the second term. The students select a research advisor and begin research before the end of the first year. The oral part of the doctoral qualifying examinations, which focuses on the student’s area of research, is taken during the second year. Approximately five years of total residence are needed to complete the doctoral thesis and other degree requirements.

The applied biosciences track complements the bioengineering track and the Computational and Systems Biology graduate program by focusing on understanding the interactions of organisms with chemical, biological, and physical agents from the molecular to the systems level. The goal here is to apply a systems approach to studying the chemical and molecular pathways by which exogenous and endogenous agents induce toxicity and cause disease in humans; to establishing the molecular mechanisms of drug actions, with the longer-term aim of developing improved therapeutics; to establishing mechanisms of microbial pathogenesis; and to understanding and manipulating immune function.

Systems biology is an emerging field that involves quantitative study of biological processes as integrated systems rather than as isolated parts. This goal of defining the behavior of the myriad of individual molecules requires quantitative models to unify the individual disciplines of physical chemistry, biochemistry, molecular biology, and cell physiology, as well as new tools for the simultaneous measurement of biological components, including small molecules, proteins, nucleic acids and complex carbohydrates.

The applied biosciences track provides rigorous training in the basic sciences, with application of chemistry, mathematics, biochemistry, molecular biology, cell biology, genetics, toxicology, and pharmacology to problems in human health and disease. Students receive preparation for careers in academic institutions, government agencies, and industry involving the application of modern methods of chemical, molecular, biological, and genetic analysis to the characterization of health risks.

Areas of research specialization within the program include development of in vitro models of the immune system and lymphoid tissue; development of molecular methods for direct measurement of mutations in humans; metabolism of foreign compounds; genetic toxicology; the molecular aspects and dosimetry of interactions between mutagens and carcinogens with nucleic acids and proteins; molecular mechanisms of DNA damage and repair; design and mechanisms of action of chemotherapeutic agents; environmental carcinogenesis and epidemiology; molecular mechanisms of carcinogenesis; cell physiology; extracellular regulation and signal transduction; and molecular and pathologic interactions between infectious microbial agents and carcinogens. Interdisciplinary in nature, the program and other programs and departments share an interest in human pathophysiology, molecular pharmacology, and environmental health.

Master of Engineering in Biomedical Engineering

The Master of Engineering in Biomedical Engineering (MEBE) is offered jointly by the Biological Engineering Division (BE) and the Harvard-MIT Division of Health Sciences and Technology (HST). This program aims to educate students at the interface between engineering and biology or medicine, preparing them for leadership positions in the medical products, pharmaceutical, and biotechnology industries. A secondary objective is to provide students considering either a medical degree or a doctorate in biomedical engineering with an opportunity to learn more about these fields.

The MEBE program is a five-year program leading to a bachelor’s degree in a science or engineering discipline and a Master of Engineering in Biomedical Engineering. The biological
The biological engineering track, emphasizing a unification of engineering and biology, operates under the auspices of BE. The medical engineering track emphasizes engineering applications in systems physiology and clinical medicine and is offered under the auspices of HST. While the two MEBE tracks have a similar overall structure and academic requirements, students in the medical engineering track take subjects that enable them to apply engineering expertise to problems in the medical and clinical sciences. In contrast, the biological engineering track is based on subjects that view biological systems from an engineering perspective, using biology as one of the foundational sciences for engineering, along with physics, chemistry, and mathematics. Admission to the MEBE program requires candidates to demonstrate adequate quantitative and engineering credentials through coursework, usually as part of an undergraduate degree program.

Admission requirements for the programs are similar, but not identical. In addition to satisfying the requirements of their departmental program, students also are expected to complete subjects in differential equations (18.03); one engineering transport or systems subject (e.g., 2.005, 3.185, 6.002, 10.310); organic chemistry (5.12); biochemistry (7.05 or 5.07); and two of the core subjects from the Biomedical Engineering Minor.

Applications to the biological engineering track are accepted from any of the departments in the School of Engineering or School of Science. Applications to the medical engineering track are accepted only from the departments in the School of Engineering. Students interested in applying to the MEBE program should submit a standard MIT graduate application by the end of their junior year and are informed of the decision by the end of that summer.

Additional information on application procedures, together with information on track-specific objectives and program requirements, can be obtained by contacting Professor Roger Kamm at 617-253-5330 for the biological engineering track, or Professor Roger Mark at 617-253-7818 for the medical engineering track, or the BE Academic Office, Room 56-651, 617-253-1712, or HST’s Office of Academic Affairs, Room E25-518, 617-258-7084.

Biological Engineering Track

In addition to thesis credits, at least 66 units of coursework are required. At least 42 of these subject units must be from H-level graduate subjects. The remaining units may be satisfied with G-level subjects, or in some cases, with advanced undergraduate subjects. Of the 66 units, a minimum distribution in each of three categories is specified below.

Bioengineering Core

24 units selected from:

- BE.410 Molecular, Cellular, and Tissue Biomechanics
- BE.420 Biomolecular Kinetics and Cellular Dynamics
- BE.430 Fields, Forces, and Flows in Biological Systems

Biomedical Engineering Electives

24 units selected from:

A selection of G- or H-level subjects from various departments in the School of Engineering and HST. A list of suggested subjects is available from the BE Academic Office, Room 56-651.

Bioscience Elective

One biological science subject in addition to organic chemistry and biochemistry. This must be a laboratory subject if one was not taken as part of the student’s undergraduate curriculum.

Thesis

The student is required to complete a thesis consisting of an original work of research, design, or development with substantial engineering content. A detailed thesis proposal is required at the end of the spring term of the fourth year, with the expectation that the work continues during the summer and is completed by the end of the spring term of the fifth year. The research may be done at MIT, HMS, or the teaching hospitals under the supervision of a Harvard or MIT faculty member. An MIT faculty member eligible to supervise graduate theses in the School of Engineering must supervise the thesis. Co-supervision of theses by faculty members in other departments or at HMS is suitable if the main thesis supervisor is a faculty member in the School of Engineering. A list of appropriate faculty members can be found in each department listing in Part 2.

Inquiries

For further information on the graduate programs, please visit the Biological Engineering website at http://web.mit.edu/be/ or contact the BE Academic Office, MIT, 77 Massachusetts Ave, Room 56-651, Cambridge, MA 02139-4307, (617) 253-1712.
Faculty and Staff

Faculty and Teaching Staff

Douglas A. Lauffenburger, PhD
Whitaker Professor of Bioengineering
Director, Biological Engineering Division

Professors

Angela M. Belcher, PhD
Professor of Materials Science and Biological Engineering

William M. Deen, PhD
Dubbs Professor of Chemical Engineering and Bioengineering

Peter C. Dedon, MD, PhD
Professor of Toxicology and Biological Engineering

Edward F. DeLong, PhD
Professor of Environmental and Biological Engineering

C. Forbes Dewey, Jr., PhD
Professor of Mechanical Engineering and Bioengineering

John Martin Essigmann, PhD
Professor of Chemistry, Toxicology, and Biological Engineering

James G. Fox, DVM
Professor of Toxicology
Director, Division of Comparative Medicine

Linda Griffith, PhD
Professor of Mechanical and Biological Engineering
Director, Biotechnology Process Engineering Center

Ian W. Hunter, PhD
Hatsopoulos Professor of Mechanical Engineering and Bioengineering
Director, Laboratory for Bio-Instrumentation Systems

Roger D. Kamm, PhD
Professor of Mechanical and Biological Engineering

Alexander M. Klibanov, PhD
Professor of Chemistry and Biological Engineering

Robert S. Langer, ScD
Germeshausen Professor of Chemical and Biomedical Engineering
Institute Professor

Harvey F. Lodish, PhD
Professor of Biology and Biological Engineering
Member, Whitehead Institute for Biomedical Research

Paul T. Matsudaira, PhD
Professor of Biology and Biological Engineering
Member, Whitehead Institute for Biomedical Research

Leona D. Samson, PhD
American Cancer Society Professor
Professor of Toxicology and Biological Engineering
Director, Center for Environmental Health Sciences

Ram Sasekharan, PhD
Professor of Biological Engineering

David B. Schauer, DVM, PhD
Professor of Biological Engineering and Comparative Medicine

Peter T. So, PhD
Professor of Mechanical and Biological Engineering

Peter K. Sorger, PhD
Professor of Biology and Biological Engineering

Subra Suresh, PhD
Professor of Materials Science and Bioengineering

Steven R. Tannenbaum, PhD
Underwood-Prescott Professor of Toxicology and Chemistry

William G. Thilly, ScD
Professor of Toxicology

Bruce Tidor, PhD
Professor of Bioengineering and Computer Science

K. Dane Wittrup, PhD
Mares Professor of Chemical Engineering and Bioengineering

Gerald N. Wogan, PhD
Professor of Chemistry and Biological Engineering

Ioannis V. Yannas, PhD
Professor of Polymer Science and Bioengineering

Associate Professors

Bevin P. Engelward, DSc
Associate Professor of Biological Engineering

Scott R. Manalis, PhD
Associate Professor of Media Arts and Sciences, and Biological Engineering

James L. Sherley, MD, PhD
Associate Professor of Biological Engineering

Michael B. Yaffe, PhD
Associate Professor of Biology and Biological Engineering

Assistant Professors

Drew Endy, PhD
Assistant Professor, Biological Engineering Division

Kimberly Hamad-Schifferli, PhD
Burnell Assistant Professor of Mechanical and Biological Engineering

Jongyoon Han, PhD
Assistant Professor of Electrical Engineering and Biological Engineering

Darrell J. Irvine, PhD
van Tassel Assistant Professor of Bioengineering and Materials Science

Matthew J. Lang, PhD
Assistant Professor of Mechanical and Biological Engineering

Forest White, PhD
Assistant Professor of Biological Engineering

Lecturers

Noubar Afeyan, PhD
Laura C. Green, PhD
Sean Harriman, PhD
Natalie Kuldell, PhD
Research Staff

Senior Research Scientist
John S. Wishnok, PhD

Principal Research Scientist
Paul L. Skipper, PhD

Principal Research Engineer
Randall Rettberg, MS

Research Scientists
Man Ho Choi, PhD
Robert G. Croy, PhD
Karel Domansky, PhD
Chunqi Li, PhD
Robert McCunney, PhD
Kazuyoshi Murata, PhD

Postdoctoral Associates
Yuriy Alekseyev, PhD
Karsten Bahmann, PhD
Mark Bathe, PhD
John Burke, PhD
Eugene Chan, PhD
Bingzin Chen, PhD
Catherine M. Cresson, PhD
James Delaney, PhD
Michael DeMott, PhD
David Green, PhD
Alfio Fichera, PhD
Doriana Froim, PhD
Michel Godin, PhD
Toomas Haller, PhD
Samps Hahtaniemi, PhD
Aida Herrera, PhD
Ramesh Indrakanti, PhD
Hyun Gyung Jang, PhD
Tao Jiang
Vidya Jonnalagadda, PhD
Ji-eun Kim, PhD
Jung Nyun Kim, PhD
Jisook Kim, PhD
Min Young Kim, PhD
Matthew Lazzara, PhD
Rosa Liberman, PhD
John Marquis, PhD
Nebojsa Milovic, PhD
Katrin Moser, PhD
Pei-Sze Ng, PhD
Gerard Ostheimer
Bo Pang, PhD
Jean-Francois Pare, PhD
Rahul Raman, PhD
Cagri Savran, PhD
Shiladitya Sengupta, PhD
Andrew Spark, PhD
Aravind Srinivasan, PhD
Peter Tarsa, PhD
Karthik Viswanathan, PhD
Yi Zhang, PhD

Postdoctoral Fellows
Leonidas Alexopoulos, PhD
Carlos Bosques, PhD
Sarah Delaney, PhD
C. Eric Elmquist, PhD
Melissa Kemp, PhD
Jeenu Kim, PhD
Monica Kristiansson, PhD
Jennifer Seal, PhD
Alisha Sieminski, PhD
Qing Song, PhD
Christopher Utzat, PhD

Visiting Scientists
Sujan Kabir, MD
S. Raguram, PhD
Zachary Shriver, PhD
Ganesh Venkataraman, PhD

Administrative Staff
Rolanda L. Dudley-Cowans, MBA
Administrative Officer
Dalia R. Gabour, EdM
Academic Administrator
Chemical engineering encompasses the translation of molecular information into discovery of new products and processes. It involves molecular transformations—chemical, physical, and biological—with multi-scale description from the submolecular to the macroscopic, and the analysis and synthesis of such systems. The chemical engineer is well prepared for a rewarding career in a strikingly diverse array of industries and professional arenas. Whether these industries are at the cutting edge—e.g., nanotechnology or biotechnology—or traditional, they depend on chemical engineers to make their products and processes a reality. The effectiveness of chemical engineers in such a broad range of areas begins with foundational knowledge in chemistry, biology, physics, and mathematics. From this foundation, chemical engineers develop core expertise in engineering thermodynamics, transport processes, and chemical kinetics, creating a powerful and widely applicable combination of molecular knowledge and engineering problem solving. To cope with complex, real-world problems, chemical engineers develop strong synthetic and analytic skills. Through creative application of these chemical engineering principles, innovative solutions to important industrial and societal problems in areas such as development of clean energy sources, advancement of life sciences, production of pharmaceuticals, sustainable systems and responsible environmental stewardship, and discovery and production of new materials.

The Department of Chemical Engineering at MIT offers three undergraduate programs. Course 10 leads to the Bachelor of Science in Chemical Engineering through a curriculum accredited by the Accreditation Board for Engineering and Technology (ABET). Course 10-B leads to the Bachelor of Science in Chemical-Biological Engineering, which includes the basic engineering core from the Course 10 degree and adds material in basic and applied biology. ABET accreditation for this degree is anticipated. Course 10-C leads to the Bachelor of Science without specification; this is not accredited and requires fewer chemical engineering subjects. Many undergraduates take advantage of graduate-level subjects in their upper-class years. Undergraduate students are also encouraged to participate in research through the MIT UROP program.

The department offers a broad selection of graduate subjects and research topics leading to advanced degrees in chemical engineering. Multidisciplinary approaches are highly valued, leading to strong ties with other MIT departments. In addition, the department maintains alliances, arrangements, and connections with institutions and industries worldwide. Areas for specialization include, but are not limited to: biochemical engineering, biomedical engineering, biotechnology, chemical catalysis, chemical process development, environmental engineering, fuels and energy, polymer chemistry, surface and colloid chemistry, systems engineering, and transport processes. Additional information may be found under Graduate Study below and on the department’s website.

The School of Chemical Engineering Practice (described below), leading to five-year bachelor’s and master’s degrees, involves one term of work under the direction of an Institute staff member resident at Practice School sites. This program provides students with a unique opportunity to develop the ability to apply basic professional principles to the solution of practical industrial problems.

UNDERGRADUATE STUDY

The undergraduate curriculum in chemical engineering provides basic studies in physics, biology, and mathematics, a concentration in chemistry, and a strong core of chemical engineering. The four-year undergraduate programs provide students with the fundamentals of the discipline and allow some room for focus in subdisciplines. Those who expect to go to graduate school may elect subjects that strengthen their preparation for advanced work.

In addition to science and engineering, students take an integrated sequence of subjects in the humanities and social sciences. Specific course selection allows students to meet individual areas of interest. The curriculum provides a sound preparation for jobs in industry or government, and for graduate work in chemical engineering.

Chemical engineering also provides excellent preparation for careers in medicine and related fields of health science and technology. The department’s strong emphasis on chemistry and biology provides excellent preparation for medical school. Students interested in medical school work with their faculty and premedical advisor to create the best program. A minor in biomedical engineering is also available.

Bachelor of Science in Chemical Engineering/Course 10

This degree is intended for the student who seeks a broad education in the application of chemical engineering to a variety of specific areas, including energy and the environment, nanotechnology, polymers and colloids, surface science, catalysis and reaction engineering, systems and process design, and biotechnology. The degree requirements include the core chemical engineering subjects with a chemistry emphasis, and the opportunity to add subjects in any of these application areas.

Bachelor of Science in Chemical-Biological Engineering/Course 10-B

This degree is intended for the student who is specifically interested in the application of chemical engineering in the areas of biochemical and biomedical technologies. The degree requirements include core chemical engineering subjects and additional subjects in biological sciences and applied biology. This degree is excellent preparation for students also considering the biomedical engineering minor or medical school.

Students who decide early to major in either Course 10 or Course 10-B are encouraged to take subjects such as 5.11/5.111/5.112 Principles of Chemical Science, 5.12 Organic Chemistry I, and 10.10 Introduction to Chemical Engineering in their freshman year. Then 5.60, 18.03, 7.012/7.013/7.014, 10.213, and 10.301 may be taken in the sophomore year. The student is then well positioned for more in-depth and specialized subjects in the third and fourth years.

Some students may wish to defer choice of a major field or exercise maximum freedom during the first two years. If the Restricted Electives in Science and Technology (REST) Requirement subjects chosen in the second year include 18.03 and two subjects in the fields of fluid mechanics, thermodynamics, chemistry, biology, or chemical engineering, students can
Bachelor of Science in Chemical Engineering/Course 10

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Restricted Electives (REST) Requirement

([can be satisfied from among 5.12, 5.60, 10.301, and 18.03 or 18.034 in the Departmental Program])

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Requirement</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total GIRs Required</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H);
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)

Required Subjects

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12 Organic Chemistry I, 12, REST; 5.111*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.07 Biological Chemistry I, 12, REST; 5.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or 7.05 General Biochemistry, 12, REST; 5.12, 7.012*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.310 Laboratory Chemistry, 12, LAB; 5.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.60 Thermodynamics and Kinetics, 12, REST; 18.02, 5.111*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10 Introduction to Chemical Engineering, 12; 8.01, 18.01, 5.111*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.213 Chemical Engineering Thermodynamics, 12; 5.60, 10.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One of the following four subjects:

- 10.26 Chemical Engineering Projects Laboratory, 15, CI-M; 5.310 or 7.02, or 10.302
- 10.27 Chemical Engineering Processes Laboratory, 15, CI-M; 5.310, 10.32, 10.37
- 10.28 Biological Engineering Lab, 15, CI-M; 5.310 or 7.02, or 10.702; and 7.05 or 5.07
- 10.29 Biological Engineering Projects Laboratory, 15, CI-M; 5.310 or 7.02 or 10.702, 10.302

Restricted Electives

One subject in Chemical Engineering, except 10.UR, 10.URG, 10.ThU, 10.11, 10.10, 10.702, 10.302, 10.467; plus

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>plus 10.301 Fluid Mechanics, 12, REST; 18.03, 10.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.302 Transport Processes, 12; 5.60, 10.301*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.32 Separation Processes, 6; 10.213, 10.302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.37 Chemical Kinetics and Reactor Design, 9; 5.60, 10.301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.490 Integrated Chemical Engineering I, 8; 10.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.491 Integrated Chemical Engineering II, 8; 10.490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two of the following three subjects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.492 Integrated Chemical Engineering Topics I, 4; 10.490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.493 Integrated Chemical Engineering Topics II, 4; 10.490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.494 Integrated Chemical Engineering Topics III, 4; 10.490</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12; 18.02* or 18.014 or 18.034 Differential Equations, 12, REST; 18.03* or 18.014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Departmental Program Units That Also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.014 Materials Laboratory, 12, LAB</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>3.155/6.522 Microelectronics Processing Technology, 12; permission of the instructor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.32 Intermediate Chemical Experimentation, 15; 5.310*, 5.15, 5.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.02 Introduction to Experimental Biology and Communication, 18, CI-M, LAB; 7.012*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.467 Polymer Science Laboratory, 15, CI-M; 5.12, 5.310*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.26 Chemical Engineering Projects Laboratory*, 15, CI-M; 10.302, 5.310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.27 Chemical Engineering Processes Laboratory*, 15, CI-M; 10.32, 10.37, 5.310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.28 Biological Engineering Lab, 15, CI-M; 5.310, 7.02, or 10.702; and 7.05 or 5.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.29 Biological Engineering Projects Laboratory, 15, CI-M; 5.310 or 7.02, 10.302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.702 Introductory Biology and Communication, 18, CI-M, LAB; 7.012*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

- Alternate prerequisites are listed in the subject description.
- Either 10.26, 10.27, 10.28, or 10.29 must be taken as a Departmental Requirement and cannot also be used to satisfy this Restricted Laboratory Requirement.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

- Generally complete the requirements for a degree in chemical engineering in two more years. Students are advised to discuss their proposed program with a Course 10 faculty advisor as soon as they become interested in a degree in chemical engineering. Faculty advisors are assigned to students as soon as they declare their major and then work with the students through graduation. Further information may be obtained from Dr. Barry S. Johnston.

- Additional information is available on the Chemical Engineering Department’s website at http://web.mit.edu/cheme/. Undergraduates are encouraged to take part in the research activities of the department through the Undergraduate Research Opportunities Program (UROP).

Bachelor of Science/Course 10-C

The curriculum for students in Course 10-C involves basic subjects in chemistry and chemical engineering. Instead of continuing in depth in these areas, students can add breadth by study in another field, such as another engineering discipline, biology, biomedical engineering, economics, or management. Course 10-C is attractive to students who wish to specialize in an area such as those cited above while simultaneously gaining a broad exposure to the chemical engineering approach to solving problems.

Departmental requirements for Course 10-C are:

- 5.11/5.111/5.112, 5.60, 10.213, 10.301, and 10.302

plus

- one subject from the following:
 3.014, 3.155/6.152, 5.32, 7.012/10.702, 10.26, 10.28, 10.29 or 10.467;

and

- an additional subject from the above list or the following:
 1.060, 1.096, 6.021, 6.033, 6.111, 6.805, 14.05, 14.06, 15.279 or 15.301

All of the above restricted elective subjects satisfy the Institute CI-M requirement. Students must also complete 180 units beyond the GIRs; subjects chosen to complete these units must form a coherent program, and any subject chosen from the last list must be part of this coherent program.
Students planning to follow this curriculum should discuss their interests with their faculty advisor in the department at the time they decide to enter the Course 10-C program, and submit to Dr. Johnston in the department’s Undergraduate Office a statement of goals and a coherent program of subjects no later than spring term of junior year. Please direct questions about this program to Dr. Johnston.

Five-Year Programs and Joint Programs

In addition to offering separate programs leading to the Bachelor of Science and Master of Science in Chemical Engineering, the department offers a program leading to the simultaneous award of both degrees at the end of five years. A detailed description of this program is available from the Graduate Student Office. Students in the five-year program normally enroll in the School of Chemical Engineering Practice.

For chemical engineering students interested in nuclear applications, the Department of Chemical Engineering and the Department of Nuclear Engineering offer a five-year program leading to the joint Bachelor of Science in Chemical Engineering and Master of Science in Nuclear Engineering. Such programs are approved on an individual basis between the registration officers of the two departments.

Inquiries

Additional information concerning undergraduate academic and research programs may be obtained by writing to Dr. Barry S. Johnston, undergraduate officer, Department of Chemical Engineering, Room 66-305, MIT, Cambridge, MA 02139-4307, fax 617-253-8273. For information regarding admissions and financial aid, contact the Admissions Office, Room 3-108, telephone 617-253-4791.

GRADUATE STUDY

Graduate study provides both rigorous training in the fundamental core discipline of chemical engineering and the opportunity to focus on specific subdisciplines. In addition to completing four core subject requirements in thermodynamics, reaction engineering, numerical methods, and transportation phenomena, students select a research advisor and area for specialization, some of which are discussed below.

Bachelor of Science in Chemical-Biological Engineering/Course 10-B

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Unit(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H);
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.12 Organic Chemistry I, 12; REST; 5.111*</td>
<td>186</td>
</tr>
<tr>
<td>5.60 Thermodynamics and Kinetics, 12, REST; 18.02, 5.111*</td>
<td></td>
</tr>
<tr>
<td>7.02 Introduction to Experimental Biology, 18, CI-M, LAB; 7.012* or 10.702 Introductory Experimental Biology and Communication, 18, CI-M, LAB; 7.012*</td>
<td></td>
</tr>
<tr>
<td>7.03 Genetics, 12, REST; 7.012*</td>
<td></td>
</tr>
<tr>
<td>7.05 General Biochemistry, 12, REST; 5.12, 7.012*</td>
<td></td>
</tr>
<tr>
<td>7.07 Biological Chemistry I, 12, REST; 5.12</td>
<td></td>
</tr>
<tr>
<td>7.06 Cell Biology, 12; 7.03, 7.05 or 5.07</td>
<td></td>
</tr>
<tr>
<td>10.01 Introduction to Chemical Engineering, 12; 8.01, 18.01, 5.111*</td>
<td></td>
</tr>
<tr>
<td>10.213 Chemical Engineering Thermodynamics, 12; 5.60, 10.10</td>
<td></td>
</tr>
<tr>
<td>10.28 Biological Engineering Laboratory, 15, CI-M; 5.310 or 7.02 or 10.702, 7.05 or 5.07 or 10.29 Biological Engineering Projects Laboratory, 15, CI-M; 5.310 or 7.02 or 10.702, 10.301 Fluid Mechanics, 12, REST; 18.03, 10.10</td>
<td></td>
</tr>
<tr>
<td>10.302 Transport Processes, 12; 5.60, 10.301* plus 10.37 Chemical Kinetics and Reactor Design, 8; 5.60, 10.301</td>
<td></td>
</tr>
<tr>
<td>10.490 Integrated Chemical Engineering I, 8; 10.37</td>
<td></td>
</tr>
<tr>
<td>10.491 Integrated Chemical Engineering II, 8; 10.490</td>
<td></td>
</tr>
<tr>
<td>10.492 Integrated Chemical Engineering III, 4; 10.490</td>
<td></td>
</tr>
<tr>
<td>10.493 Integrated Chemical Engineering IV, 4; 10.490</td>
<td></td>
</tr>
<tr>
<td>10.494 Integrated Chemical Engineering V, 4; 10.490</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST; 18.03* or 18.014 or 18.034 Differential Equations, 12, REST; 18.03* or 18.014</td>
<td></td>
</tr>
</tbody>
</table>

Departmental Program Units That also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(36)</td>
</tr>
</tbody>
</table>

Unrestricted Electives

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
</tr>
</tbody>
</table>

Total Units Beyond the GIRs Required for SB Degree

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>198</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 198 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

*Alternate prerequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
Biotechnology and Bioengineering. Biology, along with chemistry and physics, has become a foundational science of chemical engineering. Rapid advances in genetics and molecular and cell biology have created enormous opportunities for chemical engineers as this new enabling science must be translated into diverse technologies to achieve industrial and commercial reality. Applications include delivery of therapeutics (not only pharmaceuticals but also cellular and genetic elements), tissue engineering (to repair or reconstruct organ function), and extracorporeal treatments such as toxin removal and cell separations, as well as a fundamental understanding of cell and tissue physiology in terms of reaction kinetics and transport phenomena.

The chemical engineering paradigm is broadly emulated in the development of therapies, devices, and materials for biomedical applications and strengthens the role of chemical engineers in modern health care technology.

Another biotechnological dimension of particular importance to chemical engineering is the deployment of biological systems and processes for the synthesis and production of specialty and bulk chemicals, fuels, and materials. By reconfiguring the structure and regulation of the bioreaction networks of microbial cells, it is now possible to harness the incredible versatility and efficiency of microbes for the synthesis of numerous existing and new products by environmentally benign processes using renewable resources. This area of application, metabolic engineering, creates new methods for product synthesis with the accompanying bioprocessing and scale-up opportunities. A new research and education initiative in bioinformatics brings the fundamentals of systems theory to problems of integrating and interpreting large biological data sets in the context of metabolic engineering, genomics, and drug design. Chemical engineering faculty are also involved in the Center for Biomedical Engineering, created to enhance interdisciplinary research and education at the intersection of engineering, molecular and cell biology, and medicine. Many research collaborations exist with the Department of Biology, the Whitehead Institute, and the Harvard and Boston University medical schools.

Chemical Engineering Systems and Process Control. In an era of structural changes in the chemical and biochemical industries, the computer-aided engineer is challenging conventional modes throughout the whole spectrum of activities such as product design, process conception and design, process engineering, control and operations, safety, and environmental protection. Extensive research efforts are currently under way in all of the above areas, supported by state-of-the-art computer facilities and software utilities.

Methodologies from computer science, applied math, operations research, and control and estimation theory are being combined vigorously with various computer-aided engineering activities, leading to new prototypes for industrial analysis and design.

Characteristic examples of current research projects that shape new prototypes for process systems engineering include process simulation; design of batch processes; design of molecules with desired properties; process synthesis; operability, control, and safety; development of biotechnological processes; intelligent databases and graphic interfaces; synthesis of control systems; and intelligent controllers.

Catalysis and Reaction Engineering. Catalysis is by far the most important process in the manufacturing of chemicals and in the refining of fuels for transportation and power. Catalysis is also the main process in reducing impurities in fuels, and thus solving environmental problems from combustion products. Recent advances in new catalytic materials are opening the doors to better technologies. Modern spectroscopic and computational techniques are providing powerful probes into the nature of catalytic action.

The heart of most chemical processes is the chemical reactor, which determines the overall process success. The overall performance is determined by the interactions of fluid mechanics, mixing, and transport phenomena with chemical kinetics. Rational design and operation of both catalysts and reactors are the objectives of this research area.

Microfabrication techniques and scale-up by replication have fueled spectacular advances in the electronics industry, and they are now creating new opportunities for reaction engineering. Collaborations between the Chemical Engineering and the Electrical Engineering and Computer Science departments have microfabricated chemical systems with feature sizes in the micron to hundreds of micron range and reaction components integrated with sensors and actuators. Microfluidic systems involving highly reactive, potentially hazardous, or toxic compounds are a focus of this work.

Colloid Science and Separations. Colloid science, specifically as it applies to structured fluids, is an interdisciplinary program drawing on the fields of engineering, physics, chemistry, biology, and medicine. It is a scientifically challenging area with important practical benefits, not only in industrial processes but also in biomedical applications.

Structured fluids are solutions composed of microstructures dispersed in a solvent. These microstructures may be polymers, biomolecules (such as proteins and viruses), colloidal particles, surfactant aggregates (such as micelles, vesicles, and microemulsion droplets), or clathrates and hydrates. Structural fluids are important in fields as diverse as biological and environmental separations, drug delivery systems, transport of cholesterol in the body, tertiary oil recovery, cosmetics, food processing, synthesis of ultrafine particles for microelectronic and ceramics applications, and detergency and wetting.

Students can draw on the theoretical tools of statistical mechanics, thermodynamics, liquid-state theory, Monte-Carlo and molecular dynamics simulations, colloid and interface science, transport, and kinetics. A rich array of experimental techniques can also be employed in thesis research, including small-angle X-ray and neutron scattering; quasi-elastic light scattering; NMR; fluorimetry, infrared, and impedance spectroscopies; interfacial tensiometry; viscometry; calorimetry; interferometry; and various scanning-probe microscopes.

The field of separation science is also of major importance to the chemical, metallurgical, and biochemical industries and plays a leading role in the remediation of environmental problems. Microstructured colloidal fluids provide an interesting opportunity to mediate solute-solvent interactions, and thus to enhance separation selectivities. Examples include block copolymer micelles and tailored magnetic nanoparticles for the removal of trace contaminants from surface and ground waters, and two-phase aqueous polymer solutions or phase-separated micellar systems for the selective separation and concentration of biological species such as proteins and viruses. Stimuli-responsive gels can be used for dynamically
controlled separation of proteins and other macromolecular species. Magnetic nanoparticles are also used for the selective recovery of biologicals from fermentation media, and for the magnetophoretic separation of nonmagnetic submicron particles.

Energy and Environment. Energy and environmental problems provide increasing opportunities for contributions by chemical engineers. Research to reduce adverse effects on the environment associated with energy conversion and use continues to be a major activity in the department. An important area is concerned with fundamental physical and chemical processes related to emission sources and control and environmental remediation. The second area focuses on the development of process design and operating procedures that can incorporate multiple objectives, including economic considerations, environmental performance, safety, control, and product quality. The third area explores methods for developing chemistries and molecular systems that preclude environmental problems. Examples include recyclable polymers; ecologically sound detergents; processes for removing trace contaminants from water or gas streams before discharge; solvents and processes that minimize waste-treatment requirements; novel separation methods involving magnetic colloids; new catalysts for control of emissions; microchemical reactors for on-site, on-demand manufacturing of hazardous chemicals; and computational chemistry directed towards understanding environmentally important problems. A fourth area considers alternative energy supplies from geothermal renewable resources and clathrate hydrates, focusing on a wide range of topics from advanced drilling methods to hydrochemical effects in reservoirs.

Transport Processes and Thermodynamics. Research in transport processes and thermodynamics provides the foundation for many new and evolving technologies in areas ranging from biotechnology to microelectronics. Fundamental studies underway are at the forefront of scientific disciplines such as thermodynamics, continuum and statistical mechanics, quantum and classical molecular theory, heat and mass transfer, Newtonian and non-Newtonian fluid mechanics, interfacial phenomena, and applied mathematics. Many departmental faculty have research interests that fall into these areas, and their projects offer stimulating fundamental studies motivated by application. Current work involves the study of transport in heterogeneous media and at interfaces, microfluidics, transport in biological systems, chemically reacting flows, supercritical fluids, surfactants, and polymer rheology. The experimental work uses state-of-the-art equipment, and theoretical approaches involve both analytical and numerical methods.

Polymers. Polymers comprise a large fraction of the total production of the chemical industry. Their unique macromolecular structure is rich and complex, and requires understanding of relationships between their molecular architecture and physical properties. As polymers continue to replace existing materials in certain applications and open up interesting new areas of technology, greater understanding is required at various levels, ranging from the molecular to the continuum. Chemical engineers contribute to the polymer field in numerous areas of activity such as polymer processing, polymer rheology, structure-property relationships, design of polymers and polymer synthesis and characterization, and interactions among these different areas. In addition to a program of graduate study in polymers within the department, opportunities exist to participate directly and indirectly in the activities of the interdepartmental Program in Polymer Science and Technology.

Surface and Materials Chemistry. The study of surface chemistry and surface physics is central to the understanding of many chemical engineering processes. In the department, both fundamental and applied research is conducted in many areas of gas-solid and colloidal surface science.

The understanding of gas-solid kinetics is crucial in the study of heterogeneous catalysis and the fabrication of integrated circuits. Using new and rapidly expanding techniques of surface probes, researchers are exploring the kinetics of catalytic processes, plasma etching of integrated circuits, and chemical vapor deposition of thin films. Typical techniques include X-ray photoelectron spectroscopy, Auger spectroscopy, modulated beam scattering, mass spectrometry, laser-induced fluorescence, electron microscopy, and BET measurements.

Surface chemistry is applied to novel, ultrafine materials of 1-10 nm. Such nanostructured materials have an extremely high surface-to-volume ratio, and their surface structure is linked to unusual, size-dependent properties that are promising for advanced ceramic, catalytic, electronic, and optical applications.

School of Chemical Engineering Practice
Since 1916, the David H. Koch School of Chemical Engineering Practice has been a major feature of the graduate education in the department. In this unique program, students receive intensive instruction to broaden their education not only in the technical aspects of the profession, but also in communication skills and human relations, which are frequently decisive factors in the success of an engineering enterprise. The Practice School program stresses problem solving in an engineering internship format, where students undertake projects at industrial sites under the direct supervision of resident MIT faculty. Credit is granted for participation in the Practice School in lieu of preparing a master’s thesis.

The operation of the Practice School is similar to that of a small consulting company. The resident staff work closely with the technical personnel of the host companies in identifying project assignments with significant educational merit, and with solutions that make important contributions to the operation of the company.

During Practice School, students work on three or four different projects. Groups and designated group leaders change from one project to another, giving every individual an opportunity to be a group leader at least once.

Students in the Practice School program are required to demonstrate proficiency, or take one graduate subject, in each of the following areas: thermodynamics, heat and mass transfer, applied process chemistry, kinetics and reactor design, systems engineering, and applied mathematics.

Master of Science in Chemical Engineering
Programs for the Master of Science in Chemical Engineering usually are arranged as a continuation of undergraduate professional training, but at a greater level of depth and maturity. The general requirements for a master’s program are given in the section on Graduate Education in Part 1. To complete the requirement of at least 66 subject units, of which 42 units must be in H-level subjects, together with an acceptable thesis, generally takes four terms.
Master of Science in Chemical Engineering Practice
The unit requirements for the Master of Science in Chemical Engineering Practice (Course 10-A) are the same as those for the Master of Science in Chemical Engineering, except that 48 units of Practice School experience replace the master’s thesis.

In some cases, Bachelor of Science graduates of this department can meet the requirements for the Master of Science in Chemical Engineering Practice (Course 10-A) in two terms. Beginning in September following graduation, students complete the required coursework at the Institute. The spring term is spent at the Practice School field stations. Careful planning of the senior year schedule is important.

For students who have graduated in chemical engineering from other institutions, the usual program of study for the Master of Science in Chemical Engineering Practice involves two terms at the Institute followed by the field station work in the Practice School. Graduates in chemistry from other institutions normally require an additional term.

Master of Science in Technology and Policy
Students interested in problems of policy, risk assessment, and strategic planning for technology may apply for the interdepartmental Master of Science Program in Technology and Policy. This program combines subjects in advanced technology in the particular field of the student’s choosing with subjects in economics, systems analysis, political science, and law. The Technology and Policy Program is described in detail under the Engineering Systems Division in Part 2.

For more information, visit the website at http://tpserver.mit.edu.

Master of Science in the Management of Technology
Individuals who wish to apply their chemical engineering background and at least five years of technical work experience to issues in technical management may explore the Program in the Management of Technology, jointly offered by MIT’s School of Engineering and the Sloan School of Management. This program entails a rigorous 12-month curriculum focusing on management principles for technical people in a technical environment. The program is designed for scientists and engineers on a career path requiring increasing managerial responsibilities for technical activities. See also Master’s Degree Program for Executive Education in Management under the Sloan School of Management in Part 2.

Doctor of Science or Doctor of Philosophy
Admission to the doctoral program is granted only after the doctoral candidate has passed a written and oral general examination. Given in January and May, the examinations are usually taken at the end of the first term in residence as a graduate student. It is not necessary to complete a master’s program in order to obtain a doctorate.

The requirements for the doctoral degree include a program of advanced study, a minor program, a biology requirement, and a thesis. The program of advanced study and research is normally carried out in one of the fields of chemical engineering under the supervision of one or more faculty members in the Department of Chemical Engineering. A thesis committee of selected faculty monitors the doctoral program of each candidate.

Doctor of Philosophy in Chemical Engineering Practice
This degree program provides educational experience that combines advanced work in manufacturing, independent research, and management. The program is built on the outstanding research programs within the department, the unique resources of the David H. Koch School of Chemical Engineering Practice, and the world-class resources of the Sloan School of Management. Students are prepared for a rapid launch into positions of leadership in industry and provided with a foundation for completion of an MBA degree.

The progress of their research is monitored by a faculty committee, and the final thesis document is defended in a public forum. The normal completion time should be four calendar years for the PhDCEP program.

Other Graduate Opportunities
The Joint Program with the Woods Hole Oceanographic Institution is intended for students whose primary career objective is oceanographic engineering. The program is described in more detail at the end of Part 2.

Financial Support
The department has a wide variety of financial support options for graduate students, including teaching and research assistantships, fellowships, and loans. Information about financial assistance may be obtained by writing to the Graduate Student Office, but consideration for awards cannot be given before admissions decisions have been made.

Inquiries
For additional information concerning graduate programs, admissions, financial aid, and assistantships, contact the Graduate Student Office, Department of Chemical Engineering, Room 66-366, MIT, Cambridge, MA 02139-4307, 617-253-4579, chemegrad@mit.edu.

Faculty and Staff

Faculty and Teaching Staff
Robert Calvin Armstrong, PhD
Chevron Professor of Chemical Engineering
Head of the Department
Gregory Charles Rutledge, PhD
Professor of Chemical Engineering
Executive Officer

Professors
Daniel Blankschtein, PhD
Professor of Chemical Engineering
Graduate Officer
Howard Brenner, EngScD
Willard Henry Dow Professor of Chemical Engineering
Research Affiliates

Steven A. Africk
Akin Akinc
Efstathios Avgoustiniatos
Jason A. Burdick
F. Richard Cottrell
Yuliya Dommina
Robert J. Fisher
Sergey Fridrikh
Amy C. R. Grayson
Steven W. Griffiths
Vipin Gupta
Jeffrey S. Hrkach
Daniel S. Kohane
Joseph Kost
Arthur L. Lafleur
Etgar Levy-Nissenbaum
Michael M. Lipp
Eric M. Morrel
Orhun K. Muratoglu
Amir H. Nashat
Mahnaz Nouri
Blaine A. Pfeifer
Isaac I. Reif
Henning Richter
Maria Ann Rupnick
Norman F. Sheppard, Jr.
Barry A. Solomon
Brian R. Stoll
Kathleen C. Swallow
Henri C. Tannas
Michael D. Tsifansky
Charles Alfred Vacanti
Joseph P. Vacanti

Visiting Engineers

Pu Chen
Kohei Miyaoiku, PhD
Ning Shan

Visiting Scientists

Andrea Adamo
Rodney Clifton, PhD
Ae Ri Lee Cho
Dasa Lipovsek
Elizabeth Podlaha-Murphy

Administrative Staff

Richard Smith
Web Developer

Robin C. Elices
Director, Administrative Services Organization

Suzanne Easterly
Academic Administrator

James Hardsog
Systems Administrator

Esther Estwick
Personnel Administrator

Stephen Kings Wetzel, BA
Manager of Engineering Facilities

Professors Emeriti

Raymond Frederick Baddour, ScD
Professor of Chemical Engineering, Emeritus

János Miklós Beér, ScD
Professor of Chemical and Fuel Engineering, Emeritus

Senior Lecturer

Jack Benny Howard, PhD
Professor of Chemical Engineering, Emeritus

Marcus Karel, PhD
Professor of Chemical and Food Engineering, Emeritus

John Ploeger Longwell, ScD
Professor of Chemical Engineering, Emeritus

Senior Lecturer

Edward Wilson Merrill, ScD
Professor of Chemical Engineering, Emeritus

Robert Clark Reid, ScD
Professor of Chemical Engineering, Emeritus

Adel Fares Sarofim, ScD
Professor of Chemical Engineering, Emeritus

Charles Nelson Satterfield, PhD
Professor of Chemical Engineering, Emeritus

James Wei, ScD
Professor of Chemical Engineering, Emeritus

Postdoctoral Fellows

Lino Silva Ferreira
Junji Fukuda
Jeffrey Karp
Tina Lutke-Eversloh
Suliana Manley
Andreas Zumbuehl

Research Affiliates

Steven A. Africk
Akin Akinc
Efstathios Avgoustiniatos
Jason A. Burdick
F. Richard Cottrell
Yuliya Dommina
Robert J. Fisher
Sergey Fridrikh
Amy C. R. Grayson
Steven W. Griffiths
Vipin Gupta
Jeffrey S. Hrkach
Daniel S. Kohane
Joseph Kost
Arthur L. Lafleur
Etgar Levy-Nissenbaum
Michael M. Lipp
Eric M. Morrel
Orhun K. Muratoglu
Amir H. Nashat
Mahnaz Nouri
Blaine A. Pfeifer
Isaac I. Reif
Henning Richter
Maria Ann Rupnick
Norman F. Sheppard, Jr.
Barry A. Solomon
Brian R. Stoll
Kathleen C. Swallow
Henri C. Tannas
Michael D. Tsifansky
Charles Alfred Vacanti
Joseph P. Vacanti

Visiting Engineers

Pu Chen
Kohei Miyaoiku, PhD
Ning Shan

Visiting Scientists

Andrea Adamo
Rodney Clifton, PhD
Ae Ri Lee Cho
Dasa Lipovsek
Elizabeth Podlaha-Murphy

Administrative Staff

Richard Smith
Web Developer

Robin C. Elices
Director, Administrative Services Organization

Suzanne Easterly
Academic Administrator

James Hardsog
Systems Administrator

Esther Estwick
Personnel Administrator

Stephen Kings Wetzel, BA
Manager of Engineering Facilities

Professors Emeriti

Raymond Frederick Baddour, ScD
Professor of Chemical Engineering, Emeritus

János Miklós Beér, ScD
Professor of Chemical and Fuel Engineering, Emeritus

Senior Lecturer

Jack Benny Howard, PhD
Professor of Chemical Engineering, Emeritus

Marcus Karel, PhD
Professor of Chemical and Food Engineering, Emeritus

John Ploeger Longwell, ScD
Professor of Chemical Engineering, Emeritus

Senior Lecturer

Edward Wilson Merrill, ScD
Professor of Chemical Engineering, Emeritus

Robert Clark Reid, ScD
Professor of Chemical Engineering, Emeritus

Adel Fares Sarofim, ScD
Professor of Chemical Engineering, Emeritus

Charles Nelson Satterfield, PhD
Professor of Chemical Engineering, Emeritus

James Wei, ScD
Professor of Chemical Engineering, Emeritus

Postdoctoral Fellows

Lino Silva Ferreira
Junji Fukuda
Jeffrey Karp
Tina Lutke-Eversloh
Suliana Manley
Andreas Zumbuehl
The Department of Civil and Environmental Engineering focuses on interactions between human activities and the natural environment. Its mission is to use science, engineering, and policy to improve quality of life. This includes intelligent use of natural resources such as the raw materials, energy, and ecosystems needed to sustain modern society. It also includes design of functional and environmentally compatible facilities and infrastructure. Within this broad context, the Department of Civil and Environmental Engineering is especially concerned with:

- Better understanding of natural cycles, systems, and processes relevant to human activities
- Use of natural analogs to help design new materials, industrial processes, and infrastructure systems
- Development of new building and transportation technologies
- Advances in information infrastructure and logistics
- Creation of attractive and sustainable physical environments

An education in civil and environmental engineering provides an excellent foundation for careers in fields as diverse as engineering design, education, law, medicine, and public health, as well as for graduate study in engineering and science. Our graduates teach and carry out research in universities, work for large firms, start their own businesses, and take positions in government and nonprofit organizations. As pressures on limited natural resources grow, there will be increasing demand for engineers who understand how to make best use of these resources in the products and services they design. The department's undergraduate program recognizes this need by providing background in science and engineering fundamentals while also emphasizing hands-on design projects and case studies that provide context and motivation. Students are taught how to combine theory, measurement, and modeling to develop a good understanding of the problem at hand and to point the way to desirable solutions.

The department offers two designated undergraduate degrees accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET).

The Bachelor of Science in Civil Engineering provides a solid foundation for practice in both classical and newly developing areas of civil engineering, including structural analysis and design, engineering materials, geotechnical analysis and design, sustainable built environments, and transportation and logistics. The Bachelor of Science in Environmental Engineering Science emphasizes the fundamental physical, chemical, and biological processes necessary for understanding the interactions between man and the environment. Issues considered include the provision of clean and reliable water supplies, flood forecasting and protection, development of renewable and nonrenewable energy sources, causes and implications of climate change, and the impact of human activities on natural cycles. Both programs provide awareness of the socio-political context in which civil and environmental engineering problems are solved. Premedical students may satisfy medical school entrance requirements while earning the accredited degree in environmental engineering science with proper planning of their program. A third degree is offered for students who want more flexibility. Typical examples are students who will pursue careers in medicine, law, or scientific research.

Graduate programs in civil engineering and environmental engineering science share a common sophomore year that emphasizes mathematics, mechanics, ecology, and design. The ecology sequence begins by considering how natural systems work and then turns to a consideration of interactions between these systems and human activities. This sequence provides a scientific context for a consideration of sustainable design in subsequent subjects. Sophomore students from all programs work together in teams on design projects that synthesize concepts taught in the core subjects. In the junior and senior years, students from the two programs concentrate on disciplinary subjects that provide depth in each specialty. During the final term of the senior year, all students come together again in an advanced design subject that integrates lessons learned throughout the undergraduate education. There is ample room in the program for electives and minors that can be used to tailor each student's program to individual needs.

At the graduate level, the department offers two complementary but distinct types of programs. First, research-oriented doctoral and master's programs advance fundamental understanding and develop innovative approaches to engineering problems. Such programs prepare professionals for positions of leadership in research and teaching. Second, practice-oriented master's degrees introduce the political, economic, and cultural factors that influence social priorities, and prepare students to function as members of interdisciplinary teams. These programs add technical depth and professional skills beyond the four-year bachelor's degree.

Graduate programs are offered in the following areas: environmental chemistry and environmental biology; geotechnical and geo-environmental engineering; environmental fluid dynamics, coastal engineering and hydromechanics; hydrology and water resources; materials and structures; transportation systems and engineering systems (including information technology, transportation, and infrastructure systems).

UNDERGRADUATE STUDY

The Department of Civil and Environmental Engineering offers three undergraduate curricula: Course 1-C, leading to the Bachelor of Science in Civil Engineering, Course 1-E, leading to the Bachelor of Science in Environmental Engineering Science, and Course 1-A, leading to the Bachelor of Science as recommended by the Department of Civil and Environmental Engineering.

Each of these curricula is flexible enough to allow students to pursue special interests by taking subjects in the Department of Civil and Environmental Engineering and in other departments. Undergraduates are encouraged to participate in the research activities of the department and in many cases obtain degree credit for such work.

In general, students find advantages in planning their programs for the third and fourth years so that they dovetail with possible graduate study, including the department's Master of Engineering degree. This is readily accomplished by those students who embark on the departmental program in their second year. Under certain circumstances, students are permitted to work toward receiving simultaneous undergraduate and graduate degrees.
Bachelor of Science in Civil Engineering/Course 1-C

General Institute Requirements (GIRs)
Science Requirement Subjects 6
Humanities, Arts, and Social Sciences Requirement 8
Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 1.00 or 1.018 and 18.03 in the Departmental Program] 2
Laboratory Requirement [can be satisfied by 1.101 and 1.102 in the Departmental Program] 1
Total GIR Subjects Required for SB Degree 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2 subjects designated as Communication Intensive in the Major (CI-M)

PLUS Departmental Program Units
Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).

Required Subjects 159

Core
1.018 Ecology I: The Earth System, 12, REST; 7.012/7.013/7.014
1.020 Ecology II: Engineering for Sustainability, 12, CI-M; 1.018
1.050 Engineering Mechanics I, 12; 8.01, 18.02
1.060 Engineering Mechanics II, 12; 1.050, 18.03
18.03 Differential Equations, 12, REST; 18.02 or 18.014
1.031 Senior Civil and Environmental Engineering Design, 12, CI-M; two of 1.031, 1.041, 1.051
1.001 Introduction to Computers and Engineering Problem Solving, 12, REST; 18.01
1.101 Project Evaluation, 9
1.035 Mechanics of Structures and Soils, 18; 1.060
1.036 Structural and Geotechnical Engineering Design, 12; 1.035
1.041 Engineering Systems Design, 12; 1.101

Laboratory
1.101 Introduction to Civil & Environmental Engineering Design I, 6, LAB; 1.050, 1.018
1.102 Introduction to Civil & Environmental Engineering Design II, 6, LAB; 1.060, 1.020, 1.101

Restricted Elective
One advanced subject or two advanced half-subjects from the following list:
1.055 Mechanical Systems, Signal Processing and Stochastics, 12; 18.03
1.057 Geomaterials and Geomechanics, 12; 1.010, 1.011, 1.035 or equivalent
1.059 Mechanics of Structures, 12; 1.050 or 2.001, 18.03
1.059 Mechanics and Design of Concrete Structures, 12; 1.035 or equivalent
1.124 Software Engineering, 12; 1.00
1.221 Transportation Systems, 6
1.222 Transportation Demand and Economics, 6
1.223 Transportation Policy, Strategy, and Management, 6
1.224 Carrier Systems, 6
1.225 Transportation Flow Systems, 6
1.252 Urban Transportation Planning, 12
1.260 Logistics Systems, 12
1.577 Structural Mechanics, 12; 1.052

Departmental Program Units That also Satisfy the GIRs (36)

Unrestricted Electives 48

Total Units Beyond the GIRs Required for SB Degree 183

No subject can be counted both as part of the 17-subject GIRs and as part of the 183 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both. For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

Bachelor of Science in Civil Engineering/Course 1-C

The 1-C curriculum helps students develop abilities in problem formulation, problem solving, and decision making in civil engineering. Education towards this goal involves learning fundamentals, exercising creativity, and gaining hands-on experience. Specifically, the program includes subjects dealing with structures, materials, computation, and project evaluation. These are complemented by design subjects that teach students to handle open-ended problems through involvement in increasingly complex team-oriented projects. Unrestricted electives and advanced restricted electives are typically used to build depth in particular areas.

The 1-C program provides the education necessary for professional practice in civil engineering as well as a number of other fields. It also provides a solid foundation for graduate studies and a direct transition to the department’s Master of Engineering program, which is designed to further develop the professional engineering skills of Course 1-C students. This program is ABET accredited.

Bachelor of Science in Environmental Engineering Science/Course 1-E

The 1-E option is designed for students who wish to gain an in-depth understanding of the physical, chemical, and biological processes that control the natural environment and its interactions with human activities. Subjects in environmental transport and hydrology share a laboratory that emphasizes both hands-on skills and the use of measurements to test hypotheses. The environmental chemistry and biology subject is also accompanied by a laboratory. Concepts learned in these subjects are applied to questions of human health in an advanced upper-class subject. Unrestricted electives and advanced restricted electives are typically used to build depth in particular areas.

The 1-E program provides the education necessary for careers in environmental engineering and science, as well as in many other fields. It also gives a solid foundation for graduate study and research in both basic and applied environmental disciplines. The program is ABET accredited and is sufficiently flexible to prepare students for careers in medicine and environmental law.
Bachelor of Science as Recommended by the Department of Civil and Environmental Engineering/Course 1-A

The degree of Bachelor of Science as recommended by the Department of Civil and Environmental Engineering (Course 1-A) is provided for those students who are drawn to the core features of our curriculum but want to design individualized programs to meet particular educational objectives. For example, a student interested in medicine may need more room in the curriculum in order to complete all the subjects required for medical school admission. Other students interested in research careers in fields such as environmental biology, chemistry, or oceanography may want more time for advanced subjects in those fields. Such students may benefit from a Civil and Environmental Engineering 1-A degree, since they do not need ABET accreditation but do need flexibility. Students should speak with a faculty advisor about the advantages and limitations of a 1-A degree before making a final decision.

There are seven required 1-A subjects that coincide with the sophomore core of the 1-C and 1-E programs. In addition, 1-A students must select a coherent set of seven electives that meet a well-defined educational goal (e.g. a premedical sequence). The planned electives are developed in consultation with and are approved by a member of the departmental faculty who serves as the student’s academic advisor. Planned electives may be selected from subjects within the Department of Civil and Environmental Engineering or outside the department. In addition, students may write an undergraduate thesis in lieu of one or more of the planned electives. To satisfy the Ci-M component of the Communication Requirement, students must take the department’s two Ci-M subjects (1.013 and 1.020) or, if appropriate, take one Course 1 Ci-M subject and petition to substitute one Ci-M from another science or engineering field. The outside Ci-M must fit into the coherent program of electives approved by the student’s academic advisor. The remaining part of the 1-A program consists of unrestricted electives to bring the total to 180 units beyond the General Institute Requirements.

Bachelor of Science in Environmental Engineering Science/Course 1-E

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement(1)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [one subject can be satisfied by 1.002, 1.122, 14.01, or 17.32 in the Departmental Program]</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 18.03 and 1.018 in the Departmental Program]</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by 1.101 and 1.102 in the Departmental Program]</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>168</td>
</tr>
<tr>
<td>1.018 Ecology I: The Earth System, 12, REST; 7.012/7.013/7.014</td>
<td></td>
</tr>
<tr>
<td>1.020 Ecology II: Engineering for Sustainability, 12, CI-M; 1.018</td>
<td></td>
</tr>
<tr>
<td>1.050 Engineering Mechanics I, 12; 8.01, 18.02</td>
<td></td>
</tr>
<tr>
<td>1.060 Engineering Mechanics II, 12; 1.050, 18.03</td>
<td></td>
</tr>
<tr>
<td>18.02 Differential Equations, 12, REST; 18.02 or 18.014</td>
<td></td>
</tr>
<tr>
<td>1.015 Senior Civil and Environmental Engineering Design, 12, CI-M; two of 1.031, 1.041, 1.051</td>
<td></td>
</tr>
<tr>
<td>One of the following two subjects:</td>
<td></td>
</tr>
<tr>
<td>1.00 Introduction to Computers and Engineering Problem Solving, 12, REST; 18.01</td>
<td></td>
</tr>
<tr>
<td>1.010 Uncertainty in Engineering, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>Environmental Engineering Science</td>
<td></td>
</tr>
<tr>
<td>1.061 Transport Processes in the Environment, 12; 1.060, 1.070, 1.066</td>
<td></td>
</tr>
<tr>
<td>1.070 Hydrology, 12; 1.060, 1.061, 1.106</td>
<td></td>
</tr>
<tr>
<td>1.080 Environmental Chemistry and Biology, 12; 1.107, 5.311/5.312/5.091, 3.042/7.013/7.014</td>
<td></td>
</tr>
<tr>
<td>Restricted Elective</td>
<td>12</td>
</tr>
<tr>
<td>One advanced subject from the following list:</td>
<td></td>
</tr>
<tr>
<td>1.071 Global Change Science, 12; 18.05, 5.60</td>
<td></td>
</tr>
<tr>
<td>1.04 Physical Limnology, 12; 1.061</td>
<td></td>
</tr>
<tr>
<td>1.09 Introduction to Coastal Engineering, 12; 1.061</td>
<td></td>
</tr>
<tr>
<td>1.121 Groundwater Hydrology, 12; 1.061</td>
<td></td>
</tr>
<tr>
<td>1.731 Water Resources Systems, 12; 1.070</td>
<td></td>
</tr>
<tr>
<td>1.77 Water Quality Control, 12; 1.060</td>
<td></td>
</tr>
<tr>
<td>1.83 Environmental Organic Chemistry, 12; 5.12, 5.60</td>
<td></td>
</tr>
<tr>
<td>1.89 Environmental Microbiology, 12; 7.014</td>
<td></td>
</tr>
</tbody>
</table>

Departmental Program Units That also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Unrestricted Electives</th>
<th>(48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

1. Any of the subjects that fulfill the Institute Chemistry Requirement is satisfactory, though 5.111 or 5.112 is recommended.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
Bachelor of Science as Recommended by the Department of Civil and Environmental Engineering/Course 1-A

General Institute Requirements (GIRs) Subjects
Science Requirement
Humanities, Arts, and Social Sciences Requirement
Restricted Electives in Science and Technology (REST) Requirement (can be satisfied by 1.018 and 18.03 in the Departmental Program)
Laboratory Requirement (can be satisfied by 1.101 and 1.102 in the Departmental Program)
Total GIR Subjects Required for SB Degree

Communication Requirement
The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).10

PLUS Departmental Program Units
Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).
Required Subjects 84
Core 1.018 Ecology I: The Earth System, 12, REST; 7.012/7.013/7.014 1.020 Ecology II: Engineering for Sustainability, 12, CI-M; 1.018 1.050 Engineering Mechanics I, 12; 8.01, 18.02 1.060 Engineering Mechanics II, 12; 1.050, 18.03 18.03 Differential Equations, 12, REST; 18.02 or 18.04
One of the following two subjects: 1.00 Introduction to Computers and Engineering Problem Solving, 12, REST; 18.01 1.010 Uncertainty in Engineering, 12; 18.02 Laboratory
1.101 Introduction to Civil and Environmental Engineering Design I, 6, LAB; 1.050, 1.018 1.102 Introduction to Civil and Environmental Engineering Design II, 6, LAB; 1.101, 1.060, 1.020
Restricted Electives 84
Students are required to take a coherent set of seven full subjects that meet a well-defined educational goal. These may be from within or outside the Department of Civil and Environmental Engineering. The electives must be approved by the student’s academic advisor and the undergraduate officer of the department.

Departmental Program Units That also Satisfy the GIRs (36)
Unrestricted Electives 48
Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
10) To satisfy the CI-M component of the Communication Requirement, students must take the department’s two CI-M subjects (1.013 and 1.020) or, if appropriate, take one Course 1 CI-M subject and petition to substitute one CI-M from another science or engineering field. The outside CI-M must fit into the coherent program of electives approved by the student’s academic advisor.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

Undergraduate Summer Internship Program
Sophomores and juniors majoring in civil and environmental engineering may apply to participate in the Undergraduate Summer Internship Program, coordinated by the Department of Civil and Environmental Engineering. The internship program helps students find summer employment opportunities in civil and environmental engineering. The department works with many companies and agencies to ensure that attractive internship opportunities are available for qualified students. For more information and a partial listing of companies, see the Summer Internship Program description on the departmental website at http://cee.mit.edu/.

Undergraduate Practice Opportunities Program
The Undergraduate Practice Opportunities Program (UPOP) is a new program sponsored by the School of Engineering and administered through the Office of the Dean of Engineering. Further information on the program may be obtained from the department in which the student is registered or from Christopher Resto, director, Undergraduate Practice Opportunities Program, MIT, Room 12-188, Cambridge, MA 02139-4307, 617-452-5099, fax 617-253-8457, cresto@mit.edu, or from the website at http://web.mit.edu/engineering/upop/.

Electives and Research Opportunities
A list of undergraduate electives in civil and environmental engineering may be obtained from the department. Students registered in the department are encouraged to consider appropriate subjects offered by other departments as part of their elective programs.

Students wishing to work closely with a member of the faculty on research may obtain permission to register for thesis, or to enroll in 1.999 Undergraduate Studies in Civil and Environmental Engineering. Numerous possibilities for UROP projects exist in the department, and several UROP traineeships are awarded to undergraduates each spring.

Minor Programs
The Minor in Civil Engineering consists of the following subjects:

1.050 Engineering Mechanics I
1.060 Engineering Mechanics II
1.101 Introduction to Civil and Environmental Engineering Design I
1.102 Introduction to Civil and Environmental Engineering Design II
1.035 Mechanics of Structures and Soils and
1.041 Engineering Systems Design or
1.036 Structural and Geotechnical Engineering Design
The Minor in Environmental Engineering Science consists of the following subjects:

1.018 Ecology I: The Earth System
1.020 Ecology II: Engineering for Sustainability
1.101 Introduction to Civil and Environmental Engineering Design I
1.102 Introduction to Civil and Environmental Engineering Design II
1.080 Environmental Chemistry and Biology
1.107 Environmental Chemistry and Biology Laboratory

and one of the following four subjects:

11.002 Fundamentals of Public Policy
11.122 Society and Environment
14.01 Principles of Microeconomics
17.32 Environmental Politics and Policy

Substitution of equivalent subjects offered by other departments is allowed, with permission of the minor advisor. However, at least three subjects must be Course 1 subjects.

For a general description of the minor program, see Undergraduate Education in Part 1.

G R A D U A T E S T U D Y

The Department of Civil and Environmental Engineering grants the following advanced degrees: Master of Engineering in Civil and Environmental Engineering, Master of Science in Transportation, Master of Science, Master of Science in Civil and Environmental Engineering, Civil Engineer, Doctor of Science, and Doctor of Philosophy. The Institute’s general requirements for these degrees are described under Graduate Education in Part 1. Detailed information on the departmental requirements for each degree may be obtained from the Academic Programs Office, Room 1-281.

Master of Engineering in Civil and Environmental Engineering

The department introduced the Master of Engineering (MEng) degree in 1995 as an important new complement to the department’s ongoing Master of Science in Civil and Environmental Engineering and doctoral degrees. The program of study is designed for individuals with a bachelor’s degree in engineering or a closely related field, and provides additional technical depth and an educational experience geared to professional practice.

The MEng is a fast-paced, intensive program designed to be completed in nine months. It is organized as follows:

- All students, independent of specialty area, take 1.133 Concepts of Engineering Practice, during the fall term. In this subject, participants work in teams to develop and present solutions to realistic professional problems, including topics such as project management and evaluation, negotiation, business development, and ethics. In addition, each specialty area has three suggested core subjects, two planned electives, and one free elective.

- The distinctive element of the program is a professional practice experience for each specialty area. It is composed of a required group project leading to an individual, practice-oriented thesis that builds on the group project.

- Because of their intensive coursework, MEng students do not have time to work as full-time research or teaching assistants. Some engage in part-time work, but we urge caution as this can drain time away from academic work. A limited number of partial-tuition fellowships are awarded on a merit basis.

- Admission requirements are similar to those for the Master of Science degree. MIT undergraduates may apply to the program at the end of their third year. Strong communication skills are expected.

For more information, see the Master of Engineering program description on the department’s website at http://cee.mit.edu/.

Fields of Advanced Study

Programs of advanced study are available in the following areas: geotechnical and geo-environmental engineering, structures and materials, environmental fluid mechanics and coastal engineering, hydrology, aquatic sciences, and systems (including transportation and information technology).

- Geotechnical engineering emphasizes fundamental principles of mechanics, materials, engineering geology, computational analysis and analysis of uncertainty that lay the basis for dealing with the challenging geotechnical engineering problems of the future.

- Geo-environmental engineering expands this emphasis to include contaminants in soils, in situ investigations, and remediation concepts building on geotechnical expertise and on other well-developed environmental activities in the department in fields such as chemistry and groundwater hydrology.

- The major areas of research are soft-ground construction, underground construction, constitutive modeling, fundamentals of material behavior, stability of natural rock slopes, pile foundations, applications of probability and decision theory, in situ testing, mining geotechnics, contaminant transport, earthquake engineering, and centrifuge model testing.

- Structure and materials gives students a broad understanding of the behavior of structures and the materials from which they are made. In the academic program, emphasis is placed on structural mechanics, mechanical behavior of construction materials, and the design of structural systems. Additional subjects in numerical methods and condition assessment in engineering are also recommended.

The current research program includes projects on computer-aided structural engineering, intelligent structural engineering systems, and high-performance bridges using innovative concepts. Additional projects include soil-structure interaction under seismic load, structural assessment, retrofit of damaged concrete and fracture critical steel structures using FRP composites, high-performance cementitious materials, including silica fume concrete and concrete with reduced shrinkage, deterioration of concrete as a porous material under cyclic environmental effects, corrosion of steel in concrete, nondestructive evaluation of steel and concrete structures, imaging technologies using microwave and ultrasound, and advanced transducers and sensor technology for self-diagnosing composite structures.

A wide selection of subjects and research opportunities is offered in the area of environmental fluid mechanics and coastal engineering. These include theoretical and applied fluid mechanics, hydrodynamics of wave motion, beach erosion and coastal sediment problems, wave interaction in harbors and offshore structures, estuary and coastal circulation and water quality, energy extraction from waves and the ocean thermal gradient, economic development,
and environmental impact assessment in the coastal zone. Related subjects in oceanography and ocean engineering are offered by other MIT departments and at the Woods Hole Oceanographic Institution.

Offerings in hydrology emphasize the close relationship between meteorology, climate, surface, soil, and groundwater. Issues of water quantity and quality, as well as resource management, are studied. Subjects cover deterministic and stochastic aspects of surface and groundwater, hydrometeorology, hydroclimatology, limnology, and water resource systems. Subjects are complemented by other MIT offerings in the earth and social sciences. Research activities encompass theoretical work as well as laboratory and field experimental studies. Some topics of interest are the characterization of groundwater contamination, climate change, integration of remote sensing data and geographical information systems into hydrologic modeling, hydrologic parameterization of global climate models, field and theoretical quantification of runoff mechanisms, and an understanding of the development of river basins.

The programs in environmental chemistry, environmental biology, and environmental engineering range from fundamental science to engineering applications. Students may choose to pursue either an in-depth study in one of these areas or an interdisciplinary program drawing upon the full range of offerings. Subjects offered cover the basics of aquatic chemistry and biology, fate and transport models, and toxicology. Research opportunities encompass laboratory, field, and modeling studies with an emphasis on the fate and transport of pollutants, chemical and microbial transformations, biological oceanography, plankton ecology, molecular ecology, wetland geochemistry, harbor and coastal modeling, and local and regional water quality.

Entrance Requirements for Graduate Study
Applicants do not need to have an undergraduate degree in civil engineering.

Numerous opportunities for graduate education in civil and environmental engineering exist for students with backgrounds in other branches of engineering, science, and certain social sciences. These arise through the growth of interdepartmental research and degree programs that bring people of diverse backgrounds together in search of solutions to major societal problems. Graduate students and faculty in the department have experience, for example, in economics, political science, sociology, architecture, urban and regional planning, management, biology, geology, chemistry, computer science, and oceanography.

Primary requirements for graduate study are a keen intellect combined with capability and interest in quantitative approaches to real problems. Prerequisites for each subject are given in the subject descriptions. Students may make up deficiencies in prerequisites while pursuing a program of graduate study. All applicants are required to submit scores from the GRE Aptitude Test.

Financial Assistance
The research of the department is an integral part of the graduate program, and approximately 135 graduate students each year receive appointments as research or teaching assistants. Most of these appointments fully cover tuition and reasonable living expenses in the Boston area.

The Department of Civil and Environmental Engineering also has a number of fellowships for first-year graduate students. Applicants are also encouraged to apply for traineeships and fellowships offered nationally by the National Science Foundation, NASA, DOE, and other governmental agencies that traditionally support students in the department.

Interdisciplinary Programs
Through its interdisciplinary programs, the Civil and Environmental Engineering Department brings together the science, technology, systems, and management skills necessary to deal with the important engineering problems of the future.

Master of Science in Transportation
The educational and research programs in transportation center around the Master of Science in Transportation (MST) program. This program is based on the premise that a common set of analytical approaches and methodologies can be applied to solve a range of transportation problems. The MST provides a common basis for addressing a wide range of problems while allowing enough flexibility to accommodate students with diverse backgrounds and interests.

The only specific subjects required for admission are two subjects in calculus, one in economics, and one in probability. One or more of these subjects may be completed simultaneously with application to the program, and acceptance is then conditional on satisfactory completion of these prerequisites.

The MST typically takes one and one-half to two years to complete. Students in the MST program must complete a block of required core subjects, three program area subjects in a particular specialization, and a computational requirement in addition to the master’s thesis.

MST program areas can have a modular or disciplinary focus, and include (but are not limited to) urban transportation, air transportation, planning methods, logistics, policy, and ocean systems management.

For more information, see the MST program description on the department’s website at http://cee.mit.edu/.

Master of Engineering in Logistics
The Master of Engineering in Logistics is a professional degree program preparing graduates for logistics management careers in manufacturing, distribution, retail, transportation, and logistics organizations. It is the first program of its kind to produce logistics professionals with a system-wide perspective who are equally at home with sophisticated data analysis and with complex management issues. The nine-month, on-campus program is designed primarily for people with three to ten years of industry experience, but is open to anyone who can meet the entrance requirements. For further information, visit the program website at http://web.mit.edu/mlog/ or see the program description under the Engineering Systems Division in Part 2.

Master of Science in Technology and Policy
Students interested in problems of policy, risk assessment, and strategic planning for technology may apply for the interdepartmental Master of Science Program in Technology and Policy. This program combines subjects in advanced technology in the particular field of the student’s choosing with subjects in economics, systems analysis, political science, and law. The Technol-
ogy and Policy Program is described in detail under the Engineering Systems Division in Part 2. For more information, visit the website at http://tppserver.mit.edu.

Leaders for Manufacturing Program
The Leaders for Manufacturing program leads to two master’s degrees, an SM from an MIT engineering department and an MBA or SM from the Sloan School of Management. Applicants may apply through the Department of Civil and Environmental Engineering or the Sloan School of Management. For more information, visit the program website at http://lfm.mit.edu.

Joint Program with the Woods Hole Oceanographic Institution
The Joint Program with the Woods Hole Oceanographic Institution is intended for students whose primary career objectives are in the field of oceanography or oceanographic engineering. The program is described at the end of Part 2, or visit its website at http://web.mit.edu/mit-whoi/.

Inquiries
Detailed information about the academic policies and programs of the department may be obtained by writing to or visiting the Academic Programs Office, Room 1-281, MIT, Cambridge, MA 02139-4307, 617-253-7101, fax 617-258-6775, CEED@mit.edu.

RESEARCH LABORATORIES AND ACTIVITIES

The Department of Civil and Environmental Engineering occupies two major facilities on the MIT campus: the Ralph M. Parsons Laboratory and the Henry L. Pierce Engineering Laboratory. These buildings contain specialized research and teaching facilities, described below.

Ralph M. Parsons Laboratory
Located on the east campus, the Ralph M. Parsons Laboratory is a recently renovated four-story structure containing about 31,000 square feet of classrooms, teaching and research laboratories, machine shops, computer facilities, and offices. Approximately 70 graduate students and 17 faculty members have offices on the premises. Facilities exist for hydrodynamic studies involving wave motions, free surface flows, and flows in porous media. The latest in laser-Doppler instrumentation is available. Complete and modern laboratories facilitate research in inorganic chemistry, organic chemistry, biology, microbiology, and biochemistry. Especially notable instrumentation includes several GCs, a GC-MS, several HPLCs, an ICP, a graphite furnace AA, alpha and gamma spectrometry counting systems, scintillation counters, several flow cytometers, a laser light scattering instrument, and incubators, a cold room, and a clean room. Two laboratories are dedicated teaching facilities for environmental engineering and aquatic chemistry. Equipment is available for instruction in a wide range of field sampling methods, biological and microbiological evaluations, and instrumental chemical analyses of natural waters. Computer facilities include an 80 processor Beowulf (parallel computing) cluster.

Henry L. Pierce Engineering Laboratory
Located in one of MIT’s original buildings, this facility overlooks the Charles River and includes over 40,000 square feet of classrooms, teaching and research laboratories, and offices for approximately 200 graduate students and 21 faculty members and research staff from five professional programs: materials and structures, transportation, information technology, geoenvironment, and geotechnology, and construction engineering and management.

Research activities focus on four major areas: infrastructure, geoenvironment, information and management, and transportation. Among the classrooms is the state-of-the-art Bechtel Lecture Hall. Facilities include an undergraduate structures teaching laboratory, and a materials testing laboratory which provides facilities to process, fabricate and form specimens, test under various stress and environmental conditions, and investigate physical properties. The materials testing laboratory contains several servo hydraulic load frames, a biaxial loading system, and an environmental chamber. A scanning electron microscope with an x-ray analyzer is also available for micro-structural characterization and chemical analysis of materials. The geotechnical laboratories combine a broad range of equipment from conventional state-of-the-art to specialty research devices. Capabilities include industrial radiography; low temperature room; centralized data acquisition; computer automated consolidation, triaxial and simple shear devices; and a medium sized centrifuge. The nondestructive evaluation (NDE) laboratory is equipped with an ultrasonic scanning and imaging system, an ultrasonic phased array system, and a high power Nd:YAG laser system. The laboratory also houses a large variety of transducers and NDE facilities for transducer manufacturing and calibration, design and fabrication of control electronic circuitry, acoustic emission, and magnetic particle testing.

The Pierce Laboratory offers diverse and advanced computational facilities, including a large Athena cluster; networked Sun, Digital, SONY and Windows NT workstations; and numerous personal computers. Software features the X Window System, Motif, and C++ application environments and includes various AI programming tools, CAD packages, and multimedia hardware and software.

Laboratory for Energy and the Environment
The Education Program of the Laboratory for Energy and the Environment (LFEE) is dedicated to enhancing environmental literacy and deepening multidisciplinary environmental knowledge, particularly among the leaders of tomorrow’s science and technology communities. The program cultivates the capacity of learners at all levels to both understand and respond effectively to the challenges of sustainability.

Established in 2001, the LFEE Education Program inherits the objectives and projects formerly pursued at MIT by the Program on Environmental Education and Research (PEER). For more information, visit the LFEE Education Program website at http://lfee.mit.edu/education/.

Center for Environmental Health Sciences
Over the past 28 years, the Department of Civil and Environmental Engineering has had strong ties to the Center for Environmental Health Sciences in teaching and research activities related to understanding the role of chemical and biological agents in the environment as causes of human disease. More information about the center is available under Interdisciplinary...
Earth Systems Initiative
The Earth Systems Initiative (ESI) is a multidisciplinary research and educational enterprise between the Departments of Civil and Environmental Engineering and Earth, Atmospheric, and Planetary Sciences that seeks to understand the intimate relationships among the physical, chemical, biological, and geological processes that shape the Earth system. By involving faculty, staff, and students from environmentally oriented disciplines such as geology, atmospheric science, oceanography, biology, chemistry, computer science, and environmental engineering, ESI leverages different perspectives, and systems-oriented approaches, so that we can better understand how our planet functions, and how humans can be effective stewards of the Earth. For more information, visit ESI’s website at http://web.mit.edu/esi/, email ESI at esinfo@mit.edu, or call 617-253-6895.

Center for Global Change Science
The Center for Global Change Science (CGCS) seeks to understand the processes, natural and human-induced, that lead to changes in the atmosphere, oceans, and continental land masses. This interdepartmental center provides the opportunity for close cooperation in education and research between faculty and students of the Department of Civil and Environmental Engineering, the Department of Earth, Atmospheric, and Planetary Sciences, and other MIT departments. Major CGCS projects include the Climate Modelling Initiative, the Joint Program on the Science and Policy of Global Change, and the Advanced Global Atmospheric Gases Experiment. More information about the center is available under the Department of Earth, Atmospheric, and Planetary Sciences in Part 2. Contact the CGCS office at 617-253-4902, email CGCS at cgcs@mit.edu, or visit the websites at http://web.mit.edu/cgcs/www/ and http://web.mit.edu/globalchange/.

Mining and Mineral Resources Research Institute
The Mining and Mineral Resources Research Institute (MMRRI) coordinates academic and research activities in the mineral resources field.

FACULTY AND STAFF
Faculty and Teaching Staff
Patrick Jaillet, PhD
Professor of Civil and Environmental Engineering
Edmund K. Turner Professor of Civil and Environmental Engineering
Head of the Department

Professors
Herbert Heinrich Einstein, ScD
Professor of Civil and Environmental Engineering
Oral Buyukozturk, PhD
Professor of Civil and Environmental Engineering
Cynthia Barnhart, PhD
Professor of Civil and Environmental Engineering
Moshe Emanuel Ben-Akiva, PhD
Edmund K. Turner Professor of Civil and Environmental Engineering
Rafael Luis Bras, ScD
Professor of Civil and Environmental Engineering and Earth, Atmospheric, and Planetary Sciences
Edward A. Abdun-Nur Professor
Sallie W. Chisholm, PhD
Professor of Civil and Environmental Engineering and Biology
Lee and Geraldine Martin Professor
Jerome Joseph Connor, Jr., ScD
Professor of Civil and Environmental Engineering
Richard Lawrence de Neufville, PhD
Professor of Civil and Environmental Engineering
Professor of Engineering Systems
Codirector, Laboratory for Energy and the Environment
Dennis B. McLaughlin, PhD
H. M. King Bhumiipol Professor
Professor of Civil and Environmental Engineering
Chiang Chung Mei, PhD
Professor of Civil and Environmental Engineering
Ford Professor of Engineering
Fred Moavenzadeh, PhD
James Mason Crafts Professor
Professor of Civil and Environmental Engineering and Environmental Bacteriologists
Director, MIT Center for Technology, Policy, and Industrial Development
Heidi M. Nepf, PhD
Professor of Civil and Environmental Engineering
MacVicar Faculty Fellow
Amedeo Rodolfo Odoni, PhD
T. Wilson Professor of Aeronautics and Astronautics and Civil and Environmental Engineering

Philip Michael T. Gschwend, PhD
Professor of Civil and Environmental Engineering
Ford Professor of Engineering
Harold Field Hemond, PhD
Professor of Civil and Environmental Engineering
William E. Leonhard Professor of Engineering
Eduardo Kausel, PhD
Professor of Civil and Environmental Engineering
Richard C. Larson, PhD
Professor of Civil and Environmental Engineering
Edgar F. Delong
Professor of Civil and Environmental Engineering
Steven Richard Lerman, PhD
Professor of Civil and Environmental Engineering
Director, Center for Educational Computing Initiatives
Class of 1922 Distinguished Professor
Ole Secher Madsen, ScD
Professor of Civil and Environmental Engineering
Donald and Martha Harleman Professor
David Hunter Marks, PhD
Morton and Claire Goulder Family Professor
Professor of Civil and Environmental Engineering
Professor of Engineering Systems
Codirector, Laboratory for Energy and the Environment

Research and Study in Part 1, or visit the website at http://ehs.mit.edu/.

Earth Systems Initiative
The Earth Systems Initiative (ESI) is a multidisciplinary research and educational enterprise between the Departments of Civil and Environmental Engineering and Earth, Atmospheric, and Planetary Sciences that seeks to understand the intimate relationships among the physical, chemical, biological, and geological processes that shape the Earth system. By involving faculty, staff, and students from environmentally oriented disciplines such as geology, atmospheric science, oceanography, biology, chemistry, computer science, and environmental engineering, ESI leverages different perspectives, and systems-oriented approaches, so that we can better understand how our planet functions, and how humans can be effective stewards of the Earth. For more information, visit ESI’s website at http://web.mit.edu/esi/, email ESI at esinfo@mit.edu, or call 617-253-6895.

Center for Global Change Science
The Center for Global Change Science (CGCS) seeks to understand the processes, natural and human-induced, that lead to changes in the atmosphere, oceans, and continental land masses. This interdepartmental center provides the opportunity for close cooperation in education and research between faculty and students of the Department of Civil and Environmental Engineering, the Department of Earth, Atmospheric, and Planetary Sciences, and other MIT departments. Major CGCS projects include the Climate Modelling Initiative, the Joint Program on the Science and Policy of Global Change, and the Advanced Global Atmospheric Gases Experiment. More information about the center is available under the Department of Earth, Atmospheric, and Planetary Sciences in Part 2. Contact the CGCS office at 617-253-4902, email CGCS at cgcs@mit.edu, or visit the websites at http://web.mit.edu/cgcs/www/ and http://web.mit.edu/globalchange/.

Mining and Mineral Resources Research Institute
The Mining and Mineral Resources Research Institute (MMRRI) coordinates academic and research activities in the mineral resources field.
Yossi Sheffi, PhD
Professor of Civil and Environmental Engineering
Professor of Engineering Systems
Director, Center for Transportation and Logistics

David Simchi-Levi
Professor of Civil and Environmental Engineering
Professor of Engineering Systems

Joseph Martin Sussman, PhD
Professor of Civil and Environmental Engineering
Professor of Engineering Systems

JR East Professor

Daniele Veneziano, PhD
Professor of Civil and Environmental Engineering

Andrew J. Whittle, PhD
Professor of Civil and Environmental Engineering

Nigel Henry Moir Wilson, PhD
Professor of Civil and Environmental Engineering

Associate Professors
Charles F. Harvey, PhD
Associate Professor of Civil and Environmental Engineering

Martin F. Polz, PhD
Associate Professor of Civil and Environmental Engineering

Franz-Josef Ulm, PhD
Associate Professor of Civil and Environmental Engineering

John Williams, PhD
Associate Professor of Civil and Environmental Engineering

Associate Professor of Engineering Systems

Lecturers
Charles C. Caldaral, JD
Lisa Grebner, MS
V. Judson Harward, PhD
Kenneth E. Kruckemeyer, BArch
John Macomber, MBA
Susan Murcott, MS
Mikel Murga, PhD
Nathaniel Osgood, PhD

Research Staff

Senior Research Associate
Carl D. Martland, CE

Senior Research Engineer
Edward Eric Adams, PhD

Principal Research Associate
John T. Germaine, PhD

Principal Research Engineer
Earle Williams, PhD

Research Associate
Sheila L. Frankel, MA

Research Engineer
Terence Donahue, MS
John MacFarlane, SM
Susan Murcott, MS

Research Scientists
Jingfeng Wang, PhD
Xin Li, MS

Administrative Staff
Patricia A. Dixon
Administrative Officer
Donna Hudson, MA
Financial Officer
Deborah A. Levey, MS
Technical Writer
Victoria Murphy, BA
Administrative Assistant
Cynthia Stewart, BA
Academic Administrator

Professors Emeriti
Peter Sturges Eagleson, ScD
Edmund K. Turner Professor of Civil and Environmental Engineering, Emeritus

Lynn Walter Gelhar, PhD
Professor of Civil and Environmental Engineering, Emeritus

Robert Joseph Hansen, ScD
Professor of Civil and Environmental Engineering, Emeritus

Donald R. F. Harleman, ScD
Ford Professor of Engineering, Emeritus
Senior Lecturer

Myle Joseph Holley, Jr., SM
Professor of Civil and Environmental Engineering, Emeritus

Charles Cushing Ladd, ScD
Edmund K. Turner Professor of Civil and Environmental Engineering, Emeritus

Thomas William Lambe, ScD
Edmund K. Turner Professor of Civil and Environmental Engineering, Emeritus

Robert Daniel Logcher, ScD
Professor of Civil and Environmental Engineering, Emeritus

Frank Edward Perkins, ScD
Professor of Civil and Environmental Engineering, Emeritus

Robert Van Duyne Whitman, ScD
Professor of Civil and Environmental Engineering, Emeritus
The emerging field of computational and systems biology represents an integration of concepts and ideas from the biological sciences, engineering disciplines, and computer science. Recent advances in biology, including the human genome project and massively parallel approaches to probing biological samples, have created a new opportunity to focus on understanding biological problems from a systems perspective. Systems modeling and design are well established in engineering disciplines but are relatively new to biology. Advances in computational and systems biology require multidisciplinary teams with skill in applying principles and tools from engineering and computer science to solve problems in biology and medicine. To provide education in this emerging field, the Computational and Systems Biology (CSB) program integrates MIT’s world-renowned disciplines in biology, engineering, math and computer science. Graduates of the program will be uniquely prepared to develop new methods, make novel discoveries and establish new paradigms. They will also be well-positioned to assume critical leadership roles in both academia and industry, where this new area is becoming increasingly important.

At MIT, research and education in Computational and Systems Biology are characterized by “the four M’s”—measurement, mining, modeling, and manipulation, with many diverse research groups working in these complementary areas. Efforts in measurement emphasize the systematic collection of data and the development of new experimental methods (e.g., using microfabrication). Research in mining and modeling aims to develop new methods, make novel discoveries and establish new paradigms. The CSB curriculum has two components. The first is a core that provides foundational knowledge of both biology and computational biology. The second is a customized program of electives that are selected by each student to reflect their interests and career aspirations.

Curriculum
The CSB curriculum has two components. The first is a core that provides foundational knowledge of both biology and computational biology. The second is a customized program of electives that are selected by each student to reflect their interests and career aspirations.

Core Curriculum
The core curriculum consists of three classroom subjects plus a set of four two-month rotations in different research groups. The classroom subjects fall into three areas described below.

Modern Biology (One Subject): A term of modern biology at MIT strengthens the biology base of all students in the program. Subjects in cell biology, molecular biology, neurobiology, biochemistry, or genetics fulfill this requirement. The particular course taken by each student will depend on their background and will be determined in consultation with graduate committee members.

Computational Biology (One Subject): A term of computational biology provides students with a background in the application of computation to biology, including analysis and modeling of sequence, structural, and systems data. This requirement can be fulfilled with “Foundations of Computational and Systems Biology.”

Topics in Computational and Systems Biology (One Subject): All first-year students in the program participate in “Topics in Computational and Systems Biology,” a literature-based exploration of current frontiers and paradigms in this emerging field. This subject is limited to students in the CSB PhD program in order to build a strong community among the class. It is the only subject in the program with such a limitation.

Research Group Rotations (Four Rotations): To assist students with lab selection and provide
a range of research activities in computational and systems biology, students participate in four two-month long research rotations during their first year. Students are encouraged to gain experience in experimental and computational approaches taken across different disciplines at MIT.

Advanced Electives
The requirement of four advanced electives is designed to develop both breadth and depth for students in the CSB PhD program. The electives add to the base of the diversified core and contribute strength in areas related to student interest and research direction. To develop depth, two of the four advanced electives must be in the same area (department). To develop breadth, at least one of the electives must be from an engineering discipline and at least one from a biology-related field. Each student will design a program of advanced electives that satisfies the distribution and area requirements in close consultation with members of the graduate committee.

Additional Subjects: As is typical for students in other doctoral programs at MIT, CSB PhD students may take classes beyond the required diversified core and advanced electives described above. These additional subjects can be used to add breadth or depth to the proposed curriculum, and might be useful to explore advanced topics considered for the thesis research in later years. The CSB Graduate Committee will work with each graduate student to develop a path through the curriculum appropriate for his or her background and research interests.

Qualifying Exams: In addition to coursework and a research thesis, each student must pass a written and an oral qualifying examination in the second year. The written examination involves preparing a research proposal based on the student’s thesis research, and presenting the proposal to the examination committee. This process provides a strong foundation for the thesis, incorporating new research ideas and refinement of the scope of the research project. The oral examination is based on the coursework taken and on related published literature. The qualifying exams are designed to develop and demonstrate depth in a selected area (the area of the thesis research) as well as breadth of knowledge across the field of computational and systems biology.

FACULTY AND STAFF

CSB Graduate Committee
Bruce Tidor, PhD
Professor of Biological Engineering and Computer Science
Chair of the Committee

Drew Endy, PhD
Assistant Professor of Biological Engineering

Alan D. Grossman, PhD
Praecis Professor of Biology

Amy E. Keating, PhD
Robert Swanson Career Development Assistant Professor of Biology

Scott R. Manalis, PhD
Associate Professor of Biological Engineering

Joel Voldman, PhD
Assistant Professor of Electrical Engineering

Forest White, PhD
Assistant Professor of Biological Engineering

Jacob K. White, PhD
Professor of Electrical Engineering

Administrative Staff
Darlene K. Ray
Academic Administrator
Many of the products and services in modern society are based upon the work of electrical engineers and computer scientists. The tremendous increase over the last decade in the capabilities of digital electronic devices has led to an explosive growth in the use of computers and computation. At the same time, our increased understanding of computer science has made possible the development of new software systems of increased power, sophistication, and flexibility.

Electrical communication systems involving wires, optical fibers, or wireless technology abound in radio, television, telephone, and computer communication networks. Modern electronics has made possible sophisticated instrumentation systems for use in all branches of the physical and biological sciences, as well as in most areas of engineering and manufacturing. Electrical machines and electronic circuits control a multitude of systems that deeply affect our lives in many ways. The large quantities of electric power that serve society are provided by electric generators and are controlled and distributed by complex transmission and switching networks.

Modern electronic systems are increasingly digital in nature, exceedingly complex, and would be inconceivable without today’s VLSI chip technology. Indeed, such systems are so complex that the principles of their design bear great similarities to the design principles of large software systems. Thus, computer science and electronic system design require similar backgrounds in many respects, and computer aids to design are essential in this ever-expanding domain of engineering.

The pervasiveness and success of electrical engineering and computer science are due in large part to the conceptual models that electrical engineers and computer scientists have developed for the devices and systems with which they work. These models are based on a background of mathematics and physical sciences, including the fundamental electric and magnetic properties of materials, and are employed in a wide range of applied problems in both man-made and biological systems.

Accordingly, the focus of the undergraduate curricula is on the fundamental principles and models of the electrical and computer sciences. Engineering concentrations, laboratory subjects, independent projects, and research complement this preparation by introducing more specialized techniques of analysis, design, and experimentation in a variety of fields.

More information about the Department of Electrical Engineering and Computer Science and its programs can be obtained from the department’s website at http://www.eecs.mit.edu/.

PROFESSIONAL AND PREPROFESSIONAL PROGRAMS

For students entering MIT from secondary schools and planning professional careers in the fields of electrical engineering and computer science, the Department of Electrical Engineering and Computer Science offers programs leading to the Master of Engineering degree and to the Bachelor of Science degree. Three preprofessional four-year bachelor’s programs are available. One is for students specializing in electrical science and engineering, a second for those specializing in computer science and engineering, and a third for those whose interests cross this traditional boundary. For qualified students, the principal departmental professional program leads directly, through a seamless five-year course of study, to the simultaneous awarding of the Master of Engineering and one of the three bachelor’s degrees. An undergraduate who wishes to pursue the Master of Engineering degree should initially register for any of the three bachelor’s programs. The 6-A Internship Program combines either the professional Master of Engineering or a preprofessional bachelor’s academic program with periods of industrial practice at affiliated companies. All these programs are described in more detail in the paragraphs and sections that follow. A Minor in Biomedical Engineering is also available. For more information, see the School of Engineering Overview.

The program leading to the Master of Engineering degree in Electrical Engineering and Computer Science is intended to provide the depth of knowledge and the skills needed for professional work as well as the breadth and perspective essential for engineering leadership in an increasingly complex technological world. This program builds on the General Institute Requirements in science and the humanities, together with 18.03 Differential Equations and the core of required departmental subjects (6.001, 6.002, 6.003, and 6.004, each including a laboratory component), which introduce students to the fundamentals of electrical circuits, signals and dynamic systems, the principles of computation, and the organization of computing systems. The heart of the program is a group of nine Engineering Concentration subjects selected from seven concentration lists under constraints designed to ensure appropriate depth and breadth. The remainder of the program consists of restricted choices in engineering laboratories and mathematics which, together with free electives and a thesis, permit individual students to shape their programs to their special interests.

The major part of the Master of Engineering curriculum is composed of classroom subjects presented in lecture-recitation format. These subjects provide an organized introduction to the principles and applications of electrical engineering and computer science—an introduction that is reinforced by regularly assigned homework exercises and, in many cases, elementary laboratory or design problems. An appreciation of the principles of successful design is an important goal of the curriculum. The extent to which each departmental subject contributes towards this goal is indicated in the catalogue description of the subject through the specification of Engineering Design (ED) points; a total of at least 48 ED points is required in each student’s program.

The focus on design is also aided by two other important components of the Master of Engineering program: laboratory-project subjects and thesis. Laboratory-project subjects expose the student to the design of experiments, equipment, or computer programs, as well as to the problems of implementation and the evaluation of results. Because of the importance of this experience, students are expected to complete one departmental laboratory subject in addition to the General Institute Laboratory Requirement, which may be satisfied by a second departmental laboratory subject. Most departmental laboratory subjects provide 12 ED points. The thesis for the Master of Engineering degree is normally 24 units of effort; each thesis is assigned an appropriate number of ED points by the thesis supervisor depending on the nature of the activity.
Joint theses, based on a group project in which each participant has an identified responsibility, are encouraged.

The four-year preprofessional programs leading to a Bachelor of Science degree are shorter and less comprehensive than the Master of Engineering program. These programs are accredited by the Accreditation Board for Engineering and Technology (ABET) and, in the case of 6-2 and 6-3, by the Computing Accreditation Commission of ABET (CAC). Recipients of a Master of Engineering degree normally receive a Bachelor of Science degree simultaneously. No thesis is explicitly required for the preprofessional Bachelor of Science degree. However, every program must include a major project experience at an advanced level, culminating in written and oral reports. Normally, the thesis for the Master of Engineering degree provides this experience for students receiving both degrees simultaneously.

The requirements listed for the department programs are not rigid. Much flexibility is built into the elective structure; 48 units of totally unrestricted electives are included in every Master of Engineering program. Some further variations in requirements are routinely permitted, while still others will be considered on an individual basis. Approval of requests for substantial changes may be granted to well-prepared students whose proposed programs provide an integrated approach to a well-defined educational objective and are comparable with the listed curricula in breadth and depth. Changes affecting the required core portion of each curriculum, however, are rarely approved.

Programs leading to the professional five-year Master of Engineering degree or to the preprofessional four-year Bachelor of Science degrees can easily be arranged to be identical through the junior year. At the end of the junior year, students with strong academic records will be offered the opportunity to continue through the five-year master’s program. To remain in the program and to receive the Master of Engineering degree, students will be expected to maintain strong academic records. Admission to the Master of Engineering program is open only to undergraduate students who have completed their junior year in the Department of Electrical Engineering and Computer Science at MIT. Students with other preparations seeking a master’s level experience in EECS at MIT should

Bachelor of Science in Electrical Science and Engineering, Course 6-1
Bachelor of Science in Electrical Engineering and Computer Science, Course 6-2
Bachelor of Science in Computer Science and Engineering, Course 6-3

Those receiving simultaneous award of Master of Engineering in Electrical Engineering and Computer Science/ Course 6-P: See Course description of 6-P

General Institute Requirements (GIRs) Subjects
Science Requirement 6
Humanities, Arts, and Social Sciences Requirement 8
Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 6.001 or 6.002, and 18.03 in the Departmental Program] 2
Laboratory Requirement 1
Total GIR Subjects Required for SB Degree 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
two subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program Subjects
Subject names below are followed by credit units, Engineering Design (ED) points, and by prerequisites if any (corequisites in italics).

Required Subjects 84
6.001 Structure and Interpretation of Computer Programs, 15 (ED 4), REST
6.002 Circuits and Electronics, 15 (ED 4), REST; 8.02*, 18.03*
6.007 Signals and Systems, 15 (ED 4); 6.002
6.004 Computation Structures, 15 (ED 4); 6.001, 6.002
18.03 Differential Equations, 12, REST; 18.02* or 18.014
6.UAT/6.UAP Undergraduate Advanced Project, 12 (ED 0-12)

Restricted Electives 84
1. Either 6.041 (alternatively 18.440) or 6.042. Students in Course 6-1 must select 6.041 (or 18.440); students in Course 6-3 must select 6.042.
2. One 12-unit subject selected from the undergraduate laboratory subjects 6.100–6.182. Students in Course 6-3 must select 6.170. 6-1 and 6-2 students who take both 6.021 J and 6.022 J may use 6.022 J to satisfy the department laboratory requirement. Note that this departmental requirement is in addition to the General Institute Laboratory Requirement.
3. Five subjects from the list of Engineering Concentration subjects constrained as follows:
a) Students in Course 6-1 must take the header subjects in any three of the four Electrical Engineering Concentrations (Bioelectrical Engineering; Communication, Control, and Signal Processing; Devices, Circuits, and Systems; and Electrodynamics and Energy Systems). They must also take one additional subject in one of the three chosen Concentrations and one additional subject from any of the seven Concentrations.
b) Students in Course 6-3 must take the header subjects in each of the three Computer Science Concentrations (Artificial Intelligence and Applications; Computer Systems and Architecture; and Theoretical Computer Science). They must also take one additional subject in one of these three Concentrations and one additional subject from any of the seven Concentrations.
c) Students in Course 6-2 must take the header subjects from any two of the four Electrical Engineering Concentrations and any two of the three Computer Science Concentrations. The fifth Engineering Concentration subject may come from any of the seven Concentrations.

Departmental Program Units That also Satisfy the GIRs (27)
Unrestricted Electives 48

Total Units Beyond the GIRs Required for SB Degree 189
No subject can be counted both as part of the 17-subject GIRs and as part of the 189 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both. No subject may be counted in more than one of the three departmental restricted elective categories.

Notes
*Alternate prerequisites are listed in the subject descriptions.
For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
see the Master of Science program described later in this section.

The fifth year of study toward the Master of Engineering degree can be supported by a combination of personal funds, participation in the 6-A Internship Program described later in this section, an award such as a National Science Foundation Fellowship, a fellowship or a graduate assistantship, or an interest-subsidized student loan. Assistantships require participation in research or teaching in the department or in one of the associated laboratories. Assistants normally register for two scheduled classroom or laboratory subjects, and may receive academic credit for their participation in the teaching or research program. Support through an assistantship may extend the period required to complete the Master of Engineering program by an additional term or two. Support is granted competitively to graduate students and will not be available for all of those admitted to the Master of Engineering program. If provided, department support for Master of Engineering candidates is limited to the first three terms as a graduate student, unless the Master of Engineering thesis has been completed or the student has been admitted to the doctoral program, in which case a 4th term of support may be permitted.

Additional information about the department’s professional and preprofessional programs may be obtained from the EECS Undergraduate Office, Room 38-476, MIT, Cambridge, MA 02139-4307, 617-253-7329, ug@eecs.mit.edu.

Master of Engineering in Electrical Engineering and Computer Science/Course 6-P

See Notes on Bachelor’s Degree Programs

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives in Science and Technology (REST) Requirement (can be satisfied by 6.001 or 6.002, and 18.03 in the Departmental Program) Laboratory Requirement

| Total GIR Subjects Required for SB and MEng Degrees | 17 |

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, Engineering Design (ED) points, and by prerequisites if any (corequisites in italics).

Required Subjects

| 6.001 Structure and Interpretation of Computer Programs, 15 (ED 4), REST; 6.002 Circuits and Electronics, 15 (ED 4), REST; 8.02*, 18.03* |
| 6.003 Signals and Systems, 15 (ED 4); 6.002 |
| 6.004 Computation Structures, 15 (ED 4); 6.001, 6.002 |
| 18.03 Differential Equations, 12; REST; 18.02* or 18.04 |
| 6.UAT/6.UAP Undergraduate Advanced Project, 12 (ED 0-12) |
| 6.ThM MEng Program Thesis, 24 (ED 0-24) |

Restricted Electives

1. Three of the following Mathematics subjects including 6.041 (alternatively 18.440) or 6.042 J or both. Note that some of these subjects are prerequisites for several subjects in the Engineering Concentration lists and are required in certain designated SB programs.

- 6.041 Probabilistic Systems Analysis, 12, REST; 18.02 (or 18.440 Probability and Random Variables, 12; 18.03) |
| 6.042 Mathematics for Computer Science, 12; 18.03 |
| 18.04 Complex Variables with Applications, 12; 18.03 (or 18.075 Advanced Calculus for Engineers, 12; 18.05) |
| 18.06 Linear Algebra, 12, REST; 18.02 (or 18.700 Linear Algebra, 12, REST; 18.02) |
| 18.085 Mathematical Methods for Engineers I, 12; 18.03* |
| 18.086 Mathematical Methods for Engineers II, 12; 18.03* |
| 18.000 Analysis I, 12; 18.03* |
| 18.311 Principles of Applied Mathematics, 12; 18.03* |
| 18.330 Introduction to Numerical Analysis, 12; 18.03* |
| 18.353 Nonlinear Dynamics I: Chaos, 12; 18.03, 18.02 |
| 18.705 Modern Algebra, 12; 18.02 |
| 18.781 Theory of Numbers, 12 |

2. One 12-unit subject selected from the undergraduate laboratory subjects 6.100–6.182. 6-1 and 6-2 students who take both 6.021 J and 6.022 J may use 6.022 J to satisfy the department laboratory requirement. Note that this departmental requirement is in addition to the General Institute Laboratory Requirement.

3. A total of nine subjects from the lists of Engineering Concentrations, as follows: (a) a Large Concentration consisting of a header and two other subjects from a single Engineering Concentration; (b) two Small Concentrations, each consisting of a header and one other subject from a single Engineering Concentration; (c) two additional Concentration Elective Subjects, freely chosen from any of the seven Engineering Concentrations. Note that prerequisite structures and designated SB program requirements may place further constraints on these selections.

- Every approved degree program must include 66 units of graduate credit in addition to the 24 units of 6.ThM (MEng Thesis) listed above. The 66 units of graduate credit must include four H-level subjects totaling at least 42 units; these 42 units must include 36 units of H-level subjects taken within the department.

- To complete the required Communication-Intensive Subjects in the major, students must take one of the CI-M subjects as a restricted elective in categories 2 or 3 above by the end of the third year: 6.021, 6.035, 6.101, 6.111, 6.115, 6.121, 6.131, 6.152, 6.182, or 6.805. 6.UAT/6.UAP constitutes the second CI-M.

- Every approved degree program must be arranged so as to satisfy the requirements of one of the three bachelor’s degree programs.
Engineering Concentrations

Artificial Intelligence and Applications
This concentration is concerned with the use of computation to accomplish specific tasks that are complex and often only weakly defined. Attention necessarily focuses on subsets of these tasks for which useful solutions can be developed. Since problems in this area are often motivated by a desire to understand or emulate intelligent human behavior, there are strong links to other fields such as neuroscience, psychology, mechanical engineering, and linguistics.

6.034 Artificial Intelligence

<table>
<thead>
<tr>
<th>Course</th>
<th>Remarks</th>
</tr>
</thead>
</table>

Graduate H- and G-level

*No longer offered, but may be used if taken in previous years.

Bioelectrical Engineering
This concentration applies engineering principles and tools to the understanding of living systems and to the design of technical devices whose specifications require some knowledge of the properties of living systems. Examples include the quantitative description of biological, physiological, or psychological systems, e.g., circulatory, sensory, or skeletal systems, protein or genetic structures, speech and natural language; devices that improve the operation of pathological systems, e.g., pacemakers, sensory aids, artificial tissues; and systems that aid in the effective delivery of health care, e.g., imaging systems, medical decision aids.

6.021J Quantitative Physiology: Cells and Tissues

<table>
<thead>
<tr>
<th>Course</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.022J, 6.023J, 6.024J, 6.801, 9.35</td>
<td></td>
</tr>
</tbody>
</table>

Graduate H-level

*No longer offered, but may be used if taken in previous years.

Appropriate graduate H-level Course 7, Course 9, BE, and HST subjects.

Communication, Control, and Signal Processing
This concentration is concerned with fundamental issues in the design, modeling, identification, optimization, and control of stochastic and/or dynamic systems; and the analysis and synthesis of algorithms and systems that process signals or information. Related applications are of interest, such as optical and data communication networks; processing of speech, image, radar, geophysical, oceanographic, and other signals; distributed and parallel computation; neural networks; power systems; aerospace systems; and logistical systems.

6.011 Introduction to Communication, Control, and Signal Processing

Undergraduate
6.302, 6.401*, 16.36

Graduate H-level

*No longer offered, but may be used if taken in previous years.

Computer Systems and Architecture
This concentration is characterized by its emphasis on the artifacts underlying computing systems, such as machine architectures, networks, data management systems, and compilers. The problems studied are typically relatively well defined, and solutions are evaluated according to many criteria, including performance, cost, and completeness. Many subjects emphasize design and optimization issues and the definition of interfaces.

6.033 Computer System Engineering

Undergraduate
6.035, 6.805

Graduate H-level

*No longer offered, but may be used if taken in previous years.
Devices, Circuits and Systems
This concentration concerns the application of electronics to the tasks of signal processing and energy transduction, including synthesis and fabrication as well as analysis and modeling of components, networks, and systems. Examples include digital and analog circuits and systems; power electronics, D/A and A/D conversion; silicon and compound semiconductor physics, devices and simulation; microelectromechanical sensors and actuators; quantum physics and devices; superconductivity.

6.012 Microelectronic Devices and Circuits

Undergraduate
6.151, 6.152, 6.302

Graduate H- and G-level

*No longer offered, but may be used if taken in previous years.

Electrodynamics and Energy Systems
This concentration concerns the applications of Maxwell’s equations and the Lorentz force law to quasistatic and electrodynamic systems and media. Examples include power systems; rotating machinery; electromechanical actuators, sensors, and systems; dielectric physics and high-voltage engineering; electromagnetic wave theory; radio, microwave, and optical systems; electrodynamics of plasmas and fusion energy systems; lasers, nonlinear optical interactions, and optical information processing; and electrophysiological and electrochemical systems.

6.013 J Electromagnetics and Applications

Undergraduate
6.014*, 6.061, 6.312*

Graduate H- and G-level

*No longer offered, but may be used if taken in previous years.

Theoretical Computer Science
This concentration is characterized by the use of mathematics to better understand computation. The subarea of complexity theory studies the limits and capabilities of various models of computation, as well as the relationships among models. In the subarea of algorithms, the efficient use of computational resources—such as time, memory, and the number of processors—is explored. The subarea of semantics studies the expressiveness of computer languages. Topics within theoretical computer science are drawn from the entire range of computer science, from artificial intelligence to systems engineering, but with an emphasis on formal reasoning.

6.046 J Introduction to Algorithms

Undergraduate
6.0441*, 6.0451, 18.433

Graduate H-level

*No longer offered, but may be used if taken in previous years.

6-A Internship Program
The 6-A Internship Program enables students to combine classroom studies with practical experience in industry through a series of supervised work assignments at one of the companies or laboratories participating in the program. Collectively, the participating organizations provide a wide spectrum of assignments in the various fields of electrical engineering and computer science, as well as an exposure to the kinds of activities in which engineers are currently engaged. Since a continuing liaison between the companies and faculty of the department is maintained, students receive assignments of progressive responsibility and sophistication that are usually more professionally rewarding than typical summer jobs.

The 6-A Internship Program is primarily designed to work in conjunction with the department’s five-year Master of Engineering degree program. Internship students may complete up to four assignments with their cooperating company—usually three summers and one regular term. While on internship assignment, students receive pay from the participating company as well as academic credit for their work.

In the year 2001 substantial changes were made to the 6-A Internship Program to maximize flexibility for 6-A students by allowing easy entrance and exit at any time. A new Fall 6-A recruitment has been added for seniors who wish to do an industry-based Master of Engineering thesis.

Undergraduate students may apply for admission to the 6-A Internship Program during the annual selection periods in the fall and spring terms. The department cannot guarantee the acceptance of a student into the program, since openings are limited. At the end of their junior year, most 6-A students can expect to gain admission to 6-PA, the Internship version of 6-P, the department’s five-year Master of Engineering degree program. 6-PA students do their MEng thesis at their participating company’s facilities. They can apply up to 48 units of work-assignment credit toward their MEng degree. Thus, completing the Master of Engineering program need not take longer under 6-PA than under the 6-P program.

6-A students who do not gain admission to 6-PA complete a minimum of two work assignments and receive the bachelor’s degree, normally at the end of four years. One of the work assignments may be used for the required Advanced Undergraduate Project, by including a written report and approval by a faculty member.

6-A students generally remain with the company with which they start the program. At the conclusion of the program, students are not obliged to accept employment with the company, nor is the company obliged to offer such employment.

Additional information about the 6-A Internship Program is available at the 6-A Office, Room 38-409E, MIT, Cambridge MA 02139-4307, 617-253-4644, and on the department website.

Doctoral and Predoctoral Programs

The programs of education offered by the Department of Electrical Engineering and Computer Science at the doctoral and predoctoral level have three aspects. First, a variety of classroom subjects in physics, mathematics, and fundamental fields of electrical engineering and
computer science is provided to permit students to develop strong scientific backgrounds. Second, more specialized classroom and laboratory subjects and a wide variety of colloquia and seminars introduce the student to the problems of current interest in many fields of research, and to the techniques that may be useful in attacking them. Third, each student conducts research under the direct supervision of a member of the faculty and reports the results in a thesis.

Three advanced degree programs are offered in addition to the Master of Engineering program described above. A well-prepared student with a bachelor’s degree in an appropriate field from some school other than MIT (or from another department at MIT) normally requires about one and one-half years to complete the formal studies and the required thesis research in the Master of Science degree program. (Students who have been undergraduates in Electrical Engineering and Computer Science at MIT and who seek opportunities for further study must complete the Master of Engineering rather than the Master of Science degree program.) With an additional year of study and research beyond the master’s level, a student in the doctoral or predoctoral program can complete the requirements for the degree of Electrical Engineer or Engineer in Computer Science. The doctoral program usually takes about four and one-half years beyond the master’s level, or five to six years beyond a bachelor’s degree.

There are no fixed programs of study for these doctoral and predoctoral degrees. Each student plans a program in consultation with a faculty advisor. As the program moves toward thesis research, it usually centers in one of a number of areas, each characterized by an active research program. Areas of specialization include systems, communications, and control; computer science; artificial intelligence; electronics, computers, and systems; electromagnetics and dynamics; energy conversion devices and systems; materials and devices; VLSI system design and technology; communication and probabilistic systems; operations research; optics and quantum electronics; bioelectrical engineering; power engineering; and high-voltage engineering.

In addition to graduate subjects in electrical engineering and computer science, many students find it profitable to study subjects in other departments such as Biology, Economics, Linguistics and Philosophy, Management, Mathematics, Physics, and Brain and Cognitive Sciences.

The informal seminar is an important mechanism for bringing together members of the various research groups. About 16 seminars meet every week. In these, graduate students, faculty, and visitors report their research in an atmosphere of free discussion and criticism. These open seminars are excellent places to learn about the various research activities in the department.

Research activities in electrical engineering and computer science are carried on by students and faculty in laboratories of extraordinary range and strength, including the Laboratory for Information and Decision Systems, Research Laboratory of Electronics, Computer Science and Artificial Intelligence Laboratory, Center for Materials Science and Engineering, Laboratory for Electromagnetic and Electronic Systems, Laboratory for Energy and the Environment, Kavli Institute for Space Research, Lincoln Laboratory, Media Laboratory, Francis Bitter Magnet Laboratory, Operations Research Center, Plasma Science and Fusion Center, and the Microsystems Technology Laboratories. Full descriptions of many of these laboratories, including a list of current projects, may be found in the section on Interdisciplinary Research and Study in Part 1.

Because the backgrounds of applicants to the department’s doctoral and predoctoral programs are extremely varied, both as to field (electrical engineering, computer science, physics, mathematics, biomedical engineering, etc.) and as to level (bachelor’s or master’s) of previous degree, no specific admissions requirements are listed. All applicants for any of these advanced programs will be evaluated in terms of their potential for successful completion of the department’s doctoral program. Superior achievement in relevant technical fields is considered particularly important.

Master of Science in Electrical Engineering and Computer Science

The general requirements for the degree of Master of Science are given in the section on Graduate Education in Part 1. The department requires that the 66-unit program consist of at least four H-level subjects which must include a minimum of 42 H-level units. In addition, a 24-unit thesis is required beyond the 66 units. Students working full-time for the Master of Science degree may take as many as four classroom subjects per term. The subjects are wholly elective and are not restricted to those given by the department. The program of study must be well balanced, emphasizing one or more of the theoretical or experimental aspects of electrical engineering or computer science.

Master of Science in Engineering and Management

The System Design and Management (SDM) program is MIT’s first degree program to be offered with a distance learning option in addition to a full-time in-residence option. Please refer to the description of the SDM program in the Engineering Systems Division section in Part 2.

Electrical Engineer or Engineer in Computer Science

The general requirements for an engineer’s degree are given in the section on Graduate Education in Part 1. These degrees are open to those able students in the doctoral or predoctoral program who seek more extensive training and research experiences than are possible within the master’s program. Admission to the engineer’s program depends upon a superior academic record and outstanding progress on a thesis. The course of studies consists of at least 162 units, 90 of which must be graduate H-level, and the thesis requirements for a master’s degree.

Doctor of Philosophy or Doctor of Science

The general requirements for the degree of Doctor of Philosophy or Doctor of Science are given in the section on Graduate Education in Part 1. Doctoral candidates are expected to participate fully in the educational program of the department and to perform thesis work that is a significant contribution to knowledge. As preparation, MIT students in the Master of Engineering in Electrical Engineering and Computer Science program will be expected to complete that program. Non-MIT students who have received a bachelor’s degree, but who have not completed a master’s degree program, will normally be
expected to complete the requirements for the Master of Science degree described earlier, including a thesis. Students who have completed a master’s degree elsewhere without a significant research component will be required to register for and carry out a research accomplishment equivalent to a master’s thesis before being allowed to proceed in the doctoral program.

Details of how students in the department fulfill the General Institute Requirements for the doctoral program are spelled out in an internal memorandum. The department does not have a foreign language requirement, but does require an approved minor program.

Joint Program with the Woods Hole Oceanographic Institution/Course 6-W

The Joint Program with the Woods Hole Oceanographic Institution is intended for students whose primary career objective is oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. The program is described in more detail at the end of Part 2.

Other Degree Programs

Graduate students enrolled in the department may participate in the interdisciplinary centers described in Part 1, such as the Center for Biomedical Engineering, and the Operations Research Center. See also the descriptions of the Leaders for Manufacturing Program and the Technology and Policy Program in the Engineering Systems Division section in Part 2.

Fellowships and Research and Teaching Assistants

Studies toward an advanced degree can be supported by personal funds, by an award such as the National Science Foundation Fellowship (which the student brings to MIT), by a fellowship or traineeship awarded by MIT, or by a graduate assistantship. Assistantships require participation in research or teaching in the department or in one of the associated laboratories. Assistants normally register for no more than two or three scheduled classroom or laboratory subjects, depending upon the conditions of their appointments, and may receive additional academic credit for their participation in the teaching or research program.

Inquiries

Additional information concerning graduate academic and research programs, admissions, financial aid, and assistantships may be obtained from the Electrical Engineering and Computer Science Graduate Office, Room 38-444, MIT, Cambridge MA 02139-4307, 617-253-4605, http://www-eecs.mit.edu/.

FACULTY AND STAFF

Faculty and Teaching Staff

L. Rafael Reif, PhD
Professor of Electrical Engineering
Head of the Department

Duane S. Boning, PhD
Professor of Electrical Engineering and Computer Science
Associate Head, Electrical Engineering

William Eric Leifur Grimson, PhD
Associate Head, Electrical Engineering

Bernard M. Gordon Professor of Medical Engineering

George C. Verghese, PhD
Professor of Electrical Engineering
Education Officer

Arthur Clarke Smith, PhD
Professor of Electrical Engineering
Education Officer

Graduate Officer

Markus Zahn, ScD
Thomas and Gerd Perkins Professor of Electrical Engineering
Director, 6-A Internship Program

Professors

Harold Abelson, PhD
Class of 1922 Professor of Computer Science and Engineering

Anant Agarwal, PhD
Professor of Computer Science and Engineering

Akintunde I. Akinwande, PhD
Professor of Electrical Engineering

Dimitri A. Antoniadis, PhD
Ray and Maria Stata Professor of Electrical Engineering

Arvind, PhD
Charles W. and Jennifer C. Johnson Professor of Computer Science and Engineering

Arthur Bernard Baggieroer, ScD
Ford Professor of Engineering and Mechanical Engineering

Abraham Bers, ScD
Professor of Electrical Engineering

Dimitri P. Bertsekas, PhD
McAfee Professor of Electrical Engineering

Robert Cregor Berwick, PhD
Professor of Computer Science and Engineering and Computational Linguistics

Louis Benjamin Daniel Braida, PhD
Henry Ellis Warren Professor of Electrical Engineering and Health Sciences and Technology

Rodney Allen Brooks, PhD
Matsushita Professor of Computer Science and Engineering

Director, Computer Science and Artificial Intelligence Laboratory

Vincent W. S. Chan, PhD
Joan and Irwin M. Jacobs Professor of Electrical Engineering and Aeronautics and Astronautics

Director, Laboratory for Information and Decision Systems

Anantha P. Chandrakasan, PhD
Joseph F. and Nancy P. Keithley Professor of Electrical Engineering

Munther A. Dahleh, PhD
Professor of Electrical Engineering

Randall Davis, PhD
Professor of Electrical Engineering

MacVicar Professor of Electrical Engineering

Arvind, PhD
Professor of Electrical Engineering

MacVicar Faculty Fellow

Srinivas Devadas, PhD
Professor of Electrical Engineering

Mildred Spiewak Dresselhaus, PhD
Institute Professor

Professor of Electrical Engineering and Physics

Clifton G. Fonstad, Jr., PhD
Vitesse Professor of Electrical Engineering

Dennis M. Freeman, PhD
Professor of Electrical Engineering
Karl K. Berggren, PhD
Assistant Professor of Electrical Engineering and Computer Science

Luca Daniel, PhD
Assistant Professor of Electrical Engineering

Joel L. Dawson
Assistant Professor of Electrical Engineering and Computer Science

Frederic P. Durand, PhD
Jamieson Career Development Assistant Professor of Computer Science and Engineering

Polina Golland, PhD
Assistant Professor of Computer Science and Engineering

Vivek K. Goyal, PhD
Assistant Professor of Electrical Engineering and Computer Science

Jovan Popovic, PhD
Assistant Professor of Computer Science and Engineering

Devavrat Shah, PhD
Assistant Professor of Electrical Engineering and Computer Science and Engineering Systems

Vladimir M. Stojanovic, PhD
Assistant Professor of Electrical Engineering and Computer Science

Collin M. Stultz, PhD, MD
Assistant Professor of Electrical Engineering and Computer Science and Health Sciences and Technology

Russell L. Tedrake, PhD
Assistant Professor of Computer Science and Engineering

Joel Voldman, PhD
NBX Career Development Assistant Professor of Electrical Engineering

Lizhong Zheng, PhD
Assistant Professor of Electrical Engineering

Adjunct Professors
G. David Forney, PhD
Adjunct Professor of Electrical Engineering

Butler W. Lampson, PhD
Adjunct Professor of Computer Science and Engineering

Michael Stonebraker
Adjunct Professor of Computer Science and Engineering

Visiting Professor
Vincent Blondel, PhD
Professor of Electrical Engineering

Senior Lecturer
Christopher J. Terman, PhD

Lecturers
Stephen Kent Burns, PhD
Tony Eng, PhD
Robert Harvey Rines, PhD
Charles E. Rohrs, PhD
Douglas T. Ross, SM
Howard E. Shrobe, PhD
Bruce D. Wedlock, ScD

Senior Technical Instructor
Byron M. Roscoe, MS

Technical Instructors
Lourence R. Pires, BS
C. Li-Wen Wang, PhD

Research Staff

Senior Research Scientists
David D. Clark, PhD
Thomas Frederic Knight, Jr., PhD

Principal Research Engineers
Eliot Frank, PhD

Research Affiliates
Elmer C. Lupton, PhD
Sheila Prasad, PhD
Aleksandar M. Stankovic, PhD
Stephen D. Umans, PhD

Postdoctoral Lecturers
Shivani Agarwal, PhD
Luis E. Ortiz, PhD

Postdoctoral Fellows
Karen Livescu, PhD
Kristine Rosfjord, PhD

Administrative Staff
Katrina Anderson, MS
Applications Development Programmer

David S. Bannister
Applications Development Programmer

Lisa A. Bella
Assistant to the Education Officer

Peggy Carney
Administrator, Graduate Admissions

Cheryl Charles, BA
Fiscal Officer

Agnes Y. Chow, MS
Administrative Officer

Myron L. Freeman
Manager, Departmental Computing

Anne M. Hunter, BA
Administrator, Undergraduate and MEng Programs
Professors Emeriti

Michael Athans, PhD
Professor of Electrical Engineering, Emeritus

Amar Gopal Bose, ScD
Professor of Electrical Engineering, Emeritus

James Donald Bruce, ScD
Professor of Electrical Engineering, Emeritus

Fernando José Corbató, PhD
Professor of Computer Science and Engineering, Emeritus

Jack Bonnell Dennis, ScD
Professor of Computer Science and Engineering, Emeritus

Alvin William Drake, ScD
Professor of Electrical Engineering, Emeritus

Murray Eden, PhD
Professor of Electrical Engineering, Emeritus

David Jacob Epstein, ScD
Professor of Electrical Engineering, Emeritus

Shaoul Ezekiel, ScD
Professor of Aeronautics and Astronautics and Electrical Engineering, Emeritus

Robert Mario Fano, ScD
Ford Professor of Electrical Engineering and Computer Science, Emeritus

Lawrence Samuel Frishkopf, PhD
Professor of Electrical and Bioengineering, Emeritus

Harry Constantine Gatos, PhD
Professor of Molecular Engineering and Electronic Materials, Emeritus

Leonard A. Gould, ScD
Professor of Electrical Engineering, Emeritus

Carl Eddie Hewitt, PhD
Associate Professor of Computer Science and Engineering, Emeritus

Robert Spaye Kennedy, ScD
Professor of Electrical Engineering, Emeritus

Francis Fan Lee, PhD
Professor of Electrical Engineering and Computer Science, Emeritus

Jerome Ya'el Letvin, MD
Professor of Electrical and Bioengineering and Communications Physiology, Emeritus

Alan Louis McWhorter, ScD
Professor of Electrical Engineering, Emeritus

Frederic Richard Morgenthaler, PhD
Professor of Electrical Engineering, Emeritus

Walter E. Morrow, Jr., MS
Professor of Electrical Engineering, Emeritus

George Woodman Pratt, Jr., PhD
Professor of Electrical Engineering, Emeritus

Jack Philip Ruina, DEE
Professor of Electrical Engineering, Emeritus

William Francis Schreiber, PhD
Professor of Electrical Engineering, Emeritus

Campbell Leach Searle, SM
Professor of Electrical Engineering, Emeritus

Stephen David Senturia, PhD
Professor of Electrical Engineering, Emeritus

William McConway Siebert, ScD
Ford Professor of Engineering, Emeritus

Louis Dijour Smullin, SM
Professor of Electrical Engineering, Emeritus

Richard Douglas Thornton, ScD
Professor of Electrical Engineering, Emeritus

Thomas Fischer Weiss, PhD
Professor of Electrical and Bioengineering, Emeritus

Joseph Weizenbaum, SM, ScD (honoris causa)
Professor of Computer Science and Engineering, Emeritus

David Calvin White, PhD
Ford Professor of Engineering, Emeritus

John McReynolds Wozencraft, PhD
Professor of Electrical Engineering, Emeritus

Henry Joseph Zimmermann, SM
Professor of Electrical Engineering, Emeritus
The mission of the Engineering Systems Division (ESD) is to pursue the study of complex technological systems and products considered in their broader environmental, financial, legal, organizational, and political context. MIT established the division in 1999 with the charter to develop academic programs that educate future leaders in engineering systems; to serve as a model to broaden engineering education generally; and to expand the scope and practice of engineering.

The Engineering Systems Division collaborates with the engineering departments and with management and social science faculty in the other schools at MIT. It also actively develops innovative relationships with industry and government through collaborative global research projects and long-distance educational programs at remote sites.

Designing engineering systems is increasingly difficult as they increase in the size, scope, and complexity that result from globalization, new technological capabilities, rising consumer expectations, and increasing social requirements. Consequently, intelligent development of engineering systems calls for new frameworks of analysis and design that are different from those of the traditional paradigm of engineering science. The effective design of engineering systems requires a more integrative approach in which engineering systems professionals view the technological system as part of a larger whole. ESD is founded on the recognition that new approaches, frameworks, and theories must be developed to design these systems.

To achieve its objectives, the Engineering Systems Division focuses first on education and adding value for its associated educational programs: the Technology and Policy Program, the Master of Engineering in Logistics, the Leaders for Manufacturing Program, and the System Design and Management Program. The division also has developed new educational initiatives, such as the new doctoral program in engineering systems, building upon those programs to prepare students for the challenges and opportunities of the 21st century.

To support its educational programs, the Engineering Systems Division also initiates research focused on important national and international issues that have science and technology components. These build upon the existing research programs in the Center for Technology, Policy, and Industrial Development; the Center for Transportation and Logistics; and the Center for Innovation in Product Development.

ESD’s educational and research programs are deeply involved with industry, government, and engineering practice in general. Units within ESD have many formal ties to multiple enterprises as well as novel industry-academic relationships. Examples include: consortia formed around the International Motor Vehicle and the Lean Aerospace Programs in the Center for Technology, Policy, and Industrial Development; corporate and public affiliates programs of the Center for Transportation and Logistics, as well as its Integrated Supply Chain Management Program; corporate partnerships of the Leaders for Manufacturing Program and the System Design and Management Program; and the industrial partners of the Center for Innovation in Product Development and the Industrial Performance Center.

ESD provides the basis for a general education in the planning, design, and implementation of engineering systems and sponsors Master of Science and Master of Engineering degrees, as well as its interdisciplinary Doctor of Philosophy degree. The Master of Science programs are directed toward research and professional practice in specific areas: engineering systems technology and policy; logistics; manufacturing; and system design and management. The doctoral program focuses on advanced research in engineering systems, integrating engineering and applied social sciences.

Application forms for all programs can be downloaded from http://web.mit.edu/admissions/graduate/. Applicants whose first language is not English must offer evidence of written and oral proficiency in English by taking the Test of English as a Foreign Language (TOEFL) and achieving a score equal to or higher than 255 (610 for paper-based exam). Registration forms for this test can be obtained by contacting toefl@ets.org. Information about the Graduate Record Examinations (GRE) and Graduate Management Admissions Test (GMAT) is available at gre-info@ets.org and gmat@ets.org. Applicants should refer to the details of each program concerning specific requirements for admission. Links to all of the programs can be found at http://esd.mit.edu/.

All programs except MLOG may offer student fellowships or graduate research or teaching assistantships. Information about these should be obtained directly from the individual programs. Please refer also to the Academic Office of the Division (esdgrad@mit.edu), and to the MIT Sloan School of Management for programs offering joint degrees.

MASTER’S PROGRAMS

Master of Science in Engineering Systems

The SM in Engineering Systems is an engineering degree available to students with an undergraduate degree in engineering or science. The degree validates a curriculum and a thesis focusing on the design and implementation of technological systems. The ESD SM can be a terminal degree that prepares for productive practice, or it can be obtained during the ESD PhD program.

The ESD SM program allows ESD faculty and students to work together on issues of mutual interest different from those covered by the other SM programs that are part of ESD. (These are the TPP, MLog, and SDM programs described in the subsequent sections.) It can also serve as the Engineering SM for students in the Leaders for Manufacturing Program described later.

Admission to the ESD SM is based upon academic performance in engineering or applied science, standardized test scores, demonstrable interest in engineering systems as a field of study, and letters of recommendation. Students wishing to apply to the ESD SM program when they are already in the MIT graduate school should first discuss their interests with the ESD faculty and obtain the consent of an ESD faculty member in their field of interest to serve as advisor for their thesis. See the ESD admissions website for details: http://esd.mit.edu/esd_educational_programs/faqs_esd_sm_phd.html.

The ESD Education Committee makes admissions decisions once a year. Applications are due January 10. The ESD SM program begins in September. For additional information, please visit the website at http://esd.mit.edu/esd_educational_programs/esd_sm.html first. To resolve subsequent issues, email the ESD Academic Office at esdgrad@mit.edu or call 617-253-1182.
Master of Science in Technology and Policy

Students who want to pursue careers of leadership in the constructive development and use of technology have not been accommodated by the traditional educational paths that train either technical or social science specialists. The Technology and Policy Program (TPP) focuses on the need for engineering leaders who are capable of dealing effectively with core technical issues in their full economic, political, and administrative contexts. TPP educates “leaders who are engineers and scientists,” persons who have strong technical foundations as well as the skills and ability to deal with important strategic issues concerning the intelligent and effective development of technology.

The Master of Science in Technology and Policy is an engineering degree with a strong focus on the role of technology in policy analysis and formulation. Many students combine TPP’s curriculum with complementary subjects to obtain dual degrees in TPP and either a specialized branch of engineering or an applied social science such as political science or urban studies and planning.

The TPP curriculum provides a solid grounding in technology and policy by combining advanced subjects in the student’s chosen technical field with courses in economics, politics, and law. Because the overall objective is to prepare participants for effective professional practice, TPP stresses effective leadership and communication. It also encourages students to participate in TPP’s summer internship program, which places students in government and industry in the United States and around the world.

The TPP curriculum consists of three blocks of subjects and a thesis. The first block is a required integrative subject in technology and policy and a set of program seminars focusing on leadership and presentation skills. The second block focuses on training in formal frameworks for policy development and consists of restricted electives in microeconomics, political economy, and legal processes. The third block comprises a minimum of three coherent electives that fulfill professional and research objectives.

Completion of the academic and research requirements of the TPP SM typically takes three or four terms.

The subjects required for the TPP degree include ESD.10 Introduction to Technology and Policy and the following subjects or their equivalents: 15.011 Economic Analysis for Business Decisions, ESD.103 Science, Technology & Public Policy, and ESD.112 Law, Technology and Public Policy. Students are strongly encouraged to take ESD.71 Engineering Systems Analysis for Design, particularly those considering doctoral studies in ESD.

The TPP curriculum normally begins in September. Applications are due by January 10.

All applicants should have a strong basis in engineering or science, and must take the GRE. Strong candidates for the program typically score in the top 10 percent of all three GRE areas: verbal, quantitative, and analytic writing. Applicants whose first language is not English must take the TOEFL exam and achieve a score equal or higher than 255 (610 for paper-based version). Participants in TPP should generally have two years of work experience and be able to demonstrate evidence of leadership and initiative in their professional or other activities.

Contact the TPP program office in Room E40-369, 617-253-7693, tpp@mit.edu, or visit the website at http://tppserver.mit.edu/ for additional information.

Master of Engineering in Logistics

Initiated in the fall of 1998, the Master of Engineering in Logistics (MLOG) program is designed to supply the global logistics industry with a new type of supply chain professional, who is highly trained in both analytical problem solving and change management leadership. The one-of-a-kind professional degree program offered through ESD’s Center for Transportation & Logistics prepares graduates for logistics and supply chain management careers in manufacturing, distribution, retail, transportation, logistics, consulting, and software development organizations.

The MLOG degree is completed in nine months (September through May) on the MIT campus in Cambridge, MA. During that time, students take specialized classes taught by leading logistics and supply chain professionals in areas such as logistics systems, supply chain design, inventory planning, and transportation management. In addition, MLOG students are given the opportunity to work closely with corporate members of the Center for Transportation & Logistics on research projects and travel to our newest global logistics center in Spain—for a supply chain education that spans the globe.

The MLOG program requires 90 MIT credit units: eight required subjects and the completion of a thesis project. Students also take at least nine credit units of electives. Students who have already taken one of the required subjects at a graduate level elsewhere can petition to replace that subject with another elective.

The program is primarily for students with three to ten years of industry experience, but is open to anyone who can meet the entrance requirements. Applicants should have a background in college level calculus, economics, probability and statistics. All applicants for the MLOG degree must take the GRE General Test or GMAT. Applicants whose first language is not English must take the TOEFL exam and achieve a score equal to or higher than 255 (610 for paper-based exam).

The MLOG curriculum begins in September. There are two admission rounds. Round 1 deadline is January 13, 2006; Round 2 deadline is March 31, 2006. Applications should be sent to the MLOG Admissions Office.

For additional information, contact the MLOG Admissions Office, Room E40-367, 617-324-6564, mlog@mit.edu, or visit the website at http://web.mit.edu/mlog/.

System Design and Management Program

MIT’s System Design and Management (SDM) Program, offered jointly by the School of Engineering and the MIT Sloan School of Management, is a master’s degree program for professional engineers who seek to build upon their technical backgrounds and advance to positions of leadership in their profession.
The SDM Program offers the degree of Master of Science in Engineering and Management. Students take subjects drawn from three areas: systems (systems engineering, architecture, and optimization), management, and a technical area of the student’s choosing.

SDM provides both on-campus instruction for full-time degree students and distance learning instruction for professional engineers who are continuing in their positions while enrolled in the program. The 13-month full-time program begins in January and requires 11 courses, 4 electives, and a thesis. The distance learning program requires 24 months to complete, with an initial January on campus followed by five terms of distance education classes; students spend one term in residence at MIT, and the total course requirements, including thesis, are the same as for the full-time, 13-month program.

All core and foundation subjects are taught on campus and via distance education. There are currently two track options for SDM students: Design and Product Development (PD). Elective selection is determined by the track chosen. Students take one engineering and one management elective, and either two design or product development electives, depending on the track (Design or PD) chosen.

The ideal applicant for the SDM program will have a master’s degree in engineering or the equivalent and three or more years as a professional engineer, including experience as a team leader. Students with a bachelor’s degree and five years of professional experience, including leadership experience, are encouraged to apply.

The SDM Program begins in January. Potential student fellow may apply via the web at http://sdm.mit.edu/apply.html. For additional information contact the SDM Program Office in Room E40-315, 617-253-1055, sdm@mit.edu, or visit the website at http://sdm.mit.edu/.

Leaders for Manufacturing
The Leaders for Manufacturing (LFM) Program is an educational and research partnership between global manufacturing firms and MIT’s Schools of Engineering and Management. Its objective is to discover, codify, teach, and otherwise disseminate guiding principles for world-class manufacturing.

The Leaders for Manufacturing Program leads to two MIT master’s degrees, an SM from ESD or a participating engineering department and an MBA or SM from the Sloan School of Management. In addition to ESD, seven engineering master’s programs participate in LFM: Aeronautics and Astronautics, Biological Engineering, Chemical Engineering, Civil and Environmental Engineering, Electrical Engineering and Computer Science, Materials Science and Engineering, and Mechanical Engineering.

The 24-month, dual-degree LFM Program integrates engineering and management disciplines and emphasizes teamwork, management of change processes, and learning by doing. The rigorous curriculum is developed and taught by faculty from both schools. It includes a six-and-one-half-month internship for on-site research. The coursework and research culminate in a single thesis.

To complete the requirements for the LFM program, students also take engineering subjects in product development as well as additional electives in management and their engineering concentration.

The LFM academic program begins in June. Students are generally required to have at least two years of full-time work experience. Applications are due in December and can be made either through a participating engineering department or through the Sloan School of Management. All applicants must take either the GRE, if applying through any program in the School of Engineering, or the GMAT, if applying through the Sloan School of Management.

For additional information, visit the LFM website at http://lfm.mit.edu, contact the LFM program office at lfm@mit.edu or 617-253-1055, or see any of the participating engineering departments and the Sloan School of Management.

DOCTORAL PROGRAMS

Engineering Systems
The doctoral program in Engineering Systems enables students to develop technical expertise and apply new research methodologies to address problems in the development and implementation of engineering and technological systems. The ESD PhD requires engineers and other technical specialists to conduct original scholarship on complex technical systems, in order to advance theory, policy, or practice.

The ESD PhD builds on breadth and depth of knowledge in the core areas of systems architecture, research methods, and socio-technical context (see http://esd.mit.edu/esd_education/doctoral_programs/esd_phd.html), plus a doctoral seminar specified for all candidates. Beyond the core, each doctoral student takes additional subjects in a major that covers technical systems or methods and a minor in an engineering discipline or other appropriate area of expertise such as policy or management.

It should be noted that the concept of systems has a long history and is used in many ways. While the focus on engineering systems narrows the domain of study to complex, technical systems, the full range of theory and principles developed around various concepts of systems may be relevant to a student doing doctoral research in ESD.

For example, the domain that includes socio-technical systems reflects the view that engineering systems is inherently an applied, interdisciplinary field of study. As such, ad-
vanced doctoral research and subsequent career success in engineering systems requires at least one additional area of applied expertise. In general, the specification of an area of applied expertise also involves the identification of specific engineering systems that are of particular interest.

The ESD PhD program provides a platform for a range of research interests. Faculty and students can construct specialty foci beyond the ESD core and the minimum requirements to demonstrate technical expertise. These can and have included the environment, manufacturing, policy, information, system architecture, etc. The student and the doctoral committee collaboratively define the details. As indicated in the next section, the ESD PhD program has a special track in Technology, Management, and Policy.

Students can enter the ESD PhD in many ways. They can do so either without previous graduate education, or from time spent in a master’s program at MIT or other institutions. Either way, the nominal time to the ESD PhD is five years, including a master’s degree such as the SM. In any case, students are expected to complete an SM or equivalent thesis or paper sometime before their graduation.

Admission to the ESD PhD program is based upon outstanding academic performance in engineering or applied science, standardized test scores, demonstrable interest in engineering systems as a field of study, and letters of recommendation. Students wishing to apply to the ESD PhD program when they are already at MIT should first discuss their interests with ESD faculty members in their field of interest and obtain their support. See the ESD admissions website for details at http://esd.mit.edu/esd_educational_programs/faqs_esd_sm_phd.html.

The ESD Education Committee makes admissions decisions once a year. Applications are due January 10. The ESD PhD program begins in September. For additional information, please visit the website at http://esd.mit.edu/degree_programs/first, and see the Frequently Asked Questions about Admissions at http://esd.mit.edu/esd_educational_programs/faqs_esd_sm_phd.html. To resolve subsequent issues, email the ESD Academic Office at esdgrad@mit.edu or call 617-253-1182.

Technology, Management, and Policy

The doctoral track in Technology, Management, and Policy (TMP) is a specialty within the ESD PhD program. It promotes a strong, in-depth integration of technology and applied social science, with a particular emphasis on policy. Each student’s program focuses simultaneously on a technology discipline and an applied social science such as economics, management, or political science. This doctoral track focuses on original, generalized research on technological systems, with an emphasis on the societal implications of the system. TMP graduates hold positions on the faculties of major universities in the United States and worldwide.

RESEARCH CENTERS

Center for Innovation in Product Development

The Center for Innovation in Product Development (CIPD) unites industry practitioners with leading academic researchers to investigate the end-to-end product development process. A joint effort between MIT’s School of Engineering and Sloan School of Management, CIPD researches the process of product development from engineering concept to management practice; from product design to market delivery and beyond.

CIPD was founded in 1996 as a National Science Foundation Engineering Research Center. Since inception, the center has executed nearly 200 research projects and produced nearly 150 refereed journal articles and 100 conference papers. Our faculty has received over 20 awards for outstanding research, and our work has led to the creation of a dozen spin-off companies. CIPD continues to advance the theory and practice of product development with research programs focusing on complex systems.

CIPD investigates specific problems with immediate relevance to industry. As a research center focused on clearly defined issues, CIPD develops projects of particular interest to individual sponsoring companies—projects that provide direct benefits in terms of solutions to current challenges.

Many of our projects are related to the emerging field of engineering systems—the study of systems characterized by their especially large scale, complexity, and high or varying rates of change. Our core initiatives explore complex system design, development, and management—a concern of increasing importance to contemporary engineering.

CIPD research is directed by our vision that product development will be dispersed, global, and driven by new information and communication technologies. Our four core research initiatives are:

- Distributed Object Modeling Environment (DOME)
- Virtual Customer
- Information Flow Modeling
- Platform Architecture

CIPD also conducts research on product life-cycle management (PLM), complex systems, cost modeling; and other topics related to product development.

For more information, contact assistant director Nils Nordal, Room E60-275, MIT, Cambridge, MA 02139 or see the website at http://web.mit.edu/cipd/.

Center for Technology, Policy, and Industrial Development

MIT’s Center for Technology, Policy, and Industrial Development (CTPID) is an interdisciplinary research and educational center addressing global technology and policy issues through sustained partnerships with industry, government, and academia. These partnerships are aimed at supporting global economic growth and advancing policies that preserve the environment and benefit society at large.

CTPID research focuses on contemporary industrial problems—such as how to build safe, affordable, and environmentally friendly automobiles—that span social, natural, and technological interests.

Current programs, often supported by several corporations, address industry issues in aerospace, automotive, engineering and construction, information quality, materials systems, mobility, telecommunications, and technology and law. Other programs examine diverse issues facing a single global corporation. Applying CTPID’s interdisciplinary focus, a team—for example, of computer scientists, economists, and policy analysts—can join forces...
Center for Transportation and Logistics

For more than 30 years, the MIT Center for Transportation & Logistics (CTL) has been a leading center for supply chain management education and research.

The center coordinates multiple research programs across MIT, ranging from projects led by a single faculty member to large-scale, multi-year initiatives involving affiliated facilities across the globe and dedicated research staff. The work carried out by CTL spans every aspect of transportation, including all modes, and supply chain management. CTL research projects include the following:

- **Supply Chain 2020.** A multiyear project to analyze the factors that are critical to the success of future supply chains.
- **The Supply Chain Response to Disruption.** A study of the resilience of supply chains when subject to major disruptions such as the impact of a terrorist attack.
- **Outsourcing & Postponement.** Delaying the final configuration of a product can cut inventory costs and improve customer service. CTL is studying the supply chain strategy and the implications for employment patterns in manufacturing.
- **Innovations in Transportation Procurement.** Studying new methods for procuring transportation services such as combinatorial auctions.
- **Auto-ID Technology.** CTL is investigating the development and application of sensing technologies such as radio frequency identification in supply chain management.
- **The MIT Program in Intelligent Transportation Systems.** Focuses on applications of modern information technologies to transportation systems. The project looks at congestion, environmental factors, and flow efficiency.
- **The National Center of Excellence for Aviation Operations Research.** The center was formed by the Federal Aviation Administration in 1996 to support collaborative research in aviation operations. The center comprises a consortium of the universities with 20 public and private sector organizations.
- **Making the Chicago Transit Authority (CTA) more competitive as it moves into the 21st century.** The project looks at planning, operations, and strategic issues.

CTL connects with industry through its Corporate Outreach Program. The program offers three forms of engagement for corporate sponsors. The first level is the Supply Chain Exchange, a platform for ongoing corporate engagement with the center and MIT. Exchange membership includes placements at CTL’s symposia and executive courses, research briefings, and connections to graduate students for research and recruiting purposes. On the second level, sponsors can elect to join Research Groups that focus on specific supply chain issues and problems. Third-level sponsors have access to all CTL outreach programs and are part of the center’s executive board.

In 2003 CTL launched the MIT-Zaragoza International Logistics program. A partnership between CTL and the government of Aragon in Spain, the program offers graduate education in logistics, taught in English, to students from around the world. The options include a Master in Logistics & Supply Chain Management degree (ZLOG), a doctoral degree, and education courses leading to certificates in various logistics-related disciplines. An innovative feature of the program is that it is sited within a state-of-the-art logistics park in Zaragoza, Spain. The ZLOG program is modeled on CTL’s Master of Engineering in Logistics program, which was introduced by the center in 1999.

Also part of CTL is the MIT AgeLab, an innovative lab based in the School of Engineering’s Engineering Systems Division and the Center for Transportation and Logistics. The AgeLab conducts research to improve quality of life for older adults and those who care for them. It creates new ideas and translates technology into practical solutions that improve people’s functioning throughout the lifespan. The AgeLab works with business, academic, and government leaders to influence public policy on issues surrounding aging, including transportation, health, housing, and investments.

MIT graduate programs in transportation and logistics leading to the master’s and doctoral degrees, as well as professional training, are also available through the MIT departments associated with the center, including Aeronautics and Astronautics, Civil and Environmental Engineering, Economics, Mechanical Engineering, Political Science, Management, Urban Studies and Planning, and the Engineering Systems Division.

The Center for Transportation and Logistics attempts to provide financial assistance in the
form of fellowships and research and teaching assistantships. Through CTL, MIT is the lead university in Federal Region I of the University Transportation Centers Program administered by the US Department of Transportation. Through this program, full and partial fellowships are awarded to graduate students in the transportation area. Also, a number of full-time and part-time research and teaching assistantships are available through this and other programs. Undergraduates also may participate in sponsored research through the Undergraduate Research Opportunities Program.

Students interested in studying supply chain management and logistics, or in learning more about the center and its programs, should write to Chris Caplice, Center for Transportation and Logistics, MIT E40-365, Cambridge MA 02139-4307, caplice@mit.edu, or view the website at http://web.mit.edu/ctl/. Students interested in studying transportation should contact Nigel Wilson, nhmw@mit.edu; students interested in studying air transportation should contact John Hansman, rjhans@mit.edu; and students interested in technology and policy related to transportation should email tpp@mit.edu.

FACULTY AND STAFF

Faculty and Teaching Staff

Professors

Thomas J. Allen, PhD
MacVicar Faculty Fellow
Howard W. Johnson Professor of Management
Professor Engineering Systems
Codirector, LFM and SDM Programs

George E. Apostolakis, PhD
Professor of Nuclear Engineering and Engineering Systems

Cynthia Barnhart, PhD
Professor of Civil and Environmental Engineering and Engineering Systems

John Carroll, PhD
Professor of Behavioral and Policy Sciences and Engineering Systems
Codirector, Lean Aerospace Initiative

Joel Philip Clark, ScD
Professor of Materials Systems and Engineering Systems

Edward F. Crawley, PhD
MacVicar Faculty Fellow
Professor of Aeronautics and Astronautics and Engineering Systems
Director, Cambridge MIT Institute

Richard de Neufville, PhD
Professor of Civil and Environmental Engineering and Engineering Systems

Thomas Waddy Edgar, ScD
Thomas Lord Professor of Materials Engineering and Engineering Systems

Steven D. Eppinger, ScD
General Motors LFM Professor of Management Science
Professor of Engineering Systems, Deputy Dean, Sloan School of Management

Charles Fine, PhD
Chrysler LFM Professor of Management and Engineering Systems

Stephen C. Graves, PhD
Abraham J. Siegel Professor of Management
Professor of Engineering Systems

John Hansman, PhD
Professor of Aeronautics and Astronautics and Engineering Systems

David Edgar Hardt, PhD
Professor of Mechanical Engineering and Engineering Systems

Daniel Hastings, PhD
Professor of Aeronautics and Astronautics and Engineering Systems
Director, Engineering Systems Division

Thomas Anton Kochan, PhD
George Maverick Bunker Professor of Management
Professor of Engineering Systems

Paul A. Lagace, PhD
MacVicar Faculty Fellow
Professor of Aeronautics and Astronautics and Engineering Systems

Richard Larson, PhD
Professor of Civil and Environmental Engineering and Engineering Systems

Nancy Leveson, PhD
Professor of Aeronautics and Astronautics and Engineering Systems

Seth Lloyd, PhD
Professor of Mechanical Engineering and Engineering Systems

Stuart Madnick, PhD
John Norris Maguire Professor of Information Technology and Engineering Systems
Codirector, PROFIT Program

David Hunter Marks, PhD
Morton and Claire Goulder Family Professor of Civil and Environmental Engineering and Engineering Systems
Codirector, Laboratory for Energy and the Environment

David A. Mindell, PhD
Frances and David Dibner Professor of the History of Engineering and Manufacturing (STS)
MacVicar Faculty Fellow
Professor of Engineering Systems

Sanjoy Mitter, PhD
Professor of Electrical Engineering and Engineering Systems

Fred Moavenzadeh, PhD
James Mason Crafts Professor
Professor of Civil and Environmental Engineering and Engineering Systems
Director, Center for Technology, Policy and Industrial Development
Director, Technology and Development Program

Ernest Moniz, PhD
Professor of Physics and Engineering Systems
Codirector, Laboratory for Energy and the Environment

Joel Moses, PhD
Institute Professor
Professor of Computer Science and Engineering Systems

Earl Morton Murman, PhD
Ford Professor of Engineering
Professor of Aeronautics and Astronautics and Engineering Systems

Dava J. Newman, PhD
MacVicar Faculty Fellow
Professor of Aeronautics and Astronautics and Engineering Systems
Director, Technology and Policy Program

Daniel Roos, PhD
Japan Steel Industry Professor of Civil and Environmental Engineering and Engineering Systems

Warren P. Seering, PhD
Weber-Shaughnessy Professor of Mechanical Engineering and Engineering Systems

Yossi Sheffi, PhD
Professor of Civil and Environmental Engineering and Engineering Systems
Director, Center for Transportation and Logistics
Director, MLOG Program

David Simchi-Levi, PhD
Professor of Civil and Environmental Engineering and Engineering Systems
Codirector, LFM and SDM Programs

John Sterman, PhD
Jay W. Forrester Professor of Management and Engineering Systems
Director, Systems Dynamics Group

Joseph Martin Sussman, PhD
JR East Professor
Professor of Civil and Environmental Engineering and Engineering Systems

James Utterback, PhD
David J. McGrath, Jr. Professor of Management and Innovation and Engineering Systems

Roy Welsch, PhD
Professor of Statistics and Management Science and Engineering Systems

Sheila Widnall, ScD
Institute Professor
Professor of Aeronautics and Astronautics and Engineering Systems

David R. Wallace, PhD
Esther and Harold E. Edgerton Associate Professor of Mechanical Engineering, Associate Professor of Engineering Systems
Codirector, MIT CADlab

John Williams, PhD
Associate Professor of Civil and Environmental Engineering and Engineering Systems
Director, Intelligent Engineering Systems Laboratory

Assistant Professors
Olivier L. de Weck, PhD
Robert N. Noyce Career Development Assistant Professor of Aeronautics and Astronautics and Engineering Systems

Daniel D. Frey, PhD
Robert N. Noyce Career Development Assistant Professor of Mechanical Engineering and Engineering Systems

Randolph Kirchain, PhD
Assistant Professor of Materials Science and Engineering Systems

Devavrat Shah, PhD
Assistant Professor of Electrical Engineering and Computer Science and Engineering Systems

Annalisa Weigel, PhD
Assistant Professor of Aeronautics and Astronautics and Engineering Systems

Professors of the Practice
Christopher Magee, PhD
Professor of the Practice of Engineering Systems and Mechanical Engineering
Director, Center for Innovation in Product Development

Deborah Nightingale, PhD
Professor of the Practice of Aeronautics and Astronautics and Engineering Systems
Codirector, Lean Aerospace Initiative

Seniors
Joseph Coughlin, PhD
Senior Lecturer, Engineering Systems
Director, Age Lab, Center for Transportation and Logistics

Frank R. Field, III, PhD
Materials Systems Laboratory
Senior Research Associate, MIT CTPID
Associate Director of Education, TPP
Senior Research Engineer
Senior Lecturer in Engineering Systems

Patrick Hale
Director, Systems Design and Management Fellows Program
Senior Lecturer

Donna Rhodes, PhD
Senior Lecturer, Engineering Systems
Principal Research Engineer, Lean Aerospace Initiative

Donald B. Rosenfield, PhD
Director, Leaders For Manufacturing Fellows Program
Senior Lecturer, Sloan School of Management

Daniel Whitney, PhD
Senior Research Scientist, CTPID
Senior Lecturer in Engineering Systems

Research Staff
Christopher Caplice, PhD
Principal Research Associate, Center for Transportation and Logistics
Executive Director, MLOG Program

Joel Cutcher-Gershenfeld, PhD
Executive Director, Engineering Systems Learning Center
Senior Research Scientist, Sloan School of Management

Administrative Staff
Ann Tremelling, MS
Assistant Director, Administrative Officer

Eda Daniel
Academic Administrator

Beverly Kozol-Tattlebaum
Administrative Assistant

Fran Marrone
Administrative Assistant

Jeff Shao
Fiscal Officer

Lois Slavin, MA
Communications Director
Materials science and engineering is a field broadly based in chemistry, physics, and the engineering sciences. The field concerns itself with the design, manufacture, and use of all classes of materials (including metals, ceramics, semiconductors, polymers, and biomaterials), and with the environmental, health, economic, and manufacturing issues relating to materials. Materials science and engineering is a field critical to future economic and environmental well-being.

The Department of Materials Science and Engineering offers three undergraduate degree programs: Course 3, leading to the Bachelor of Science in Materials Science and Engineering, is taken by the majority of undergraduates in the department, and is accredited by the Accreditation Board for Engineering and Technology (ABET); Course 3-A, leading to the Bachelor of Science without specification, provides greater flexibility to the student in designing his or her professional program, and is often taken by pre-med, pre-law, or pre-MBA students; and Course 3-C provides a Bachelor of Science in Archaeological Materials and Engineering. The department offers research and educational specialization in a large number of industrially and scientifically important areas leading to master's and doctoral degrees.

The undergraduate program begins by covering the scientific and engineering principles applicable to materials including ceramics, electronic materials, metals, biomaterials, and polymers. All aspects of materials are considered, including their structure, properties, processing, and performance. A range of elective and research opportunities allows students to specialize in materials classes, materials systems analysis, or environmental or manufacturing issues relating to materials, using both experimental and computational approaches. As an example, computers and other electronic devices rely on new electronic materials (semiconductors), polymers (for insulators and circuit boards), ceramics (for chip packages), and metals (for interconnects), so engineers working in this industry need to be fluent in all types of materials. Similarly, new ceramics and modern metal alloys are critical to high-performance engines, including aerospace engines, and polymeric and biomaterials continue to show startling improvements for applications such as artificial organs and other medical devices.

Materials science emphasizes the study of the structure of materials and of processing—structure-property relations in materials. It is the physics and chemistry of real materials. Almost all the properties of importance to an engineer are structure-sensitive—that is, they can be modified in significant ways by changing the chemical composition, the arrangement of the atoms or molecules in crystalline or amorphous configurations, or the size, shape, and orientation of the crystals or other macroscopic units of a solid. To understand how the useful properties of a material can be modified, it is necessary to understand the relationships between structure and properties and how the structure can be changed and controlled by the various chemical, thermal, mechanical, or other treatments to which a material is subjected during manufacture and in use. The fundamental understanding of materials developed through materials science has replaced empiricism as the basis for discovery of new materials. Whole classes of new materials such as semiconductors, superconductors, and some high-temperature alloys have their roots in modern materials science.

All recent achievements in materials have depended as much on advances in materials engineering as they have on materials science. When developing processes for preparation and production of materials, and when designing materials for specific applications, the materials engineer must have a grasp of the modern engineering sciences, including heat and mass transfer and chemical kinetics. He or she must also have a proper concern for economic, social, and environmental factors. Materials processing is a major part of materials engineering. Improved performance of materials depends directly on advances in processing. There are also many examples of challenging engineering problems in reducing the cost and improving the productivity of industrial processing of materials. The department has strong academic and research activities in all aspects of the processing of materials.

The links between materials engineering and materials science are very strong, and the two activities are interwoven in the department. There are some subjects that all students of materials should know: thermodynamics, kinetics, and certain aspects of solid mechanics, physics, and chemistry. Core subjects in these areas are provided at the undergraduate and graduate levels. In addition, subjects covering a wide variety of topics, from solid-state physics to the analysis of materials systems, are offered. By selecting appropriate subjects, the student can follow many different paths through the science and engineering of materials, with emphasis on engineering, science, or a mixture of the two.

Materials science and materials engineering disciplines seek to identify and understand the principles and phenomena that are basic to all materials. Many large industries today manufacture products containing a great variety of different materials, and their materials engineers must acquire a working understanding of the basic behavior of all of them. However, there are also many large industries in which a single class of material (e.g., steel, polymers, glasses) is manufactured and processed, and their materials experts must have a knowledge of various aspects of the science and engineering of one class of material. Thus, lecture and lab subjects are provided in the department that enable a student to specialize in the science and engineering of ceramics, electronic materials, metals, polymers, or biomaterials.

Materials engineers and materials scientists, whether generalists or specialists in a particular class of material, are in continually high demand by industry and government for jobs in research, development, production, and management. They find challenging opportunities in a wide variety of important positions in operations, development, and research in the fast-growing electronics industry, in aerospace, in consumer industries, in biomaterials and medical industries, and in the basic materials preparation and producing industries.

Archaeology and Archaeological Science

The principles of materials science and materials engineering have particular relevance to the study of archaeological materials. Laboratory investigation of ancient and pre-industrial artifacts of metal, ceramic, stone, cloth and other materials enables archaeologists to reconstruct the materials technologies behind the design and production of objects in prehistory. The Center for Archaeological Materials is developing what might be called the materials science of material culture, exploring the relations between ancient people and their material world.
Archeology is the systematic study of humanity in the past, concerned with reconstructing the environments in which people lived and the ecological systems in which they functioned. Encompassing the study of ancient technologies and other human activities, as well as peoples’ social organization, religious beliefs, and every aspect of human culture, archeology covers all of human history, from the time of the earliest human beings up to the present.

Because archeology is so broad in scope and the data on which it relies derive primarily from field survey and excavations, a range of disciplines provides its foundation. Geology, anthropology, materials science, art history, and biology are among these fundamental fields. Archaeological science represents an approach to archeology that utilizes modern science and engineering principles and methods to tackle pressing archeological issues—for example, reconstructing time, place, and human ecologies of the past, or determining the materials technologies that transform natural materials into cultural objects.

MIT’s archeology education programs reflect particular strength in archaeological science research. The Bachelor of Science in Archaeology and Materials as recommended by the Department of Materials Science and Engineering derives from the focus on archaeological materials research within the Department of Materials Science and Engineering and the Center for Materials Research in Archeology and Ethnology (CMRAE). This curriculum is unique within university departments of anthropology, archaeology, and engineering.

UNDERGRADUATE STUDY

Bachelor of Science in Materials Science and Engineering/Course 3

The undergraduate program serves the needs of students who intend to pursue employment in materials-related industries immediately upon graduation, as well as those who will do graduate work in the engineering or science of materials. The program is designed to be started at the beginning of the sophomore year, although it can be started later with some loss of scheduling flexibility.

The first four terms of the program contain required core subjects that address the fundamental relations between processing, microstructure, properties, and applications of modern materials. The core subjects are followed by a sequence of restricted electives that provide more specialized coverage of the major classes of modern materials: biomaterials, ceramics, electronic materials, metals, and polymers, as well as cross-cutting topics relevant to all types of materials. Course 3 students write either a senior thesis or an internship report based on a summer industrial internship. This provides an opportunity for original research work beyond that which occurs elsewhere in the program. The degree program in Course 3 is accredited by the Accreditation Board for Engineering and Technology; the 3-A and 3-C programs are not formally accredited.

The required subjects can be completed in the sophomore and junior years within a schedule that allows students to take a HASS subject each term, and a range of elective junior and senior subjects. Departmental advisors work with students to assist in selecting elective subjects suitable to the student’s needs and interests. While the program should satisfy the academic needs of most students, petitions for variations or substitutions may be approved by the departmental Undergraduate Committee; students should contact their advisor for guidance in such cases.

Participation in laboratory work by undergraduates is an integral part of the curriculum. The new departmental core subjects include extensive laboratory exercises, which investigate materials properties, structure, and processing, and are complementary to the lecture courses. Additionally, some of the junior-year core subjects contain laboratory projects. Undergraduate students also have access to extensive facilities for research in materials as part of UROP and thesis projects. Engineering design figures prominently in a substantial portion of the laboratory exercises. Students develop oral and written communication skills by reporting data in a variety of ways.

The department has modern undergraduate materials teaching laboratories containing a wide variety of materials processing and characterization equipment. A new undergraduate laboratory opened in 2003, including facilities for biomaterials research, chemical synthesis, and physical and electronic properties measurement. Other departmental facilities include preparation and characterization of refractory and electrical ceramics and glasses, metallic and nonmetallic crystals, and polymers. Equipment is available for the study of heat and mass flow and for thermodynamic and kinetic investigations at high temperatures. Deformation, solidification, joining, and thin film deposition may be carried out. Materials may be characterized by optical and electron microscopy techniques, diffraction, and spectroscopy, and there is equipment for a variety of electrical, optical, magnetic, and mechanical property measurements.

Students may substitute industrial internship reports (12 units of 3.930/3.931 Industrial Practice) for the senior thesis (3.ThU). Students should select this option during their sophomore year, and take 3.930 in the summer after the sophomore year and 3.931 in the summer following the junior year. This option provides a student with industrial experience concurrently with academic work through cooperative work assignments matched to the student’s capabilities. Together with a company representative, a faculty advisor is assigned to each student to assist as cosupervisor during his or her work assignments. Care is taken to ensure a more challenging and rewarding experience than is typical of most summer jobs. Students earn a salary during their work periods and also receive academic credit. Growth in job responsibility is expected as the student progresses.

Students who wish to go on to graduate school under the auspices of the Engineering Internship Program have the opportunity to earn an SM degree. At the end of the senior year, such students complete two terms of industrial practice and a minimum of one term of on-campus study, during which time they may complete the subject requirements of the SM degree and an SM thesis. Students exercising this option must follow the normal procedures for application to the graduate school.

Bachelor of Science/Course 3-A

Some students may be attracted to the many opportunities available in the materials discipline, but also have special interests that are not satisfied by the conventional Course 3 program. In these cases, the 3-A program may be of value as
Bachelor of Science in Materials Science and Engineering/Course 3

General Institute Requirements (GIRs)
Subjects	Units
Science Requirement | 6
Humanities, Arts, and Social Sciences Requirement | 8
Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 3.012 and 3.021] in the Departmental Program | 2
Laboratory Requirement [can be satisfied by 3.014 in the Departmental Program] | 1
Total GIR Subjects Required for SB Degree | 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).

Required Subjects
3.012 Fundamentals of Materials Science and Engineering, 15, REST
3.014 Materials Laboratory, 12, LAB, CI-M
One of:
3.016 Mathematical Methods for Materials Scientists and Engineers, 12, 18.02
18.03 Differential Equations, 12, 18.02 or 18.014, REST
18.034 Differential Equations, 12, 18.02 or 18.014, REST
One of:
1.00 Introduction to Modeling and Simulation, 12, 18.03*, REST
0.00 Introduction to Computers and Engineering Problem Solving, 12, 18.01, REST
6.001 Structure and Interpretation of Computer Programs 15, REST
3.016 Mathematical Methods for Scientists and Engineers, 12, 18.02

Restricted Electives(i)
3.016 Mathematical Methods for Materials Scientists and Engineers, 12, 18.02
3.021 Introduction to Modeling and Simulation, 12, 18.03*, REST
3.082, 3.990, 5.32, 5.33, 6.021 J/2.791 J/BE.370 J, or 7.02.
3.091*, 7.012*, 3.012*
18.03*(3)

3.016 or 18.03 or 18.034, 3.021 J or 1.00 or 6.001, 3.022, 3.024, 3.032, 3.034, 3.042 and 3.044)
5.32, 5.33, 6.021 J/2.791 J/BE.370 J, or 7.02.

3.014, 2.009, 2.671, 3.082, 3.990, 5.32, 5.33, 6.021 J/2.791 J/BE.370 J, or 7.02.

Five subjects chosen from the core (3.012, 3.016 or 18.03 or 18.034, 3.021 or 1.00 or 6.001, 3.022, 3.024, 3.032, 3.034, 3.042 and 3.044) and one laboratory subject (3.014) are required, along with any three additional subjects (36 units) selected from the list of Restricted Electives shown under Course 3. In addition to these nine subjects, the student should develop a program of six planned elective subjects appropriate to the student’s stated goals. To satisfy the requirement that students complete two subjects designated Communication Intensive in the Major (CI-M), student must take 3.081 and one subject from the approved list of CI-M subjects for Course 3-A: 2.009, 2.671, 3.082, 3.990, 5.32, 5.33, 6.021 J/2.791 J/BE.370 J, or 7.02.

As an example of a 3-A program, a student planning a career in medicine might select the following subjects in addition to the above requirements in order to satisfy the premedical requirements recommended by the MIT Careers Office: 7.02, 5.12, 5.13, 5.310, 7.05.

Students considering the 3-A program should contact the departmental advisor (currently Professor David Roylan), who will counsel the student more fully on the academic considerations involved. Under his guidance, the student will prepare a complete plan of study which must be approved by the departmental advisor.
Undergraduate Committee. This approval must be obtained no later than the beginning of the student’s junior year. Students are then expected to adhere to this plan unless circumstances require a change, in which case a petition for a modified program must be submitted to the Undergraduate Committee. The department does not seek formal ABET accreditation for the 3-A program.

Bachelor of Science in Archaeology and Materials as Recommended by the Department of Materials Science and Engineering/Course 3-C

Students who have a specific interest in archaeology and archaeological science may choose Course 3-C. The 3-C program is designed to afford students broad exposure to fields that contribute fundamental theoretical and methodological approaches to the study of ancient and historic societies. The primary fields include anthropological archaeology, geology, and materials science and engineering. The program enriches knowledge of past and present-day non-industrial societies by making the natural and engineering sciences part of the archaeological tool kit.

The program’s special focus is on understanding prehistoric culture through study of the structure and properties of materials associated with human activities. Investigating peoples’ interactions with materials, the objects that such interactions produced, and the related environmental settings, leads to a fuller analysis of the physical, social, cultural, and ideological world in which people function. These are the goals of anthropological archaeology, goals that are reached, in part, through science and engineering perspectives.

Participation in laboratory work by undergraduates is an integral part of the curriculum. The program requires that all students take a Materials Laboratory subject. Many of the archaeology subjects are designed with a laboratory component; subjects meet in the Undergraduate Archaeology and Materials Laboratory. Undergraduate students also have access to the extensive CMRAE facilities for research in archaeological materials as part of UROP and thesis projects. Such projects may include archaeological fieldwork during IAP or the summer months.

Bachelor of Science in Archaeology and Materials as Recommended by the Department of Materials Science and Engineering/Course 3-C

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Requirement (can be satisfied by 3.014 or 12.119 in the Departmental Program)</td>
<td>1</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement (can be satisfied by 3.012, 3.021) or 12.001 in the Departmental Program)</td>
<td>2</td>
</tr>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement (can be satisfied by 3.986, 3.987, 3.985J, and 21A.100 and 3.982 or 3.983 or 3.988 in the Departmental Program)</td>
<td>8</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).

Required Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.012 Fundamentals of Materials Science, 15, REST</td>
<td>152–162</td>
</tr>
<tr>
<td>3.014 Materials Laboratory, 12, LAB, CI-M</td>
<td></td>
</tr>
<tr>
<td>One of:</td>
<td></td>
</tr>
<tr>
<td>3.016 Mathematical Methods for Materials Scientists and Engineers, 8, 18.02</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, 18.02 or 18.014, REST</td>
<td></td>
</tr>
<tr>
<td>18.034 Differential Equations, 12, 18.02 or 18.014, REST</td>
<td></td>
</tr>
<tr>
<td>One of:</td>
<td></td>
</tr>
<tr>
<td>3.021J Introduction to Modeling and Simulation, 12, 3.016* or 12.119</td>
<td></td>
</tr>
<tr>
<td>1.00 Introduction to Computers and Engineering Program Solving, 12, 18.01, REST</td>
<td></td>
</tr>
<tr>
<td>6.001 Structure and Interpretation of Computer Programs 15, REST</td>
<td></td>
</tr>
<tr>
<td>3.022 Microstructural Evolution in Materials, 12, 3.012</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives

*Alternate prerequisites are listed in the subject description.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.069 Ceramics Processing, 12, 3.044*</td>
<td>21–24</td>
</tr>
<tr>
<td>3.07 Introduction to Ceramics, 12, 3.012*</td>
<td></td>
</tr>
<tr>
<td>3.16 Physical Metallurgy, 12, 3.012, 3.022, 3.032*</td>
<td></td>
</tr>
<tr>
<td>3.051 Materials for Biomedical Applications, 12, 3.091*, 7.012*, 3.012</td>
<td></td>
</tr>
<tr>
<td>3.052 Nanomechanics of Materials and Biomaterials, 12, 3.032</td>
<td></td>
</tr>
</tbody>
</table>

Departmental Program Units That also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.032 Mechanical Properties of Materials, 12, 3.016* or 3.044 Materials Processing, 12, 3.022, 3.016*</td>
<td></td>
</tr>
<tr>
<td>3.044 Materials Processing, 12, 3.022, 3.016*</td>
<td></td>
</tr>
<tr>
<td>3.091J Thesis, 9(J)</td>
<td></td>
</tr>
<tr>
<td>3.986 Archaeological Science, 9, HASS; 3.091*</td>
<td></td>
</tr>
<tr>
<td>3.986 The Human Past: Introduction to Archaeology, 12, HASS-D</td>
<td></td>
</tr>
<tr>
<td>3.982 Human Origins and Evolution, 9, HASS</td>
<td></td>
</tr>
<tr>
<td>3.990 Seminar in Archaeological Method and Theory, 6, 3.986, 3.985J, 21A.100</td>
<td></td>
</tr>
<tr>
<td>12.001 Introduction to Geology, 12, REST</td>
<td></td>
</tr>
<tr>
<td>12.110 Sedimentary Geology, 12, 12.001 or 12.119 Analytical Techniques for Studying Environmental and Geologic Samples, 12, LAB 21A.100 Introduction to Anthropology, 12, HASS-D</td>
<td></td>
</tr>
</tbody>
</table>

Total Units Beyond the GIRs Required for SB Degree

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

- Students may elect up to 9–12 units.
- Substitution of similar subjects may be permitted by petition.
The HASS Concentration in Archaeology and Archaeological Science provides concentrators with a basic knowledge of the field of archaeology, the systematic study of the human past. Students pursuing the SB in 3-C may not also concentrate in this area. The Archaeology and Archaeological Science concentration consists of four subjects: 3.986; 3.985; two other HASS electives, from among those currently offered in this subject area: 3.094, 3.982, 3.983, 3.987, 3.988, 3.993. The department does not seek formal ABET accreditation for the 3-C program. Students may contact Professor Heather N. Lechtman for more information.

Minor Program
The Minor in Materials Science and Engineering consists of six undergraduate subjects totalling at least 72 units from the list of Required Subjects and Restricted Electives in the departmental program, with at least one of these taken from the list of Restricted Electives. With the approval of the minor advisor, it may be possible to substitute one subject taken outside the department for one of the Course 3 subjects in the minor program, provided that the coverage of the substituted subject is similar to one of those in the departmental program.

The department’s minor advisor, currently Professor David Roylance, will ensure that individual minor programs form a coherent group of subjects. Because of the breadth of the undergraduate program in the department, and the variety of possibilities for specialization, the minor program is flexible in its composition. Examples of minor programs in Materials Science and Engineering, with specializations in the areas of biomaterials, ceramics, electronic materials, metallurgy, and polymers, can be obtained from the department. Other suitable programs may be composed through consultation between students, the minor advisor, and the Undergraduate Committee.

The Minor in Archaeology and Materials (3-C) consists of six undergraduate subjects totaling 72 units. The five required subjects are 3.012 Fundamentals of Materials Science and Engineering, 3.014 Materials Laboratory, 3.022 Microstructural Evolution in Materials, 3.986 The Human Past: Introduction to Archaeology (HASS-D), and 3.985 Archaeological Science (HASS). The sixth subject is an elective from the Archaeology and Archaeological Science subject listings. With the approval of the minor advisor, it may be possible to substitute one subject taken outside the Course 3 program provided the coverage is equivalent. The department’s 3-C minor advisor, currently Professor Heather Lechtman, will ensure that the minor program forms a coherent group of subjects.

For a general description of the minor program, refer to the section on Undergraduate Education in Part 1.

Inquiries
Additional information regarding undergraduate programs may be obtained from Professor Caroline Ross, Room 13-4005, MIT, Cambridge, MA 02139-4307, 617-258-0223, carross@mit.edu, or from Dwayne Daugthy, Room 8-303, dauyrth@mit.edu.

Graduate Study
Departmental Degrees and Fields
The Department of Materials Science and Engineering offers the degrees of Doctor of Philosophy and Doctor of Science in Materials Science and Engineering. It offers the degrees of Master of Science in Materials Science and Engineering, and Master of Engineering.

The department’s Master of Engineering (MEng)—an engineering project–based, rather than a research-based, degree program—is designed for completion in 12 months. Course work and projects begin in the fall and continue through the academic year and into the following summer. This program includes options for either industry-based or campus-based projects.

The doctoral degree fields are described briefly below. Subject descriptions appropriate to the degree requirements in each of these fields are provided in Part 3. The subjects 3.20 Materials at Equilibrium, 3.21 Kinetic Processes in Materials, 3.22 Mechanical Properties of Materials, and 3.23 Electrical, Optical, and Magnetic Properties of Materials are basic to all doctoral degree programs and constitute a required core for all graduate students enrolled in doctoral programs in the department. This requirement may be partially waived upon petition to the Departmental Committee on Graduate Students if it can be demonstrated that equivalent coverage of this material has been secured in previous study.

Electronic, Photonic, and Magnetic Materials
This program includes the science and technology of materials for electrical, magnetic, and optical device applications. It is concerned with the design and fabrication of useful materials and devices through understanding and control of the interplay between electronic, magnetic and optical properties, the micro- and nanostructure of materials (atomic arrangements, defects, interfaces, phase constitution, and morphology), and processing methods. Research within this field includes materials processing in bulk and thin-film form; device fabrication; characterization of the semiconducting, dielectric, optical, and magnetic properties of materials and devices; and theoretical study of the characteristics of bulk materials, thin-film materials and interfaces and their implications for devices.

Bio- and Polymeric Materials
This program concentrates on the science and technology of synthetic and natural materials characterized by carbon-bonded, long chain molecules of seemingly limitless architectural diversity, and their composites with inorganic materials. Polymer and nanocomposite processing by molecular-level assembly, self-assembly, and field-directed approaches are employed to create new materials displaying a wide range of structure and properties. Materials science and engineering principles are applied to the development of new products and therapies including photonic devices, battery electrolytes, organic LEDs, filtration membranes, highly recyclable plastics, resorbable implants, biosensors, and drug delivery devices.

Structural and Environmental Materials
The program on structural and environmental materials encompasses the study of the mechanical response of materials to internal and external stimuli, as well as the design and use of materials to minimize environmental impact. Research topics in the area of structural materials include microelectromechanical systems (MEMS), nanomechanics, functionally graded materials, superalloys, ceramic turbine blades,
polymers, biomimicking of natural structural materials, and mechanics of cellular materials. Topics in environmental materials include materials processing to minimize environmental impact, recycling of materials, materials for energy conversion and storage (e.g., advanced battery systems, fuel cells, solar photovoltaics, smart windows, hydrides), and sensors and actuators for environmental monitoring and control.

Emerging, Fundamental, and Computational Studies in Materials Science

This program encompasses the study of fundamental and emerging concepts and technologies in materials science and engineering. The common principles that underlie the structure and properties of materials are those associated with electronic structure and bonding, atomic arrangement, phase stability, and the role of imperfections and microstructure. Fundamental phenomena considered include structural and phase transformations, reactivity, mass and charge transport, and the optical, electronic, and mechanical response to internal and external stimuli. Tools of study include theory, computer modeling, and experimental characterization methods such as TEM and diffraction. This program also stimulates the integration of important developments from other fields such as mathematics, biology, physics, and economics into materials science and engineering, and allows students to propose relevant interdisciplinary course programs that may lead to emerging disciplines in materials science and engineering.

The various graduate fields are not rigidly defined. Each member of the departmental faculty works in at least two of these fields and a number of subjects appear in common on the lists of elective subjects in each academic program; there is a great deal of interaction between the fields. The graduate fields are also coupled with other activities on materials within the Institute. Faculty from other departments participate in the departmental teaching and research in these fields. Subjects offered by other departments are, wherever appropriate, included in the recommended electives, and many departmental students participate in multidisciplinary research projects with students and faculty from various parts of the Institute.

Students are expected to learn the fundamentals of their chosen field and to develop a deep understanding of one or more significant aspects of it. The general examinations for the doctoral degree are designed accordingly. A full range of advanced-level subjects is offered in each graduate field, and arrangements can be made for individually planned study of any topic. In addition to 3.20 through 3.23, students are required to take further subjects designated by their academic program and a two- or three-subject minor program. Two additional subjects are required, as recommended by a student's thesis committee.

A large and active research program on the structure and properties, preparation, and processing of materials, with emphasis on ceramics, electronic materials, metals, polymers, and biomaterials, is conducted in the department. Graduate research is an important part of the educational process, and emphasis is placed on the research thesis. Students choose research projects from many alternative opportunities that exist within the department, and work closely with an individual faculty member. The results of the research must be of sufficient significance to warrant publication in the scientific literature.

The department maintains a large number of well-equipped research laboratories, and there is significant interaction between them, including the sharing of experimental facilities and equipment. Most department members are also members of the Center for Materials Science and Engineering, which provides and maintains excellent central facilities, or the Materials Processing Center. Both centers provide interdisciplinary research opportunities as described in Interdisciplinary Research and Study in Part 1.

Interdisciplinary Doctoral Program in Archaeological Materials

The Department of Materials Science and Engineering offers an interdisciplinary doctoral program for individuals who wish to consider the study of archaeology and materials science and pursue research in the field of archaeological materials. Admission to the program is through the department. The program requires four core subjects—half in materials science and engineering, half in archaeology—and six additional subjects. Many of the subject requirements may be met with coursework in the Architecture; Civil and Environmental Engineering; Earth, Atmospheric, and Planetary Sciences; Mechanical Engineering; and Urban Studies and Planning departments; or additionally in the Technology and Policy Program; the Program in Science, Technology, and Society; and the Anthropology Department at Harvard University. Field research opportunities are available, most notably in Mesoamerica and South America.

Doctoral Program in Technology, Management, and Policy

The doctoral program in Technology, Management, and Policy is a collaborative effort of the Center for Technology, Policy and Industrial Development; the Materials Systems Laboratory; the Center for Construction Research and Engineering; the Center for Transportation and Logistics; the Program of Environment Education and Research; and the Technology and Policy Program. Candidates for whom the Department of Materials Science and Engineering is to be the department of registration—for example, those participating through the Materials Systems Laboratory—must be admitted by the department, maintain at least a co-supervisor within the department, and choose a thesis topic in the field of materials. In addition, at least half the department’s doctoral core subjects requirement must be met. For further information, see the program description under the Engineering Systems Division in Part 2.

HST Doctoral Program in Medical Engineering/Medical Physics

A joint PhD program in medical materials science and engineering is offered in conjunction with the Harvard-MIT Division of Health Sciences and Technology (HST). Candidates complete coursework in one of the four graduate degree program disciplines in the Department of Materials Science and Engineering before continuing with medical science coursework and clinical training in the HST curriculum. The doctoral thesis research concerns a fundamental and clinically important problem involving medical applications of materials science and engineering. Research can be carried out within the department or at one of the area hospitals affiliated with HST. For more information on application procedures and other requirements, see the program description.
under Whitaker College of Health Sciences and Technology in Part 2.

Master of Science in Materials Science and Engineering

The department offers a Master of Science degree in materials science and engineering, which may be taken simultaneously with other departmental or interdepartmental offerings, such as the Leaders for Manufacturing program. The general requirements for the master's degree are given in the section on Graduate Education in Part 1.

The coherent program of subjects (though not necessarily all Course 3 subjects) must be approved by one of the Master's Degree Registration Officers in Course 3. Forty-two graduate degree credits are required to be in Course 3 subjects at graduate H-level. The thesis must be related to materials, and an internal departmental thesis reader is required if the student's advisor is outside Course 3. Subjects 3.577, 3.80j, 3.81j, and 3.83j may not be used to satisfy the departmental requirement that students earn 42 graduate H-level credits in Course 3 subjects.

The department may also recommend awarding a master's degree without departmental specification; the general requirements are given in the section on Graduate Education in Part 1. The thesis must be materials-related, and an internal departmental thesis reader is required if the advisor is outside Course 3.

Master of Engineering Program

The department's Master of Engineering (MEng) program covers the fundamentals of the engineering discipline and provides exposure to the tools and experience of engineering practice. This program differs significantly from the research-based SM and PhD degrees.

The MEng program targets three categories of students: those continuing with graduate school immediately following their undergraduate experience, experienced professionals who are returning for "retooling" for a new career or job, and experienced professionals who are sent at company expense to prepare for new or increased job responsibilities. Students are not required to have an undergraduate degree in materials science and engineering, but a strong engineering background is expected.

The program begins in the fall and has a fixed length of 12 months. In the fall, students take two overview subjects specifically designed for the MEng program. These subjects are designed to distill to 24 units the essential features of the 54-unit doctoral core, providing coverage of the basics of the thermodynamic, kinetics, and properties of materials. These subjects offer adequate preparation for most of the department's advanced graduate subjects.

During the fall term, students also participate in a subject that surveys materials engineering practice and take a course in materials selection, design, and economics. The course on engineering practice includes presentations by a large cross-section of the department faculty. During this first term, students and faculty also develop proposals for projects to be carried out as teams, either at a company site or on campus, in the spring (including January). Project proposals are reviewed and approved by a committee of faculty and non-faculty experts who also serve as a policy committee for the program. Projects are completed during the spring and summer terms.

In the fall or spring, students are also expected to take an advanced graduate subject from a set of restricted electives that focus on materials processing, as well as two elective graduate courses. For further information, see the departmental web page at http://dmse.mit.edu/academics/graduate/.

Master of Science in Technology and Policy

Students interested in problems of policy, risk assessment, and strategic planning for technology may apply for the interdepartmental Master of Science Program in Technology and Policy. This program combines subjects in advanced technology in the particular field of the student’s choosing with subjects in economics, systems analysis, political science, and law. The Technology and Policy Program is described in detail under the Engineering Systems Division in Part 2. For more information, visit the website at http://tppserver.mit.edu/.

Simultaneous Award of Two Master of Science Degrees for Students from Other Departments

Graduate students may seek two Master of Science degrees simultaneously or in sequence, one awarded by the student's home department and the other by the Department of Materials Science and Engineering. The rules governing dual degrees are found in the section detailing degree requirements under Graduate Education in Part 1. Additional information on requirements that must also be met to obtain the Master of Science degree from the Materials Science and Engineering Department is available from the department.

Joint Program with the Woods Hole Oceanographic Institution/Course 3-W

The Joint Program with WHOI is intended for students whose primary career objective is oceanographic engineering. The program is described in more detail at the end of Part 2.

Entrance Requirements for Graduate Study

General admissions requirements are covered in the section on Graduate Education in Part 1. Programs are arranged on an individual basis depending upon the preparation and interests of the student. Those who have not studied some thermodynamics and kinetics at the undergraduate level are advised to take 3.01 Physical Chemistry of Materials. Subject 3.891 Structure and Properties of Materials, taught in the summer term, is suggested for entering students with little formal training in materials science and engineering.
Requirements for Completion of Graduate Degrees
The general requirements for completion of graduate degrees are described in the section on Graduate Education in Part 1. Students completing a Master of Science degree are required to present a seminar summarizing the thesis. The department requires that candidates for the doctoral degrees go through a qualifying procedure and pass Institute-mandated general written and oral examinations before continuing with their programs of study and research, and that they satisfy a minor requirement. Information on the qualifying procedure and on the subject areas covered by the general examinations is available from the chairman of the Departmental Committee on Graduate Students.

Teaching and Research Assistantships
The Department of Materials Science and Engineering offers assistantships and fellowships for graduate study. Research and teaching assistantships are available in the fields in which the department is active.

Inquiries
Additional information regarding graduate programs, admissions, and financial aid may be obtained by writing to the Student Services Office, Department of Materials Science and Engineering, Room 8-301, MIT, Cambridge, MA 02139-4307, 617-253-3302.

FACULTY AND STAFF
Faculty and Teaching Staff
Subra Suresh, PhD
Ford Professor of Materials Science and Engineering
Professor of Mechanical Engineering
Samuel Miller Allen, PhD
Posco Professor of Physical Metallurgy

Professors
Angela Belcher, PhD
Professor of Materials Science and Engineering and Biological Engineering
W. Craig Carter, PhD
Lord Foundation Associate Professor of Materials Science and Engineering

Gerbrand Ceder, PhD
Richard P. Simmons Professor of Materials Science and Engineering
Yet-Ming Chiang, ScD
Kyocera Professor of Ceramics
Michael John Cima, PhD
Sumitomo Electric Industries Professor of Engineering
Joel Phillip Clark, ScD
Professor of Materials Systems
Thomas Waddy Edgar, ScD
Professor of Materials Engineering and Materials Systems
Eugene A. Fitzgerald, PhD
Merton C. Flemings—SMA Professor of Materials Science and Engineering
Lorna Jane Gibson, PhD
Matoula S. Salapatas Professor of Materials Science and Engineering
Professor of Mechanical Engineering and Civil and Environmental Engineering
Linn Walker Hobbs, PhD
Professor of Materials and Nuclear Engineering
Dorothy Hosler, PhD
Professor of Archaeology and Ancient Technology
Klavas Flemming Jensen, PhD
Lammot du Pont Professor of Chemical Engineering and Materials Science and Engineering
Lionel Cooper Kimerling, PhD
Thomas Lord Professor of Materials Science and Engineering
Director, Materials Processing Center
Heather Nan Lechtman, MA
Professor of Archaeology and Ancient Technology
Director, Center for Materials Research in Archaeology and Ethnology
Anne M. Mayes, PhD
Toyota Professor of Materials Science and Engineering
MacVicar Faculty Fellow
Caroline Anne Ross, PhD
Merton C. Flemings Career Development Professor of Materials Science and Engineering
Michael Francis Rubner, PhD
TDK Professor of Materials Science and Engineering
Director, Center for Materials Science and Engineering
MacVicar Faculty Fellow
Donald Robert Sadoway, PhD
John F. Elliott Professor of Materials Chemistry
Edwin Lorimer Thomas, PhD
Morris Cohen Professor of Materials Science and Engineering
Director, Institute for Soldier Nanotechnologies
Carl Vernette Thompson II, PhD
Stavros Salapatas Professor of Materials Science and Engineering
Harry Louis Tuller, EngScD
Professor of Ceramics and Electronic Materials
Director, Crystal Physics and Optical Electronics Laboratory
Bernhardt John Wuensch, PhD
Professor of Ceramics
Sidney Yip, PhD
Professor of Nuclear and Materials Science and Engineering

Associate Professors
Ronald George Ballinger, ScD
Associate Professor of Materials Science and Engineering and Nuclear Engineering
Yoel Fink, PhD
Associate Professor of Materials Science
Christine Ortiz, PhD
Associate Professor of Biomedical Engineering
Nicola Marzari, PhD
Associate Professor in Computational Materials Science
David Kaye Roylance, PhD
Associate Professor of Materials Engineering
Christopher Schuh
Associate Professor of Materials Science and Engineering

Assistant Professors
Darrell J. Irvine, PhD
Karl Van Tassel Assistant Professor of Materials Science and Engineering
Randolph E. Kirchain, Jr., PhD
Assistant Professor of Materials Science and Engineering, and Engineering Systems

Adam C. Powell IV, PhD
Thomas B. King Assistant Professor of Materials Science and Engineering

Stephanie Reich, PhD
Thomas B. King Assistant Professor of Materials Science and Engineering

Francesco Stellaci, PhD
Assistant Professor of Materials Science and Engineering

Senior Lecturer
James Duane Livingston, PhD

Lecturers
Geetha Berera, PhD
Joseph M. Dhosi
Harry Vincent Merrick, PhD
Meri Treska, PhD
Hong-Ren Wang

Technical Instructors
Joseph A. Adario
Toby R. Bashaw
Yin-Lin Xie, MS

Research Staff

Instructor
Peter Houk

Visiting Scientists
José Manuel Barandiaren
Paulo Ferreira
Christine Flynn
Yan Gao
Kris Van Hege
Hidemi Kato
Hong Liang
Chwee-Tek Lim
Charlene Mello
Mitsuou Notomi
Masahiro Rikukawa
David M. Schut
Yasushi Takamatsu

Toshihiko Takasaki
Hiromasa Yabe

Senior Research Associate
Robert Charles O’Handley, PhD

Research Associates
Xiaoman Duan, PhD
Joseph Parse, PhD
Patrick E. Trapa

Research Scientists
David Bono, PhD
Fernando Castano
Ming Dao, PhD
Elizabeth Hendrix, PhD
Alan Schwartzman, PhD
Ikuo Taniguchi

Sponsored Research Technical Staff
Donald Galler

Research Specialist
George LaBonte

Technical Assistants
Glenn McCloud
Benjamin Teply

Senior Postdoctoral Associates
Ji-Woong Park, PhD

Postdoctoral Associates
Catherine Bishop, PhD
Nicola Bonini
Joy Cheng, PhD
Seong-Ho Cho
Young Kyu Cho
Matteo Cococcioni, PhD
Yen-Chen Huang
Ji Hyun Jang
Dong-Wan Kim, PhD
Jong Hak Kim
Woo Sik Kim
Yukinori Koyama
Kung-Jung (Jimmy) Li
Xiaogang Liu
Brenda O. Long
Alan Lund, PhD
Anurag Maheshwari
Martin Maldovan, PhD
Davide Marini, PhD

Thomas Maxisch, PhD
Ying Shirley Meng
Alexandre François André Micoulet
Reiner Monig, PhD
Brian Pate, PhD
Damian A. Scherlis Perel
Kristin A. Persson
Jifa Qi, PhD
Avner Rothschild
Xiaoxia Sheng
Kevin T. Turner
Paolo Umari
Anton Van der Ven, PhD
Ryan C. Wartena
Zhizhong Wu
Lei Zhai, PhD

Postdoctoral Fellows
Yu Huang, PhD
Deborah Morecroft

Research Affiliates
Yong-Woo Choi
Gerald F. Dionne
 Jiankang Huang, PhD
Theodoulos Kattamis, ScD
K. Kumar
Thomas Langdo
Ming Li
Douglas Matson, PhD
Patricio Méndez
Richard Mlcak, ScD
Visilios Nikou
George Rossetti
Chris Scott
Jeremy C. Wallach
George C. Whitfield
Vicky Yang
James Yurko

Administrative Staff
Robin Elices
Director, Administrative Services Organization
Kathleen R. Farrell
Academic Administrator
Gerald Hughes
Facilities Manager
Esther G. Estwick
Human Resources Administrator
Amanda Tat
Fiscal Officer

Coleman Greene
Systems Administrator

Professors Emeriti

Robert Weierter Balluffi, ScD
Professor of Physical Metallurgy, Emeritus

Morris Cohen, ScD, DTeKn
Professor of Materials Science and Engineering, Emeritus
Institute Professor, Emeritus

Merton C. Flemings, ScD
Toyota Professor of Materials Processing

Harry Constantine Gatos, PhD
Professor of Molecular Engineering and Electronic Materials, Emeritus

Nicholas John Grant, ScD
Professor of Metallurgy, Emeritus

Ronald Michael Latanision, PhD
Professor of Materials Science and Engineering

Frederick Jerome McGarry, SM
Professor of Civil Engineering and Polymer Engineering, Emeritus

Walter Shepherd Owen, PhD
Professor of Physical Metallurgy, Emeritus

Regis Marc Noel Pelloux, ScD
Professor of Materials Engineering, Emeritus

Robert Michael Rose, ScD
Professor of Materials Science and Engineering, Emeritus
Director, Concourse Program

Kenneth Calvin Russell, PhD
Professor of Metallurgy and Nuclear Engineering, Emeritus

John Bruce Vander Sande, PhD
Professor of Materials Science, Emeritus
Engineering is a creative profession concerned with combining human, material, and economic resources to satisfy the needs of society. Mechanical engineering is one of the broadest and most versatile of the engineering professions. In order to prepare the mechanical engineers of the future, the department has developed educational programs of sufficient depth and breadth necessary to address the diverse technological challenges that face society.

The mission of the department is to contribute to satisfying the needs of society through excellence in education and research, drawing on core strengths in physics, mathematics, chemistry, and biology. This mission is accomplished through educational programs combining the rigor of academic study and the excitement of research with the support and intellectual stimulation of a diverse faculty and student body.

The scope of the educational and research opportunities available in the department can best be illustrated by grouping the efforts of the department into several broad areas of professional concentration as described below. These groups also serve to illustrate the rewarding career opportunities for mechanical engineering graduates in the years ahead.

Mechanics and Materials. More than ever, new concepts in design, the use of new materials, and the economic need to conserve materials are challenging the ingenuity and resourcefulness of today’s engineers in the area of mechanics and materials. A disciplinary program in mechanics and materials has many diverse applications, and may include subjects on the static and dynamic behavior of structures, wave propagation and structural acoustics, mechanics of continua, impact phenomena, mechanical behavior of conventional and newly established engineering and biological materials, and modern methods of computational mechanics to analyze solids and structures.

Fluid Mechanics and Hydrodynamics. Research areas in fluid mechanics include living cells and their fluid milieu; macromolecular flow interactions that give rise to novel polymer processing; and lubrication and microdrop fabrication microfluidic devices, their fabrication, and performance; surface tension, surface energy, and electrochemical forces. In marine hydrodynamics, research is conducted on marine propulsion systems, including propeller design, hull design, biomimetics, ocean waves, and computational fluid dynamics. Exploration and development of offshore hydrocarbon reservoirs in very deep waters has emerged as a key activity of the oil industry, leading the department to research on the hydrodynamics and dynamics of novel deep-water offshore platform technologies.

Acoustics. Propagation of sound and seismic waves in the ocean environment is of crucial importance to marine science and engineering. Since electromagnetic waves propagate very poorly in sea water, acoustic and seismic technology provides the most important means of communication, navigation, and imaging below the sea surface. For example, seismic sub-bottom profiling is an important component of offshore oil exploration. Propagating sound waves provides the means for communication to and from unattended submerged instrumentation platforms, and travel time analysis is important for navigation of submersibles. Acoustics is a critical component in naval operations, coastal zone management, and fisheries. The propagation characteristics of sound waves can also be used to infer oceanographic properties such as current, temperature, and salinity.

Thermal Science and Energy Conversion. The story of thermodynamics and energy conversion is a central aspect of the mechanical engineering profession. Essentially all power systems involve the conversion of energy from thermochemical forms to electricity and mechanical work, and the vast majority of our energy systems do so using thermofluid processes. Given the economic importance of energy and the potential for climate change due to CO₂ emissions, efficient and innovative energy utilization is an important societal priority as well. Programs in the department cover a variety of issues in thermodynamics, heat and mass transfer, electrochemical energy, and related areas of fluid dynamics, with a focus on the analysis, development, and innovation of technologies for the conversion of chemical and thermal energy to mechanical and electrical power. In thermodynamics, low-temperature work includes innovative subkelvin refrigeration machines and superconducting magnets. High-temperature work includes emission mechanisms in internal combustion engines and factors affecting engine performance; analysis of dynamic combustion control processes for gas turbine engines; thermoelectric energy conversion; fuel cells; novel materials for rechargeable batteries; and fluidized bed combustors. In heat and mass transport, topics include thermal control of electronics from manufacturing to end use; microscale and nanoscale transport phenomena; high-heat flux engineering; and energy-efficient building technologies. Renewable energy research includes the study of wind power, ocean wave or tidal energy, and photovoltaic devices.

Design. Design, in the engineering sense of deliberate creation of something new and useful, is at the heart of most of the diverse fields in mechanical engineering. Design in itself can be rewarding, and core subjects provide the broad background upon which advanced design subjects in specific disciplinary fields are built. Undergraduate and graduate experience includes subjects ranging from introduction to design through machine elements, design projects, and computer-aided design, to advanced design projects offering an opportunity to develop products and prototype equipment. A number of thesis topics each year are strongly oriented toward design, with ample opportunity to conceive, design, build, and test innovative solutions to real-world problems. Design applications ranging from automobiles, engines, ships, and offshore platforms to consumer products are covered in the department.

System Dynamics and Control. Rapid advances in measurement, actuation, and computation are revolutionizing technology in all areas of engineering—from transportation to entertainment, from healthcare to exploration—enabling machines to sense and react to change. The key to successful design of smart, sensate technology is a deep understanding of the interaction between physical system dynamics, information processing, and control. This field focuses on analytical modeling, computer simulation, design, and optimization of automation and control systems for all types of engineering devices and processes.

Mechanical engineering provides the strong engineering-science base and practical experience needed for professional work in this field. Subject offerings include fundamental and applied subjects and laboratories in system dynamics, control, and computation at all
levels from introductory to advanced. Extensive research programs (with applications ranging across robotics, manufacturing, information, optics, bioengineering, ocean monitoring, sampling, forecasting, and more) offer a wide range of opportunities for hands-on experience.

Manufacturing and Materials Processing. Mechanical engineers have a strong interest in the production of equipment, components, and materials. The manufacturing industry represents a major element of the economy, and its productivity strongly influences domestic living standards and competitive positions in international trade.

Industrial production encompasses a range of subject areas from pure research to technical management, including physics of manufacturing processes; design and control of manufacturing processes and machinery; design, implementation, and operation of complex manufacturing systems; crashworthiness of vehicles; and optimization of processes and products relative to societal needs. This field includes computer-controlled automation of complete manufacturing systems, and robotics.

Microtechnology and Nanotechnology. The miniaturization of devices and systems of ever increasing complexity has been a fascinating and productive engineering endeavor during the past few decades. Near-term and long-term, this trend will be amplified as physical understanding of the nanoworld expands, and widespread commercial demand drives the application of manufacturing to micro- and nanosystems. Ongoing research cuts across mechanical engineering disciplines, including sensors and actuators; fluids, heat transfer, and energy conversion at the micro- and nanoscale; optical and biological micro-electromechanical systems (MEMS); engineered nanomaterials; ultra-precision engineering; and the application of optics in measurement, sensing, and systems design.

Naval Architecture. For nearly a century, MIT has been a leading center of ship research and design with widely recognized contributions in hydrodynamics, ship structural mechanics and dynamics, propeller design, and overall ship design. Building on this historical base, the department’s curriculum in naval architecture and marine engineering offers studies in all systems that must operate in an ocean environment and covers all aspects of ship production in a total ship design and engineering context. Both civilian and defense applications are studied, including surface naval combatants, submarines, and high-performance commercial ships.

Biological and Biomedical Engineering. With the explosive growth of biological knowledge at the molecular level has come the realization that a deep understanding of biology mandates a study of how mechanical forces and structures contribute to the function of cells, tissues, organs, and behavior. Through engineering, biological and medical science has enormous potential to benefit human health, providing new methods to diagnose disease and new technology to treat it.

Mechanical engineering provides an excellent undergraduate foundation for a career in biological engineering or biomedical engineering, or may be directed toward medical school and practice. With its breadth of subject offerings in biological and biomedical engineering and extensive research programs that provide ample opportunities for engineering-based biological research and clinical experience, the Department of Mechanical Engineering provides an ideal base for any of these directions.

Computational Engineering. Computing has become very significant in engineering practice. The department is developing numerical algorithms for macro and micro scale simulations in mechanics, materials, fluid mechanics, and combustion, including computational geometry, finite element and spectral methods, vortex methods, molecular dynamics and Monte Carlo techniques, and hybrid approaches. Applications include structure analysis with small and large deformation, heat transfer enhancement, flow-structure interactions, ocean science and engineering, reacting flow simulation in combustion equipment, material processing, and micro mechanics.

Oceanographic Engineering. Once regarded as an inexhaustible source of food, the oceans are now approaching critical levels of depletion for some species. Engineering techniques of analysis and prediction are essential to maintaining the delicate natural balances of the oceans. Ocean engineers, together with marine biologists, aquatic ecologists, and public policy planners, have a critical role to play in managing ocean resources to ensure the survival of marine species and continuing supplies of food for the world.

Optics. Within mechanical engineering, active development of optical equipment and instrumentation is spread across mechanics, fluid mechanics, design, manufacturing, bioengineering, and micro/nanotechnology research. Activities include diagnostics of fluid phenomena, surface profilometry, nonlinear microscopy and spectroscopy, holographic hyper-spectral and confocal imaging, optical micromanipulation and force spectroscopy, optical networking, and three-dimensional imaging.

UNDERGRADUATE STUDY

The Department of Mechanical Engineering offers three programs of undergraduate study. The first of these, the traditional program that leads to a bachelor’s degree with the specification mechanical engineering, is a more structured program that prepares students for a broader range of career choices in the field of mechanical engineering. The second program leads to a bachelor’s degree without specification and is intended for students whose career objectives require greater flexibility in order to combine the essential elements of the traditional mechanical engineering program with study in another, complementary field. The third program, in mechanical and ocean engineering, is also a structured program for students interested in mechanical engineering as it applies to the engineering aspects of ocean science, exploration, and utilization, and of marine transportation.

All of the educational programs in the department prepare students for professional practice in an era of rapidly advancing technology. They combine a strong base in the engineering sciences (mechanics, materials, fluid and thermal sciences, systems and control) with project-based laboratory and design experiences. All strive to develop independence, creative talent, and leadership, as well as the capability for continuing professional growth.

The specific educational objectives of these programs are to provide students with a firm grasp of the fundamental principles of mechanical or ocean engineering; the ability to build, model, measure, analyze, and design mechanical systems using proper engineering principles; the ability to communicate effectively in oral, written, and visual forms; an appreciation and
Bachelor of Science in Mechanical Engineering/Course 2

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 2.001 and 18.03 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by any combination of 2.671, 2.672, and 2.008 in the Departmental Program]</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree: 17

Communication Requirement

The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Subject Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Department Core Subjects</td>
<td>156</td>
</tr>
<tr>
<td>2.001 Mechanics and Materials I, 12; REST, 8.01, 18.02, 18.03</td>
<td></td>
</tr>
<tr>
<td>2.002 Mechanics and Materials II, 12; 2.001</td>
<td></td>
</tr>
<tr>
<td>2.003 Modeling Dynamics and Control I, 15; REST, 8.02, 18.02, 18.03</td>
<td></td>
</tr>
<tr>
<td>2.004 Modeling Dynamics and Control II, 15; 2.003</td>
<td></td>
</tr>
<tr>
<td>2.005 Thermal-Fluids Engineering I, 12; REST, 8.02, 18.02, 18.03</td>
<td></td>
</tr>
<tr>
<td>2.006 Thermal-Fluids Engineering II, 12; 2.005, 18.03</td>
<td></td>
</tr>
<tr>
<td>2.007 Design and Manufacturing I, 12; 2.001, 2.670</td>
<td></td>
</tr>
<tr>
<td>2.008 Design and Manufacturing II, 12, LAB; 2.002 or 2.012; 2.005 or 2.027</td>
<td></td>
</tr>
<tr>
<td>2.009 The Product Engineering Process, 12 CI-M; 2.008</td>
<td></td>
</tr>
<tr>
<td>2.010 Equations of Motion, 18.02; 2.027</td>
<td></td>
</tr>
<tr>
<td>2.011 Thermodynamics, 18.03</td>
<td></td>
</tr>
<tr>
<td>2.012; 2.007 or 2.013</td>
<td>18.03 Differential Equations, 12, REST; 18.02*</td>
</tr>
<tr>
<td>2.014 Fluids Mechanics, 2.005</td>
<td>2.767 Independent Study or Thesis, 6*</td>
</tr>
</tbody>
</table>

Restricted Elective Subjects

Students are required to take two of the following elective subjects (substitutions by petition to the Undergraduate Office, Room 1-104):
- 2.016 Hydrodynamics, 12; 8.02, 18.03
- 2.017 Design of Systems Operating in Random Environments, 12; 2.003, 2.016 or 2.005
- 2.019 Design of Ocean Systems, 12; REST, 2.016 or 2.005, 2.671 or 6.071
- 2.062 Mechanical Vibration, 12; 13.013*, 2.004
- 2.065 Acoustics and Sensing, 12; 2.003 or 6.005 or 8.03 or 18.03
- 2.088 Introduction to Modeling and Simulation, 12; 18.03*
- 2.092 Computer Methods in Dynamics, 12; 2.001, 2.004, 18.03*
- 2.100 Information and Probability, 12
- 2.102 Introduction to Robotics, 12; 2.003, 2.004
- 2.124 Analysis and Design of Feedback Control Systems, 12; 2.003, 2.004
- 2.141 Advanced Thermal Fluids Engineering, 12; 2.006
- 2.151 Intermediate Heat and Mass Transfer, 12; 2.006*
- 2.155 Optics, 12; 2.005*, 8.02, 18.03
- 2.173 Elements of Mechanical Design, 12; 2.005, 2.007, 2.671
- 2.797 Molecular, Cellular, and Tissue Biomechanics, 12; 18.03, 7.012
- 2.966 Management in Engineering, 12
- 2.100 Information and Probability, 12
- 2.102 Introduction to Robotics, 12; 2.003, 2.004
- 2.124 Analysis and Design of Feedback Control Systems, 12; 2.003, 2.004
- 2.141 Advanced Thermal Fluids Engineering, 12; 2.006
- 2.151 Intermediate Heat and Mass Transfer, 12; 2.006*
- 2.155 Optics, 12; 2.005*, 8.02, 18.03
- 2.173 Elements of Mechanical Design, 12; 2.005, 2.007, 2.671
- 2.797 Molecular, Cellular, and Tissue Biomechanics, 12; 18.03, 7.012
- 2.966 Management in Engineering, 12

Departmental Program Units That also Satisfy the GIRs (36)

Unrestricted Electives

48

Total Units Beyond the GIRs Required for SB Degree 192

No subject can be counted both as part of the 17-subject GIRs and as part of the 192 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

- Alternative prerequisites are listed in the subject description.
- Although subjects 2.001 and 18.03 are part of the departmental requirements and satisfy the Institute REST requirement, they are not included in the 192 departmental units required beyond the GIRs.
- To encourage more substantial research, design, or independent study, the department permits up to 15 units of 2.767 credit, subject to approval of the student’s faculty advisor.
- The department suggests that students elect an introductory digital-computing subject (such as 1.00) as early as possible in their program, and also a basic electronics course (such as 6.034).
- For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

The traditional program in mechanical engineering provides a broad intellectual foundation in the field of mechanical engineering. The program develops the relevant engineering fundamentals, includes various experiences in their application, and introduces the important methods and techniques of engineering practice.

Students are urged to contact the Undergraduate Office as soon as they have decided to enter mechanical engineering so that a faculty advisor may be assigned. Students, together with their faculty advisors, plan a program that best utilizes the departmental electives and the 48 units of unrestricted electives available in the Course 2 degree program. This curriculum has been accredited by the Accreditation Board of Engineering and Technology. (See accreditation discussion under the School of Engineering.)

Bachelor of Science/Course 2-A

Course 2-A is designed for students whose academic and career goals demand greater breadth, flexibility, and preparation for leadership than are allowed under the traditional mechanical engineering program. To a large extent, the 2-A program allows students an opportunity to tailor a curriculum to their own needs, starting from a solid mechanical engineering base. The program combines a rigorous grounding in core mechanical engineering subjects with an individualized course of study focused on a second area that the student designs with the help and approval of the 2-A faculty advisor. The program leads to the undesignated Bachelor of Science degree as recommended by the Department of Mechanical Engineering.

In addition to the departmental objectives, Course 2-A pursues the following three objectives that reflect the interdisciplinary and student-designed nature of the program: it provides students with a broad and flexible educational understanding of manufacturing and design processes; the ability to formulate, execute, and present the results of a design project; the ability to function as an engineer, both as an individual and as part of a team; a sense of leadership, creativity, and ethics; and the realization of the need for and the ability to pursue lifelong learning.
experience that is tailored to the student’s specific career goals in engineering and other fields such as bioengineering, management, nanotechnology, policy, medicine, and law; it provides students with an educational experience that allows them to integrate mechanical engineering technical abilities and knowledge with those of another disciplinary field; and it provides students with an education that permits them to develop abilities for lifelong learning in engineering and nonengineering career paths.

A significant part of the 2-A curriculum consists of electives chosen by the student to provide in-depth study of a field of the student’s choosing. There is a wide variety of popular concentrations in which well-selected academic subjects complement a foundation in mechanical engineering and general Institute requirements. Some examples of potential concentrations include biomedical engineering and pre-medicine; energy conversion engineering; technology policy and pre-law; management and entrepreneurship; product design; and computation.

Concentrations are not limited to those listed above. Students are encouraged to design and develop concentrations that reflect their own needs and those of society. Any field of study is appropriate as long as student and advisor agree that the complete curriculum is coherent and pursues a definite objective.

The 2-A program requirements and units, in addition to the General Institute Requirements, are as follows: first-level mechanical engineering core subjects: 2.001, 2.003, 2.005, 2.007, 2.670; 18.03 (12 units); two of six second-level mechanical engineering core subjects: 2.002, 2.004, 2.006, 2.008, 2.009, or 2.671, together with 60 units of subjects in the student’s concentration, selected by the student with the help of the 2-A coordinator or faculty advisor; at least 48 units of additional, unrestricted electives; and a 12-unit thesis project, combining mechanical engineering with another field; for a total of 192 units beyond the General Institute Requirements.

The student’s self-designed program must contain a total of at least one and one-half years of engineering-topics content (144 units) appropriate to the student’s field of study. This content need not necessarily be taken entirely via engineering courses. For example, biology or management courses may contain engineering-topics appropriate to the student’s field of study. The student and the advisor are jointly responsible for determining that the proposed program contains the required engineering-topics content.

The student’s 2-A program must culminate in a major design experience based on the knowledge and skills acquired in earlier course work and incorporating engineering standards and realistic constraints that include considerations of most of the following kinds: economic; environmental; sustainability; manufacturability; ethical; health and safety; social; and political. This design requirement can be fulfilled either via a capstone design subject such as 2.009, or in the student’s thesis research. If the design experience is obtained through research, the student’s supervisor must certify that the research contains significant design content.

Bachelor of Science as Recommended by the Department of Mechanical Engineering/Course 2-A

<table>
<thead>
<tr>
<th>Requirement Category</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Institute Requirements (GIRs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 2.001 and 18.03 in the Departmental Program]</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement [can be satisfied by any combination of 2.671, 2.672, and 2.008 in the Departmental Program]</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Communication Requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required Departmental Core Subjects</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>PLUS Departmental Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required Departmental Core Subjects</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>2.001 Mechanics and Materials I, 12, REST; 8.01, 18.02, 18.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.003 Modeling Dynamics and Control I, 15, REST; 8.02, 18.02, 18.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.005 Thermal-Fluids Engineering I, 12, REST; 8.02, 18.02, 18.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.007 Design and Manufacturing I, 12; 2.001, 2.670</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.670 Mechanical Engineering Tools, 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST; 18.02*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.001 Mechanics and Materials II, 12; 2.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.005 Thermal-Fluids Engineering II, 12; 2.005, 18.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.008 Design and Manufacturing II, 12, LAB; 2.002 or 2.012; 2.005; 2.007 or 2.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.009 The Product Engineering Process, 12 CI-M; 2.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.671 Measurement and Instrumentation, 12, LAB CI-M; 2.003, 8.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Subjects</td>
<td>63 or 60</td>
<td></td>
</tr>
<tr>
<td>Departmental Program Units That also Satisfy the GIRs</td>
<td>(24)</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>192</td>
<td></td>
</tr>
</tbody>
</table>

*Alternative prerequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
Bachelor of Science In Mechanical and Ocean Engineering/Course 2-OE

General Institute Requirements (GIRs) Subjects

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H);
- 2 subjects designated as Communication Intensive in the Major (CI-M) (to be satisfied by 2.019 and 2.671 in the Departmental Program).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects required to take two of the following elective subjects (substitutions by petition to the</td>
</tr>
<tr>
<td>Undergraduate Office, Room 2-104):</td>
</tr>
<tr>
<td>2.001 Mechanics and Materials I, 12, REST; 8.01, 18.02, 18.03</td>
</tr>
<tr>
<td>2.003 Modeling Dynamics and Control I, 15, REST; 8.02, 18.02, 18.03</td>
</tr>
<tr>
<td>2.004 Modeling Dynamics and Control II, 15; 2.003</td>
</tr>
<tr>
<td>2.005 Thermal-Fluids Engineering I, 12, REST; 8.02, 18.02, 18.03</td>
</tr>
<tr>
<td>2.008 Design and Manufacturing II, 12, 1/2 Institute Lab; 2.002 or 2.012; 2.005; 2.007 or 2.017</td>
</tr>
<tr>
<td>2.010 Introduction to Ocean Science and Engineering, 9, REST; 8.01, 18.02</td>
</tr>
<tr>
<td>2.012 Mechanics of Structures; 12; 2.001 or 1.050</td>
</tr>
<tr>
<td>2.016 Hydrodynamics, 12; 8.02, 18.03</td>
</tr>
<tr>
<td>2.020 Design of Systems Operating in Random Environments, 12; 2.005, 2.016 or 2.005</td>
</tr>
<tr>
<td>2.020 Design of Ocean Systems, 12, 1/2 Institute Lab, CI-M; 2.006 or 2.012; 2.007 or 5.021</td>
</tr>
<tr>
<td>2.020 Mechanical Engineering Tools, 6</td>
</tr>
<tr>
<td>2.020 Measurement and Instrumentation, 12, 1/2 Institute Lab, CI-M; 2.003</td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST; 18.02*</td>
</tr>
<tr>
<td>2.017 Undergraduate Thesis, 6</td>
</tr>
</tbody>
</table>

Restricted Elective Subjects

<table>
<thead>
<tr>
<th>Units</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Students are required to take two of the following elective subjects (substitutions by petition to the</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Office, Room 2-104);</td>
<td></td>
</tr>
<tr>
<td>2.006 Thermal Fluids Engineering II, 12; 2.005</td>
<td></td>
</tr>
<tr>
<td>2.007 Design and Manufacturing I, 12; 2.001, 2.670</td>
<td></td>
</tr>
<tr>
<td>2.008 Mechanical Vibration, 12; 2.004</td>
<td></td>
</tr>
<tr>
<td>2.008 Advanced Structural Dynamics, 12; 2.080, 18.03</td>
<td></td>
</tr>
<tr>
<td>2.008 Acoustics and Sensing, 12; 2.003 or 6.005 or 8.01 or 16.03</td>
<td></td>
</tr>
<tr>
<td>2.080 Structural Mechanics, 12; 2.002 or 2.012</td>
<td></td>
</tr>
<tr>
<td>2.082 Ship Structural Analysis and Design, 12; 2.012 or 2.080, 2.701</td>
<td></td>
</tr>
<tr>
<td>2.088 Introduction to Modeling and Simulation, 12; 18.03</td>
<td></td>
</tr>
<tr>
<td>2.092 Computer Methods in Dynamics, 12; 2.001, 2.004, 18.03</td>
<td></td>
</tr>
<tr>
<td>2.100 Information and Probability, 12</td>
<td></td>
</tr>
<tr>
<td>2.14 Analysis and Design of Feedback Control Systems, 12; 2.004</td>
<td></td>
</tr>
<tr>
<td>2.20 Marine Hydrodynamics, 12; 2.006 or 2.016 or 1.060</td>
<td></td>
</tr>
<tr>
<td>2.41 Advanced Thermal Fluids Engineering, 12; 2.006</td>
<td></td>
</tr>
<tr>
<td>2.51 Intermediate Heat and Mass Transfer, 12; 2.006</td>
<td></td>
</tr>
<tr>
<td>2.615 Ship Power and Propulsion, 12; 2.005</td>
<td></td>
</tr>
<tr>
<td>2.701 Introduction to Naval Architecture, 12; 2.002 or 2.012</td>
<td></td>
</tr>
<tr>
<td>2.72 Elements of Mechanical Design, 12; 2.005, 2.005, 2.671</td>
<td></td>
</tr>
<tr>
<td>2.90 Management in Engineering, 12</td>
<td></td>
</tr>
</tbody>
</table>

Departmental Program Units That also Satisfy the GIRs (16)

Unrestricted Electives

<table>
<thead>
<tr>
<th>Units</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

Total Units Beyond the GIRs Required for SB Degree

195

No subject can be counted both as part of the 17-subject GIRs and as part of the 192 units required beyond the GIRs. Every subject in the student’s Departmental Program will count toward one or the other, but not both.

Notes

*Alternative prerequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

To satisfy the requirement that students complete two subjects designated Communication Intensive in the Major (CI-M), students must take one of: 2.009, 2.671, 3.081, 3.082, 6.021/2.791/BE.370, 6.033, 7.02, 8.13, 13.017, 13.018, 15.279, 16.82, 16.83, 18.322, or 22.09. Students must also take 2.01A; three units of the thesis must be taken in the fall.

Students who wish to pursue this degree must advise the department’s Undergraduate Officer during their sophomore year to allow enough time to plan a complete program. Registration for this degree program requires approval in writing from the 2-A faculty advisor. This program leads to the Bachelor of Science degree without specification and is accredited by the Accreditation Board for Engineering and Technology.

Bachelor of Science in Mechanical and Ocean Engineering/Course 2-OE

This program is designed for students interested in mechanical engineering with specialization in ocean engineering, including engineering aspects of the ocean sciences, ocean exploration, and utilization of the oceans for transportation, defense, and resources. The program leads to the Bachelor of Science in Mechanical and Ocean Engineering. Graduates are prepared for work in industry or government, or for further study in graduate school.

The School of Engineering intends to seek accreditation for this curriculum. Accreditation will be retroactive for the first students graduating with this degree.

Undergraduate Practice Opportunities Program

The Undergraduate Practice Opportunities Program is a program sponsored by the School of Engineering and administered through the Office of the Dean of Engineering. Further information on the program may be obtained from the department in which the student is registered or from Christopher Resto, director, Undergraduate Practice Opportunities Program, MIT, Room 12-188, Cambridge, MA 02139-4307, 617-452-5099, fax 617-253-8457, email cresto@mit.edu, or by viewing the website at http://web.mit.edu/engineering/upop/.
Minor Programs
The requirements for a Minor in Mechanical Engineering are as follows:

Students pursuing a minor in the department must complete a total of six subjects (including 18.03 as a prerequisite to departmental subjects). Subjects for the minor must constitute a coherent program approved by the department, and be drawn from the required subjects and departmental electives in the Course 2 or Course 2-OE degree program. These subjects must include completion of two of the ME program’s four core sequences.

A Minor in Biomedical Engineering is also available. (See description under the School of Engineering.) For a general description of the minor program, see Undergraduate Education in Part 1.

Inquiries
Further information on undergraduate programs may be obtained from the Undergraduate Office, Room 1-104, MIT, Cambridge, MA 02139-4307, 617-253-2305, or by email to me-undergradoffice@mit.edu.

GRADUATE STUDY
The Mechanical Engineering Department provides opportunities for graduate work leading to the following degrees: Master of Science in Mechanical Engineering, Master of Science in Ocean Engineering, Master of Science in Naval Architecture and Marine Engineering, Master of Science without specification of department, Master of Engineering in Manufacturing, degree of Mechanical Engineer, degree of Naval Engineer, and the Doctor of Philosophy (PhD) or Doctor of Science (ScD), which differ in name only.

Most master’s degree students register for one of the three degrees with a specification in engineering. Some students may forego the specification in order to have more freedom in the selection of subjects. The various master’s degrees all have equal academic stature.

The Master of Engineering degree is a twelve-month professional degree intended to prepare students for technical leadership in the manufacturing industries.

The Mechanical Engineer’s and Naval Engineer’s degrees offer preparation for a career in advanced engineering practice through a program of advanced coursework that goes well beyond the master’s level. These degrees are not a stepping stone to the PhD.

The Doctor of Philosophy (or Science), the highest academic degree offered, is awarded upon the completion of a program of advanced study and significant original research, design, or development.

Entrance Requirements for Graduate Study
Applications to the Mechanical Engineering Graduate School are accepted from persons who have completed, or will have completed by the time they arrive, a bachelor’s degree. Most incoming students have a degree in mechanical engineering or ocean engineering, or some related branch of engineering. The department’s admission criteria are not specific, however, and capable students with backgrounds in different branches of engineering or in science may gain entry. Nevertheless, to qualify for a graduate degree other than the master’s without specification, the candidate is expected to have had at least an undergraduate-level exposure to the core subject areas in mechanical engineering (applied mechanics, dynamics, fluid mechanics, thermodynamics, materials, control systems, and design) and to be familiar with basic electrical circuits and electromagnetic field theory. Those with deficiencies may be asked to make up subjects in certain areas before they graduate.

Applications for September entry are due on December 15 of the previous year, and decisions are reported in March. Foreign students applying from abroad may be admitted, but they will be allowed to register only if they have full financial support for the first year.

All applicants to the graduate program in mechanical engineering must submit the GRE test results. Students applying from non-English-speaking countries are required to take the Test of English as a Foreign Language (TOEFL) and receive a minimum paper-based score of 577 and a minimum computer-based score of 233.

Early Admission to Master’s Degree Programs in Mechanical Engineering
At the end of the junior year, extraordinarily qualified students in the Department of Mechanical Engineering will be invited to apply for early admission to the graduate program. Students who are admitted will then be able to enroll in core graduate subjects during the senior year and to find a faculty advisor who is willing to start and supervise research for the master’s thesis while the student is still in the senior year. With the consent of the faculty advisor, the student may also use a portion of the work conducted towards the master’s thesis in the senior undergraduate year to satisfy the requirements of the bachelor’s thesis.

Writing Ability Requirement
The Mechanical Engineering Department requires that all incoming graduate students demonstrate satisfactory English writing ability, or successfully complete appropriate training in writing. This requirement reflects the faculty’s conviction that writing is an essential skill for all engineers. All incoming graduate students, native as well as foreign, must take the departmental writing ability test, which is administered in September. Depending on the results, a student will either pass or be required to take a subject in writing.

Master of Science in Mechanical Engineering
To qualify for the Master of Science in Mechanical Engineering, a student must complete at least 72 credits of coursework. Of these, at least 42 must be graduate H-level subjects designated as such in Part 3. The remainder of the 72 units may be for G-level subjects or advanced undergraduate subjects that are not requirements in the undergraduate Mechanical Engineering curriculum.

At least two of the subjects must be chosen from a prescribed list of basic mechanical engineering sciences. The student must also either have had previously, or take as part of his or her master’s program, two advanced mathematics subjects (e.g., 18.085 and 18.086).

Finally, a thesis is required. The thesis is an original work of research, development, or design, performed under the supervision of a faculty or research staff member, and is a major part of any graduate program in the Mechanical Engineering Department. A master’s student usually spends as much time on thesis work as
on coursework. A master's degree usually takes about one and one-half to two years to complete.

Master of Science in Ocean Engineering/
Master of Science in Naval Architecture and Marine Engineering

The curriculum leading to a Master of Science in Ocean Engineering is based on a broad working knowledge of all the basic engineering skills. The intended outcome of this program is a person whose main interest is the development of the ocean for the good of humanity, and who, in following this ambition, is prepared to use whatever engineering disciplines are needed to address the problem at hand.

As a part of the more general field of ocean engineering, naval architecture and marine engineering are concerned with all aspects of waterborne vehicles operating on, below, or just above the sea surface. The Master of Science in Naval Architecture and Marine Engineering is intended to develop an individual who plans to concentrate in areas related to waterborne vehicles and/or their subsystems.

The requirements for these degrees are that the student take 72 credit units of subjects—48 of them being H-level subjects—and complete a thesis. At least three of the subjects must be chosen from a prescribed list of basic ocean engineering subjects. The student must also have had previously, or take as part of his or her master’s program, an advanced mathematics subject (e.g., 18.085) and a computation-related subject.

Master of Science (without Specification)

The requirements for the Master of Science without specification are that the student take 72 credit units of subjects—42 of them being H-level subjects—and complete a thesis. These are the minimum requirements for an MS degree at MIT. The degree without specification and the degree with specification have equal academic stature. The degree without specification does not, however, explicitly confer an association with the mechanical engineering profession, though such an association may be inferred from the student’s having been registered in the Department of Mechanical Engineering. Students who opt for the degree without specification usually have in mind specific programs of study with which they cannot meet all the requirements of the degrees with specification in the time they have available.

Master of Engineering in Manufacturing

The Master of Engineering in Manufacturing is a twelve-month professional degree in mechanical engineering that is intended to prepare the student to assume a role of technical leadership in the manufacturing industries. The degree is aimed at practitioners who will use this knowledge to become leaders in existing, as well emerging, manufacturing companies. To qualify for this degree, a student must complete a highly integrated set of subjects and projects that cover the process, product, system, and business aspects of manufacturing, totaling 90 units, plus complete a group-based thesis project. While centered in engineering and firmly grounded in the engineering sciences, this degree program is centered on the enterprise of manufacturing. Students will gain both a broad understanding of the many facets of manufacturing and a knowledge of manufacturing fundamentals from which to build new technologies and businesses. The admission process is identical to that of the Master of Science degree, with the exception that a supplemental application is required. For more information, see the program description at http://web.mit.edu/~meng-manufacturing/.

Dual SM/MBA Degrees—Leaders for Manufacturing Program

The Leaders for Manufacturing (LFM) program combines graduate education in engineering and management for those with two or more years of work experience who aspire to leadership positions in manufacturing or operations companies. This rigorous 24-month program combines subjects in technology and management. A required six-and-one-half-month internship provides opportunity to complete a research project on site at one of LFM’s many partner companies. The internship leads to a dual-degree thesis, culminating in both an SM in mechanical engineering and an MBA or SM in management. For more information, see the program description at http://lfm.mit.edu/.

Mechanical Engineer’s Degree

The Mechanical Engineer’s degree provides an opportunity for further study beyond the master’s level for those who wish to enter engineering practice rather than research. This degree emphasizes breadth of knowledge in mechanical engineering and its economic and social implications, and is quite distinct from the PhD, which emphasizes depth and originality of research.

The engineer’s degree requires a broad program of advanced coursework in mechanical engineering totaling at least 162 credit units (typically about 14 subjects), including those taken during the master’s degree program. The engineer’s degree program is centered around the application of engineering principles to advanced engineering problems and includes an applications-oriented thesis, which may be an extension of a suitable master’s thesis. An engineer’s degree typically requires at least one year of study beyond the master’s degree.

Naval Engineer’s Degree—Program in Naval Construction and Engineering

The program leading to the Naval Engineer’s degree requires a higher level and significantly broader range of professional competence in engineering than is required for an SM in naval architecture and marine engineering or ocean engineering. The program for an engineer’s degree ordinarily includes subjects in the areas of economics, industrial management, and public policy or law, and at least 12 units of comprehensive design. Should the student be working toward the simultaneous award of the engineer’s and master’s degrees, a single thesis is generally acceptable provided it is appropriate to the specifications of both degrees and demonstrates the educational maturity expected of candidates for the higher degree. Additional information on departmental requirements is available from the Departmental Student Administration Office.

The Naval Construction and Engineering (NCE) program provides US Navy and US Coast Guard officers, foreign naval officers, and civilian students interested in ships and ship design a broad graduate-level engineering education for a career as a professional naval engineer. The program focuses on naval architecture, hydrodynamics, ship structures, materials, power and propulsion, and ship production in a total ship design and engineering context. Students learn to apply a total-system-design approach to large-scale complex systems—in particular, sur-
face naval combatants, submarines, and high-performance commercial ships. The program is appropriate for naval officers and civilians who later actively participate in concept formulation, design, and construction of naval ships, as well as for those interested in commercial ship design. In addition to general engineering and science and a core program of subjects in ocean engineering, each student follows one of several specialized curricula applicable to ship construction and engineering.

Ocean Systems Management Program
The Ocean Systems Management Program is in transition at the time of publication of this bulletin. Students interested in this program should contact Professor Henry S. Marcus, program director, by email at hsmarcus@mit.edu for further information.

Doctor of Philosophy and Doctor of Science
The highest academic degree is the Doctor of Science, or Doctor of Philosophy (the two differ only in name). This degree is awarded upon the completion of a program of advanced study, and the performance of significant original research, design, or development. Doctoral degrees are offered in all areas represented by the department's faculty.

Students become candidates for the doctorate by passing a rigorous qualifying examination. The doctoral program includes a major program of advanced study in the student's principal area of interest, and a minor program of study in a different field. The Graduate Office should be consulted about the deadline for passing the qualifying exam.

The principal component of the program is the thesis. The thesis is a major, original work that makes a significant research, development, or design contribution in its field. The thesis and the program of study are done under a faculty supervisor and a doctoral committee selected by the student and his or her supervisor, and perhaps other interested faculty members. The committee makes an annual examination of the candidate's progress and conducts a final examination based on the thesis. The doctoral program usually takes a minimum of two years of work beyond the master's degree.

Interdisciplinary Programs
Graduate students registered in the Department of Mechanical Engineering may elect to participate in interdisciplinary programs of study. Programs are available in health sciences and technology, polymer science and technology, and technology and policy.

Joint Program with the Woods Hole Oceanographic Institution
The Joint Program with the Woods Hole Oceanographic Institution (2W) is intended for students whose primary career objective is oceanographic engineering. Students divide their academic and research efforts between the campuses of MIT and WHOI. Joint Program students are assigned an MIT faculty member as academic advisor; however, thesis research may be supervised by MIT or WHOI faculty. While in residence at MIT, students follow a program similar to that of other students in the department. The program is described in more detail at the end of Part 2 of this bulletin.

Assistantships and Fellowships
The Department of Mechanical Engineering offers three types of financial assistance to graduate students: research assistantships, teaching assistantships, and fellowships.

The majority of students in the department are supported by research assistantships (RAs), which are appointments to work on particular research projects with particular faculty members. The faculty members procure research grants for various projects and hire graduate students to carry out the research. The research is almost invariably structured so that it becomes the student's thesis. An RA appointment provides a full-tuition scholarship (i.e., covers all tuition) plus a salary that is adequate for a single person. The financial details are outlined in a separate handout available from the Departmental Graduate Office. An RA may register for a maximum of 24 units (about two subjects) of classroom subjects per regular term and 12 units in the summer term, and must do at least the equivalent of 24 units of thesis (i.e., research on the project) per term.

Teaching assistants (TAs) are appointed to work on specific subjects of instruction. As the name implies, they usually assist a faculty member in teaching, often grading homework problems and tutoring students. In the Mechanical Engineering Department, TAs are very seldom used for regular full-time classroom teaching. TAs are limited to 24 units of credit per regular term, including both classroom subjects and thesis. The TA appointment does not usually extend through the summer.

A fellowship provides the student with a direct grant, and leaves the student open to select his or her own research project and supervisor. A limited number of awards and scholarships are available to graduate students directly through the department. A number of students are also supported by fellowships from outside agencies, such as the National Science Foundation, Office of Naval Research, and Department of Defense. Scholarships are awarded each year by the Society of Naval Architects and Marine Engineers. These awards are normally granted to applicants whose interest is focused on naval architecture and marine engineering or on ocean engineering. Applications are made directly to the granting agency, and inquiries for the fall term should be made in the preceding fall term.

Prospective students are invited to communicate with the department regarding any of these educational and financial opportunities.

Experience has shown that the optimum graduate program consists of about equal measures of coursework and research, consistent with an RA appointment. The main advantage of a fellowship is a greater freedom in choosing a research project and supervisor. A teaching assistantship gives the student teaching experience and can also be extremely valuable for reviewing basic subject material—for example, in preparation for the doctoral general exams. It does not, however, leave much time for thesis research and may extend the time that the student needs to complete his or her degree.

Inquiries
For additional information, contact Leslie Regan, Mechanical Engineering Graduate Registration Office, Room 1-106, MIT, Cambridge, MA 02139-4307, 617-253-2291, or me-gradoffice@mit.edu.
RESEARCH LABORATORIES AND PROGRAMS

The Mechanical Engineering Department is organized into three divisions and four interdisciplinary research groups. The disciplinary divisions are mechanics and materials; fluids, energy, and transport; and control, systems, and design. The interdisciplinary research groups are bioengineering, manufacturing, nanotechnology, and ocean engineering.

The educational opportunities offered to students in mechanical engineering are enhanced by the availability of a wide variety of research laboratories and programs, and well-equipped shops and computer facilities.

The department provides many opportunities for undergraduates to establish a close relationship with faculty members and their research groups. Students interested in project work are encouraged to consult their faculty advisor or approach other members of the faculty.

Many members of the Department of Mechanical Engineering participate in interdepartmental or school-wide research activities. These include the Center for Biomedical Engineering, Center for Materials Science and Engineering, Institute for Soldier Nanotechnologies, Laboratory for Energy and the Environment, Laboratory for Manufacturing and Productivity, Operations Research Center, Program in Polymer Science and Technology, and Sea Grant College Program. Detailed information about each of these can be found in the section on Interdisciplinary Research and Study in Part 1. The department also hosts a number of industrial consortia, which support some laboratories and research projects.

Below is a partial list of departmental laboratories and their major areas of research.

AMP Mechanical Behavior of Materials Laboratory
Mechanisms of deformation and fracture processes in engineering materials.

Center for 21st Century Energy
Innovative science and technology for a sustainable energy future. Fundamental research in transport phenomena and thermodynamics; applied research in energy conversion, transportation, and thermal management. Draws upon activities in several of the department’s laboratories.

Center for Nonlinear Science
Interdisciplinary research into nonlinear phenomena. Incorporates the Nonlinear Dynamical Systems Lab (modeling, simulation, analysis), Nonlinear Dynamics Lab (experiments), and Nonlinear Systems Lab.

Center for Ocean Engineering
Research and educational activities in the field of ocean engineering, including observation and exploration of the ocean, naval construction and engineering, naval architecture, ocean resource development, shipping and transportation, ocean energy, ocean acoustics, global environment and climate change, oceanographic engineering, marine robotics, and biomimetics. The Center for Ocean Engineering coordinates the activities of the Acoustics Group, Design Lab, Impact and Crashworthiness Lab, Laboratory for Ship and Platform Flows, Marine Computation and Instrumentation Lab, Marine Hydrodynamics Lab (Water Tunnel and Testing Tank), and Vortical Flow Research Lab. The center is also affiliated with the MIT Sea Grant College Program Autonomous Underwater Vehicles Laboratory. The MIT/WHOI Joint Program in Oceanographic Engineering and the Naval Construction and Engineering Program are supported by the center.

Composite Materials and Nondestructive Evaluation Laboratory
Development of quantitative nondestructive evaluation characterizations which are directly correlatable with the mechanical properties of materials and structures.

Computer-Aided Design Laboratory
Advancing the state of the art in design methodology and computer-aided design methods.

Cryogenic Engineering Laboratory
Application of thermodynamics, heat transfer, and mechanical design to cryogenic processes and apparatus and the operation of a liquid helium facility.

d’Arbeloff Laboratory for Information Systems and Technology
Research on mechatronics, home and health automation, interface between hardware and software, and development of sensing technologies.

Electrochemical Energy Laboratory
Engineering of advanced materials for lithium batteries, proton exchange membrane and solid oxide fuel cells, and air battery and fuel cell hybrids.

Field and Space Robotics Laboratory
Fundamental physics of robotic systems for unstructured environments. Development, design, and prototyping of control and planning algorithms for robotic applications, including space exploration, rough terrains, sea systems, and medical devices and systems.

Finite Element Research Group
Computational procedures for the solution of problems in structural, solid, and fluid mechanics.

Fuel Cell Laboratory
Innovation in the design of fuel cells and in the application of fuel cell technology for energy conversion in stationary and portable power plants.

Hatsopoulos Microfluids Laboratory
Fundamental research on the behavior of fluid systems at microscopic scales, and the engineering applications that accrue from it.

Laboratory for Manufacturing and Productivity
Analysis and design of manufacturing processes, systems, and products. Current activities include precision machine design, 3D printing, droplet-based manufacturing, discrete dies, axiomatic design, auto-ID, casting monitoring, systems analysis and design, tribology, MEMS, and environmentally benign manufacturing.

Martin Center for Engineering Design
Design methodology, design of integrated electrical-mechanical systems, prototype development, advanced computer-aided design techniques.
Newman Laboratory for Biomechanics and Human Rehabilitation
Research on bioinstrumentation, neuromuscular control, and technology for diagnosis and remediation of disabilities.

Nonlinear Systems Laboratory
Analysis and control of nonlinear physical systems with emphasis on adaptation and learning in robots.

Park Center for Complex Systems
Research to understand complexity, educating students and scholars on complexity, designing complex systems for the benefit of humankind, and disseminating knowledge on complexity to the world at large.

Precision Engineering Laboratory
Fundamental and applied research on all aspects of the design, manufacture, and control of high precision machines ranging from manufacturing machines to precision consumer products.

Reacting Gas Dynamics Laboratory
Fluid flow, chemical reaction and combustion phenomena associated with energy conversion in propulsion systems, power generation, industrial processes, and fires.

Rohsenow Heat and Mass Transfer Laboratory
Fundamental research in convection, microscale/nanoscale transport, laser/material interaction, sprays, and high heat fluxes; applied research in materials processing, fluidized bed combustors, energy efficient buildings, and thermal management of electronics.

Sloan Automotive Laboratory
Processes and technology that control the performance, efficiency, and environmental impact of internal combustion engines, their lubrication, and fuel requirements.

Faculty and Staff

Faculty and Teaching Staff
Rohan Abeyaratne, PhD
Quentin Berg Professor of Mechanics
MacVicar Faculty Fellow
Head of Department
Roger D. Kamm, PhD
Germeshausen Professor of Mechanical and Biological Engineering
Associate Head of Department
Nicholas M. Patrikalakis, PhD
Kawasaki Professor of Engineering
Professor of Mechanical and Ocean Engineering
Associate Head of Department

Professors
Triantaphyllos R. Akylas, PhD
Professor of Mechanical Engineering
Lallit Anand, PhD
Professor of Mechanical Engineering
H. Harry Asada, PhD
Ford Professor of Engineering
Director, d’Arbeloff Laboratory for Information Systems and Technology
Arthur B. Baggeroer, ScD
Ford Professor of Engineering
Professor of Mechanical, Ocean, and Electrical Engineering
Klaus-Jürgen Bathe, PhD, DSc, Dr-Ing Eh, Dr hc Mult
Professor of Mechanical Engineering
Mary C. Boyce, PhD
Kendall Family Professor of Mechanical Engineering
MacVicar Faculty Fellow
Gang Chen, PhD
Professor of Mechanical Engineering
Wai K. Cheng, PhD
Professor of Mechanical Engineering
Chryssostomos Chryssostomidis, PhD
Henry L. and Grace Doherty Professor in Ocean Science and Engineering
Professor of Mechanical and Ocean Engineering
Director, MIT Sea Grant College Program

Jung-Hoon Chun, PhD
Professor of Mechanical Engineering
Director, Laboratory for Manufacturing and Productivity
Ernest G. Cravalho, PhD
Professor of Mechanical Engineering
Van Buren N. Hansford Faculty Fellow
(On leave)
Alex d’Arbeloff, SB
Professor of the Practice of Mechanical Engineering and Sloan School of Management
C. Forbes Dewey, Jr., PhD
Professor of Mechanical Engineering and Bioengineering
Steven Dubowsky, ScD
Professor of Mechanical Engineering
Woodie C. Flowers, PhD
Pappalardo Professor of Mechanical Engineering
Ahmed F. Ghoniem, PhD
Professor of Mechanical Engineering
Lorna J. Gibson, PhD
Matoula S. Salapatas Professor of Material Sciences and Mechanical Engineering
Leon R. Glicksman, PhD
Professor of Mechanical Engineering and Architecture
David C. Gossard, PhD
Professor of Mechanical Engineering
Stephen C. Graves, PhD
Abraham Siegel Professor of Management
Professor of Mechanical Engineering and Management
Linda G. Griffith, PhD
Professor of Mechanical Engineering
Alan J. Grodzinsky, ScD
Professor of Mechanical, Electrical, and Biological Engineering
Director, Biotechnology Process Engineering Center
(On leave, fall)
George Haller, PhD
Professor of Mechanical Engineering
Nicholas C. Makris, PhD
Associate Professor of Mechanical and Ocean Engineering
Scott Manalis, PhD
Associate Professor of Mechanical and Biomedical Engineering
(On leave)
Timothy J. McCoy, PhD
Associate Professor of the Practice of Naval Construction and Engineering
Samir Nayfeh, PhD
Associate Professor of Mechanical Engineering
Sanjay E. Sarma, PhD
Associate Professor of Mechanical Engineering
(On leave)
David Wallace, PhD
Associate Professor of Mechanical Engineering

Assistant Professors
Martin Culpepper, PhD
Rockwell International Assistant Professor of Mechanical Engineering
(On leave, fall)
Daniela Pucci de Farias, PhD
Esther and Harold E. Edgerton Assistant Professor of Mechanical Engineering
Daniel Frey, PhD
Robert N. Noyce Assistant Professor of Mechanical Engineering
Systems
Kimberly Hamad-Schifferli, PhD
Esther and Harold E. Edgerton Assistant Professor of Mechanical Engineering
Anette E. Hosoi, PhD
Doherty Assistant Professor of Mechanical Engineering
Matthew J. Lang, PhD
Keck Assistant Professor in Biomedical Engineering
Assistant Professor of Mechanical and Biomedical Engineering
Carol Livermore, PhD
SMA Assistant Professor of Mechanical Engineering and Manufacturing
(On leave, fall)
Thomas Peacock, PhD
ARCO Assistant Professor of Mechanical Engineering
Yang Shao-Horn, PhD
Assistant Professor of Mechanical Engineering
Simona Socrate, PhD
Assistant Professor of Mechanical Engineering
Alexandra Techet, PhD
Assistant Professor of Mechanical and Ocean Engineering
Todd Thorsen, PhD
d’Arbeloff Assistant Professor of Mechanical Engineering
(On leave, fall)

Adjunct Professor
Ernesto E. Blanco, BME
Adjunct Professor of Mechanical Engineering

Senior Lecturers
John P. Appleton, PhD
Arthur Bergles, PhD
David V. Burke, PhD
Stephen Fantone, PhD
Robert Hannemann, ScD
Edwin R. Hicks, PhD
Dean Kamen, PhD
Hilario Oh, PhD
William Plummer, PhD
John Psarouthakis, PhD
Edward Seldin, MD
Myron Spector, MD
Mandayam A. Srinivasan, PhD
Barrick Tibbits, NE
Daniel E. Whitney, PhD

Lecturers
Alex Arzoumanidis, PhD
Jorgen Bergstrom, PhD
Howard M. Bunch, MBA
Richard C. Chapman, BS
Ngon Dao, PhD
Richard Fenner, BS
Paul Ferraiolo, BA
Jeffrey Fredberg, PhD
Jonathan Gertler, MD
Julio Guerrero, PhD
W. Andrew Hodge, PhD
Karl Iagnemma, PhD
Richard Kimball, PhD
Hauke Kite-Powell, PhD
David Krebs, PhD
Richard Lee, MD
Guoan Li, PhD
Sheng Liu, PhD
Yuming Liu, PhD
Winston Maue, MS
David Meeker, PhD
Neil Singer, PhD
Milica Stojanovic, PhD
RADM Paul E. Sullivan, NE
Slobadan Tepic, PhD
Jeffrey Thomas, PhD/MD
Tian Tian, PhD
Mitchell Weiss, SB
Victor Wong, PhD
Boo-Hoo Yang, PhD
Dana R. Yoerger, PhD

Technical Instructors
Joseph Cronin
David Dow
Pierce Hayward
Barbara Hughey, PhD
Patrick McAtamney

Research Staff

Senior Research Engineers/Scientists
Anuradha Annaswamy, PhD
Stanley B. Gershwin, PhD
Mandayam A. Srinivasan, PhD

Principal Research Engineers/Scientists
Franz Hover, ScD
Lynette A. Jones, PhD
H. Igo Krebs, PhD
Yuming Liu, PhD

Research Engineers/Scientists
David Battle, PhD
Osamah El Rifai, PhD
Daniel Engles, PhD
Nora C. Hogan, PhD
Karl Iagnemma, PhD
Yongkwan Kim, PhD
Taesik Lee, PhD
Lian Shen, PhD
Qiang Zhu, PhD
Postdoctoral Associates
Patrick Anquetil, PhD
Michael Benjamin, PhD
Stephen Buerger, PhD
Simone Deparis, PhD
Laura DiPietro, PhD
Sundeep Kumar, PhD
Young-Woong Lee, PhD
Sauro Liberatore, PhD
Matthew Lichter, PhD
Lian Liu, PhD
Jean-Christophe Nave, PhD
Antonio Pantano, PhD
Sai Sarva, PhD
Jung Do Suh, PhD
Huang Tang, PhD
Xiaoqing Teng, PhD
James White, PhD
Qiang Zhu, PhD

Research Affiliates
Silvio Albano, BS
Jorge Escobar
Quinn Horn, PhD
Richard I. Kitney, PhD
In K. Mun, PhD
Piyush Patel
Nannaji Saka, PhD
José Santana, BA
Edmund Schuster, PhD
Olga Simek, PhD
Kosta Tsipis, PhD

Administrative Staff
Carolyn Brooke, BS
Financial Administrator
Jay Chrepta
Communications Officer
Richard R. Fenner, BS
Managing Director, Undergraduate Teaching Laboratories
Peggy Garlick, AS
Administrative Staff
Marion E. Gross, BA
Administrative Staff
Caroline Johnston
Financial Administrator
Michael Maier
Systems Manager

Steven Malley
Administrative Staff
Angela Mickunas
Financial Administrator
Leslie M. Regan
Administrative Staff
H. Sharon Trohon, BS
Administrative Officer

Professors Emeriti
Ali S. Argon, ScD
Quentin Berg Professor of Mechanical Engineering, Emeritus
A. Douglas Carmichael, PhD
Professor of Mechanical and Power Engineering, Emeritus
Nathan H. Cook, ScD
Professor of Mechanical Engineering, Emeritus
Stephen H. Crandall, PhD
Ford Professor of Engineering, Emeritus
Ira Dyer, PhD
Professor of Mechanical and Ocean Engineering, Emeritus
James A. Fay, PhD
Professor of Mechanical Engineering, Emeritus
Ernst G. Frankel, PhD, DBA
Professor of Mechanical Engineering and Marine Systems, Emeritus
Peter Griffith, ScD
Professor of Mechanical Engineering, Emeritus
Elias P. Gyftopoulos, ScD
Ford Professor of Nuclear and Mechanical Engineering, Emeritus
James C. Keck, PhD
Professor of Mechanical Engineering, Emeritus
Justin E. Kerwin, PhD
Professor of Mechanical Engineering and Naval Architecture, Emeritus
Shih-Ying Lee, ScD
Professor of Mechanical Engineering, Emeritus
Richard H. Lyon, PhD, DrEng (hon)
Professor of Mechanical Engineering, Emeritus

Robert W. Mann, ScD
Whitaker Professor of Biomedical Engineering, Emeritus
Koichi Masubuchi, PhD
Kawasaki Professor of Engineering, Emeritus
Professor of Mechanical and Ocean Engineering and Materials Sciences and Engineering, Emeritus
Frank A. McClintock, PhD
Professor of Mechanical Engineering, Emeritus
J. Nicholas Newman, ScD
Professor of Mechanical and Naval Architecture, Emeritus
T. Francis Ogilvie, PhD
Professor of Mechanical and Ocean Engineering, Emeritus
Carl R. Peterson, ScD
Professor of Mechanical Engineering, Emeritus
Ronald F. Probststein, PhD
Ford Professor of Engineering, Emeritus
Ernest Rabinowicz, PhD
Professor of Mechanical Engineering, Emeritus
Warren M. Rohsenow, DEng
Professor of Mechanical Engineering, Emeritus
Thomas B. Sheridan, ScD, D (hon)
Ford Professor of Engineering and Applied Psychology, Emeritus
Tau-Yi Toong, ScD
Professor of Mechanical Engineering, Emeritus
David Gordon Wilson, PhD
Professor of Mechanical Engineering, Emeritus
The Department of Nuclear Science and Engineering provides undergraduate and graduate education for students interested in developing the peaceful applications of nuclear science and engineering for societal needs. This is an exciting time to study Nuclear Science and Engineering: society’s interest in, and need for, a clean energy source such as nuclear energy is at a 20 year high. The applications of other nuclear technologies in medicine and industry have focused attention on the value of a strong nuclear science and engineering program. In response to this demand, the department has developed a new discipline-focused program of study that prepares students for the many diverse applications of nuclear science and technology. Applied nuclear science is the core discipline, underlying all these applications, that includes low energy nuclear physics, the interaction of ionizing radiation with matter, and plasma science and technology.

The department’s new view of nuclear science and engineering is manifest in our creation of a unified core curriculum for all our graduate students and our newly developed discipline-based undergraduate program. Once the core material is mastered, students can select from a wide variety of applications through more specialized subjects.

Most of the applications fall within three main subcategories: nuclear power, plasma physics and fusion technology, and the broad area of nuclear science and technology. In keeping with MIT’s longstanding contributions to the well-being of the nation, the department aims to educate the individuals who will make the key scientific and engineering advances in these societally important fields. Each of the three basic research areas involves substantial faculty and student activities and is apportioned as follows: nuclear power, 40 percent; nuclear science and technology, 40 percent; and plasma physics and fusion technology, 20 percent. A synopsis of these activities follows.

Nuclear Power. Nuclear reactors, powered by the fissioning of heavy elements such as uranium, have many applications. These include the generation of electricity, process heat and hydrogen, the propulsion of submarines and ships, the generation of on-board space-craft power for deep space exploration, the transmutation of long-lived radioactive elements, and the production of radioisotopes for medical and other biological and industrial applications.

The generation of electricity by nuclear power is probably the most familiar application. In some countries, the fraction of electricity obtained from nuclear power is greater than 80 percent. In the United States, it is about 20 percent. Concerns about the unreliability of fossil fuel supplies and the fact that demand is catching up and overtaking existing domestic supplies of electricity have led to a resurgence of interest in the design of advanced nuclear reactors. This interest is further enhanced by the fact that nuclear reactors, both existing and advanced designs, emit no greenhouse gases. Virtually all-national and international energy planners are in agreement that the United States and the rest of the world will not be able to meet their future energy needs without a substantially increased contribution from nuclear power.

The safe and economical development, design, construction, and operation of nuclear power plants and their related nuclear fuel recycling facilities is a major field of engineering. Future Nuclear Science and Engineering research goals are focused on: developing new advanced nuclear reactor designs that are “naturally” safe; developing innovative new proliferation-resistant fuel cycles; extending the life of nuclear fuels and structures; and reducing the capital and operating costs of nuclear power stations. The goal is to make nuclear power the most economical, safe, and environmentally friendly way of generating electricity, thereby making a major contribution to our energy independence and a sustainable global climate.

The Department of Nuclear Science and Engineering is also an active participant in MIT’s broad, interdisciplinary program of research and instruction in plasma physics and its varied applications.

Plasma Physics and Fusion Technology. A different source of nuclear energy results from the controlled fusion of light elements, hydrogen and its isotopes in particular. Since the basic source of fuel for fusion can be easily and inexpensively extracted from the ocean, the supply is virtually inexhaustible. Fusion reactions can only readily occur in a fully ionized plasma heated to super high temperatures (500 million K). Such hot plasmas cannot be contained by material walls and are usually confined instead by strong magnetic fields. Recent progress within the international fusion community increases the likelihood that controlled fusion will become a practical source of energy within the next half-century. Attainment of a fusion power plant involves the solution of many intellectually challenging physics and engineering problems. Included among these challenges are: a mastery of the sophisticated field of plasma physics; the discovery of improved magnetic geometries to enhance plasma confinement; the development of materials capable of withstanding high stresses and exposure to intense radiation; and the need for great engineering ingenuity in integrating fusion power components into a practical, safe, and economical system. The department has strong programs in plasma fundamentals, materials for intense radiation fields, and engineering of fusion systems.

The fundamentals of plasmas also underlie novel methods for treatment of toxic gases, magnetohydrodynamic energy conversion, and ion propulsion, all topics of interest in the department. Students concentrating on applied plasma physics are trained not only to contribute to the advancement of controlled fusion but also to apply their knowledge in areas of immediate practical significance. In these plasma programs, the Department of Nuclear Science and Engineering is an active participant in MIT’s broad, interdepartmental program of research and instruction in plasma physics and its varied applications.

Nuclear Science and Technology. The department’s nuclear science and technology program is concerned with a wide range of nuclear science and engineering applications involving medicine and biology, information processing, materials research, industrial processes, and nuclear waste remediation.

Bionuclear science and engineering utilizes nuclear processes in a variety of ways that impact medicine and biology. For example, nuclear radiation can be used as a medical diagnostic tool through a variety of imaging techniques. It can also be used for therapy: the boron-neutron interaction is being used to treat various forms of brain cancer. Research is underway to apply this
treatment to other types of cancer and to rheumatoid arthritis. Lastly, a new micro-beam accelerator has just been constructed, whose goal it is to allow for the first time a first-principles understanding of the interaction of radiation with biological materials at the sub-cellular level.

Nuclear Science and Engineering (such as fission and fusion) has traditionally dealt with random processes, for which only the statistics can be controlled. A new frontier in Nuclear Science and Engineering is to precisely control the quantum mechanical wave function of atomic and subatomic systems. Thus far, this has been achieved only in low energy processes, particularly nuclear magnetic resonance, a form of nuclear spectroscopy which has allowed the basic techniques needed for quantum control to be explored in unprecedented detail. The department has initiated an ambitious program in this area, which promises to be widely applicable in nanotechnology. The ultimate achievement would be the construction of a “quantum computer,” which would be capable of solving problems that are far beyond the capacities of classical computers. Other significant applications are secure communication and the direct simulation of quantum physics.

A cross-cutting area of research in the department involves the area of nuclear materials research. There is a major interest in the nuclear science and technology program in understanding how radiation interacts with biological materials. However, there is also considerable interest in the nuclear power and fusion programs. Here, in order to achieve the full potential of nuclear energy from either fission or fusion reactors, it is necessary to develop special materials capable of withstanding intense radiation for long periods of time. It is also crucial to understand the phenomenon of corrosion in a radiation environment.

Nuclear science and engineering makes important contributions to a wide range of industrial applications. For example, nuclear techniques are being used and developed for the rapid, non-intrusive inspection of aircraft baggage and cargo. Another application is the development of a “plasma-window” that separates a vacuum region from a high-pressure region without the need for a solid material structure. Such a window then allows ultrahigh-power accelerator particle beams to propagate from one region to the other without concern for window damage, which is often a limiting factor. Lastly, nuclear techniques have been used to develop a non-invasive solidification sensor for the metal casting industry, a sensor of great practical, quality control, and economic importance. Most recently, nuclear technologies have been used to eliminate E. coli bacteria from food and anthrax from our mail system.

Undergraduate and graduate students in other departments at MIT who wish to learn how their major professional fields may be utilized in nuclear science and technology applications may find certain offerings by the Department of Nuclear Science and Engineering of interest, such as the medically oriented bionuclear science and engineering program, nuclear power plant engineering, applied plasma physics, nuclear materials engineering, and the interdepartmental program on risk-benefit analysis of technology.

UNDERGRADUATE STUDY

Bachelor of Science in Nuclear Science and Engineering/Course 22

The Department of Nuclear Science and Engineering’s undergraduate program provides a broad foundation in nuclear science and engineering in preparation for careers in the nuclear power industry or the applied radiation industry, such as medical technology, or for graduate study in Nuclear Science and Engineering and related disciplines. The field of study is very broad and flexible, offering students many options for future study based on a solid foundation. The program develops engineering fundamentals in radiation production, interactions and measurement, and in the design of nuclear systems. In addition, the program introduces students to thermal-fluid engineering, electronics and computer methods. The program is designed to be analytical and grounded in an understanding of low-energy nuclear physics. The curriculum allows for opportunity to expand into many diverse areas.

The department offers one undergraduate program leading to a Bachelor of Science in Nuclear Science and Engineering, Course 22, which is normally completed in four years.

A characteristic of the curriculum is to develop practical skills through hands-on education. This is accomplished through a laboratory course on radiation physics, measurement, and protection (22.09), and through the laboratory components and exercises in electronics (6.071), imaging (22.058), and computational courses. The concept of hands-on learning is continued with a 12-unit design course focusing on nuclear systems and a 12-unit undergraduate thesis that is normally organized between the student and a faculty member of the department. Thesis subjects can touch on any area of nuclear science and engineering, including nuclear energy applications (fission and fusion) and nuclear science and technology (medical, physical, chemical and material applications).

Additional information may be obtained from the student’s departmental advisor or from the department’s Academic Office (Room 24-102).

The Bachelor of Science in Nuclear Science and Engineering prepares students for careers in the design, analysis and operation of fission reactors, in various applications of radiation (including biomedical), and for graduate study in a wide range of engineering and physical sciences.

The Course 22 degree program is accredited by the Accreditation Board for Engineering and Technology.

Subject requirements and options are described in the preceding paragraphs and chart. A bachelor’s degree thesis of 12 units is required.

Minor Program in Nuclear Science and Engineering

The requirements of a Minor in Nuclear Science and Engineering are as follows:

Students must complete a total of six subjects, including 8.03 and 18.03 as prerequisites to departmental subjects. The subjects should constitute a coherent program built on the core courses:

- 22.01 Introduction to Ionizing Radiation
- 22.02 Introduction to Applied Nuclear Physics
- 22.05 Neutron Science and Reactor Physics
- 22.06 Engineering of Nuclear Systems
- 22.058 Principles of Tomographic Imaging
- 22.09 Principles of Nuclear Radiation Measurement and Protection
The department’s minor advisor will ensure that each minor program forms a coherent group of subjects.

Combined Bachelor’s and Master’s Programs
The five-year programs leading to a joint Bachelor of Science in Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Nuclear Science and Engineering, or Physics and a Master of Science in Nuclear Science and Engineering are helpful to students who, early in their undergraduate studies, decide to pursue a graduate degree in nuclear science and engineering. Students desiring to enter such a program must meet the graduate admission requirements of the Department of Nuclear Science and Engineering and submit their applications for admission at the end of their junior year. If admitted, the student arranges a program with the registration officers of the two participating departments.

The Nuclear Science and Engineering thesis requirements of the two degrees may be satisfied either by completing both an SB thesis and an SM thesis, or by completing an SM thesis and any 12 units of undergraduate credit.

For further information, interested students should contact either their undergraduate department or the Department of Nuclear Science and Engineering.

Inquiries
Further information on undergraduate programs, admissions, and financial aid may be obtained from the department’s Academic Office, Room 24-102, MIT, Cambridge, MA 02139-4307, 617-258-5682.

GRADUATE STUDY

The nuclear science and engineering profession is broad and many undergraduate disciplines provide suitable preparations for graduate study. While the graduate program splits into three areas after the initial core set of courses, many incoming students change their area of interest after joining the program. The Department of Nuclear Science and Engineering is dedicated to attracting a diverse class of well-prepared engineers and scientists.

Bachelor of Science in Nuclear Science and Engineering/Course 22

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the major (CI-M).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLUS Departmental Program</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)</td>
<td></td>
</tr>
<tr>
<td>Basic Requirements</td>
<td>84</td>
</tr>
<tr>
<td>2.005 Thermal-Fluids Engineering I, 12, REST; 8.02, 18.03</td>
<td></td>
</tr>
<tr>
<td>6.071 Introduction to Electronics, 12, REST; 18.01</td>
<td></td>
</tr>
<tr>
<td>8.03 Physics III, 12, REST; 8.02*, 18.02</td>
<td></td>
</tr>
<tr>
<td>12.010 Computational Methods of Scientific Programming, 12; 18.01, 18.02, 8.01</td>
<td></td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST; 18.02, 18.014</td>
<td></td>
</tr>
<tr>
<td>or 18.034 Differential Equations, 12, REST; 18.02, 18.014</td>
<td></td>
</tr>
<tr>
<td>18.085 Mathematical Methods for Engineers I, 12, 18.03</td>
<td></td>
</tr>
<tr>
<td>22.01 Introduction to Ionizing Radiation, 12, REST</td>
<td></td>
</tr>
<tr>
<td>Required Nuclear Science and Engineering Core Subjects</td>
<td>72</td>
</tr>
<tr>
<td>22.02 Introduction to Applied Nuclear Physics, 12, REST; 8.02, 18.02, 22.01</td>
<td></td>
</tr>
<tr>
<td>22.033 Nuclear Systems Design Project, 12; 22.06</td>
<td></td>
</tr>
<tr>
<td>22.05 Neutron Science and Reactor Physics,12; 18.03, 22.02</td>
<td></td>
</tr>
<tr>
<td>22.058 Principles of Tomographic Imaging, 12; 8.02, 18.03</td>
<td></td>
</tr>
<tr>
<td>22.06 Engineering of Nuclear Systems, 12; 2.005, 22.02, 22.05</td>
<td></td>
</tr>
<tr>
<td>22.09 Principles of Nuclear Radiation Measurement and Protection, 12, LAB, CI-M; 22.02</td>
<td></td>
</tr>
<tr>
<td>Required Undergraduate Nuclear Science and Engineering Thesis</td>
<td>12</td>
</tr>
<tr>
<td>22.7h1 Undergraduate Thesis Tutorial (minimum of 3 units), 22.09</td>
<td></td>
</tr>
<tr>
<td>22.7h2 Thesis (minimum of 9 units), CI-M; 22.09_</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>12</td>
</tr>
<tr>
<td>Choose one of the following:</td>
<td></td>
</tr>
<tr>
<td>2.006 Thermal-Fluids Engineering II, 12; 2.005, 18.03</td>
<td></td>
</tr>
<tr>
<td>2.791 Quantitative Physiology: Cells and Tissues, 12; 2.003, 8.02, 18.03</td>
<td></td>
</tr>
<tr>
<td>5.12 Organic Chemistry I, 12; 5.11 or 5.111 or 5.112 or 3.091</td>
<td></td>
</tr>
<tr>
<td>8.04 Quantum Physics I, 12; 8.03*, 18.03*</td>
<td></td>
</tr>
<tr>
<td>8.07 Electromagnetism II, 12; 8.05, 18.03</td>
<td></td>
</tr>
<tr>
<td>22.00 Introduction to Modeling and Simulation, 12, REST; 18.03 or 3.016</td>
<td></td>
</tr>
<tr>
<td>Departmental Program Units That also Satisfy the GIRs</td>
<td>(96)</td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>48</td>
</tr>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>192</td>
</tr>
</tbody>
</table>

*Alternate prerequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
An undergraduate degree in physics, engineering physics, chemistry, mathematics, metallurgy, or chemical, civil, electrical, mechanical, or Nuclear Science and Engineering can provide a foundation for graduate study in nuclear science and engineering. Optimum undergraduate preparation would include the following:

Physics—at least three introductory courses covering classical mechanics, electricity and magnetism, and wave phenomena. An introduction to quantum mechanics is quite helpful, and an advanced course in electricity and magnetism (including a description of time-dependent fields via Maxwell’s equations) is recommended for those wishing to specialize in fusion.

Mathematics—it is essential that incoming students have a solid understanding of mathematics, including the study and application of ordinary differential equations. It is highly recommended that students also have studied partial differential equations and linear algebra.

Chemistry—at least one term of general, inorganic, and physical chemistry.

Engineering fundamentals—the graduate curriculum builds on a variety of engineering skills, and incoming students are expected to have had an introduction to thermodynamics, fluid mechanics, heat transfer, electronics and measurement, and computation and numerical methods. A subject covering the mechanics of materials is recommended, particularly for students wishing to specialize in fission.

Laboratory experience is essential. This may have been achieved through an organized course, and ideally was supplemented with an independent undergraduate research activity or a design project.

Applicants for admissions are required to take the Graduate Record Examination (GRE).

Master of Science in Nuclear Science and Engineering
The object of the Master of Science program is to give the student a good general knowledge of nuclear science and engineering and to provide a foundation either for productive work in the nuclear field or for more advanced graduate study. The general requirements for the SM degree are listed under Graduate Education in Part 1. Subject 22.101 Applied Nuclear Physics or its equivalent is required for all Master of Science candidates.

Other subjects may be selected in accordance with the student’s particular field of interest. Most Master of Science candidates specialize in one of three alternative fields: fission nuclear technology, applied plasma physics, or nuclear science and technology. Detailed descriptions of the subjects available in each of these areas may be found in the Course 22 listings in Part 3.

Students with adequate undergraduate preparation normally need 18 months to two years to complete the requirements for the Master of Science. Additional information concerning the requirements for the Master of Science in Nuclear Science and Engineering, including lists of recommended subjects, may be obtained from the department’s Academic Office (Room 24-102).

Master of Science in Technology and Policy
Students interested in applying their Nuclear Science and Engineering background to problems of policy and socioeconomic assessment of technology may apply for the interdepartmental Master of Science Program in Technology and Policy. This program combines subjects in advanced technology in a field of the student’s choosing with subjects in economics, systems analysis, political science, and law. For a program description, see the Technology and Policy Program under the Engineering Systems Division in Part 2.

Nuclear Engineer
The program of study leading to the Nuclear Engineer’s degree provides deeper knowledge of Nuclear Science and Engineering than is possible in the master’s program and is intended to train students for creative professional careers in engineering application or design.

The general requirements for this degree, as described under Graduate Education in Part 1, include 162 units of subject credit plus a thesis. Each student must plan an individually selected program of study, approved in advance by the faculty advisor, and must complete, and orally defend, a substantial project of significant value.

The objectives of the program are to provide the candidate with a broad knowledge of the profession and to develop competence in engineering applications or design. The emphasis in the program is more applied and less research-oriented than the doctoral program.

The engineering project required of all candidates for the Nuclear Engineer’s degree is generally the subject of an engineer’s thesis. A student with full undergraduate preparation normally needs two years to complete the program. A student who satisfies the requirements for the engineer’s degree is simultaneously approved for the SM by the Department of Nuclear Science and Engineering. Additional information may be obtained from the department.

Doctor of Philosophy and Doctor of Science
The program of study leading to either the Doctor of Philosophy or the Doctor of Science degree aims to give a comprehensive knowledge of nuclear science and engineering, to develop competence in advanced engineering research, and to develop a sense of perspective in assessing the role of nuclear science and technology in our society.

General requirements for the doctorate are described under Graduate Education in Part 1 and in the Graduate School Policy and Procedures Manual. The specific requirements of the Department of Nuclear Science and Engineering are the math and physics competency requirement, the engineering requirement, the general examination, the core/major/minor program requirement, and the doctoral thesis.

Upon satisfactory completion of the requirements, the student ordinarily receives a PhD unless he or she requests an ScD. The requirements for both degrees are the same.

Students admitted for the Master of Science or Nuclear Engineer’s degree must apply to the Department of Nuclear Science and Engineering’s Admissions Committee for admission to the doctoral program.

Students admitted for a doctoral degree must complete the math and physics competency requirement and the engineering requirement prior to taking the general examination. Before starting doctoral research, each student is required to pass a general examination whose purpose is to establish intellectual potential as well as breadth and depth of knowledge. The general exam has two sections: a written component and an oral component. Both components
must be passed in order to register for doctoral thesis credit. Candidates for a doctoral degree must also satisfactorily complete (with an average grade of B or better) an approved program of advanced studies—the core/major/minor requirement. The program requires that students take not less than 84 credit hours of subjects (excluding special problems), of which two subjects (24 units) must be selected from the following courses (the core): 22.101, 22.105, and 22.106. Three subjects (36 units) comprise a field of specialization (the major) that will be closely related to the student’s doctoral thesis topic. Two subjects (24 units) must be coordinated subjects clearly outside the field of specialization (the minor). None of the 36 units selected by the student in the field of specialization (the major) may be from the list of subjects specified for general examination questions chosen by the student. Also available is a joint degree program offered by the Department of Nuclear Science and Engineering’s Radiological Sciences Graduate Program and the Harvard-MIT Division of Health Sciences and Technology. Decisions regarding admission and award of the doctoral degree are made jointly. In addition to a strong background in the physical and engineering sciences, applicants should complete two undergraduate subjects in biology or biochemistry before entrance, and must complete three additional life sciences subjects prior to receiving the doctoral degree as part of the coursework toward fulfilling the NSE core/major/minor program. To supplement the program’s academic training, a one-month clinical practicum in one of the affiliated Boston-area hospitals is also required. Students submit and defend a doctoral thesis before a committee of MIT faculty, including members from NSE and HST, in accordance with the interdisciplinary nature of the program.

Doctoral research may be undertaken either in the Department of Nuclear Science and Engineering or in a nuclear-related field in another department. Appropriate areas of research are described generally in the introduction to the department, and a detailed list may be obtained from the Department of Nuclear Science and Engineering.

Research Facilities

The department’s programs are supported by a number of outstanding experimental facilities for advanced research in nuclear science and engineering.

The MIT Research Reactor in the Nuclear Reactor Laboratory operates at a power of 5 MW and is fueled with U-235 in a compact light-water cooled core surrounded by a heavy-water reflector. This reactor provides a wide range of radiation-related research and teaching opportunities for the students and faculty of the department. Major programs to study corrosion in a nuclear environment are currently in place. The clinical trials of boron neutron capture therapy are being conducted in the newly renovated epithermal neutron beam. Details of the laboratory’s research programs and facilities are given in the section on Interdisciplinary Research and Study.

The department utilizes extensive experimental plasma facilities for the production and confinement of large volumes of highly ionized plasmas and for studies of plasma turbulence, particle motions, and other phenomena. Most of the departmental research on plasmas and controlled fusion is carried out in the Plasma Science and Fusion Center. The department has played a major role in the design and development of high magnetic-field fusion devices. Currently there are three major plasma experiments at MIT—the Alcator C-Mod Tokamak, the Levitated Dipole Experiment, and the Versatile Toroidal Facility (VTF)—all located in the Plasma Science and Fusion Center (described in the section on Interdisciplinary Research and Study in Part I). Through its activities in the Plasma Science and Fusion Center, the department is also the national leader in the design of magnets, both copper and superconducting.

Within the Spatial Nuclear Magnetic Resonance Laboratory, the full gamut of spatial nuclear magnetic resonance (NMR) techniques can be undertaken in one setting. Topics explored in the laboratory include NMR microscopy; studies of porous, granular, and soft matter; quantum chaos; coherent multi-body dynamics; and experimental implementation of quantum computers. A unique, high-current tandem accelerator, developed for use in medical research, is available in the Accelerator Beam Applications Laboratory, and is capable of providing intense, low-energy neutrons for basic research into boron neutron capture therapy and other uses of the 10B(n,a) nuclear reaction. A second proton beam can be used as a microprobe for spatially resolved elemental analysis.

In the Whitaker College Biomedical Imaging and Computational Laboratory, a variety of radiation therapy and medical physics research projects are in progress. The laboratory houses computer workstations, which are used primarily for Monte Carlo simulation of different radiation types and for image processing analysis.

In addition to the above facilities, the department has a nuclear instrumentation laboratory, a 14 MeV neutron source, and two subcritical natural uranium reactors, one moderated by water and the other by graphite. Laboratory space and shop facilities are available for research in all areas of Nuclear Science and Engineering. A state-of-the-art scanning electron microscope that can be used to study irradiated specimens is available. A number of computer workstations dedicated to simulation, modeling, and visualization, as well as MIT’s extensive computer facilities, are used in research and graduate instruction.

Financial Aid

Financial aid for graduate students is available in the form of research and teaching assistantships, department-administered fellowships, and supplemental subsidies from the College Work-Study Program. Assistantships are awarded to students with high quality academic records. The duty of a teaching assistant is to assist a faculty member in the preparation of subject materials and the conduct of classes, while that of a research assistant is to work on a research project under the supervision of one or more faculty members.

Most fellowships are awarded in April for the following academic year. Assistantships are awarded on a semester basis. The assignment of teaching assistants is made before the start of each semester, while research assistants can be assigned at any time. Essentially all students admitted to the graduate program receive financial aid for the duration of their education.

Application for financial aid should be made to Professor Sidney Yip, Room 24-102, MIT, Cambridge, MA 02139-4307, 617-253-3809.
Inquiries
Additional information on graduate admissions and academic and research programs may be obtained from the department’s Academic Office, Room 24-102, MIT, Cambridge, MA 02139-4307, telephone 617-253-3814, email cegan@mit.edu.

Faculty and Staff
Faculty and Teaching Staff
Ian Horner Hutchinson, PhD
Professor of Nuclear Science and Engineering
Head of the Department

Professors
George Apostolakis, PhD
Professor of Nuclear Science and Engineering and Engineering Systems Division
Ronald George Ballinger, ScD
Professor of Nuclear Science and Engineering and Materials Science and Engineering
Sow-Hsin Chen, PhD
Professor of Nuclear Science and Engineering
David Grant Cory, PhD
Professor of Nuclear Science and Engineering
Jeffrey Phillip Freidberg, PhD
Professor of Nuclear Science and Engineering
Michael Warren Golay, PhD
Professor of Nuclear Science and Engineering
Kent Forrest Hansen, ScD
Professor of Nuclear Science and Engineering
Otto Karl Harling, PhD
Professor of Nuclear Science and Engineering
Linn Walker Hobbs, DPhil
Professor of Materials and Nuclear Science and Engineering

Associate Professors
Jeffrey A. Coderre, PhD
Associate Professor of Nuclear Science and Engineering
Kim Molvig, PhD
Associate Professor of Nuclear Science and Engineering

Assistant Professors
Jacopo Buongiorno, PhD
Assistant Professor of Nuclear Science and Engineering
Alan Pradip Jasanoff, PhD
Assistant Professor of Nuclear Science and Engineering

Senior Lecturer
Bruce R. Rosen, MD, PhD

Research Staff
Senior Research Scientists
Peter Catto, PhD
Senior Research Scientist, Plasma Science and Fusion Center and Nuclear Science and Engineering

Research Affiliates
Piero Baglioni, PhD
Raymond Boisseau, PhD
Andrew Dart, BE
Gongyin Chen, PhD
John McGregor Dobbs, PhD
Georges El Fakhri, PhD
Andrew Hodgdon, MSc
Walter Y. Kato, PhD
Robert E. Klinkowstein, PhD
Genrich Krasko, PhD

Daniel R. Cohn, PhD
Head, Plasma Technology and Systems Plasma Science and Fusion Center
Senior Research Scientist, Plasma Science and Fusion Center and Nuclear Science and Engineering

Principal Research Scientist
Timothy F. Havel, PhD
Pavel Hejzlar, ScD

Senior Research Engineer
Joseph V. Minervini, PhD
Head, Fusion Technology and Engineering, Plasma Science and Fusion Center
Senior Research Engineer, Plasma Science and Fusion Center and Nuclear Science and Engineering

Principal Research Engineer
John A. Bernard, Jr., PhD
Principal Research Engineer, Nuclear Reactor Laboratory and Nuclear Science and Engineering

Research Scientists
Emmanouil Chaniotakis, PhD
Chandrasekhar Ramanathan, ScD

Research Engineer
Pradip Saha, PhD
Peter Stahle, BSME

Postdoctoral Associates
Brandon Blackburn, PhD
Clemens Forest, PhD
Yoonik Kim, PhD
Benjamin Levi, PhD

Research Affiliates
Piero Baglioni, PhD
Raymond Boisseau, PhD
Andrew Dart, BE
Gongyin Chen, PhD
John McGregor Dobbs, PhD
Georges El Fakhri, PhD
Andrew Hodgdon, MSc
Walter Y. Kato, PhD
Robert E. Klinkowstein, PhD
Genrich Krasko, PhD
Robert Ledoux, PhD
Werner Maas, PhD
Ross Mair, PhD
Francesco Mallamace, PhD
Eric C. McFarland, MD, PhD
Marvin M. Miller, PhD
William Nett, MBA
Shigenobu Ogata, PhD
David Perticone, PhD
Edward Pilat, PhD
Mark Rivard, PhD
Jeffrey Schweitzer, PhD
Pabitra Sen, PhD
Ruth E. Shefer, PhD
Samuel Singer, PhD
Grum Teklemariam, PhD
Zhiwen Xu, PhD
Bilge Yildiz, PhD
Robert Zamenhof, PhD
Tieliang Zhai, SM

David Dayton Lanning, PhD
Professor of Nuclear Science and Engineering, Emeritus

Ronald Michael Latanision, PhD
Professor of Materials Science and Nuclear Science and Engineering, Emeritus

John Edward Meyer, PhD
Professor of Nuclear Science and Engineering, Emeritus

Kenneth Calvin Russell, PhD
Professor of Metallurgy and Nuclear Science and Engineering, Emeritus

Administrative Staff
Peter Brenton
Administrative Officer
Valerie Censabella
Assistant to Department Head
Clare Marie Egan
Academic Programs Administrator
Rachel M. Morton, BS
Manager, Computer Facilities

Professors Emeriti
Manson Benedict, PhD
Institute Professor, Emeritus
Professor of Nuclear Science and Engineering, Emeritus

Gordon Lee Brownell, PhD
Professor of Nuclear Science and Engineering, Emeritus

Michael John Driscoll, ScD
Professor of Nuclear Science and Engineering, Emeritus

Thomas Henderson Dupree, PhD
Professor of Nuclear Science and Engineering and Physics, Emeritus

Elias Panayiotis Gyftopoulos, ScD
Professor of Nuclear Science and Engineering and Mechanical Engineering, Emeritus
Effective January 1, 2005, the Department of Ocean Engineering (Course 13) merged with the Department of Mechanical Engineering (Course 2). For information on ocean engineering programs, degrees, subjects, faculty, and staff, please refer to the Department of Mechanical Engineering listings in Part 2 of this Bulletin.

Ocean Systems Management Program

The Ocean Systems Management Program is in transition at the time of publication of this Bulletin. Students interested in this program should contact Professor Henry S. Marcus, program director, by email at hsmarcus@mit.edu for further information.

The core subjects related to the program are 2.964 Economics of Marine Transportation Industries, 2.966 Management of Marine Systems, and 2.967 International Shipping. For subject descriptions, refer to the Course 2 listings in Part 3 of this Bulletin.
The School of Humanities, Arts, and Social Sciences offers students the chance to explore creative expressions of the human imagination, understand the human past, and examine social, economic, and political change over time and the cultural and institutional contexts in which science and technology are rooted.
The great strength of MIT lies not only in the fact that it fosters creativity and innovation in science and technology, but that it also pioneers in exploring the social and cultural environments in which science and technology are produced.

A chief concern of the School's undergraduate program has long been the provision of subjects to fulfill the Institute's Humanities, Arts, and Social Sciences Requirement. The object of the requirement, broadly stated, is to ensure that every undergraduate at MIT is exposed to a wide range of interpretive and analytic approaches in the humanities, arts, and social sciences.

Humanities, arts, and social science programs emphasize teaching, research, and performance. Through their publications, lectures, and seminars, the faculty strive to expand the frontiers of human knowledge and awareness. Interdisciplinary collaboration is a hallmark of this activity.

The School's five doctoral programs (Economics, History, Anthropology, and Science, Technology and Society [HASTS], Linguistics, Philosophy, and Political Science) are among the leading graduate programs of their kind in the world. They prepare students primarily for teaching and research careers in universities and colleges, but also for government service, industry, and finance. The School also offers master's degrees in Comparative Media Studies, Political Science, and Science Writing.

New Directions

Minor programs have been established in all of the School's sections, programs, and departments, as well as in African and African Diaspora Studies, Chinese, Comparative Media Studies, East Asian Studies, European Studies, Latin American Studies, Middle Eastern Studies, Psychology, Russian Studies, and Women's Studies. These minors offer another opportunity for focused undergraduate exploration in the humanities, arts, and social sciences. For further details, see the section on HASS Minors in Regional Studies.

In response to the increasing demand on US campuses for internationalization of the curriculum, the Foreign Languages and Literatures Section has created language and culture programs in Japanese and Chinese. The Japanese Language and Cultural Program has built the most technologically advanced Japanese language and culture education curriculum in the world, using online computer networks and interactive videos. The MIT International Science and Technology Initiatives, located at the Center for International Studies, support student internships in Japan, China, India, France, Italy, Germany, and Mexico.

The School's newest graduate degree program is an SM in Science Writing, which focuses on the ability to interpret and explain science to the wider public. The School also offers an SM degree and an SB degree in Comparative Media Studies; both degree programs focus on new and old media and their global impact on society, economy, and politics.

History

MIT's Course 21 (Humanities) was considered innovative when it was established in the 1950s, although its roots go back to the opening of the Institute in 1865. The 1865 course bulletin offered a curriculum option called the Course of Science and Literature, which encompassed the study of humanities and social science subjects. The science and literature option developed into Course 9, and by 1882 was renamed General Studies, offering "a larger amount of history, economics, language, and literature than is possible in technical courses."

After the Second World War, MIT's evaluation of general and humanistic education changed dramatically. The Institute saw the need to emphasize the "humanistic-social stem" of the engineering curriculum. During the postwar period, the School of Humanities and Social Studies (later the School of Humanities and Social Science) was established, allowing students to pursue a degree that combined engineering or science with humanities in a 60/40 ratio over four years. By this time, the Department of Economics and Social Science had been established within the School, attracting some of the nation's best graduate students and achieving recognition as a leading department.

During the 1960s the School grew rapidly, was reorganized into most of its current departments and sections, and began to grant full-scale degrees. In 1965, Political Science became a separate department, offering both undergraduate and graduate degrees. Philosophy, History, Literature, and Music all emerged as separate sections. In 1966, for the first time ever, MIT students could major in the humanities.

In the 1970s the School continued to define separate programs: the Anthropology and Archaeology Program (now Anthropology Program), established in 1971, and the Writing Program (now Program in Writing and Humanistic Studies), established in 1974. A rearrangement of sections in 1976 produced the Foreign Languages and Literatures Section and the Department of Linguistics and Philosophy. The interdisciplinary Program in Science, Technology, and Society began in 1977, and in 1988 a doctoral program in the History and Social Study of Science and Technology (later called the History, Anthropology, and Science, Technology and Society program) was established in collaboration with the faculties of History and Anthropology. In 1990, the School replaced the generic SB degree in Humanities with SB degrees in specified areas of humanistic study: Anthropology, History, Literature, Foreign Languages and Literatures, Music, and Writing. In 1999, it introduced an SM degree in Comparative Media Studies, and in 2002, a new SM degree in Science Writing. In 2003, an SB degree in Comparative Media Studies was introduced. To reflect the growth and incorporation of the arts at MIT and in celebration of its 50th anniversary in 2000, the School changed its name to the School of Humanities, Arts, and Social Sciences.

Interdepartmental Programs

The interdepartmental centers, groups, and programs that reside in the School of Humanities, Arts, and Social Sciences include the following:

- Center for International Studies
- Women’s Studies Program
- Knight Science Journalism Fellows Program

See Interdisciplinary Research and Study in Part 1 for further information.
SCHOOL OF HUMANITIES, ARTS, AND SOCIAL SCIENCES

Degrees Offered in the School of Humanities, Arts, and Social Sciences

Anthropology — Course 21A
SB Anthropology

Comparative Media Studies — Course CMS
SB Comparative Media Studies**
SM Comparative Media Studies

Economics — Course 14
SB Economics
SM Economics
PhD Economics

Foreign Languages and Literatures — Course 21F
SB Foreign Languages and Literatures

History — Course 21H
SB History

Humanities — Course 21*
SB Humanities
SM Humanities and Engineering
SM Humanities and Science

Linguistics and Philosophy — Course 24
SB Linguistics and Philosophy
SB Philosophy
PhD Linguistics
PhD Philosophy

Literature — Course 21L
SB Literature

Music and Theater Arts — Course 21M
SB Music

Political Science — Course 17
SB Political Science
SM Political Science
PhD Political Science

Program in Science, Technology, and Society — Course STS
SB Science, Technology, and Society
PhD History, Anthropology, and Science, Technology, and Society

Writing and Humanistic Studies — Course 21W
SB Writing

*Students majoring in German or doing a “major departure” (an independently designed major in one of several specified fields) receive the generic SB degree in Humanities.

**Starting in Fall 2003, students may pursue an SB degree in Comparative Media Studies. This new undergraduate degree program is authorized by the Committee on the Undergraduate Program, and will be reviewed in fall 2008. In the event that the new degree program is not approved for permanent status by the Faculty in academic year 2008-2009, accommodations will be made for any student enrolled in the major prior to Fall 2008 to complete the degree program. Students may contact the director of Comparative Media Studies, Henry Jenkins, for more information.

Note: Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.

Publications
The Dean’s Office publishes the brochure School of Humanities, Arts, and Social Sciences@MIT and the newsletter of the School of Humanities, Arts, and Social Sciences, Soundings. For copies of these publications, contact the Office of the Dean, School of Humanities, Arts, and Social Sciences, Room E51-255, MIT, Cambridge, MA 02139-4307.

Office of the Dean
Philip S. Khoury, PhD
Professor of History
Kenan Sahin Dean
Deborah K. Fitzgerald, PhD
Professor of the History of Technology
Associate Dean
Douglas W. Pfeiffer, MBA
Assistant Dean for Finance and Administration
Anne Marie Michel, MA
Assistant Dean for Development
Susan Mannett, BA
Director, Human Resources for SHASS
Bette K. Davis, EdD
Director, Humanities, Arts, and Social Sciences Education Office

Professors Emeriti
Martin Dyck, PhD
Professor of German and Literature, Emeritus
William Nash Locke, PhD
Professor of Modern Languages, Emeritus
Director of Libraries, Emeritus

Note:
Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.
Anthropology studies humankind from a comparative perspective that emphasizes the diversity of human behavior and the importance of culture in explaining that diversity. While the discipline encompasses the biological nature of our species and the material aspects of human adaptation, it takes as fundamental the idea that we respond to nature and natural forces in large part through culture. Anthropology, then, is the study of human beings as cultural animals.

Sociocultural anthropology draws its data from the direct study of contemporary peoples living in a wide variety of circumstances, from peasant villagers and tropical forest hunters and gatherers to urban populations in modern societies, as well as from the history and prehistory of those peoples.

The Anthropology Program at MIT offers students a broad exposure to the discipline as well as an anthropological perspective on problems and issues relevant to other fields in the humanities, social sciences, and engineering. It also provides more intensive introduction to areas of faculty specialization, which include social and political organization, economics and human ecology, religion and symbolism, and the anthropology of medicine and scientific research. Geographical specializations include cultures of Latin America, the Middle East, and the United States.

The anthropology curriculum is divided into six groups that show the breadth of the field, with particular emphases. Introductory subjects and subjects intended for majors and minors range from 100 to 199. Social anthropology subjects that focus on specific topics are assigned to the 200 to 299 set. The subjects dealing with technology in cultural context, ranging from 300 to 399, focus on how technologies derive from and relate to their cultural settings. The next group, areal and historical studies, ranging from 400 to 599, includes subjects devoted to different regions and culture areas of the world. The offerings ranging from 600 to 699 include special topics subjects for undergraduates, and those ranging from 700 to 999 constitute advanced graduate subjects.

Students taking a concentration in anthropology take 21A.100 Introduction to Anthropology, and two other subjects. Anthropology subjects qualify for several interdisciplinary concentrations, including those in Women's Studies, Latin American Studies, and Technology, Culture, and Development.

Bachelor of Science in Anthropology/ Course 21A
The undergraduate program leading to the degree of Bachelor of Science in Anthropology (Course 21A) provides a thorough grounding in cultural anthropology.

Majors learn about the concept of culture, the nature of anthropological fieldwork, and the connections between anthropology and the other social sciences. They study the various theories that attempt to explain human behavior as well as the range of methods anthropologists use to analyze data. Students can focus on geographical areas, such as Latin America or modern western society, and on issues like neocolonialism, gender studies, religion and symbolism, or comparative political organization.

The anthropology student comes to understand that the hallmark of the discipline is the comparative study of human societies. Emphasis is on understanding diversity and the importance of the concept of culture in explaining that diversity, as well as on learning about the universals of behavior that underlie diversity.

Minor Program in Anthropology
The Minor Program in Anthropology consists of six subjects arranged into three tiers as shown below. Students create individual programs with the help of the minor advisor to ensure that they gain a coherent introduction to the methods, approaches, and some of the results of the discipline.

Tier I One subject:
21A.100 Introduction to Anthropology

Tier II Four subjects with a unifying theme

Tier III One subject:
21A.110 Seminar in Anthropological Theory or 21A.112 Seminar in Ethnography and Fieldwork

Joint Degree Programs
Joint degree programs are offered in anthropology in combination with a field in engineering or science (21E, 21S). See the joint major programs listed under Humanities.

Subject 21A.100 is strongly recommended as a preliminary subject for all anthropology degree programs.

In collaboration, the Anthropology Program, the History faculty, and the Program in Science, Technology, and Society offer a Program in History, Anthropology, and Science, Technology and Society (HASTS) leading to the PhD; see the description under the Program in Science, Technology, and Society.

Subjects in anthropology are numbered 21A.100 through 21A.999 in Part 3. Further information on subjects and programs may be obtained from the Anthropology Program Office, Room 16-267, 617-452-2837.

Faculty and Staff

Faculty and Teaching Staff
Jean Elizabeth Jackson, PhD
Professor of Anthropology
Section Head

Professors
Michael M. J. Fischer, PhD
Professor of Anthropology and Science and Technology Studies

James Howe, PhD
Professor of Anthropology

Susan S. Silbey, PhD
Professor of Sociology and Anthropology

Susan Slyomovics, PhD
Professor of Anthropology

Associate Professor
Hugh Gusterson, PhD
Associate Professor of Anthropology and Science Studies

Stefan Helmreich, PhD
Associate Professor of Anthropology
(On leave, fall)
Bachelor of Science in Anthropology/Course 21A

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td>Humanities, Arts, and Social Sciences Requirement (three subjects may be satisfied by subjects in the Departmental Program)</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, and by prerequisites if any.

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21A.100</td>
<td>12</td>
</tr>
<tr>
<td>21A.107</td>
<td>12</td>
</tr>
<tr>
<td>21A.109</td>
<td>12</td>
</tr>
<tr>
<td>21A.110</td>
<td>12</td>
</tr>
<tr>
<td>21A.112</td>
<td>12</td>
</tr>
</tbody>
</table>

Restricted Electives

A coherent program of eight anthropology subjects which may include a pre-thesis tutorial and a thesis. The decision to write a thesis is made in consultation between the student and advisor.

Departmental Program Units That also Satisfy the GIRs

(36)

Unrestricted Electives

72–78

Total Units Beyond the GIRs Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

*Prerequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
Established in 1999–2000, the program in Comparative Media Studies integrates the study of contemporary media (film, television, digital systems) with a broad historical understanding of older forms of human expression. The program embraces theoretical and interpretive principles drawn from the central humanistic disciplines of literary study, history, anthropology, art history, and film studies, but aims as well for a comparative synthesis that is responsive to the distinctive emerging media culture of the 21st century. Students explore the complexity of the media environment by learning to think across media, to see beyond the boundaries imposed by older medium-specific approaches to the study of audio-visual and literary forms.

The comparative and cross-disciplinary nature of both the graduate and undergraduate programs is embodied in a faculty drawn from Art and Architecture, Anthropology, Foreign Languages and Literatures, History, Literature, Music and Theater Arts, Philosophy, Writing and Humanistic Studies, Science, Technology, and Society, Media Arts and Sciences, Political Science, and Urban Studies and Planning.

UNDERGRADUATE STUDY

The undergraduate program—established in 1982 under its former name, Film and Media Studies—serves as preparation for advanced study in a range of scholarly and professional disciplines and also for careers in media or industry.

Bachelor of Science in Comparative Media Studies/Course CMS

The SB in Comparative Media Studies requires 10 subjects. Majors are required to take 21L.011 and 21L.015; CMS.400; one capstone subject; one additional CI-M subject; and five electives. It is strongly recommended that students take a practicum that includes a substantial hands-on component as one of their electives.

Minor Program in Comparative Media Studies

The minor program requires six subjects that reflect the comparative study of media, including 21L.011 or 21L.015; CMS.400; and four electives, including at least one chosen from the Special Topics subjects. Each minor designs his or her own plan of study in consultation with a field advisor.

HA SS Concentration

The HASS Concentration requirement consists of four subjects that reflect the comparative study of media. Students are strongly encouraged to take at least one Special Topics subject to complete a concentration. Each concentrator designs his or her own plan of study in consultation with a field advisor.

Joint Major

The joint major (21E or 21S) requires eight subjects, which reflect the comparative study of media, including 21L.011 or 21L.015, CMS.400, one capstone course, and five electives. Undergraduate subjects include:

Required Subjects

21L.011 The Film Experience
21L.015 Introduction to Media Studies
CMS.400 Media Systems and Texts

Capstone Courses

One of the following is required.
CMS.605 Topics in International Media
21L.706 Studies in Film
21L.715 Media in Cultural Context

CI-M Requirements

(In addition to the capstone subject, one of the following courses, which can include a second capstone course, will fulfill the CI-M requirement.)

CMS.605 Topics in International Media
21L.706 Studies in Film
21L.708 Technologies of Humanism
21L.715 Media in Cultural Context
21W.785 Communicating Across Cyberspace

Restricted Electives

CMS.UR/UR4 Research in Comparative Media Studies
CMS.410 Popular Culture in the Age of Media Convergence
CMS.600 Topics in Comparative Media Studies
4.341 Introduction to Photography and Related Media
4.351 Introduction to Video
4.602 Modern Art and Mass Culture

21A.250 Storytelling: Women and Performance
21A.336 Marketing, Microchips, and McDonald’s: Debating Globalization
21A.337 Technology and Culture
21A.340 The Anthropology of Computing
21A.348 Photography and Truth
21A.350 Out of Ground Zero: Catastrophe and Memory
21F.027 Visualizing Cultures
21F.030 East Asian Culture: From Zen to Pop
21F.031 Topics in the Avant-Garde in Literature and Cinema
21F.034 Media Education and the Marketplace
21F.035 Topics in Culture and Globalization
21F.036 Advertising and Popular Culture: East Asian Perspectives
21F.046 Modern Chinese Fiction and Cinema
21F.052 French Film Classics
21F.055 Media in Weimar and Nazi Germany
21F.056 Visual Histories: German Cinema 1945 to Present
21F.061 Topics in European Studies: Plotting Terror in European Culture
21F.062 The City is a Woman: Modernity and Gender
21F.065 Japanese Literature and Cinema
21F.067 Cultural Performances of Asia
21F.341 Contemporary French Film and Social Issues (taught in French)
21H.206 American Consumer Culture
21H.546 World War II in Asia: Film, Fantasy, Fact
21L.012 Forms of Western Narrative
21L.421 Comedy
21L.430 Popular Narrative*
21L.432 Understanding Television
21L.433 Film Styles and Genres
21L.434 Science Fiction
21L.435 Literature and Film
21L.486 Twentieth-Century Drama
21L.489/21W.765 Interactive and Non-Linear Narrative: Theory and Practice
21M.283 Musicals of Screen and Stage
21M.284 Film Music
21M.775 Hip Hop
21W.749 Documentary Photography and Photjournalism: Still Images of a World in Motion
21W.785 Communicating in Cyberspace
24.209 Philosophy in Film and Other Media
Comparative Media Studies

Course CMS

24.213 Philosophy of Film
MAS.450 Holographic Imaging
STS.085 Ethics and the Law on the Electronic Frontier

*when topic is applicable

Special Topics in Comparative Media Studies
(The following are considered to be advanced-level subjects in Comparative Media Studies.)
CMS.605 Topics in International Media
CMS.610 Media Industries and Systems
CMS.THT Undergraduate Thesis in Comparative Media
CMS.THU Pre-Thesis in Comparative Media
11.127 Computer Modeling for Investigation and Education
4.366 Advanced Projects in Visual Arts*
21L.706 Studies in Film
21L.707 Problems in Cultural Interpretation*
21L.708 Technologies of Humanism
21L.715 Media in Cultural Context
MAS.849 Special Topics in Multimedia Production
21W.722 Advanced Workshop in Digital Poetry

GRADUATE STUDY

The graduate program comprises a two-year course of study leading to a Master of Science in Comparative Media Studies. The program aims to prepare students for careers in fields such as journalism, teaching and research, government or public service, museum work, information science, corporate consulting, media industry marketing and management, and educational technology.

Students normally take three subjects per term, for a total of 12 subjects. All students take three introductory seminars (Media Theories and Methods I and II, and Major Media Texts) during their first year, as well as CMS.950, a workshop subject that offers hands-on experience in media. Elective subjects are drawn from three categories: theory and criticism; history, society, politics; and case studies. The required thesis may take a variety of forms, including traditional expository prose, but students are encouraged

Bachelor of Science in Comparative Media Studies/Course CMS

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21L.011 The Film Experience, 12, HASS-D, CI-H</td>
<td>1</td>
</tr>
<tr>
<td>21L.015 Introduction to Media Studies, 12, HASS-D, CI-H</td>
<td>1</td>
</tr>
<tr>
<td>CMS.400 Media Systems and Texts, 12, HASS, one subject in CMS or permission of instructor</td>
<td>1</td>
</tr>
<tr>
<td>CMS.605 Topics in International Media, 12, HASS, CI-M, two subjects in CMS or permission of instructor</td>
<td>1</td>
</tr>
</tbody>
</table>
| Choose one of the following as a capstone subject:
 21L.706 Studies in Film, 12, HASS, CI-M, two subjects in CMS and/or Literature or permission of instructor | 1 |
| 21L.715 Media in Cultural Context, 12, HASS, CI-M, two subjects in CMS and/or Literature or permission of instructor | 1 |
| CMS.605 Topics in International Media, 12, HASS, CI-M, two subjects in CMS or permission of instructor | 1 |
| In addition to the capstone subject, one of the following subjects, which can include a second capstone, will fulfill the CI-M requirement:
 21L.706 Studies in Film, 12, HASS, CI-M, two subjects in CMS and/or Literature or permission of instructor | 1 |
| 21L.715 Media in Cultural Context, 12, HASS, CI-M, two subjects in CMS and/or Literature or permission of instructor | 1 |
| CMS.605 Topics in International Media, 12, HASS, CI-M, two subjects in CMS or permission of instructor | 1 |
| 21L.708 Technologies of Humanism, 12, HASS, two subjects in CMS and/or Literature or permission of instructor | 1 |
| 21W.785 Communicating in Cyberspace, 12, HASS | 1 |

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>60</td>
</tr>
<tr>
<td>21L.011 The Film Experience, 12, HASS-D, CI-H</td>
<td>1</td>
</tr>
<tr>
<td>21L.015 Introduction to Media Studies, 12, HASS-D, CI-H</td>
<td>1</td>
</tr>
<tr>
<td>CMS.400 Media Systems and Texts, 12, HASS, one subject in CMS or permission of instructor</td>
<td>1</td>
</tr>
<tr>
<td>CMS.605 Topics in International Media, 12, HASS, CI-M, two subjects in CMS or permission of instructor</td>
<td>1</td>
</tr>
</tbody>
</table>
| Choose one of the following as a capstone subject:
 21L.706 Studies in Film, 12, HASS, CI-M, two subjects in CMS and/or Literature or permission of instructor | 1 |
| 21L.715 Media in Cultural Context, 12, HASS, CI-M, two subjects in CMS and/or Literature or permission of instructor | 1 |
| CMS.605 Topics in International Media, 12, HASS, CI-M, two subjects in CMS or permission of instructor | 1 |
| In addition to the capstone subject, one of the following subjects, which can include a second capstone, will fulfill the CI-M requirement:
 21L.706 Studies in Film, 12, HASS, CI-M, two subjects in CMS and/or Literature or permission of instructor | 1 |
| 21L.715 Media in Cultural Context, 12, HASS, CI-M, two subjects in CMS and/or Literature or permission of instructor | 1 |
| CMS.605 Topics in International Media, 12, HASS, CI-M, two subjects in CMS or permission of instructor | 1 |
| 21L.708 Technologies of Humanism, 12, HASS, two subjects in CMS and/or Literature or permission of instructor | 1 |
| 21W.785 Communicating in Cyberspace, 12, HASS | 1 |

Restricted Electives

51–60

Unrestricted Electives

108–117

Total Units Beyond the GIRs Required for SB Degree

180

Notes

Starting in Fall 2003, students may pursue an SB degree in Comparative Media Studies. This new undergraduate degree program is authorized by the Committee on the Undergraduate Program, and will be reviewed in Fall 2008. In the event that the new degree program is not approved for permanent status by the Faculty in academic year 2008–2009, accommodations will be made for any student enrolled in the major prior to Fall 2008 to complete the degree program. Students may contact the director of Comparative Media Studies, Henry Jenkins, for more information.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
to choose projects that exploit other appropriate media.

Students may enter the program with a degree from a wide range of undergraduate majors, including the liberal arts, the social sciences, journalism, computer science, and management. Graduate subjects include:

Proseminars
- CMS.790 Media Theories and Methods I
- CMS.791 Media Theories and Methods II
- CMS.796 Major Media Texts
- CMS.801 Media in Transition

Theory and Criticism
- CMS.830 Studies in Film (meets with 21L.706)
- CMS.835 Photography and Truth (meets with 21A.348)
- CMS.840 Literature and Film (meets with 21L.435)
- CMS.845 Interactive and Non-Linear Narrative (meets with 21L.489 and 21W.765)
- CMS.851 Feeling and Imagination in Art, Science, and Technology (meets with 24.262)

History, Society, Politics
- CMS.871 Media in Cultural Context (meets with 21L.715)
- CMS.872 Topics in International Media (meets with 21F.015)
- CMS.874 Visualizing Cultures (meets with 21H.917/21F.027)
- CMS.876 History of Media and Technology
- CMS.880 From Print to Digital: Technologies of the Word, 1450–Present (meets with 21H.418)
- CMS.888 Advertising and Popular Culture: East Asian Perspectives (meets with 21F.036)

Case Studies
- CMS.910 Technologies of Humanism (meets with 21L.708)
- CMS.915 Understanding Television (meets with 21L.432)
- CMS.917 Documenting Culture (meets with 21A.337)
- CMS.920 Popular Narrative (meets with 21L.430)
- CMS.921 Popular Culture in the Age of Media Convergence (meets with CMS.410)
- CMS.922 Media Industries and Systems (meets with CMS.610)
- CMS.925 Film Music (meets with 21M.284)
- CMS.930 Media Education and the Marketplace (meets with 21F.034)
- CMS.935 Documentary Photography and Photojournalism: Still Images of a World in Motion (meets with 21W.749)

Additional Subjects
- CMS.950 Workshop I
- CMS.980 Master’s Thesis
- CMS.990 Colloquium in Comparative Media
- CMS.992 Portfolio in Comparative Media
- CMS.993 Teaching in Comparative Media
- CMS.995 Research in Comparative Media
- CMS.998 Topics in Comparative Media
- CMS.999 Topics in Comparative Media

For detailed descriptions of graduate subjects in comparative media studies, see CMS.790–CMS.999 in Part 3.

Inquiries
For more information on the undergraduate and graduate programs in Comparative Media Studies, contact the CMS Office, Room 14N-207, MIT, Cambridge, MA 02139; 617-253-3599; fax 617-258-5133; cms@mit.edu.

Faculty and Staff

Directors
- Henry Jenkins III, PhD
 Peter de Florez Professor of Humanities
 Professor of Comparative Media Studies and Literature
- William Uricchio, PhD
 Professor of Comparative Media Studies

Steering Committee*
- Edward Barrett, PhD
 Senior Lecturer, Writing and Humanistic Studies
- Peter Samuel Donaldson, PhD
 Professor of Literature
 Section Head, Literature
- Shigeru Miyagawa, PhD
 Kochi Prefecture-John Manjiro Professorship in Japanese Language and Culture
 Professor of Linguistics and Japanese
- James Paradis, PhD
 Professor of Scientific and Technical Communication
 Program Head, Writing and Humanistic Studies
- Janet Sonenberg, MFA
 Associate Professor of Theater Arts
 MacVicar Faculty Fellow
- Jing Wang, PhD
 S. C. Fang Professor of Chinese Language and Culture

*The Comparative Media Studies program is jointly administered by three Humanities sections: Literature, Foreign Languages and Literatures, and Writing and Humanistic Studies. Though the program has no direct appointments, more than thirty faculty members from across the School of Humanities, Arts and Social Sciences regularly teach in the program.
Economics is the study of all those aspects of individual and social activities related to the choice, production, distribution, and consumption of goods and services. In relation to these decisions, economics is concerned with the behavior and interaction of individuals, private firms, and other institutions and government agencies. Thus, economics contributes to the understanding of many important social problems: changes in efficiency and productivity, fluctuations in the overall levels of economic activity and employment, inflation, the effects of government deficits, the growth and decline of industries, changes in foreign exchange rates, increases in international indebtedness, and the behavior of the centrally planned and less developed countries.

Subjects are offered in the major areas of economics: theoretical and applied analysis at the levels of the individual consumer, the firm, and the industry, as well as aggregate economic activity, industrial organization and health economics, econometrics, public finance, urban economics, labor economics and industrial relations, behavioral economics, international trade and finance, economic history, and economic development.

UNDERGRADUATE STUDY

Bachelor of Science in Economics/Course 14

Course 14, leading to the Bachelor of Science in Economics, combines training in technical economics with opportunities for a broad and balanced undergraduate education. Students may choose from a diversified group of undergraduate subjects and are encouraged to engage in independent research.

The aims of the undergraduate degree program are threefold: to give students a firm grounding in modern economic theory and a basic understanding of economic processes; to provide a descriptive knowledge of the US and world economies; and to develop in students the capabilities for quantitative analysis and independent thought. These aims correspond roughly to the requirements in the Course 14 program of theory, electives, statistics and econometrics, and research.

The requirements allow substantial freedom for students in designing individual programs within economics and balancing the programs with subjects in other disciplines. The large amount of unrestricted elective time encourages students to shape programs close to their own needs and interests. Students may select programs that concentrate on economics and other social sciences or may combine economics with other fields. They may emphasize the relation of economics and technology by choosing their free electives in engineering and science, or they may combine their studies in economics with subjects in history and the other humanities.

The successful completion of the degree program prepares students for further study in economics or for careers in business administration and finance, consulting, law and related fields, and public policy.

Although there are several satisfactory alternative subject sequences, students who by the end of their second year have taken 14.01 Principles of Microeconomics and 14.02 Principles of Macroeconomics can follow a program that permits considerable depth in electives in their third and fourth years. The student can complete 14.03 Intermediate Applied Microeconomics or 14.04 Intermediate Microeconomic Theory, and 14.05 Intermediate Applied Macroeconomics or 14.06 Intermediate Macroeconomic Theory, 14.30 Introduction to Statistical Method in Economics, and 14.32 Econometrics in the third year. This program satisfies the prerequisites for all subjects, including 14.33, and prepares students for research on their thesis and in other elective subjects in their fourth year.

The department specifies one Restricted Electives in Science and Technology (REST) Requirement subject and one laboratory subject, and strongly recommends that all students take an additional subject in computer techniques and, if professionally interested in economics, further work in mathematics.

Minor Program in Economics

The objective of the minor program is to extend the understanding of economic issues beyond the level of the concentration. This is done through specialized analytical subjects and elective subjects that provide an extensive treatment of economic issues in particular areas.

The Minor Program in Economics consists of six subjects arranged into three levels of study:

Tier I

Three subjects:
14.01 Principles of Microeconomics*
14.02 Principles of Macroeconomics*
and either
14.30 Introduction to Statistical Method in Economics
or
18.05 Introduction to Probability and Statistics

Tier II

One subject from the following four:
14.03 Intermediate Applied Microeconomics
14.04 Intermediate Microeconomic Theory
14.05 Intermediate Applied Macroeconomics
14.06 Intermediate Macroeconomic Theory

Tier III

Two subjects

Two elective undergraduate subjects chosen from the fields of applied economics. A list of specific subjects is available in the Economics Department Office, E52-391.

*Note: Under no circumstances may a student complete a minor with fewer than six subjects. Any student who receives permission from the Economics Department to skip 14.01 and/or 14.02 and take a higher-level subject must take replacement subject(s) for 14.01/14.02.

In addition to its broad undergraduate program, the department offers a graduate program leading to the PhD in economics.

GRADUATE STUDY

Entrance Requirements for Graduate Study

The Department of Economics specifies the following prerequisites for graduate study in economics: one full year of college mathematics, including at least one term of calculus; at least six term subjects in English, history, and other humanities or social science subjects (not in the candidate’s own professional field) equivalent to those included in the undergraduate curriculum at MIT; and an appreciable number of professional subjects in economics for those qualified students who have majored in fields other than economics. Applicants for admission who have deficiencies in entrance requirements should
consult with the department about programs to remedy such deficits.

Master of Science in Economics
Under special circumstances, admission may be granted to candidates seeking the Master of Science degree. The general requirements for the SM are given in the section on Graduate Education.

Doctor of Philosophy
A candidate for the doctorate must demonstrate a mastery of economic theory, including both microeconomics and macroeconomics, and four other fields of study; achieve a specified level of competence in economic history and econometrics; submit and defend a dissertation that represents a contribution to knowledge; and be in residence for a minimum of two years. Two of the four fields, including economic theory, are covered by the written General Examination. Two minor fields may each be satisfied by one year of coursework. The four major and minor elective fields may be chosen from advanced economic theory, econometrics, economic development, economic history, finance, industrial organization, international economics, labor economics, monetary economics, public economics, and urban economics.

There is no required minimum number of graduate subjects in the department. However, candidates ordinarily need two full academic years of study to prepare adequately for the General Examinations and to meet the other prethesis requirements. The doctoral thesis must be written in residence, which typically requires two years of research.

Economics and Urban Studies
A doctoral program offered jointly by the Departments of Economics and Urban Studies and Planning at MIT integrates the analytic emphasis of economics with the institutional and policy orientation of urban studies. Students desiring to enter the program must be admitted to both departments and then explicitly to the joint degree program. Specific requirements for economics are the same as for the economics PhD with only two major fields and one minor, instead of two major and two minor fields; and economic history is not required. The specific requirements for urban studies are the same

Bachelor of Science in Economics/Course 14

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Subjects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement
The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Units</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>96–99</td>
</tr>
<tr>
<td>14.01 Principles of Microeconomics, 12, HASS</td>
<td></td>
</tr>
<tr>
<td>14.02 Principles of Macroeconomics, 12, HASS</td>
<td></td>
</tr>
<tr>
<td>14.03 Intermediate Applied Microeconomics, 12, HASS; 14.01</td>
<td></td>
</tr>
<tr>
<td>or 14.04 Intermediate Microeconomic Theory, 12; 14.01, 18.02, 18.06</td>
<td></td>
</tr>
<tr>
<td>14.05 Intermediate Applied Macroeconomics, 12, HASS, CI-M; 14.02</td>
<td></td>
</tr>
<tr>
<td>or 14.06 Intermediate Macroeconomic Theory, 12, HASS, CI-M; 14.02</td>
<td></td>
</tr>
<tr>
<td>14.30 Introduction to Statistical Method in Economics(2), 12, REST; 18.02</td>
<td></td>
</tr>
<tr>
<td>14.32 Econometrics, 12, 14.30(3)</td>
<td></td>
</tr>
<tr>
<td>14.33 Economics Research and Communication, 12, LAB, CI-M; 14.32(3)</td>
<td></td>
</tr>
<tr>
<td>14.ThU Thesis (15 units), 14.33(4)</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>60</td>
</tr>
<tr>
<td>Elective subjects in economics</td>
<td></td>
</tr>
<tr>
<td>Departmental Program Units That also Satisfy the GIRs</td>
<td>(60)</td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>81–84</td>
</tr>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
(1) No more than three subjects in economics may be used for the Humanities, Arts, and Social Sciences Requirement.
(2) Or an approved alternative in statistics.
(3) 14.32 and 14.33 may be replaced by 14.31 for students who entered MIT before 1999.
(4) May be replaced by an additional elective subject in economics.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
as for the PhD except for substitution of an economics general examination field for one of the required urban studies fields. One dissertation is required with acceptance by both departments. The program is administered by an informal Standing Committee. Further information is available from Professor William C. Wheaton, Room E52-252B, 617-253-1723.

Teaching and Research Assistantships

A limited number of students are supported by scholarship and fellowship grants, as well as by teaching and research assistantships. Typically, the assistantships are available only to students who have passed their general examinations, but in special circumstances research assistantships may be held by second-year students.

Inquiries

Additional information concerning academic programs in the department, admissions, and financial aid may be obtained by writing to Graduate Administrator, Department of Economics, MIT, Cambridge, MA 02139-4307, 617-253-8787.

FACULTY AND STAFF

Faculty and Teaching Staff

Bengt R. Holmström, PhD
Paul A. Samuelson Professor of Economics
Head of the Department

James M. Poterba, DPhil
Mitsui Professor of Economics
Associate Head of the Department

Professors

K. Daron Acemoglu, PhD
Charles P. Kindleberger Professor of Economics

Joshua Angrist, PhD
Professor of Economics

Abhijit Banerjee, PhD
Ford International Professor of Economics

Olivier Blanchard, PhD
Class of 1941 Professor of Economics

Ricardo J. Caballero, PhD
Ford International Professor of Economics

Dora Costa, PhD
Professor of Economics

Peter A. Diamond, PhD
Institute Professor
Professor of Economics

Esther Duflo, PhD
Professor of Economics
(On leave)

Glenn D. Ellison, PhD
Professor of Economics

Robert S. Gibbons, PhD
Sloan Distinguished Professor of Management and Economics

Jonathan Gruber, PhD
Professor of Economics

Jeffrey E. Harris, MD, PhD
Professor of Economics

Jerry A. Hausman, DPhil
John and Jennie S. MacDonald Professor of Economics

Paul L. Joskow, PhD
Elizabeth and James Killian Professor of Economics and Management
(Sabbatical)

Whitney K. Newey, PhD
Jane Berkowitz Carlton and Dennis William Carlton Professor of Economics

Michael J. Piore, PhD
David W. Skinner Professor of Political Economy

Nancy L. Rose, PhD
Professor of Economics

Stephen Ross, PhD
Franco Modigliani Professor of Finance and Economics

Richard L. Schmalensee, PhD
Gordon Y Billard Professor of Management and Economics
Dean, Sloan School of Management

James Snyder, PhD
Professor of Political Science and Economics

Peter Temin, PhD
Elisha Gray II Professor of Economics

Muhamet Yildiz, PhD
Pentti J. K. Kouri Career Development Assistant Professor of Economics

Seiichi Inoue, PhD
Institute Professor
Professor of Economics

Frank A. Solt, PhD
Eliack Professor of Economics

Stephen P. Ryan, PhD
Assistant Professor of Economics

Muhamet Yildiz, PhD
Pentti J. K. Kouri Career Development Assistant Professor of Economics

Associate Professors

David Autor, PhD
Associate Professor of Economics

Victor Chernozhukov, PhD
Castle Krob Career Development Associate Professor of Economics

Xavier Gabaix, PhD
Associate Professor of Economics

Michael Greenstone, PhD
3M Associate Professor of Environmental Economics
(On leave)

Assistant Professors

G. Marios Angiolo, PhD
Assistant Professor of Economics
(On leave)

Haluk Ergin, PhD
Assistant Professor of Economics

Amy Finkelstein, PhD
Assistant Professor of Economics

Mikhail Golosov, PhD
Assistant Professor of Economics

Sergei Izmalkov, PhD
Assistant Professor of Economics

Guido Lorenzoni, PhD
Assistant Professor of Economics

Stephen P. Ryan, PhD
Assistant Professor of Economics

Iván Werning, PhD
Assistant Professor of Economics
(On leave)

Muhamet Yildiz, PhD
Pentti J. K. Kouri Career Development Assistant Professor of Economics

Senior Lecturer

Sara Fisher Ellison, PhD
Senior Lecturer in Economics

Visiting Professors

Mark Aguiar, PhD
Visiting Assistant Professor
SCHOOL OF HUMANITIES, ARTS, AND SOCIAL SCIENCES

Mathias Dewatripont, PhD
Visiting Professor of Economics

Graham Elliott, PhD
Visiting Professor of Economics

Ernst Fehr, PhD
Visiting Professor of Economics

Jordi Galí, PhD
Visiting Professor of Economics

Henry Gemery, PhD
Visiting Professor of Economics

Francesco Giavazzi, PhD
Visiting Professor of Economics

Jean Tirole, PhD
Visiting Professor of Economics

Robert Townsend, PhD
Visiting Professor of Economics

Administrative Staff
Mark Begley, BS
Systems Administrator

Gary King, BA
Undergraduate Student Administrator

Mark Leary, BS
Systems Manager

Alterra Milone, BA
Administrative Officer

Loida Morales
Financial Coordinator

Katherine Swan
Graduate Student Administrator

Professors Emeriti
Morris A. Adelman, PhD
Professor of Economics, Emeritus

Robert L. Bishop, PhD
Professor of Economics, Emeritus

E. Cary Brown, PhD
Professor of Economics, Emeritus

Richard S. Eckaus, PhD
Ford International Professor of Economics, Emeritus

Frank Fisher, PhD

Jane Berkowitz Carlton and Dennis William Carlton Professor of Economics, Emeritus

Jerome Rothenberg, PhD
Professor of Economics, Emeritus

Paul A. Samuelson, PhD, LLD, DLitt, ScD
Institute Professor, Emeritus

Professor of Economics, Emeritus

Gordon Y Billard Fellow

Abraham J. Siegel, PhD
Howard W. Johnson Professor of Management, Emeritus

Robert M. Solow, PhD, LLD, DLH
Institute Professor, Emeritus

Professor of Economics, Emeritus
The Foreign Languages and Literatures Section offers a variety of programs. There are subject sequences in Chinese, French, German, Japanese, and Spanish languages and literatures taught in the original; a subject sequence on literature in English translation (SILC); studies in bilingualism; and a comprehensive program in English Language Studies.

The Foreign Languages and Literatures curriculum is arranged in three tiers. Fundamental language subjects familiarize students with the principles of the language in both its spoken and written forms, and introduce them to the culture of the country where the language is spoken. Levels III and IV language subjects provide review and refinement of grammar, study of more difficult reading matter with cultural and literary content, and include compositions and discussions in the foreign language.

Intermediate subjects in language, literature, and culture are conducted in the foreign language. They introduce students to the form and content of foreign literatures and of foreign cultures and societies. These subjects also offer the opportunity to develop more refined communication skills in the language. Advanced subjects, conducted in the foreign language, encourage students to explore the cultural history of the particular country in which the language is spoken.

Offerings in Studies in International Literatures and Cultures (SILC) make available various aspects of cultural realities in English. Those subjects that deal with works from more than one nation give students the opportunity to do work in comparative studies. There are also a number of subjects that allow students to study works from a single foreign country.

Concentrations are available in a given language, literature, or culture in the original language or in English. Concentrations should be arranged on an individual basis in consultation with a designated advisor in each language group.

The Minor Programs in Chinese, French, German, and Spanish lead students who have already reached an intermediate level of proficiency into more advanced study of the language, literature, and culture. Note that language levels I and II do not count toward the minor. Also note that, unlike other minor programs in HASS, the minor advisor in each of these languages can, at his or her discretion, approve a minor in which MIT subjects comprise at least one-third of the subjects of the program. However, this exception to the general HASS Minor Requirement is only allowed in those cases in which students have received transfer credits equal to four subjects through study abroad in a country where the language of the minor is the dominant tongue.

Bachelor of Science in Foreign Languages and Literatures/Course 21F

Program I in French Studies and Program II in Spanish Studies are designed to provide: competence in reading, writing, and speaking; general knowledge of French or Spanish culture and literature; and advanced subjects in literature, film, and cultural studies.

For either option, each student designs a program in consultation with an advisor in order to meet individual interests, abilities, and goals. However, all majors reflect a balance of historical, geographical, cultural, and linguistic elements.

Minor Programs

The **Minor Program in Chinese** typically consists of six subjects arranged into three levels of study as follows:

- **Tier I**
 - Two language subjects at the intermediate level:
 - 21F.103 Chinese III, Regular
 - 21F.109 Chinese III, Streamlined
 - 21F.104 Chinese IV, Regular
 - 21F.110 Chinese IV, Streamlined

- **Tier II**
 - Two language subjects at the advanced level:
 - 21F.113 Chinese V (Streamlined)
 - 21F.114 Chinese VI (Streamlined)

Students in the regular sequence of subjects (as opposed to Streamlined) should consult with the minor advisor about the special options for them to fulfill the Tier II requirement.

Tier III

- Two subjects in Chinese literature, history, or culture, at least one of which must be a Chinese Language Option subject, i.e. 21F.190, 21F.191, or 21F.192. The Chinese Language Option subjects meet with the three subjects 21F.036, 21F.046, and 21F.560, respectively, and include some assignments that require reading and writing in Chinese.

- 17F.147 Government and Politics of China
- 17F.551 Political Economy of Chinese Reform
- 21F.030 East Asian Culture: From Zen to Pop
- 21F.036/21F.190 Advertising and Popular Culture: East Asian Perspectives
- 21F.038 The Cultural Politics of Contemporary China
- 21F.044 Traditional Chinese Literature
- 21F.045 Kung-Fu Cinema: Transnational Perspectives
- 21F.046/21F.192 Modern Chinese Fiction and Cinema
- 21H.504 East Asia in the World: 1500–2000
- 21H.560/21F.191 Smashing the Iron Rice Bowl: Chinese East Asia
Bachelor of Science in Foreign Languages and Literatures/Course 21F

General Institute Requirements (GIRs) Subjects
Science Requirement 6
Humanities, Arts, and Social Sciences Requirement [three subjects may be satisfied by subjects in the Departmental Program] 8
Restricted Electives in Science and Technology (REST) Requirement 2
Laboratory Requirement 1
Total GIR Subjects Required for SB Degree 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program Units
Subject names below are followed by credit units, and by prerequisites if any
Program 1: French Studies (24)
Prerequisite subjects: 21F.301, 21F.302
Required Subjects 42
21F.304 French IV, 12, HASS-D Language Option, 21F.303
To satisfy the requirement that students complete two Communication Intensive subjects in the major, students must take 21F.306 and 21F.307. Registration for 21F.306 and 21F.307 must be simultaneous with one of the following range of subjects: 21F.308–21F.347.
Required Electives 90
A coherent program of 8 subjects beyond French II from the French curriculum, which may include a pre-thesis tutorial and a thesis.
Program 2: Spanish Studies (24)
Prerequisite subjects: 21F.701, 21F.702
Required Subjects 42
21F.704 Spanish IV, 12, HASS-D Language Option, 21F.703
To satisfy the requirement that students complete two Communication Intensive subjects in the major, students must take 21F.708 and 21F.709. Registration for 21F.708 and 21F.709 must be simultaneous with one of the following range of subjects: 21F.716–21F.742.
Restricted Electives 90
A coherent program of 8 subjects beyond Spanish II from the Spanish curriculum, which may include a pre-thesis tutorial and a thesis.

Departmental Program Units That also Satisfy the GIRs (36)
Unrestricted Electives
Program 1 48
Program 2 48

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

The Minor Program in German consists of six subjects arranged into three levels of study as follows:

Tier I Two subjects or fewer depending on demonstrated level of entering competence
21F.403 German III
21F.404 German IV

Tier II Two subjects or three subjects from the intermediate subjects in German language, literature, and culture.
21F.405 Germany Today: Intensive Study of German Language and Culture
21F.409 Opening the Text: Reading, Writing and Performing in German
21F.410 Professional Communication in German
21F.412 German Literature: An Introduction

Tier III Two or three subjects from the intermediate subjects in German language, literature, and culture.
21F.013, 21F.015, 21F.017, 21F.019, 21F.031 J,
21F.055, 21F.056, 21F.059, 21F.061,
21F.062 J, 21F.098 J, 21F.414–21F.420

The Minor Program in Spanish consists of six subjects arranged into three levels of study as follows:

Tier I Two subjects or fewer depending on demonstrated level of entering competence
21F.703 Spanish III
21F.704 Spanish IV

Tier II Three subjects or fewer depending on demonstrated level of entering competence from the Spanish Intermediate Subjects in Language, Literature, and Culture listing: 21F.711–21F.714

Tier III Two subjects or more depending on demonstrated level of entering competence from the Spanish Advanced Subjects in Literature and Culture listing: 21F.010, 21F.011, 21F.033, 21F.080,
21F.082 J, 21F.084 J, 21F.716–21F.740
Please also refer to HASS Minors in Regional Studies, which include Applied International Studies, East Asian Studies, European Studies, Latin American Studies, Middle Eastern Studies, African and African Diaspora Studies, and Russian Studies.

Degree Programs in Humanities
A degree program is offered in German (Course 21). See the section Additional Degree Programs below.

Joint Degree Programs
Joint degree programs are offered in French, German, and Spanish, and include majors in combination with a field in engineering or science (21E, 21S). See the joint major programs listed under the Department of Humanities.

Proficiency in a foreign language is a prerequisite for election to Phi Beta Kappa.

Subjects in foreign languages and literatures, both in the original and in translation, are numbered 21F.001 through 21F.911. Further information on subjects and programs may be obtained from the Foreign Languages and Literatures Section Office, Room 14N-305, 617-253-4771.

FACULTY AND STAFF

Faculty and Teaching Staff
Jing Wang, PhD
S. C. Fang Professor of Chinese Language and Culture
Section Head

Professors
Isabelle de Courtivron, PhD
Professor of French Studies
Ann F. Friedlaender Professor of the Humanities
MacVicar Faculty Fellow
Elizabeth Garrels, PhD
Professor of Spanish and Latin American Studies
Shigeru Miyagawa, PhD
Kochi Prefecture-John Manjiro Professorship in Japanese Language and Culture
Professor of Linguistics and Japanese
Edward Baron Turk, PhD
Professor of French Studies and Film
William Uricchio, PhD
Professor of Comparative Media Studies
Associate Director, Comparative Media Studies

Associate Professors
Margery Resnick, PhD
Associate Professor of Hispanic Studies
MacVicar Faculty Fellow
Emma Teng, PhD
Associate Professor of Chinese Studies

Assistant Professors
Ian Condry, PhD
Assistant Professor of Japanese Cultural Studies
Charity Scribner, PhD
Class of 1954 Career Development Chair
Assistant Professor of European Cultural Studies

Senior Lecturers
Ellen Crocker, MA
Senior Lecturer in German
Undergraduate Academic Officer
Gilberte Furstenberg, Agrégation
Senior Lecturer in French
Douglas Morgenstern, MA
Senior Lecturer in Spanish
Julian Wheatley, PhD
Senior Lecturer in Chinese

Lecturers
Patricia Brennecke, MA
Lecturer in English Language Studies
Tong Chen, MA
Lecturer in Chinese
Cathy Culot, MA
Lecturer in French
Jane Dunphy, MA
Lecturer and Director of English Language Studies

Margarita Ribas Groeger, MA
Lecturer and Director of Spanish Language Studies

Dagmar Jaeger, PhD
Lecturer in German
Ayumi Nagatomi, MA
Lecturer in Japanese

Yoshimi Nagaya, MA
Lecturer and Director of Japanese Language Studies

Johann Sadock, PhD
Lecturer in French
Ikue Shingu, MA
Lecturer in Japanese
Bernd Widdig, PhD
Lecturer in German
Isaiah Yoo, PhD
Lecturer in English Language Studies

Jin Zhang, MA
Lecturer in Chinese

Research Staff

Research Associate
Kurt Fendt, PhD
Administrative Staff

Administrative Staff
Nancy Lowe, MEd
Administrative Officer
Ruth Trometer, MA
Director, Language Learning and Resource Center

Professors Emeriti
Catherine Vakar Chvany, PhD
Professor of Russian Studies, Emerita
Robert Emmet Jones, PhD
Professor of French and Humanities, Emeritus
Margaret Zaroody Freeman, SM
Associate Professor of Russian, Emerita
James Wesley Harris, PhD
Professor of Spanish and Linguistics, Emeritus
History is the study of the recorded past. Since interest in the past is closely linked with a desire to understand the present, the history curriculum at MIT is tailored in part to put the modern world in historical perspective. Subjects explore the social, economic, and political transformations that shape the present; and efforts are made to suggest where traditional assumptions remain in present-day politics, society, and culture.

The curriculum seeks to encourage both an understanding of the human past and the development of skills necessary to express that knowledge effectively.

Bachelor of Science in History/ Course 21H

The program leading to the degree of Bachelor of Science in History is designed to encourage students to discover and reconstruct the past, to confront and understand the complexity of past human behavior for itself, and to inform their sense of the historical present. The curriculum includes the selection of at least one subject taken from the curriculum’s HASS-D offerings, as well as one 21H elective seminar. Students are expected to take six additional subjects of their own choice, selected in consultation with a major advisor. These must include subjects drawn from at least two geographical areas, as well as one pre-modern (before 1700) and one modern subject.

During the junior year, the history major is required to take the Seminar in Historical Methods, which is intended to develop skills for independent research and writing, followed in the senior year by a Thesis Tutorial, and either a second major essay or a senior thesis. Students are expected to take six additional subjects of their own choice, selected in consultation with a major advisor. These must include subjects drawn from at least two geographical areas, as well as one pre-modern (before 1700) and one modern subject.

Minor Program in History

The goal of the minor program is to lead the student from basic survey subjects into more focused studies of individual countries or periods of time, and to encourage thinking about broader analytical and comparative issues in historical study.

The Minor Program in History consists of six subjects, which must include:

- At least one 21H subject that is designated HASS-D
- At least one 21H elective seminar
- Three undergraduate elective subjects from the history curriculum
- 21H.931 Seminar in Historical Methods
- At least two temporal periods—one pre-modern (before 1700) and one modern—to be covered by the five subjects other than 21H.931

For a listing of available subjects, consult the History Office, Room E51-285, 617-253-4965.

Concentration in History

The Concentration in History will consist of three subjects, at least one and not more than two of which shall be selected from the 21H HASS-D designated offerings.

Minor in Applied International Studies

A range of subjects in history can fulfill requirements for the interdisciplinary Minor in Applied International Studies. For more information about this minor, see the program description under Political Science in Part 2.

Joint Degree Programs

Joint degree programs are offered in history in combination with a field in engineering or science (21E, 21S). See the joint major programs listed under Humanities.

Subjects in history are numbered 21H.001 through 21H.999 in Part 3. Further information on subjects and programs may be obtained from the History Office, Room E51-285, 617-253-4965.

Faculty and Staff

Faculty and Teaching Staff

Harriet Ritvo, PhD
Arthur J. Conner Professor of History
Section Head

Professors

John W. Dower, PhD
Professor of History
Ford International Professor of History
(On leave, fall)
Robert Michael Fogelson, PhD
Professor of History
Kenan Sahin Dean, School of Humanities, Arts, and Social Sciences
Pauline Maier, PhD
Professor of History
William R. Kenan, Jr. Professor
Peter Cushing Perdue, PhD
T. T. and Wei Fong Chao Professor of Asian Civilizations
Merritt Roe Smith, PhD
Leverett and William Cutten Professor of the History of Technology

Associate Professors

Anne E. C. McCants, PhD
Associate Professor of History
MacVicar Faculty Fellow
Meg Jacobs, PhD
Class of 1947 Career Development Associate Professor

Professors

Jeffrey S. Ravel, PhD
Associate Professor of History
Elizabeth A. Wood, PhD
Associate Professor of History

Assistant Professors

William Broadhead, PhD
Assistant Professor of History
Christopher Capozzola, PhD
Assistant Professor of History
David M. Ciarlo, PhD
Assistant Professor of History
Bachelor of Science in History/Course 21H

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Required Subjects

Subject names below are followed by credit units, and by prerequisites if any

- One 21H HASS-D subject (12 units)
- One 21H seminar subject (9–12 units)
- 21H.931 Seminar in Historical Methods, 12*, CI-M; HASS (required during junior year)
- 21H.ThT History Pre-Thesis Tutorial, 12
- 21H.ThU History Thesis, 12, CI-M; 21H.ThT

Restricted Electives

A coherent program of six subjects from the history curriculum; and three related subjects from a second HASS discipline.

Departmental Program Units That also Satisfy the GIRs

Unrestricted Electives

Total Units Beyond the GIRs Required for SB Degree

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student's departmental program will count toward one or the other, but not both.

Notes

*Prerequisites are listed in the subject description.
For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
The Department of Humanities consists of six autonomous sections and programs, each with its own headquarters: Anthropology, Foreign Languages and Literatures, History, Literature, Music and Theater Arts, and Writing and Humanistic Studies.

In addition to the degrees offered in the six sections, other undergraduate degree programs are available in Course 21, either in combination with a field in engineering or science (Course 21E, Course 21S), or as full majors (major departure, Course 21), described later in this section. Students interested in any of these degree programs should consult an advisor in the field, as well as the section or program office.

Bachelor of Science in Humanities/Course 21

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Social Sciences Distribution subjects can be satisfied by subjects in the Departmental Program</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST)</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree

17

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Program</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted Electives</td>
<td>126–162</td>
</tr>
</tbody>
</table>

German

8 elective subjects in the field (which may include a pre-thesis and a thesis), plus a four-subject cluster. To satisfy the requirement that students complete two Communication Intensive subjects in the major, students must take 21F.406 and 21F.407. Registration for 21F.406 and 21F.407 must be simultaneous with one of 21F.412, 21F.414, 21F.415, 21F.416, or 21F.418.

Major Departures

The restricted electives for the major departure fields are determined in consultation with the faculty advisor in the chosen field. Each major departure program must include two Communication Intensive major subjects, usually chosen from the subjects designated as CI-M for major programs in adjacent disciplines.

Departmental Program Units That also Satisfy the GIRs

(27–36)

Unrestricted Electives

45–90

Total Units Beyond the GIRs Required for SB Degree

180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student's departmental program will count toward one or the other, but not both.

Notes

(1) Only one subject used to meet the distribution element of the Humanities, Arts, and Social Sciences Requirement may be counted toward the humanities component of these degree programs.

(2) The cluster is usually formed within a single second discipline of the humanities, arts, or social sciences. In special cases, it may draw together subjects from different disciplines to form a coherent grouping.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
Humanities and Engineering/Science

Bachelor of Science in Humanities and Engineering/Course 21E

Bachelor of Science in Humanities and Science/Course 21S
These joint major programs combine humanities with scientific/engineering studies. Groups of subjects from the humanistic and technical areas are conjoined to yield a basic command of each mode of inquiry. One part is a selection from the undergraduate degree curriculum of a science or engineering department approved by a faculty member in the field. The other part consists of subjects in a humanities field, chosen by the student in consultation with an advisor from the appropriate humanities faculty. In most cases, a senior thesis or sequence of advanced seminars is also required.

This arrangement yields a humanities program of considerable depth while allowing for continued serious commitment to a scientific or engineering interest. Available humanities fields include:

- American Studies
- Ancient and Medieval Studies
- Anthropology
- Comparative Media Studies
- East Asian Studies
- Foreign Languages and Literatures (in French, German, or Spanish)
- History
- Latin American Studies
- Literature
- Music
- Psychology
- Russian Studies
- Science, Technology, and Society
- Theater Arts
- Women's Studies
- Writing (Creative, Expository, Science Writing, or Technical Communication)

Bachelor of Science in Humanities and Engineering/Course 21S

Bachelor of Science in Humanities and Science/Course 21S

This program includes a Communication Requirement of 4 subjects:

- Two subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- Two subjects designated as Communication Intensive in the Major (CI-M).

Each 21E and 21S program must include two CI-M subjects. Normally, students are expected to complete one CI-M from each area of study, usually chosen from the subjects designated as CI-M for the full major.

For the humanities component, one of the following (further details may be obtained from the descriptions of programs in specific fields and the relevant field office):

- **Anthropology**: Nine subjects including 21A.100, 21A.110, and 21A.112. An honors thesis may be done at the invitation and approval of faculty.
- **Foreign Languages and Literatures (in French, German, or Spanish)**: Nine elective subjects, which may include a pre-thesis and thesis, subject to faculty approval.
- **History**: Seven elective subjects, a pre-thesis tutorial, and a thesis.
- **Literature**: Eight elective subjects (including two seminars and subjects in three historical periods or thematic complexes).
- **Music**: Eight 12-unit subjects, including 21M.220, 21M.301, 21M.302, 21M.500, one year (two 6-unit subjects) of performance, and three electives: one in Western or World music (21M.230–239 or 21M.291–299); one in theory/composition (21M.300–399), and one in history/literature, theory/composition, or performance (two 6-unit terms of 21M.401–499), to be selected in consultation with the major advisor.
- **Writing: Creative or Expository**: Seven subjects centered in creative or expository writing (one of these subjects is normally at the introductory level, one may be chosen from a related field), a pre-thesis tutorial, and a thesis.
- **Writing: Science Writing or Technical Communication Studies**: Four subjects in writing (including 21W.777, 21W.778, 21W.792, and a subject in basic exposition), three subjects from related curricula (including, for Science Journalism, subjects in the history and social context of science/technology, or, for Technical Communication, a subject in graphics and design, and a subject in the structure of business organizations), a pre-thesis tutorial, and a thesis.
- **American Studies**
- **Ancient and Medieval Studies**
- **Comparative Media Studies**

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement (all but two Humanities, Arts, and Social Sciences Distribution subjects can be satisfied by subjects in the Departmental Program)</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree

<table>
<thead>
<tr>
<th>GIR</th>
<th>Total Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:

- Two subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- Two subjects designated as Communication Intensive in the Major (CI-M).

Each 21E and 21S program must include two CI-M subjects. Normally, students are expected to complete one CI-M from each area of study, usually chosen from the subjects designated as CI-M for the full major.

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restricted Electives</td>
<td>102–108</td>
</tr>
<tr>
<td>Anthropology</td>
<td>90–96</td>
</tr>
<tr>
<td>Foreign Languages and Literatures (in French, German, or Spanish)</td>
<td>81–102</td>
</tr>
<tr>
<td>History</td>
<td>81–102</td>
</tr>
<tr>
<td>Literature</td>
<td>96</td>
</tr>
<tr>
<td>Music</td>
<td>96–102</td>
</tr>
<tr>
<td>Writing: Creative or Expository</td>
<td>96–102</td>
</tr>
<tr>
<td>Writing: Science Writing or Technical Communication Studies</td>
<td>90–102</td>
</tr>
<tr>
<td>American Studies</td>
<td>81–102</td>
</tr>
<tr>
<td>Ancient and Medieval Studies</td>
<td>81–102</td>
</tr>
<tr>
<td>Comparative Media Studies</td>
<td>81–102</td>
</tr>
</tbody>
</table>

Distribution subjects can be satisfied by subjects in the Departmental Program

TOTAL

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Institute Requirements (GIRs)</td>
<td>17</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>PLUS Departmental Program</td>
<td>102–108</td>
</tr>
<tr>
<td>Communications Requirement</td>
<td>96–102</td>
</tr>
<tr>
<td>Total Subjects Required for SB Degree</td>
<td>102–108</td>
</tr>
</tbody>
</table>
Faculty advisors in each discipline help students to arrange programs suited to both their interests and professional objectives. Any one of these fields may be joined with any science or engineering field to form a major. Some combinations naturally lend themselves not only to an understanding of each field but also to an integrative and comparative view of the relationship between the two.

<table>
<thead>
<tr>
<th>Major</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Asian Studies</td>
<td>81–102</td>
<td>Seven elective subjects (should follow the general structure of the East Asian Studies Minor program), a pre-thesis tutorial, and a thesis.</td>
</tr>
<tr>
<td>Latin American Studies</td>
<td>81–102</td>
<td>Introduction to Latin American Studies (21F.084J/17.55J/21A.224J) plus six elective subjects (including study in at least two disciplines and some work in Spanish or Portuguese language), a pre-thesis tutorial and a thesis.</td>
</tr>
<tr>
<td>Psychology</td>
<td>81–102</td>
<td>Nine elective subjects including 9.00 and approved by a faculty member in the field.</td>
</tr>
<tr>
<td>Russian Studies</td>
<td>81–102</td>
<td>Seven elective subjects (including Russian IV), a pre-thesis tutorial, and a thesis.</td>
</tr>
<tr>
<td>Science, Technology, and Society (STS)</td>
<td>90–108</td>
<td>Eight subjects (including an STS HASS-D subject, STS.091, and STS.092), a pre-thesis tutorial, and a thesis.</td>
</tr>
<tr>
<td>Theater Arts</td>
<td>90–108</td>
<td>Eight subjects (including Script Analysis, Theater Practicum, and Stagecraft), a pre-thesis tutorial, and a thesis.</td>
</tr>
<tr>
<td>Women’s Studies</td>
<td>81–102</td>
<td>Seven subjects (including SP.401, Introduction to Women’s Studies), a pre-thesis tutorial, and a thesis.</td>
</tr>
<tr>
<td>And for the engineering/science component, one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For 21E</td>
<td>54–72</td>
<td>Six elective subjects restricted to one of the engineering curricula and approved by a faculty member in the field.</td>
</tr>
<tr>
<td>For 21S</td>
<td>54–72</td>
<td>Six elective subjects restricted to one of the science curricula and approved by a faculty member in the field.</td>
</tr>
<tr>
<td>Departmental Program Units That also Satisfy the GIRs</td>
<td>(54–72)</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>54–103</td>
<td></td>
</tr>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
(1) As a matter of general Course 21 policy, subjects used to meet the General Institute Science Requirement, the REST Requirement, and the Laboratory Requirement may not be included in the six-subject Engineering or Science component of 21E or 21S degrees. Only one subject being used to meet the distribution element of the Humanities, Arts, and Social Sciences Requirement may be counted toward the humanities component of these degree programs.
(2) American Studies, Ancient and Medieval Studies, East Asian Studies, Latin American Studies, Psychology, Russian Studies, Theater Arts, and Women’s Studies are also available as full majors by special arrangement with the Dean of the School of Humanities, Arts, and Social Science.
(3) When possible, the subject satisfying the Institute Laboratory Requirement and one of the subjects satisfying the REST Requirement should be selected from this same curriculum, in addition to the regular requirement.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
As its name suggests, the Department of Linguistics and Philosophy houses a linguistics section and a philosophy section. Though they share a number of intellectual interests and a joint undergraduate major, these two sections are administratively autonomous with separate chairpersons, faculties, admissions procedures, curricular and degree requirements, and financial aid programs.

UNDERGRADUATE STUDY

Bachelor of Science in Philosophy/Course 24-1

This major is designed to provide familiarity with the history and current status of the main problems in epistemology, metaphysics, and ethics; mastery of some of the technical skills requisite for advanced work in philosophy; facility at independent philosophical study; and work at an advanced level in an allied field. A relatively large amount of unrestricted elective time is available so that students can devise programs suited to individual needs and interests.

Bachelor of Science in Linguistics and Philosophy/Course 24-2

This major, also known as the Program in Language and Mind, aims to provide students with a working knowledge of a variety of issues that currently occupy the intersection of philosophy, linguistics, and cognitive science. Central among these topics are the nature of language, of those mental representations that we call “knowledge” and “belief,” and of the innate basis for the acquisition of certain types of knowledge (especially linguistic knowledge). Students have the option of pursuing either a philosophy track or a linguistics track. Both require a core set of four subjects drawn from both fields and are designed to teach students the central facts and issues in the study of language and the representation of knowledge. Each track requires, in addition, a set of four subjects drawn primarily from its discipline and is designed to prepare students for graduate study either in philosophy/cognitive science or in linguistics. A coherent program of three restricted electives (drawn from one or two of the following three areas: philosophy, linguistics, and brain and cognitive sciences) rounds out the major.

Note that students are prohibited from majoring in both 24-1 and 24-2.

Minor Program

The goal of the Minor Program in Philosophy is to introduce students to the methods of analytic philosophy and then to have them study a broad range of philosophers and philosophical issues at a more sophisticated level, culminating in an advanced seminar.

The minor consists of six subjects arranged into three levels of study as follows:

| Tier I | Two subjects:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier II</td>
<td>Three non-introductory philosophy subjects, approved by the minor advisor</td>
</tr>
<tr>
<td>Tier III</td>
<td>One subject:</td>
</tr>
</tbody>
</table>

24.910 Topics in Linguistic Theory (can be repeated for credit)

GRADUATE STUDY

Master of Science in Linguistics

The Department of Linguistics and Philosophy has an Indigenous Language Initiative program leading to a Master of Science in Linguistics. For more information about this experimental degree, please visit the website at http://web.mit.edu/linguistics/www/mitili/ or contact the program administrator, mitili@mit.edu.

Doctor of Philosophy in Linguistics

The Linguistics Section offers a demanding program leading to the degree of Doctor of Philosophy in Linguistics. The normal course of study is four or five years, including the writing of the dissertation. The orientation of the program is highly theoretical, its central aim being the development of a general theory that reveals the rules and laws that govern the structure of a given language and the general laws and principles that govern all natural languages. The topics that form the core of this program are the traditional ones of phonology, morphology, syntax, semantics, and historical linguistics; but the program’s interests also extend into questions of the interrelations between linguistics and other disciplines such as philosophy and logic, literary studies, mathematics and the study of formal languages, acoustics, artificial intelligence, and computer science.

Approximately eight students enter the program each year in a highly selective admissions process. The department does not require that applicants have taken any particular set of subjects or that they be trained in any particular discipline. Instead, applicants must present evidence that they are able to engage in serious study of complex subject matter. Examples of such evidence might be mastery in depth of a language or group of languages, e.g., classical Greek, Semitic, Japanese; or work, academic or nonacademic, of high quality in a relevant area, especially if it requires considerable application, imagination, or ingenuity.

All students in the linguistics program must complete a set of required subjects unless they
have acquired adequate preparation elsewhere. A program of studies in a minor field is also required in order to broaden the student’s educational experience. Before degree candidates begin their doctoral research, they are required to pass a comprehensive general examination, in conformity with Institute requirements. Students must also demonstrate competence in one foreign language.

The following subjects are normally required of all doctoral candidates in linguistics, unless they have obtained adequate preparation elsewhere:

<table>
<thead>
<tr>
<th>Subject</th>
<th>Unit(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.942 Topics in the Grammar of a Less Familiar Language</td>
<td></td>
</tr>
<tr>
<td>24.949j Language Acquisition I</td>
<td></td>
</tr>
<tr>
<td>24.951 Introduction to Syntax</td>
<td></td>
</tr>
<tr>
<td>24.952 Advanced Syntax</td>
<td></td>
</tr>
<tr>
<td>24.957 Introduction to Linguistic Theory at an Advanced Level</td>
<td></td>
</tr>
<tr>
<td>24.958 Linguistic Structure</td>
<td></td>
</tr>
<tr>
<td>24.959 Workshop in Syntax and Semantics</td>
<td></td>
</tr>
<tr>
<td>24.961 Introduction to Phonology</td>
<td></td>
</tr>
<tr>
<td>24.962 Advanced Phonology</td>
<td></td>
</tr>
<tr>
<td>24.969 Workshop in Phonology and Morphology</td>
<td></td>
</tr>
<tr>
<td>24.970 Introduction to Semantics</td>
<td></td>
</tr>
<tr>
<td>24.973 Advanced Semantics</td>
<td></td>
</tr>
<tr>
<td>24.992 Survey of General Linguistics and one of the following:</td>
<td></td>
</tr>
<tr>
<td>24.956 Topics in Syntax</td>
<td></td>
</tr>
<tr>
<td>24.964 Topics in Phonology</td>
<td></td>
</tr>
<tr>
<td>24.979 Topics in Semantics</td>
<td></td>
</tr>
</tbody>
</table>

Before students begin their doctoral research, they are required to pass a comprehensive general examination that is composed of two parts. The first part is a written examination consisting of two substantial papers on topics chosen in consultation with members of the faculty. The two papers must present research on two distinct topics in two distinct subdisciplines of linguistics. The subdisciplines include phonetics, phonology, syntax, semantics, pragmatics, language acquisition, language processing, or any other area of linguistics, so long as there is a substantial theoretical-linguistic component to the papers. In conformity with Institute regulations, the second part of the examination is oral. It deals with topics treated in the candidate’s written examination, but is not

Bachelor of Science in Philosophy/Course 24-1

<table>
<thead>
<tr>
<th>Name</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Institute Requirements (GIRs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [three subjects can be satisfied by subjects in the Departmental Program (for the field of concentration)]</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Communication Requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The program includes a Communication Requirement of 4 subjects:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in the Major (CI-M).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLUS Departmental Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject names below are followed by credit units and by prerequisites, if any. All subjects at the 200 level other than 24.222, 24.241 and 24.260 have as a prerequisite one previous philosophy subject.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Required Subjects | 72 |
| 24.01 Classics in Western Philosophy, 12, HASS-D, CI-H |
| 24.201 Topics in the History of Philosophy, 12, HASS, CI-M |
| 24.101 Thinking about Life: Philosophical Problems in Evolution and Development, 12, HASS-D |
| 24.111 Philosophy of Quantum Mechanics, 12, HASS |
| 24.211 Theory of Knowledge, 12, HASS |
| 24.215 Topics in the Philosophy of Science, 12, HASS |
| 24.221 Metaphysics, 12, HASS |
| 24.251 Introduction to Philosophy of Language, 12, HASS |
| 24.253 Philosophy of Mathematics, 12, HASS |
| 24.186 Foundations of Probability, 12, HASS |

One HASS-D philosophy subject(1)		
24.041 Justice, 12, HASS-D, CI-H		
24.06 Bioethics, 12, HASS-D, CI-H		
24.120 Moral Psychology, 12, HASS, CI-M		
24.209 Philosophy in Film and Other Media, 12, HASS		
24.213 Philosophy of Film, 12, HASS		
24.222 Decisions, Games and Rational Choice, 12, HASS		
24.231 Ethics, 12, HASS, CI-M		
24.235 Philosophy of Law, 12, HASS, CI-M		
24.237 Feminist Theory, 12, HASS, CI-M		
24.261 Philosophy of Love in the Western World, 12, HASS		
24.262 Feeling and Imagination in Art, Science and Technology, 12, HASS		
24.263 The Nature of Creativity, 12, HASS		
24.264 Film as Visual and Literary Mythmaking, 12, HASS		

One Logic subject:		
24.118 Paradox and Infinity, 12, HASS		
24.241 Logic I, 12, HASS		
24.242 Logic II, 12, HASS		
24.243 Classical Set Theory, 12, HASS		
24.244 Modal Logic, 12, HASS		
and		
24.269 Topics in Philosophy(1, 2), 12, HASS, CI-M		

| Restricted Electives | 45–60 | |
| A coherent program of five additional subjects, of which two must be in philosophy. To satisfy the requirement that students take two CI-M subjects, students must take one of: 24.120, 24.201, 24.231 or 24.237, and 24.260. | | |
Interdisciplinary study is encouraged, and candidates for the doctorate may take a minor in a field other than philosophy. Options for minors include psychology, linguistics, and logic. Students who elect one of these options are expected to complete three approved graduate subjects in their minor field. There is no general language requirement for the doctorate, except in those cases in which competence in one or more foreign languages is needed to carry on research for the dissertation.

Inquiries
Information regarding undergraduate or graduate academic programs, research activities, admissions, financial aid, and assistantships may be obtained from the Department of Linguistics and Philosophy, Room 32-D808, MIT, Cambridge, MA 02139-4307, 617-253-9372.

FACULTY AND STAFF

Faculty and Teaching Staff
Stephen Yablo, PhD
Professor of Philosophy
Head of the Department
(On leave, spring)

Professors
Noam Chomsky, PhD
Professor of Linguistics
Joshua Cohen, PhD
Leon and Anne Goldberg Professor of Humanities
Professor of Philosophy
(On leave, fall)

Suzanne Flynn, PhD
Professor of Second Language Acquisition
Sally Haslanger, PhD
Professor of Philosophy
(On leave, spring)
Irene R. Heim, PhD
Professor of Linguistics
Richard Holton, PhD
Professor of Philosophy
Sabine Iatridou, PhD
Professor of Linguistics
Michael Kenstowicz, PhD
Professor of Linguistics
Rae Langton, PhD
Professor of Philosophy
Alec Marantz, PhD
Kenan Sahin Distinguished Professor of Linguistics
(On leave, fall)
Vann McGee, PhD
Professor of Philosophy
Shigeru Miyagawa, PhD
Kochi Prefecture-John Manjiro Professorship in Japanese Language and Culture
Professor of Linguistics and Japanese
Wayne O’Neil, PhD
Professor of Linguistics
David Pesetsky, PhD
Ferrari P. Ward Professor of Linguistics
Cecil H. Green (1923) MacVicar Faculty Fellow
Irving Singer, PhD
Professor of Philosophy
(On leave, spring)
Robert Stalnaker, PhD
Laurance S. Rockefeller Professor of Philosophy
Donca Steriade, PhD
Professor of Linguistics
Kenneth N. Wexler, PhD
Professor of Psychology and Linguistics

Associate Professors
Alexander Byrne, PhD
Associate Professor of Philosophy
Bachelor of Science in Linguistics and Philosophy/Course 24-2

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement (three subjects can be satisfied by subjects in the Departmental Program for the field of concentration)</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement

The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)</th>
</tr>
</thead>
</table>

Required Subjects for Both Tracks

- 24.09 Minds and Machines, 12, HASS-D, CI-H
- 24.241 Logic I, 12, HASS
- 24.251 Introduction to Philosophy of Language, 12, HASS
- 24.900 Introduction to Linguistics, 12, HASS-D, CI-H

Students choose either a linguistics or philosophy track

Required Subjects for Linguistics Track

- 24.901 Language and Its Structure I: Phonology, 12, HASS; 24.900
- 24.902 Language and Its Structure II: Syntax, 12, HASS, CI-M; 24.900
- 24.903 Language and Its Structure III: Semantics and Pragmatics, 12, HASS; 24.900
- 24.910 Topics in Linguistic Theory, 12, HASS, CI-M

Required Subjects for Philosophy Track

- 24.201 Topics in the History of Philosophy, 12, HASS, CI-M
- 24.260 Topics in Philosophy, 12, HASS, CI-M

One of the following Knowledge and Reality subjects:

- 24.100 Thinking about Life: Philosophical Problems in Evolution and Development, 12, HASS-D
- 24.110 Philosophy of Quantum Mechanics, 12, HASS
- 24.210 Theory of Knowledge, 12, HASS
- 24.215 Topics in the Philosophy of Science, 12, HASS
- 24.223 Metaphysics, 12, HASS
- 24.253 Philosophy of Mathematics, 12, HASS
- 24.280 Foundations of Probability, 12, HASS

One of the following three subjects:

- 9.65 Cognitive Processes, 12, HASS; 9.00
- 24.904 Language Acquisition, 12, HASS; 24.900*
- 24.905 Psycholinguistics, 12, HASS; 24.900*

Restricted Electives for Both Tracks

A coherent program of three additional subjects from one or two of the following three areas: brain and cognitive sciences, linguistics, and philosophy.

Departmental Program Units That also Satisfy the GIRs

<table>
<thead>
<tr>
<th>Unrestricted Electives</th>
<th>(36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

*Alternate prerequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

Notes

- No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Professors Emeriti

- Sylvain Bromberger, PhD
 - Professor of Philosophy, Emeritus
- Richard Lee Cartwright, PhD
 - Professor of Philosophy, Emeritus
- Morris Halle, PhD
 - Institute Professor, Emeritus
- James Wesley Harris, PhD
 - Professor of Spanish and Linguistics, Emeritus
- Samuel Jay Keyser, PhD
 - Professor of Linguistics, Emeritus
- Judith Jarvis Thomson, PhD
 - Professor of Philosophy, Emeritus
The Literature faculty’s mission is to maintain a level of excellence and innovation consistent with the best universities while remaining responsive to MIT’s distinctive intellectual environment. The curriculum emphasizes interdisciplinary approaches to literary texts as well as theoretical, generic, and thematic subjects that range across geographical and historical boundaries.

The Literature Section accommodates students with a wide variety of interests and diverse career choices. The major provides a solid grounding in the discipline while remaining flexible enough to allow students to explore the particular domains that most interest them. Students graduating from MIT in literature have in recent years been admitted into the best doctoral programs in the country and abroad. For those not pursuing literature as a career, the program nonetheless develops transferable skills in writing, comprehension, and analysis relevant to a variety of different professional paths—both to traditional choices (e.g., journalism, law, and medical school) and to more esoteric ones, such as working in the gourmet food industry or computer game design.

Depending on the depth of one’s engagement, a student may major, minor, or concentrate in literature. Regardless of the individual choice, our courses will introduce you to the pleasures of reading and interpretation, expose you to different ways of thinking about the world, and lead to a competence in writing and communication that will remain with you the rest of your life.

A supplement to this catalogue, available online and from Literature Headquarters, Room 14N-407, offers detailed descriptions of all literature subjects and includes specific information about required texts, writing assignments, and exams.

The literature curriculum is arranged in three graduated categories or tiers. Introductory subjects (21L.001–21L.015) focus on major literary texts grouped in broad historical and generic sequences; all introductory subjects carry HASS-Distribution credit, and most carry Communication Intensive credit. Intermediate subjects (21L.420–21L.512) explore literary forms in greater depth and center on historical periods, literary themes, or genres. Most intermediate subjects carry a prerequisite of one prior literary subject, but students are encouraged to consult individual instructors about prerequisites.

Advanced subjects (seminars 21L.701–21L.715)—usually restricted to students who have taken at least two previous subjects in literature—encourage a greater degree of independent work, such as oral reports and other special projects. Enrollment in seminars is strictly limited to a maximum of 12 students.

Concentrations in literature are available in particular genres (e.g., poetry, drama, fiction) and in historical periods (e.g., ancient studies, 19th-century literature, modern and contemporary literature), as well as in popular culture, media and film studies, minority and ethnic studies, literary theory, and a range of national literatures.

Bachelor of Science in Literature/ Course 21L
The program in literature leading to the degree of Bachelor of Science in Literature is equivalent to the curricula in English (or literary studies) of the major liberal arts universities. The literature curriculum is notable also for its inclusion, along with traditional literary themes and texts, of materials drawn from film and media, from popular culture, and from minority and ethnic cultures.

 Majors are required to take a minimum of 10 subjects, three of which must be seminars and no more than three of which may be introductory subjects. Students develop an appropriate course of study in consultation with a faculty advisor; majors choose from one of two areas in organizing four of their restricted electives (three for joint majors): historical periods or thematic complexes.

Minor Program in Literature
The minor program aims to lay a foundation for advanced study and to enhance a student’s appreciation of major narrative, poetic, and dramatic texts in relation to the cultures that produced them.

The Minor Program in Literature consists of six subjects arranged into three levels of study as follows:

Tier I At least one and no more than two subjects from 21L.001–21L.015 (Introductory Level)

Tier II Two or three subjects from 21L.421–21L.512 (Intermediate Level)

Tier III At least two subjects from the Literature Seminar listings, 21L.701–21L.715 (Advanced Level)

At least two subjects must focus primarily on material from before 1900.

Joint Degree Programs
Joint degree programs are offered in literature in combination with a field in engineering or science (21E, 21S). See the joint major programs listed under Humanities.

Subjects in literature are numbered 21L.001 through 21L.999 in Part 3. Further information on subjects and programs may be obtained from Literature Headquarters, Room 14N-407, 617-253-3581, lit@mit.edu.

FACULTY AND STAFF

Faculty and Teaching Staff

James Buzard, PhD Professor of Literature

Section Head

Professors

Peter S. Donaldson, PhD Professor of Literature (On leave, fall)

John Hildebidle, PhD Professor of Literature

Henry Jenkins III, PhD Professor of Literature

John E. Burchard Professor of Humanities Professor of Comparative Media Studies and Literature

Codirector, Comparative Media Studies

Alvin Charles Kibel, PhD Professor of Literature

Ruth Perry, PhD Professor of Literature and Womens’ Studies MacVicar Faculty Fellow

Stephen James Tapscott, PhD Professor of Literature

David Thorburn, PhD Professor of Literature MacVicar Faculty Fellow
Bachelor of Science in Literature/Course 21L

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
</tr>
</tbody>
</table>

CommunicationRequirement

The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

Subject names below are followed by credit units, and by prerequisites if any

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>36</td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>63–84</td>
</tr>
<tr>
<td>Departmental Program Units That also Satisfy the GIRs</td>
<td>(27–36)</td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>87–117</td>
</tr>
<tr>
<td>Total Units Beyond the GIRs Required for SB Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student's departmental program will count toward one or the other, but not both. For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
MUSIC

The Music Program offers a broad range of opportunities to experience and explore the field of music. A great variety of subjects is offered, ranging from Fundamentals of Music to Senior Seminar for Music Majors. The subjects are arranged into six categories: introductory, history/literature, theory/composition, performance, special topics/advanced subjects, and music and media. Most students begin with introductory subjects, but anyone with musical training is encouraged to begin with history/literature or theory/composition subjects, which constitute the nucleus of the program. Graduate credit is available for some of the seminars and tutorials.

The symphony orchestra, chorale groups, wind and jazz ensembles, chamber music groups, and gamelan and rambax ensembles are an integral part of MIT’s cultural life as well as any student’s musical development, no matter what technical proficiency they possess. Academic credit is available for some performance activities and instrumental study. Auditions are held at the beginning of each term.

The Music faculty is comprised of professional composers, performers, historians, and theorists, whose individual interests in the confluence of history, theory, and performance are essential to our integrated music program.

Bachelor of Science in Music

The undergraduate program leading to the degree of Bachelor of Science in Music is designed to provide a thorough grounding in the harmony and counterpoint of Western music; in-depth studies in the history and repertoires of Western and World music; and performing experience in small and/or large ensembles. Five required subjects, two terms of performance subjects, three restricted electives and twelve additional units (chosen in consultation with the major’s advisor) form the core of the program, which can be supplemented by eight unrestricted electives. This program is similar to that of a music major at leading liberal arts colleges and universities in that it prepares a student for graduate work in music. Students who declare music as their major must have demonstrated proficiency in instrumental or vocal performance and in harmony and counterpoint, ordinarily by participating in a performance subject and by obtaining a grade of B or better in 21M.301, respectively.

Qualified performers may substitute three full years of 21M.480 and a senior recital for the two performance subjects and two electives.

Minor Program in Music

The Minor Program in Music consists of six subjects and is designed to give students exposure to three main branches of musical activity: performance, music literature, and music writing. Four subjects are at the introductory or intermediate level; the remaining two provide depth in one of the three branches.

Tier I One subject from the following:
21M.011 Introduction to Western Music
21M.030 Introduction to World Music
21M.051 Fundamentals of Music

Students with prior musical knowledge or experience may wish to substitute a subject from Tier II or III for the subject in Tier I. Please consult the minor advisor.

Tier II Three subjects, one from each of the following areas:
History/Literature: 21M.026, 21M.201-299
Theory/Composition: 21M.301
Performance (two terms): 21M.401-499

Tier III Two subjects from one of the following areas of specialization:
History/Literature: 21M.201-299, 21M.500
Theory/Composition: 21M.302-399
Performance (four terms): 21M.401-499

Joint Degree Programs

For students interested in combining the study of engineering or science with humanities, joint majors in the 21E or 21S degree programs provide the opportunity to pursue special interests. The joint major includes two subjects in theory, two in history and literature, two in performance, two electives, and senior seminar in music, plus six elective subjects in an engineering or science curriculum. Joint majors may also substitute three full years of 21M.480 and a senior recital for the two performance subjects and two electives.

Students wishing to enroll in any of these degree programs should consult the major advisor in music no later than the first term of their junior year.

Subjects in music are numbered 21M.011 through 21M.599 in Part 3. Further information on subjects and programs may be obtained from the Music Section Office, Room 4-246, 617-253-3210.

THEATER ARTS

The Program in Theater Arts offers the opportunity for an imaginative and rigorous engagement with the arts and disciplines of theater: acting, directing, playwriting, design, technical work, dance, and scholarship. The program combines work in the classroom, in the studio, and on the stage. Performance is the testing ground for what is learned in the classroom and the experiences, from student-generated workshops to fully-mounted productions by Dramashop and Playwrights-in-Performance. All these activities are guided by a professional faculty and staff, often with the enriching participation of guest artists.

The Minor in Theater Arts is designed to give students the opportunity to experiment imaginatively but constructively in the making of theater. The flexibility of the minor allows students either to explore the basic principles of several theater disciplines or to concentrate more deeply on one.

Minor Program in Theater Arts

The Minor Program in Theater Arts consists of the equivalent of six subjects arranged in three levels of study as follows:

Tier I One subject from the following:
21M.274 Shakespeare at the Opera
21M.621 Theater and Cultural Diversity in the US
21M.710 Script Analysis
21M.711 Production Seminar
21M.712 African-American Performance
21M.713 Selected Studies in Theater

Tier II Four subjects:
21M.600 Introduction to Acting
21M.603 Principles of Design

249
Bachelor of Science in Music/Course 21M

General Institute Requirements (GIRs)	Subjects	Units
Science Requirement | 6
Humanities, Arts, and Social Sciences Requirement | 8
Restricted Electives in Science and Technology (REST) Requirement | 2
Laboratory Requirement | 1
Total GIR Subjects Required for SB Degree | 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Subject names below are followed by credit units, and by prerequisites if any

Required Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>21M.220 Early Music, 12, HASS, CI-M; 21M.201*</td>
<td>72</td>
</tr>
<tr>
<td>21M.301 Harmony and Counterpoint I, 12; HASS-D; 21M.041*</td>
<td></td>
</tr>
<tr>
<td>21M.302 Harmony and Counterpoint II, 12, HASS; 21M.301</td>
<td></td>
</tr>
<tr>
<td>21M.303 Writing in Tonal Forms I, 12, HASS; 21M.302</td>
<td></td>
</tr>
<tr>
<td>Two terms of 6-unit Performance subjects</td>
<td></td>
</tr>
<tr>
<td>21M.500 Senior Seminar in Music, 12*, HASS, CI-M</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives

One subject in theory/composition (21M.300–399), one subject in Western music (21M.230–289), one subject in World music (21M.291–21M.299), and one further 12-unit subject, which may be in theory/composition, history/literature, or performance (two 6-unit terms of 21M.401–499), to be selected in consultation with the major advisor.

Qualified students may, with faculty approval, substitute three full years of 21M.480 and a senior recital for the required performance subjects and 24 additional units.

Departmental Program Units That also Satisfy the GIRs

| (36) |

Unrestricted Electives

| (96) |

Total Units Beyond the GIRs Required for SB Degree

| 180 |

Notes
* Prerequisites are listed in the subject description.
For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

21M.604 Playwriting I
21M.605 Voice and Speech for the Actor
21M.606 Introduction to Stagecraft
21M.611 Foundations of Theater Practice
21M.645 Composition for Stage and Performance
21M.670 Traditions in American Concert Dance: Gender and Autobiography
21M.675 Dance Theory and Composition
21M.704 Musical Theater Workshop
21M.705 The Actor and the Text
21M.706 Identity Politics in Performance
21M.707 Theater and Collective Creation
21M.714 Selected Topics in Theater Arts (minimum of 9 units)
21M.732 Costume Design for the Theater
21M.733 Design for the Theater: Scenery
21M.734 Lighting Design for the Theater
21M.735 Technical Design: Scenery, Mechanisms, Special Effects
21M.775 Hip-Hop
21M.785 Playwrights’ Workshop
21M.790 The Director’s Craft
21M.830 Acting: Techniques and Style

Tier III
21M.820 Technical Theater Special Topics (minimum of 6 units) and either
21M.805 Theater Practicum
or six units from the following subjects:
21M.851 Special Topics in Drama
21M.863 Advanced Topics in Theater Arts
21M.873 IAP Theater Arts Topics

Subjects in theater arts are numbered 21M.600 to 21M.899 in Part 3. For further information on subjects and programs, contact the Music and Theater Arts Office, Room 4-246, 617-253-3210.

FACULTY AND STAFF

Faculty and Teaching Staff

Evan Ziporyn, PhD
Kenan Sahin Distinguished Professor of Music
Head, Music and Theater Arts

Professors

Alan Brody, PhD
Professor of Theater Arts
Associate Provost for the Arts

Peter Child, PhD
Professor of Music
MacVicar Faculty Fellow
(On leave, spring)

John Harbison, MFA
Institute Professor
Professor of Music
(On leave, fall)

Ellen T. Harris, PhD
Professor of Music
Class of 1949 Professor of Music

Lowell Edwin Lindgren, PhD
Professor of Music
MacVicar Faculty Fellow

Marcus Aurelius Thompson, DMA
Robert R. Taylor Professor
Professor of Music
MacVicar Faculty Fellow

Barry Lloyd Vercoe, DMA
Professor of Media Arts and Sciences

Associate Professors

Dante Anzolini, DMA
Associate Professor of Music

Thomas F. DeFrantz, PhD
Associate Professor of Theater Arts
Class of 1948 Professor of Theater
(On leave, fall)

Janet Sonenberg, MFA
Associate Professor of Theater Arts
MacVicar Faculty Fellow

Patricia J. Tang, PhD
Associate Professor of Music
(On leave, spring)

Assistant Professors

Brian Robison, DMA
Assistant Professor of Music

Jay Scheib, MFA
Assistant Professor of Theater Arts
(On leave, spring)

Senior Lecturers

David Deveau, MM
Senior Lecturer in Music

Martin Marks, PhD
Senior Lecturer in Music

Michael Ouellette, MFA
Senior Lecturer in Theater Arts
Director, Theater Arts

George Ruckert, PhD
Senior Lecturer in Music

Pamela Sharon Wood, MM
Senior Lecturer in Music

Lecturers

William C. Cutter, DMA
Director, Choral Programs

Frederick Harris, PhD
Director, Wind Ensembles

Mark Harvey, PhD
Lecturer in Music

Kim Mancuso, MFA
Lecturer in Theater Arts

Jean Rife, BM
Lecturer in Music

Elena L. Ruehr, PhD
Lecturer in Music

Charles Shadle, PhD
Lecturer in Music

Instructors

William A. Fregosi, MFA
Technical Instructor in Theater Arts

Leslie Cocuzzo Held, BA
Technical Instructor in Theater Arts

Michael Katz, MFA
Technical Instructor in Theater Arts

Administrative Staff

John H. Lyons, BS
Administrative Officer

Clarise Snyder, MS
Concerts Director

Jeanne Shapiro Bamberger, MA
Professor of Music, Emerita

Stephen Erdely
Professor of Music, Emeritus
Political science is concerned with the systematic study of government and the political process. Within the discipline, scholars analyze the development, distribution, and uses of political power; determinants and consequences of various forms of political behavior and sources of political conflict; ways in which conflicts are both intensified and resolved; and the relationship between the individual and the state. Political science is a discipline of special interest to scientists and engineers who must understand the political system within which they live in order to evaluate their influence upon that system. It is of interest as well to those students who are considering careers in public service or university teaching and research.

The Department of Political Science has a research-oriented faculty that welcomes both undergraduate and graduate students in ongoing research. The department covers the fields of American politics and public policy, comparative politics, international relations and foreign policy, and political philosophy and social theory, with particular emphasis on political economy, ethnic politics and conflict, security studies, science policy, and mathematical models and methods.

UNDERGRADUATE STUDY

Bachelor of Science in Political Science/ Course 17

The political science curriculum for undergraduates combines professional social science training with opportunities for a broad liberal arts education. Students may choose subjects from a wide range of both undergraduate and graduate offerings, and are encouraged to engage in independent research projects. In addition, the department sponsors an internship program in which students work in governmental agencies, legislative offices, community associations, international organizations, and advocacy groups at all levels.

The undergraduate program prepares students for study in political science, law, public policy, and related fields, and for careers in government, business, law, research, teaching, or journalism. This program is also designed to give students, whatever their career objectives, an understanding of political institutions and processes. Some students want to focus on political systems themselves; others choose to concentrate on the political aspects of public policy, focusing on such issues as the environment, health, or arms control. Both of these perspectives are found in the program.

Subjects are offered by the department in the following fields: political theory, American politics and public policy, international relations and foreign policy. Students may work out individualized programs with the assistance of a faculty advisor.

In the junior year students are introduced to the major theoretical and methodological themes of political science in two subjects:

- **17.869** Political Science Scope and Methods (typically fall term, junior year)
- **17.871** Political Science Laboratory (typically spring term, junior year)

The department believes that every political science major should have the experience of conducting and writing at least one substantial research project, a requirement that is fulfilled by the senior thesis. Each undergraduate chooses a thesis advisor and a second thesis reader in his or her area of interest. The student then registers for:

- **17.ThT** Thesis Research Design Seminar (fall term, senior year)
- **17.ThU** Thesis (spring term, senior year)

In addition to the thesis, there are numerous other opportunities for students to pursue research interests. Students are eligible to receive academic credit or limited funding for expenses or wages through the Institute-wide Undergraduate Research Opportunities Program. Students should consult the department’s UROP coordinator to discuss specific projects.

Minor Program in Political Science

The Minor Program in Political Science is designed to ensure that students acquire both depth and breadth of understanding in the discipline. A minor in political science consists of six subjects. The requirements for the minor parallel the requirements for the major and are structured as follows:

Tier I

- Two or three introductory political science subjects (designated with two-digit numbers) in different areas:
 - Political philosophy/social theory (17.00–17.09)
 - American politics (17.20–17.29)
 - Public policy (17.30–17.39, or designated as fulfilling the public policy requirement in the subject description)
 - International politics (17.40–17.49, 17.50–17.59)

Tier II

- Two or three upper-level political science subjects (designated with three-digit numbers) in one of the following areas of specialization:
 - Political philosophy/social theory (17.000–17.099)
 - American politics (17.200–17.299)
 - Public policy (17.300–17.399, or designated as fulfilling the public policy requirement in the subject description)
 - International politics (17.400–17.499, 17.500–17.599)

Tier III

- At least one subject from the following:
 - **17.869** Political Science Scope and Methods
 - **17.871** Political Science Laboratory

For a listing of available subjects in these areas, consult Tobie Weiner in the Political Science Undergraduate Office, Room E53-484 or the HASS Office, Room 14N-408.

Minor in Applied International Studies

MIT educates its students for a future in an increasingly global economy and international research environment. The interdisciplinary HASS Minor in Applied International Studies prepares undergraduates for this reality by integrating international learning into their course of study. The six-subject minor is organized into three areas that address key components of international education.

- The first area is language and culture. Lasting economic and social relationships in an international context are only possible for those who speak the language of a foreign country and are familiar with its cultural dimensions. Therefore, this part of the minor gives students the...
opportunity to become competent in a foreign language and learn about the culture of a foreign country or region.

The second area is international politics, economics, and history. This area offers students a set of subjects that help them to critically understand the economic, political, cultural and historical concepts and movements that create an increasingly interconnected world. Students take two or three subjects from this area. One of these subjects focuses on a chosen geographical region of specialization.

The third area is a significant international experience. Recognizing that theoretical learning should be combined with hands-on experience, the Minor in Applied International Studies includes a stay-abroad component that exposes students to the challenges and opportunities of working and living in another culture. Within this area, the minor offers students courses that directly prepare them for these experiences abroad and help them to reflect on their work, research, or study-abroad experience after the return on campus. Students choose one or two courses. The Minor in Applied International Studies requires a stay abroad for at least three months. Students elect their stay abroad options in close consultation with the minor advisor. The experience abroad will typically take place within an internship or a study abroad structure. Special research stays can be arranged.

Tier I

Language and culture: two or three subjects that expose students to foreign languages and/or cultures, beyond first-year language subjects. At least two subjects must focus on one country or region. Consult the minor advisor for a list of approved subjects.

Tier II

Politics, economics, and history: two or three subjects, one of which must focus on the geographical area chosen in Tier I. Consult the minor advisor for a list of approved subjects.

Bachelor of Science in Political Science/Course 17

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [three subjects can be satisfied by subjects in the Departmental Program]</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>The program includes a Communication Requirement of 4 subjects:</td>
<td></td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLUS Departmental Program</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>51</td>
</tr>
<tr>
<td>17.869 Political Science Scope and Methods, 12, HASS, CI-M</td>
<td></td>
</tr>
<tr>
<td>17.871 Political Science Laboratory, 15, LAB; 17.869</td>
<td></td>
</tr>
<tr>
<td>17.THU Thesis Research Design Seminar, 12, CI-M; 17.869 or 17.871*</td>
<td></td>
</tr>
<tr>
<td>17.THU Undergraduate Political Science Thesis (at least 12 units; additional units by special arrangement)</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>60–84</td>
</tr>
<tr>
<td>Normally seven subjects divided as follows:</td>
<td></td>
</tr>
<tr>
<td>Political philosophy/social theory:</td>
<td></td>
</tr>
<tr>
<td>One political science subject in the field of political philosophy/social theory (17.00–17.099)</td>
<td></td>
</tr>
<tr>
<td>American politics:</td>
<td></td>
</tr>
<tr>
<td>One political science subject in the field of American politics (17.20–17.299)</td>
<td></td>
</tr>
<tr>
<td>Public policy:</td>
<td></td>
</tr>
<tr>
<td>One political science subject in the field of public policy (17.30–17.399), or a subject in another field designated as fulfilling the public policy requirement</td>
<td></td>
</tr>
<tr>
<td>International politics:</td>
<td></td>
</tr>
<tr>
<td>One political science subject in the fields of international relations/security studies (17.40–17.499) or comparative politics (17.50–17.599)</td>
<td></td>
</tr>
<tr>
<td>Plus three additional political science subjects representing a coherent plan of study. Specific subjects satisfying these criteria should be chosen in consultation with a faculty advisor.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Program Units That also Satisfy the GIRs</th>
<th>(30–36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted Electives</td>
<td>81–99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Units Beyond the GIRs Required for SB Degree</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>* Alternate prerequisites are listed in the subject description.</td>
<td></td>
</tr>
<tr>
<td>* Students typically enroll in subjects as follows: 17.869, fall term, junior year; 17.871, spring term, junior year; 17.THU, fall term, senior year; 17.THU, spring term, senior year.</td>
<td></td>
</tr>
<tr>
<td>For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.</td>
<td></td>
</tr>
</tbody>
</table>
Tier III International experience: one or two subjects from the following group, linked to study, research, or work experiences abroad. Other subjects than these may be substituted with the approval of the minor advisor:

- 21F.019 Communicating Across Cultures
- 17.921J / 21F.099 Independent International Research Project (at least 9 units)
- 17.199J / 21F.098 Working in the Global Economy

Additional information can be obtained from Bernd Widdig, minor advisor, Center for International Studies, E38-762, 617-253-3925, bwiddig@mit.edu.

The Department of Political Science jointly offers a Minor in Public Policy with the Department of Urban Studies and Planning (Course 15). The description of undergraduate study in Course 11 contains a detailed description and list of requirements for this minor.

The Department of Political Science offers degree programs at the bachelor’s, master’s, and doctoral levels.

GRADUATE STUDY

The Department of Political Science offers programs leading to the Master of Science in Political Science and the Doctor of Philosophy.

Entrance Requirements for Graduate Study

All applicants must take the GRE general test. Non-native English speakers must take the TOEFL. Applicants from all disciplines are welcome. Applicants need not have majored in political science, though some prior course work in political science or related subjects, such as history, economics, philosophy, psychology, or sociology is helpful.

Master of Science in Political Science

The Master of Science in Political Science is a one-year program intended for students who wish to develop skills in applied research in preparation for a career in public policy or with a business or research organization. The master’s program emphasizes intensive preparation in a single field of study. Applicants to the SM program should specify their field of specialization.

The minimum number of subjects required for the SM degree is six graduate subjects, at least four of which must be completed in the Political Science Department at MIT. The remaining two may be taken elsewhere at MIT or through cross-registration at Harvard University. A 3.5 GPA must be maintained. A master’s thesis is required. See the section on Graduate Education in Part 1 for the general requirements for the SM.

Accelerated Master of Science in Political Science

The department offers a five-year program leading to the Bachelor of Science and Master of Science, awarded simultaneously. This program is open to MIT undergraduates only. It allows the student to plan for a single combined SB-SM thesis written during the last three terms at the Institute. Undergraduate Institute requirements may be completed during the fifth year of the program.

Doctor of Philosophy

Doctoral students must complete the following requirements (for specifics see the department handbook):

- A full-year seminar for first-year students covering the fields of political science
- One class in statistics
- One class in empirical research methods
- One class in political philosophy
- Reading proficiency in one language other than English (demonstrated by three semesters of course work or an exam) or knowledge of advanced statistics (demonstrated by three semesters of course work or an exam)
- A second-year paper
- A doctoral thesis

In addition, doctoral students are required to elect two of the following major fields: American politics and public policy; comparative politics; international relations; models and methods; political economy; political philosophy and social theory; and security studies.

The requirements in each of the two elected fields are as follows:

First major field: a written and oral general exam.

Second major field: three courses in the field, selected to ensure breadth and avoid significant overlap with the first field.

Specific fields may have additional requirements.

Students may take subjects in other MIT departments. Cross-registration arrangements also permit enrollment in subjects taught in the Graduate School of Arts and Sciences at Harvard University and in some of Harvard’s other graduate schools. Students are encouraged to do field research and develop close working ties with faculty members engaged in major research activities.

Teaching and Research Assistantships

Financial assistance is available to qualified applicants in the form of research and teaching assistantships and a limited number of fellowships. Research assistants work under faculty supervision on projects administered by the department and through MIT-affiliated research facilities such as the Center for International Studies (described in the section on Interdisciplinary Research and Study in Part 1) and the Center for Technology, Policy, and Industrial Development, part of the Engineering Systems Division. In addition, advanced graduate students may qualify to become teaching assistants.

Inquiries

Additional information regarding graduate programs in the department and admissions may be obtained from the graduate administrator, Susan Twarog, 617-253-8336. Information on research programs, assistantships and financial aid, may be obtained from the administrative officer, Kenneth Goldsmith, 617-253-6635. Written inquiries should be addressed to Department of Political Science, MIT, Room E53-467, 77 Massachusetts Avenue, Cambridge, MA 02139-4307.

FACULTY AND STAFF

Faculty and Teaching Staff
Charles Stewart III, PhD
Professor of Political Science
MacVicar Faculty Fellow
Head of the Department

Professors
Stephen Ansolabehere, PhD
Elting E. Morison Professor of Political Science
Suzanne Berger, PhD
Raphael Dorman and Helen Starbuck Professor of Political Science
Nazli Choucri, PhD
Professor of Political Science
Joshua Cohen, PhD
Leon and Anne Goldberg Professor of Humanities
Professor of Philosophy and Political Science
(On leave, fall)
Richard M. Locke, PhD
Alvin J. Siteman Professor of Entrepreneurship and Political Science
Stephen M. Meyer, PhD
Professor of Political Science
Michael Joseph Piore, PhD
David W. Skinner Professor of Political Economy and Political Science
Barry R. Posen, PhD
Ford International Professor of Political Science
Richard J. Samuels, PhD
Ford International Professor of Political Science
Director, Center for International Studies
(On leave)
Harvey M. Sapolsky, PhD
Professor of Public Policy and Organization
James M. Snyder, Jr., PhD
Arthur and Ruth Sloan Professor of Political Science and Economics
Stephen W. Van Evera, PhD
Professor of Political Science
Deputy Director, Center for International Studies

Associate Professors
Adam Berinsky, PhD
Associate Professor of Political Science
(On leave)
Andrea Campbell, PhD
Associate Professor of Political Science
Melissa Nobles, PhD
Associate Professor of Political Science
Chappell H. Lawson, PhD
Associate Professor of Political Science
Kenneth A. Oye, PhD
Associate Professor of Political Science
Roger Petersen, PhD
Associate Professor of Political Science
Jonathan Rodden, PhD
Ford Career Development Associate Professor of Political Science
Edward Steinfeld, PhD
Associate Professor of Political Science
(On leave, fall)

Assistant Professors
Taylor Fravel, PhD
Assistant Professor of Political Science
Sarah Song, PhD
Assistant Professor of Political Science
(On leave)
Lily Tsai, PhD
Assistant Professor of Political Science
(On leave)

Administrative Staff
Fuquan Gao, MSME
Computer Systems Administrator
Karen Griffin, MA
Administrative Officer
Susan Twarog, JD
Graduate Administrator
Tobie Weiner, MA
Undergraduate Administrator

Professors Emeriti
Donald L. M. Blackmer, PhD
Professor of Political Science, Emeritus
Lincoln P. Bloomfield, PhD
Professor of Political Science, Emeritus
Willard R. Johnson, PhD
Professor of Political Science, Emeritus
William W. Kaufmann, PhD
Professor of Political Science, Emeritus
Lucian W. Pye, PhD, LLD
Professor of Political Science, Emeritus
George W. Rathjens, PhD
Professor of Political Science, Emeritus
Eugene B. Skolnikoff, PhD
Professor of Political Science, Emeritus
The Program in Science, Technology, and Society (STS) focuses on the ways in which scientific, technological, and social factors interact to shape modern life. The program brings together humanists, social scientists, engineers, and natural scientists, all committed to transcending the boundaries of their disciplines in a joint search for new insights and new ways of reaching science and engineering students. The goal of the program is to set up a forum to explore the relationship between what scientists and engineers do and the constraints, needs, and responses of society.

Located in a major university where most people study science and engineering, STS is dedicated to understanding the context of science and engineering.

UNDERGRADUATE STUDY

Engineering and science students are increasingly seeking to understand the social and historical contexts in which they will work and the social consequences of what they will do in their professional careers. STS subjects help them think realistically and creatively about the intellectual, moral, political, and social issues raised by the rapid growth of science and technology in the 20th century and beyond.

STS contributes to undergraduate education at MIT in several ways. It offers general subjects to introduce science and engineering students to broad social and intellectual perspectives on their fields. It also offers more specialized subjects in the history of science and technology and in social and cultural studies of science and technology. Within each of these categories, students can choose both introductory and more advanced subjects.

Most STS undergraduate subjects may count toward the Institute Requirement in the Humanities, Arts, and Social Sciences. The program offers a number of HASS Distribution Requirement subjects and CI-H subjects, as well as a field of concentration.

The goal of the minor program is to give students majoring in engineering or one of the sciences a broader perspective on their fields: how they have evolved and how they fit into the wider context of society, culture, politics, and values.

The **Minor Program in Science, Technology, and Society** consists of six subjects as follows:

- **Tier I** One HASS-D subject in STS
- **Tier II** Four undergraduate STS subjects forming a coherent group relevant to the student’s major Course of study
- **Tier III** One STS Reading Seminar (STS.091 or STS.092). Prerequisite is completion of one STS HASS-D subject or permission of the STS undergraduate advisor.

Dual Degree Program

For students who wish to integrate their professional study of engineering or science with a rigorous treatment of its relation to social and historical forces, STS offers a dual degree program in cooperation with the Schools of Engineering and Science. The object of this program is to give those students the full technical and scientific education provided by a science or engineering major, balanced with intensive study of the historical and social contexts of science and technology.

Students in the dual degree program must complete all the requirements of their majors as well as the STS requirements described below, and write a thesis in each field. Upon completion of all requirements, students receive a Bachelor of Science in Science, Technology, and Society and a Bachelor of Science in a specific field of engineering or science.

The STS requirements include 14 subjects as follows: one STS HASS-D subject; five other STS subjects; two reading seminars (STS.091 and STS.092); pre-thesis tutorial; the thesis; and four related HASS subjects forming a coherent group. Further details on the requirements of this dual degree may be obtained from the Department of Humanities and the STS undergraduate advisor.

Joint Degree Program

Students who wish to integrate studies in STS and science or engineering in the context of a single degree program should consider this program. It includes a group of specially designated subjects offered by STS that provide a focus for interdisciplinary work. Central to this core is a year-long reading seminar (STS.091 and STS.092), which examines interactions of science, technology, and culture through reading, writing, and discussion of major works.

Students who take this degree must complete 10 subjects: one STS HASS-D subject; five other STS subjects; two STS Reading Seminars (STS.091 and STS.092); pre-thesis tutorial; and thesis.

Consult the degree chart for details on the requirements for this joint degree. Further details may be obtained from the Department of Humanities and the STS undergraduate advisor.

GRADUATE STUDY

In collaboration, STS, the History faculty, and the Anthropology Program offer a Program in History, Anthropology, and Science, Technology and Society (HASTS) leading to the PhD.

The objective of the program is to develop advanced competence in the study of science and technology from a historical and social scientific perspective. Students are expected to develop professional mastery of a field of history or one of the social sciences. They must also master the underlying concepts in science and engineering that relate to their special field of interest.

Doctoral students take at least 10 subjects in the doctoral program during their first two years. All graduate students take the introductory seminars, STS.210j and STS.250j, in their first year. Students also choose several foundation subjects such as history of science or ethnographic methods. Finally, students choose several departmental seminars designed to offer more in-depth study of particular topics.

Upon the satisfactory completion of general examinations in the third year, students proceed to the writing of a dissertation, usually with
the assistance of a multidisciplinary advisory committee.

Students from any academic discipline are invited to apply to the doctoral program.

For additional information about the graduate program, contact the Director of Graduate Studies, History, Anthropology, and Science, Technology and Society (HASTS), STS, Room E51-185, MIT, Cambridge, MA 02139-4307, 617-452-2390.

Inquiries
Additional information on the Program in Science, Technology, and Society may be obtained from the director, STS Program, Room E51-185, MIT, Cambridge, MA 02139-4307, 617-253-4062.

For detailed descriptions of subjects in Science, Technology, and Society, see STS.001 to STS.910 in Part 3.

Faculty and Teaching Staff
Rosalind H. Williams, PhD
Robert M. Metcalfe Professor of Writing
Director

Professors
Michael M. J. Fischer, PhD
Professor of Anthropology and Science and Technology Studies
Deborah Fitzgerald, PhD
Professor of the History of Technology
Loren R. Graham, PhD
Professor of the History of Science
Evelyn Fox Keller, PhD
Professor of History and Philosophy of Science
(On leave)
Kenneth Rogers Manning, PhD
Thomas Meloy Professor of Rhetoric and the History of Science
David A. Mindell, PhD
Frances and David Dibner Professor of the History of Engineering and Manufacturing
Theodore A. Postol, PhD
Professor of Science, Technology, and National Security Policy

Bachelor of Science in Science, Technology, and Society/Dual Degree/Course STS

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement [three subjects can be satisfied by subjects in the Departmental Program]</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Subject names below are followed by credit units, and by prerequisites if any

Required Subjects
48
One STS HASS-D subject of at least 12 units
STS.091 Reading Seminar in Humanities, Science, and Technology I, 9*, HASS
STS.092 Reading Seminar in Humanities, Science, and Technology II, 9*, HASS, CI-M
STS.ThT Undergraduate Thesis Tutorial, 6
STS.ThU Undergraduate Thesis in Humanities, 12, CI-M; STS.ThT

Restricted Electives
81–108
A coherent group of five elective subjects in STS.
Four related subjects in humanities, arts, and social sciences (3 of which can be satisfied by HASS GIRs).

Departmental Program Units That also Satisfy the GIRs
(30)

Unrestricted Electives
48–81

Total Units Beyond the GIRs Required for SB Degree
180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
*Prerequisites are listed in the subject description.

(1) The full major in Science, Technology, and Society (STS) may be pursued only as a second degree program in conjunction with another degree program in a field of engineering or science.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
Merritt Roe Smith, PhD
Leverett Howell and William King Cutten
Professor of the History of Technology
Sherry Turkle, PhD
Abby Rockefeller Mauzé Professor of the
Sociology of Science

Associate Professors
Joseph Dumit, PhD
Associate Professor of Anthropology and
Science and Technology Studies
(On leave)
Hugh Gusterson, PhD
Associate Professor of Anthropology and
Science Studies
David Kaiser, PhD
Associate Professor of the History of Science
Lecturer in Physics
Undergraduate Faculty Advisor
(On leave, fall)

Assistant Professor
David S. Jones, PhD, MD
Leo Marx Career Development Assistant
Professor of the History of Science

Adjunct Professor
John Durant, PhD
Adjunct Professor of Science, Technology,
and Society

Visiting Professors
Manuel Castells, PhD
Distinguished Visiting Professor of Technology
and Society
Jill Ker Conway, PhD
Professor of the History of Women
Thomas P. Hughes, PhD
Distinguished Visiting Professor of the History of
Technology

Senior Lecturer
Leo Marx, PhD
William R. Kenan Professor of American Cultural
History, Emeritus

Administrative Staff
Deborah L. Fairchild
Administrative Officer
Debbie Meinbresse
Assistant to Director
Kris Kipp
Academic Administrator

Professors Emeriti
Louis Lawrence Bucciarelli, PhD
Professor of Engineering and Technology
Studies, Emeritus
Carl Kaysen, PhD
David W. Skinner Professor of Political Economy,
Emeritus
Kenneth Keniston, PhD
Andrew W. Mellon Professor of Human
Development, Emeritus
Leo Marx, PhD
William R. Kenan Professor of American Cultural
History, Emeritus
Eugene B. Skolnikoff, PhD
Professor of Political Science, Emeritus
Leon Trilling, PhD
Professor of Aeronautics and Astronautics,
Emeritus
Charles Weiner, PhD
Professor of the History of Science and
Technology, Emeritus
The Program in Writing and Humanistic Studies provides students the opportunity to experiment with writing as a craft and as a means of self-expression. The program helps prepare students to communicate the results of their work forcefully and clearly to members of their professions and to larger audiences. All subjects in the program emphasize the development of writing skills and strategies. Some subjects, including those at advanced levels and those offered for distribution, require substantial reading.

Subjects in the program’s four areas—exposition and rhetoric, creative writing, science writing, and technical communication studies—are taught at introductory and advanced levels. All subjects require repeated writing and revision. In addition, manuscripts are typically discussed in workshops and receive the written commentary of the instructor. Students are encouraged to schedule private conferences with their instructors.

Concentrations in writing establish a course of intensive study for prose, poetry, and fiction writers, or for engineers and scientists who expect writing to play a key role in their career development.

The Minor Program in Writing provides students with a structured opportunity to develop their expertise in one of the program’s four areas—exposition and rhetoric, creative writing, science writing, or technical communication studies—while also exploring offerings in the other areas.

At the graduate level, the program offers a one-year master’s degree in science writing.

Bachelor of Science in Writing/
Course 21W

The Program in Writing and Humanistic Studies offers two undergraduate programs leading to the degree of Bachelor of Science in Writing. The curriculum in Creative Writing/Exposition and Rhetoric is designed to develop expertise in writing and reading a genre of the student’s choice (for example, fiction, poetry, essay), familiarity with related genres, and three-subject focused exposure to an allied discipline in the humanities, arts, and social sciences. This curriculum offers students a great deal of flexibility in designing their programs.

The curriculum in Science Writing/Technical Communication Studies is designed to develop mastery of these more specialized genres, to offer experience of the professional environments in which they are used, and to introduce related areas such as the history of technology and the structure of business organizations. Like the Creative Writing/Exposition and Rhetoric curriculum, it also requires a three-subject focused exposure to an allied field. In order to guarantee integration of these interdisciplinary elements, this curriculum places greater constraints on the design of individual programs.

Minor Program in Writing

The Minor Program in Writing consists of six subjects chosen to reflect one of four themes: exposition and rhetoric, creative writing, science writing, or technical communication subjects; and arranged into two levels of study as follows:

Tier I One subject from the following:
- 21W.730 Expository Writing
- 21W.731 Writing and Experience
- 21W.732 Introduction to Technical Communication

Tier II Five subjects from among the remaining writing subjects
- 21W.734 Writing About Literature
- 21W.755 Writing and Reading Short Stories
- 21W.756 Writing and Reading Poems

Joint Degree Programs

Joint degree programs are offered in writing in combination with a field in engineering or science (the 21E and 21S degrees). See the joint major programs listed under Humanities.

Writing Requirement

Information about the new Communication Requirement is available under Undergraduate Education in Part 1. Additional details may be obtained from the Office of the Writing Requirement at 617-253-3039.

Graduate Program in Science Writing

The one-year Graduate Program in Science Writing is aimed at students who wish to write about science and technology for general readers, in ordinary newsstand magazines and newspapers, in popular and semi-popular books, on the walls of museums, or on television or radio programs. Students may be products of under-graduate science, engineering, journalism or writing programs; experienced journalists and freelance writers; working scientists or engineers; historians of science and technology; or other scholars, including those already holding advanced degrees.

The program is built around an intensive year-long advanced science writing seminar. In addition, students choose one elective each semester, write a substantial thesis, and complete an internship.

The graduate program maintains links to MIT’s Program in Science, Technology, and Society; to the Comparative Media Studies program; and to the Knight Science Journalism Fellowships program. For more information, see the descriptions of the Science, Technology, and Society and Comparative Media Studies programs in Part 2. See Interdisciplinary Research and Study in Part 1 for more information about the Knight Science Journalism Fellowships program.

Writing and Communication Center

The MIT Writing and Communication Center offers free individual writing consultation on an appointment or drop-in basis to all members of the MIT community. In addition, the center gives mini-sessions each semester on a variety of writing topics, and also offers workshops for people for whom English is a second language. For further information, contact the Writing Center at 617-253-3090.

Cooperative Writing Programs

The science writing and technical communication staff of the Program in Writing and Humanistic Studies supports an interdepartmental program of writing instruction jointly with the undergraduate and graduate departments in the Schools of Engineering and Science.

Subjects in writing are numbered 21W.730 through 21W.899 in Part 3. Further information on subjects and programs may be obtained from the Program in Writing and Humanistic Studies Office, Room 14E-303, 617-253-7894.
Bachelor of Science in Writing/Course 21W

General Institute Requirements (GIRs) Subjects
Science Requirement 6
Humanities, Arts, and Social Sciences Requirement [three subjects may be satisfied by subjects in the Departmental Program] 8
Restricted Electives in Science and Technology (REST) Requirement 2
Laboratory Requirement 1
Total GIR Subjects Required for SB Degree 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program Units
Subject names below are followed by credit units, and by prerequisites if any
Program 1: Creative or Expository Writing
Required Subjects 18
21W.ThT Writing and Humanistic Studies Pre-Thesis Tutorial, 6
21W.ThU Writing and Humanistic Studies Thesis, 12, CI-M; 21W.ThT
Restricted Electives 108–144
Seven subjects centered on creative or expository writing, of which one is normally introductory (see Tier I of Minor Requirements), and three related subjects from a second HASS discipline. One subject must be designated as CI-M: 21W.757, 21W.758, 21W.759, 21W.762, 21W.766, 21W.770, 21W.771, 21W.776, 21W.777.

Program 2: Science Writing or Technical Communication Studies
Required Subjects 66
21W.777 The Science Essay, 12, HASS, CI-M
21W.778 Science Journalism, 12, HASS, CI-H
21W.780 Communicating in Technical Organizations, 12, HASS
21W.792 Science Writing and Technical Communication Internship, 12, HASS; 21W.780 or 21W.778
21W.ThT Writing and Humanistic Studies Pre-Thesis Tutorial, 6
21W.ThU Writing and Humanistic Studies Thesis, 12, CI-M; 21W.ThT
Restricted Electives 72–96
Five subjects in writing and related disciplines, of which one is normally introductory (see Tier I of Minor Requirements), and three related subjects in a second HASS discipline.

Departmental Program Units That also Satisfy the GIRs (27–36)

Unrestricted Electives
Program 1 54–81
Program 2 54–69

Total Units Beyond the GIRs Required for SB Degree 180
No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
The full major in science writing or technical communication studies may be pursued only as a second degree program in conjunction with another degree program in a field of engineering or science. For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

FACULTY AND STAFF

Faculty and Teaching Staff
James Paradis, PhD
Professor of Scientific and Technical Communication
Program Head

Professors
Robert Kanigel, BS
Professor of Science Writing
Kenneth R. Manning, PhD
Thomas Meloy Professor of Rhetoric and the History of Science
James H. Williams, Jr., PhD
SEPT Professor of Engineering
Charles F. Hopewell Faculty Fellow
Rosalind Williams, PhD
Robert M. Metcalfe Professor of Writing
Director, Science, Technology, and Society

Associate Professors
Junot Diaz, MFA
Associate Professor of Writing
Helen Elaine Lee, JD
Associate Professor of Writing
Thomas Levenson, BA
Associate Professor of Science Writing

Assistant Professor
Beth Coleman, BA
Assistant Professor of Writing and New Media

Aden Evens, PhD
Assistant Professor of Technical Communication

Anthony Lioi, PhD
Assistant Professor of Writing

Visiting Professors
Marcia Bartusiak, MS
Visiting Professor of Science Writing

Adjunct Professors
Joe Haldeman, MFA
Adjunct Professor of Fiction
Alan Lightman, PhD
Adjunct Professor of Writing
Senior Lecturer
Edward Barrett, PhD
Senior Lecturer in Writing

Lecturers
Cherie Abbanat, MA
Atissa Banuazizi,
Karen Boiko, MA
Mary Caulfield, BA
B. D. Colen, BA
Ellen Cooney, MA
William Corbett, BA
Director, Student Writing Activities
Elizabeth Cox, MFA
Jennifer Craig, MA
David Custer, BA
Robert Doherty, MA
Rebecca Faery, PhD
Director, First Year Writing
Erica Funkhouser, MA
William Haas, PhD
Nicole Kelley, MFA
Sarah King, PhD
Neal Lerner, EdD
Shariann Lewitt, MFA
Lucy Marx, MA
Janis Melvold, PhD
Marilee Ogren-Balkema, PhD
Karen Pepper, PhD
Mya Poe, MA
Director, Technical Communication
Boyce Rensberger, MS
Susan Ruff, BA
Cynthia Taft, PhD
Andrea Walsh, PhD
Mary Zoll, PhD

Research Staff

Research Associate
Philip Alexander, MS

Administrative Staff
Madeline Brown, MFA
Coordinator, Writing Initiatives
Shannon Larkin, MA
Graduate Administrator

Susanne Martin, BA
Administrative Officer
Leslie Perelman, PhD
Director, Writing Across the Curriculum
Steven Strang, PhD
Director, Writing and Communications Center

Professors Emeriti
Anita Desai, BA
John E. Burchard Professor of Humanities,
Emeritus
Robert Reynolds Rathbone, AM
Professor of Technical Communication, Emeritus
Cynthia Griffin Wolff, PhD
Class of 1922 Professor of Literature, Emeritus
The School of Humanities, Arts, and Social Sciences offers a number of graduate and undergraduate programs embracing several academic disciplines. In general, these programs are staffed collaboratively by faculty members from various departments and fields in the School of Humanities, Arts, and Social Sciences and, in some cases, from the Institute’s other schools as well.

Concentrations within the Humanities, Arts, and Social Sciences Requirement are available in most of these areas, with degree programs available in some of them.

Full information on subjects offered, names of participating faculty, and specific concentration and major requirements in these programs may be obtained from the individual program coordinator or from the HASS Information Office, Room E4-408, 617-253-4444. The lists of subjects also appear in the Guide to the Humanities, Arts, and Social Sciences.

Brief descriptions of the programs follow.

American Studies

American Studies at MIT offers students the opportunity to organize subjects from various fields (e.g., history, anthropology, literature, political science, music, art and architecture, and urban studies) into personally constructed interdisciplinary programs as a way of gaining an integrated understanding of American society and culture.

American Studies is a field of concentration; it is also available as the humanities component of a joint major program (the 21E and 21S degrees), or as a full major by special arrangement. American Studies majors work out a coherent program of study with an advisor, usually including two subjects each in literature and history, although variations are possible. Major programs can center on a particular interest or aim more broadly at a comprehensive knowledge of various aspects of American life and culture.

The coordinator of American Studies is Professor Christopher Capozzola, Room E51-180, 617-452-4960, capozzol@mit.edu.

Ancient and Medieval Studies

Through a wide variety of subjects drawn from a number of disciplines, this program provides a curricular framework for exploring topics in ancient and medieval studies which range from the history of ideas and institutions to that of material artifacts, literature, and certain of the original languages. The program spans the 6,500 years between 5000 BC and 1500 AD.

This program’s goal is to develop knowledge and understanding of the more distant past both for itself, in its uniqueness, and as an object of specifically modern questions and methods of inquiry. The program has an interest in the structure of institutions and social systems, and in relationships between the social order and learned traditions, values, ideologies, and ideas. Ancient and medieval studies derive a special claim to our interest from the fact that the record is so full and multiform and that much of it is of exceptionally high quality at once in substance and form.

Ancient and Medieval Studies is available as a concentration, a minor, and as a major departure within Course 21. Individual programs are to be determined in consultation with Professor Anne McCants, Room E51-175, 617-258-6669.

Minor in Applied International Studies

The interdisciplinary HASS Minor in Applied International Studies prepares students for an increasingly global economy and international research environment by integrating international learning into their course of study. The six-subject minor is organized into three areas: language and culture; international politics, economics, and history; and third, a set of courses that prepares students for experiences abroad and helps them to reflect on their work, research, or study-abroad experience after the return to campus. The minor requires a stay abroad for at least three months. See the program description under Political Science in Part 2.

Additional information can be obtained from Bernd Widdig, minor advisor, Center for International Studies, E38-762, 617-253-3925, bwiddig@mit.edu.

Middle East Program at MIT

The Middle East Program at MIT, an interdisciplinary course of study taken in conjunction with the graduate program in a student’s chosen department, focuses on technology, development, and public policy. The program enables students with an interest in the Middle East (including North Africa and South Asia) to develop an expertise in the area within the context of a coherent program of study. It equips students with an understanding of the processes of socio-economic change, technological development, political change, environmental management, knowledge networking, institutional development, sustainability strategies, and international business and investment patterns in the region.

This program draws on MIT’s unique strengths in science and technology to offer a course of study distinct from a conventional “area studies” approach to the Middle East. The emphasis at present is on challenges of design and development in the reconstruction of the region following violent conflicts, as well as on innovations and applications of advances in information technology and knowledge e-networking to support development objectives.

The program is based on the participation of faculty from the Departments of Political Science, Civil and Environmental Engineering, and Urban Studies and Planning; the History Section of the Department of Humanities; the Sloan School of Management; the Program in Science, Technology and Society; and the Aga Khan Program in Islamic Architecture.

For further information, contact Professor Nazli Choucri, Department of Political Science, Room E53-493, 617-253-6198, nchoucri@mit.edu.

Program in Psychology

Psychology, the study of human mental life and behavior, is represented at MIT as a program in the School of Humanities, Arts, and Social Sciences, and as a concentration within the undergraduate HASS Requirement. Faculty and subjects in psychology are found in many MIT departments, including Brain and Cognitive Sciences, Management, History, and STS. Students who wish to concentrate in psychology take a set of subjects from these departments, chosen in consultation with the concentration officer for the Program in Psychology (details are available at the HASS office).

Students who wish a more substantial education in the field may minor in psychology. A minor involves six subjects starting with 9.00 Introduction to Psychology. Detailed information about the minor may be found in the description of undergraduate study in the Department of Brain and Cognitive Sciences.
In addition to taking psychology subjects, undergraduates may take advantage of a wide range of research opportunities (generally via the Undergraduate Research Opportunities Program). Students should contact UROP coordinators from specific departments about projects currently available.

Psychology exists as a major at MIT only as a major departure within Course 21.

For other information about the Program in Psychology, contact Professor Mary Potter, Room NE20-453, 617-253-5526, mpotter@mit.edu.

Minor in Public Policy

The interdisciplinary HASS Minor in Public Policy is intended to provide a single framework for students interested in the role of public policy in the field of their technical expertise. The description of undergraduate study in the Department of Urban Studies and Planning in Part 2 contains a detailed description and list of requirements for this minor.

The minor advisors are Professor Stephen Meyer, Room E53-402, 617-253-8078, smmeyer@mit.edu, in Political Science, and Professor David Laws, Room 9-326, 617-253-2084, dlaws@mit.edu, in Urban Studies and Planning.

Women’s Studies Program

Women’s Studies is an interdisciplinary inquiry into the significance of gender in human society and thought, both in the United States and around the world. Drawing on thirty years of scholarly work centered on gender analysis as well as research in many traditional fields, the program explores questions such as how women and men learn their gender roles; how different societies define women and men; and how ideas of sex and gender shape and are shaped by language, individual behavior, and social institutions such as law, religion, and education. Students explore the varied roles gender has played in different cultures, times, intellectual disciplines, and forms of creative expression. Debates over sexuality, reproduction, feminism, masculinity, the roles of women in history, politics, and science, and the intersections of gender with other social categories such as race, class, ethnicity are all topics addressed within this interdisciplinary field.

Most Women’s Studies subjects are cross-listed with other departments and are available to students in a wide range of fields of study. Through classes, UROPs, and events, both undergraduate and graduate students gain new perspectives on other disciplines such as computer science, law, philosophy, theater, management, literature, urban studies, psychology, and history. Women’s Studies subjects are open to all students.

The curriculum includes a core subject, Introduction to Women’s and Gender Studies, and a selection of subjects from many departments at the Institute, listed in the Special Programs section of Part 3. A full major (known as a major departure) is available by special arrangement. Women’s Studies also offers a minor program and a concentration.

The Minor Program in Women’s Studies is designed for students who, in addition to the focus of their major program of study, are seeking a fuller understanding of the ways in which gender and gender constructs have shaped human understanding of self and community. The minor program consists of six subjects, one of which may be taken at Harvard or Wellesley with the permission of the director, arranged into three levels of study as follows:

Tier I
Required introductory subject:
SP.401 Introduction to Women’s and Gender Studies

Tier II
Four subjects, at least one of which is drawn from each category:
Humanities and the arts
Social and natural sciences

Tier III
One advanced seminar:
SP.412 Feminist Political Thought
or
an upper-level Women’s Studies course as determined by the director

For more information, see Interdisciplinary Research and Study in Part 1 or contact the coordinator, Women’s Studies, Room 14E-316, 617-253-8844, womens-studies@mit.edu, or visit the website at http://web.mit.edu/womens-studies/www/.
The following Minors in Regional Studies have been approved: African and African Diaspora Studies, East Asian Studies, European Studies, Latin American Studies, Middle Eastern Studies, and Russian Studies. These interdisciplinary programs provide MIT undergraduates with a valuable opportunity to acquire knowledge of a particular country or region in conjunction with proficiency in a foreign language. This better prepares them for academic, business, and government careers in a world where regions and countries are increasingly interdependent.

Because the nature of these minors is cross-disciplinary, combining foreign language study with humanities, arts, and social sciences, they are arranged into the following four areas of study:

- Area I: Language (Intermediate level)
- Area II: Humanities and the Arts
- Area III: Social Sciences
- Area IV: Historical Studies

Students are required to take six subjects (at least three of which must be MIT subjects) in the following configuration: two intermediate-level language subjects (Area I) and four other subjects, chosen from at least two of the other three areas. If a student already has achieved the equivalent of intermediate-level proficiency, he or she can take either two more advanced-level language subjects or two more subjects from Areas II, III, or IV in place of the intermediate language subjects. Languages not presently taught at MIT may be taken at Harvard or Wellesley, or elsewhere during the summer with the permission of the minor advisor.

Details on each of the minors are given below. Lists of subjects that are appropriate for a HASS minor in each of the regional studies, as well as additional information about minors, advisors, etc., can be obtained from the relevant minor advisor or from the HASS Education Office, Room 14N-408, 617-253-4441.

Minor in African and African Diaspora Studies
The Minor in African and African Diaspora Studies is designed for students interested in the cultures and experiences of the peoples of African descent on the continent or elsewhere. The minor includes study of economic and political systems as they reflect the African continent and areas of the African diaspora, and the histories, languages, and literatures of Africans and peoples of African descent elsewhere. All of Africa falls within the geographical scope of the minor. A student may concentrate on a particular region or on any of the broad groupings of African cultures, such as Arabic-speaking, Anglophone, Francophone, or Lusophone Africa. Equally, a student choosing to focus on the African diaspora may concentrate on any group of African-descended populations in the Americas. Students focusing on either principal area (Africa or the African diaspora) must also take at least one subject which deals with the other area or with interactions between them.

The goal of the minor program is to emphasize the importance of Africa and people of African descent in world cultural, economic, and social developments, and to provide a balance between language, humanistic, historical, and contemporary study.

Students are expected to have two intermediate (Levels III and IV) subjects in either the official language of the region of study or in an indigenous African language. In cases where the student is specializing in Anglophone Africa or an English-speaking region of the diaspora, and does not undertake study of an indigenous language, or is a native speaker of the official language(s) of a country or region of emphasis, this component would be replaced by literature or other humanities subjects.

Additional information can be obtained from the minor advisor, Professor Christine Walley, Room 16-231, 617-258-7908, or from the HASS Education Office, Room 14N-408, 617-253-4441.

Minor in East Asian Studies
The Minor in East Asian Studies is designed for students interested in the languages, history, politics, and culture of Asia. East Asia includes the countries which share a common background in the Chinese classical tradition: present-day People’s Republic of China, Taiwan, Korea, Japan, and Vietnam; but the core offerings at MIT cover China and Japan. The goal of the minor program is to provide balanced coverage of language, humanistic, and social science offerings on the region and to expose students to comparative perspectives.

The language requirement can be satisfied by taking two intermediate (Levels III and IV) subjects in an East Asian language (Mandarin Chinese, Japanese, Korean, or Vietnamese). Chinese and Japanese are now taught at MIT.

Additional information can be obtained from the minor advisor, Professor Peter C. Perdue, Room E51-291, 617-253-3064, or from the History Office, Room E51-285, 617-253-9846, or from the HASS Education Office, Room 14N-408, 617-253-4441.

Minor in European Studies
The Minor in Modern European Studies is designed for students who are seeking a fuller understanding of the forces which have shaped modern Europe. The geographical and chronological scope of the minor program has been made deliberately broad to accommodate the wide variety of student interests. Subjects range in content from the Renaissance to the present, and from the British Isles to Central Europe. A student can choose to focus on one particular country or on a broader region, with a comparative perspective. Given the breadth of offerings, the student should consult closely with his or her minor advisor in order to devise a coherent program of study.

Students are expected to demonstrate intermediate level proficiency in a modern European language other than English by taking two intermediate (Levels III and IV) subjects, but they need not concentrate their other subjects on the country associated with that language.

Additional information can be obtained from the minor advisor, Professor Charity Scribner, Room 14N-320, 617-452-2800, or from the HASS Education Office, Room 14N-408, 617-253-4441.

Minor in Latin American Studies
The Minor in Latin American Studies is designed for students interested in the languages, history, politics, and cultures of Latin America. The core offerings at MIT largely concentrate on those areas formerly colonized by Spain, although students are not required to focus their study exclusively on these areas. They are encouraged to develop a program that is both international and comparative in perspective and that takes into account the heterogeneous cultural experiences of people living in the vast territory loosely termed Latin America, as well as those people living in the United States who identify themselves as Latino.
Two intermediate (Levels III and IV) subjects, either in Spanish or Portuguese, satisfy Area I. MIT offers Levels III and IV of Spanish every term and those wishing to study Portuguese may do so at Harvard University. All students opting for the minor are required to take 22F.084J/17.541J/22A.224J Introduction to Latin American Studies.

Additional information can be obtained from the fall 2005 minor advisor, Professor Jeffrey Ravel, Room E51-179, 617-253-4451, and the spring 2006 minor advisor, Professor Elizabeth Garrels, Room 14N-303, 617-253-9688, or from the HASS Education Office, Room 14N-408, 617-253-4441.

Minor in Middle Eastern Studies

Middle Eastern Studies at MIT offers students the opportunity to explore the connections among culture, society, politics, economics, technology, and environment in the Middle East, including North Africa. MIT offers a number of subjects open to undergraduates which provide a variety of perspectives on the ancient, Islamic, and modern Middle East. The goal of the HASS Minor Program in Middle Eastern Studies is to lead the student from the basic language into survey subjects and then into more focused studies of individual countries or specific historical periods and to encourage analysis of the main methodological and conceptual issues in Middle Eastern Studies.

Two intermediate (Levels III and IV) subjects in one of the following Middle Eastern languages are required: Arabic, Hebrew, Persian, or Turkish. Because MIT does not offer instruction in these languages, students may satisfy the Area I language requirement at Harvard University. They may satisfy the language requirement at other institutions provided they receive permission in advance from the HASS minor advisor in Middle Eastern Studies.

Additional information can be obtained from the minor advisor, Professor Philip S. Khoury, Room E51-255, 617-253-3450, or from the HASS Education Office, Room 14N-408, 617-253-4441.

Minor in Russian Studies

The Russian Regional Studies Minor is intended for students seeking an interdisciplinary program of study centered on Russia and the former Soviet Union. The historical, cultural, and political importance of Russia itself, as well as the nature of MIT’s subject offerings, suggest a primary concentration on that particular country, the dominant element in the former Soviet Union. The program is, however, regional in spirit, given both the multinational and multicultural role of the Russian Republic and the likelihood that other former Soviet Republics choose to remain in political and economic association with it.

Two intermediate (Levels III and IV) subjects in the Russian language are required to satisfy Area I. These subjects are not offered at MIT, but may be taken at Harvard University or Wellesley College through cross-registration. For more information, see Undergraduate Education in Part 1.

Additional information can be obtained from the minor advisor, Professor Elizabeth Wood, Room E51-282, 617-253-3255, or from the HASS Education Office, Room 14N-408, 617-253-4441.
The Sloan School of Management, like the rest of MIT, catalyzes innovation through research and education. Sloan graduates are particularly good at building cutting-edge products, services, markets, and organizations—delivering the advances essential for competitive survival and for economic and social progress. As one of the world’s leading business schools, MIT Sloan seeks to develop principled, innovative leaders who improve the world.
The mission of the MIT Sloan School of Management is to develop principled, innovative leaders who improve the world and to generate ideas that advance management practice.

To accomplish this, the School

- Offers premier programs for shaping leaders who will create, redefine, and build cutting-edge products, services, markets, and organizations
- Collaborates across MIT to capitalize on and contribute to the Institute’s distinctive intellectual excellence and entrepreneurial culture
- Attracts, develops, and retains outstanding faculty and staff who lead the world in management education and research
- Enrolls students with integrity, strong leadership potential, high aspirations, and exceptional intellectual ability
- Fosters a cooperative and adventurous learning community that includes alumni and business partners, works on important problems, and is based on mutual respect, rigorous analysis, and high ethical standards

History
The MIT Sloan School grew out of a curriculum in engineering administration—Course 15—that was first offered to MIT undergraduates in 1914. A program leading to a master’s degree in management was established in 1925. The world’s first university-based executive education program, the Sloan Fellows Program, had its beginnings at MIT in 1931 under the principal sponsorship of Alfred P. Sloan, Jr., the 1895 MIT graduate in electrical engineering who rose to the top of the General Motors Corporation. Sloan endowed the pioneering program in 1938. In 1952, a further grant from the Sloan Foundation made possible the creation of the MIT School of Industrial Management—charged with the education of “the ideal manager.” The School was renamed in honor of Mr. Sloan in 1964.

New Directions
MIT Sloan’s array of top-ranked undergraduate, graduate, and executive programs are well known for drawing on the creative and collaborative approaches common to engineering, behavioral science, economics, and management science to give managers a competitive edge. In our diverse research programs, we work with industry to develop the basic knowledge, insights, tools, and techniques that are shaping the future of the practice of management.

Among MIT Sloan’s key strengths are its exceptionally close ties with other world-class departments at MIT, especially in fields crucial to business, including economics, engineering, and science. One manifestation of this interdisciplinary approach is Leaders for Manufacturing, an educational and research collaboration with the School of Engineering and 13 corporations that is transforming the practice of manufacturing and manufacturing education. Other examples include the Medical Innovations course, conducted in partnership with MIT Sloan, the School of Engineering, and doctors at Massachusetts General Hospital, and the new Biomedical Enterprises program.

With a focus on the future of management, Sloan has been aggressive in developing leading edge research programs that have an impact on the emerging practice of business. The School has been a leader in developing the concepts of financial engineering that underlie today’s financial markets, for example. It also conducts pioneering research in the management of technology and offers the nation’s leading master’s program for executives in this important area. Recently, MIT Sloan launched an exciting Executive Education program, Leading Innovative Enterprise: Strategies for Growth in the Life Sciences.

Reflecting a world characterized by increasing economic globalization, MIT Sloan is itself an international community. Approximately 1/3 of the MBA class and close to half of executive education participants come from outside the United States, and diverse research/educational collaborations have been developed with Europe, Mexico, and Asia. In addition, the School has a strong network of alumni in more than 82 countries.

As one of the world’s preeminent management schools, MIT Sloan strives to prepare its students to be innovative leaders in a rapidly changing world. In an increasingly competitive environment, MIT Sloan must continually listen to the marketplace, explore new directions, and use this knowledge to develop new products, services, and processes quickly and efficiently. To maintain its leadership, MIT Sloan continues to drive change and innovation in a number of areas:

Entrepreneurship. The MIT Entrepreneurship Center, housed at MIT Sloan, aims to inspire, train, and coach new generations of entrepreneurs to create successful high-tech ventures. The center’s educational programs, especially New Enterprises, Entrepreneurship Lab, and Entrepreneurship Lab courses, are designed to give students the experience, skills, and network they need to turn their ideas into opportunities for new ventures and then to make those ventures successful. The center continues to work with leading practitioners and build its entrepreneurship faculty, who also conduct research on the dynamic process of high-tech venture development.

Global Initiatives. A top priority for MIT Sloan is to widen the international reach of its educational and research initiatives. MIT Sloan has international MBA programs in collaboration with China’s Sun Yat-sen, Fudan, Tsinghua, Yunnan, and Lingnan universities. MIT Sloan also hosts Chinese university faculty to help them absorb and apply MIT Sloan’s approach to management education. The School also works with Nanyang Technological University in Singapore, the Epoch Foundation in Taiwan, the Sungkyunkwan University in Korea, and Instituto Tecnológico y de Estudios Superiores in Mexico.

Research Centers
MIT Sloan’s interdepartmental research centers include:

Center for Computational Research in Economics and Management Science
Center for Coordination Science
Center for eBusiness@MIT
Center for Energy and Environmental Policy Research
Center for Information Systems Research
Center for Innovation in Product Development
Institute for Work and Employment Research
Laboratory for Financial Engineering
Lean Aerospace Initiative
MIT Entrepreneurship Center
MIT Leadership Center
MIT Workplace Center
Operations Research Center
Productivity from Information Technology Initiative
Program on the Pharmaceutical Industry
System Dynamics Group

Publications

MIT Sloan produces publications that enjoy robust readings within the MIT community, across the country, and around the world. *MIT Sloan Management Review* is a quarterly subscription-based journal for professional managers. More information about the magazine is presented on the web at http://mitsloan.mit.edu/smr/.

In addition, MIT Sloan maintains a newly redesigned website that provides access to a rich and detailed range of news and information about the School, its activities, and its resources. The website is available at http://mitsloan.mit.edu/.

Office of the Dean

Richard L. Schmalensee, PhD
John C. Head III, Dean
Professor of Management and Economics

Paul Osterman, PhD
Deputy Dean
Nanyang Professor of Human Resources and Management, MIT Sloan School and Department of Urban Studies and Planning

Steven D. Eppinger, ScD
Deputy Dean
General Motors Professor of Management Science

Alan F. White, SM
Senior Associate Dean

Donna M. Behmer, MEd
Senior Associate Dean, Finance and Administration
Bachelor of Science in Management Science/Course 15

The MIT Sloan School of Management offers an undergraduate degree program in management science. It is a cutting-edge program designed to prepare students for top jobs in today’s technologically oriented business world. By combining General Institute Requirements with subjects at the MIT Sloan School of Management, students learn a unique combination of technical and management skills that allow them to excel in such high-demand areas as web-based commerce, financial engineering, market analysis, and software development.

In recent years, the field of management science has grown rapidly in conjunction with advances in computer technology, in methods for collecting and structuring large quantities of data, in mathematical programming, and in the building of sophisticated mathematical models. The MIT Sloan School’s undergraduate program develops necessary competence in the underlying disciplines of mathematical programming and modeling, statistics, and computer technology. The program also provides a strong background in the associated disciplines of managerial psychology and economics, and demonstrates applications from a variety of functional areas of management. Beyond this, each student selects a concentration of four subjects in information technologies, operations research, marketing science, or finance.

MIT Sloan undergraduates take most management electives at the graduate level, alongside MBA and doctoral students. This arrangement provides an excellent opportunity for undergraduates to learn from students with previous business experience. A degree in management science gives students the best of both worlds—technical excellence and managerial focus.

Minor Program in Management

The Minor in Management is intended to provide undergraduates with an understanding of the economic, business, human, social, and organizational dimensions of scientific and technological enterprise. Its emphasis on management per se differs from that of the SB degree program in management science.

Bachelor of Science in Management Science/Course 15

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement (two subjects can be satisfied by 14.01 and 14.02 in the Departmental Program)</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement (can be satisfied by 6.041 and 18.06 in the Departmental Program)</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement (can be satisfied by 15.301 in the Departmental Program)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree: 17

Communication Requirement

The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
</tr>
<tr>
<td>6.041 Probabilistic Systems Analysis, 12, REST; 18.02</td>
</tr>
<tr>
<td>14.01 Principles of Microeconomics, 12, HASS</td>
</tr>
<tr>
<td>14.02 Principles of Macroeconomics, 12, HASS</td>
</tr>
<tr>
<td>15.053 Introduction to Optimization, 12, 18.06*</td>
</tr>
<tr>
<td>15.075 Applied Statistics and Data Analysis, 12, 6.041*, 18.06*</td>
</tr>
<tr>
<td>15.279 Management Communication for Undergraduates, 12, CI-M</td>
</tr>
<tr>
<td>15.301 Managerial Psychology Laboratory, 15, LAB, CI-M</td>
</tr>
<tr>
<td>15.501 Introduction to Financial and Managerial Accounting, 12, 14.01</td>
</tr>
<tr>
<td>18.06 Linear Algebra, 12, REST; 18.02</td>
</tr>
</tbody>
</table>

Restricted Electives: 57–75

One of the following two subjects:
- 1.00 Introduction to Computers and Engineering Problem Solving, 12, REST; 18.01
- 6.001 Structure and Interpretation of Computer Programs, 15, REST

One of the following four subjects:
- 15.351 Managing Innovation and Entrepreneurship, 9
- 15.401 Finance Theory I, 9
- 15.760* Introduction to Operations Management, 6, 15.060* and 15.762 Supply Chain Planning, 6, 15.760* or 15.763 Manufacturing System and Supply Chain Design, 6; 15.760* and 15.812 Marketing Management, 9, 14.01

Concentration Subjects: Four specified subjects in one of the following concentrations: Finance, Information Technologies, Marketing Science, Operations Research

Departmental Program Units That also Satisfy the GIRs (60)

Unrestricted Electives: 54–72

Total Units Beyond the GIRs Required for SB Degree: 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

Alternate prerequisites are listed in the subject description.

1. 15.760, 15.762, and 15.763 are half-term subjects. 15.760 together with either 15.762 or 15.763 counts as a single subject.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
The minor consists of six subjects, four required:

14.01 Principles of Microeconomics
15.501 Corporate Financial Accounting
15.668 People and Organizations
15.812 Marketing Management

Plus two subjects from among the following restricted electives:

15.351 Managing Innovation and Entrepreneurship
15.401 Finance Theory I
15.667 Negotiation and Conflict Management
15.821HT Listening to the Customer
15.822HT Strategic Market Measurement
15.034 Applied Econometrics and Forecasting for Management
15.053 Introduction to Optimization
15.054J The Airline Industry (same subject as 1.232J, 16.71J, ESD.217J)
15.075 Applied Statistics and Data Analysis
15.223HT Global Markets, National Policies and the Competitive Advantages of Firms
15.521HT Management Accounting and Control
15.535 Business Analysis Using Financial Analysis
15.568 Practical IT Management
15.665 Power and Negotiation
15.670HT Leadership and Change
15.760HT Introduction to Operations Management
15.874 System Dynamics for Business Policy

Note: subjects marked "HT" are 6-unit, half-term subjects. Each HT subject counts as one-half of an elective. Other listed subjects each count as one elective.

Under an experimental procedure approved by the Committee on the Undergraduate Program, the Minor in Management is being phased in over a period of four years. During this time, enrollment in the minor will be limited to approximately 100 students per year as selected by a random lottery open to sophomores and juniors in each spring term, 2005 through 2009.

Further information about the Minor in Management is available at the Undergraduate Program Office in Room E40-165 and on the MIT Sloan undergraduate website at http://mitsloan.mit.edu/undergrad/.

Interdepartmental Students
MIT students from other departments are welcome to take unrestricted elective courses at MIT Sloan, if they have taken the listed prerequisites. All students must participate in the MIT Sloan bidding system. Information about the process is available on the bidding website at http://sloanbid.mit.edu/. Bidding occurs at the same time as online WebSIS pre-registration in December and May for the following terms. The MIT Sloan course schedule is available online, as are most class syllabi, to assist students in bid point allocation. Staff in Sloan Educational Services, Room E52-101, 617-253-1510, are always available to assist interdepartmental students and provide information about MIT Sloan classes and the bidding system.

Inquiries
For additional information on the undergraduate curriculum, students may consult the Undergraduate Program Office, Room E40-161, MIT Sloan School of Management, Cambridge, MA 02139-4307, 617-253-8614.

GRADUATE STUDY

The MIT Sloan School of Management offers opportunity for graduate study leading to the degrees of Master of Business Administration, Master of Science in Management, Master of Science in Management of Technology, and Doctor of Philosophy.

Entrance Requirements for Graduate Study
Applications are welcome from college graduates in all areas of concentration—the humanities, social sciences, physical sciences, and engineering—but matriculants must have completed formal subjects in calculus and in economics. The minimum level of preparation is normally a one-year subject in economic theory and a one-year subject in calculus. If these subjects have not been taken in a previous academic program, they may be covered by formal subjects prior to enrollment.

All applicants, including those from foreign countries, must take the Graduate Management Admission Test (GMAT). Information is available from the Graduate Management Admission Council, Educational Testing Service, Princeton, New Jersey 08541. GRE scores may be used in place of GMAT scores only for the doctoral program and for LFM applicants applying through the School of Engineering.

Master of Business Administration and Master of Science in Management
The MIT Sloan School MBA Program offers a course of study in graduate business education, leading to a master’s degree in Business Administration (MBA) or Master of Science in Management (SM). Degree candidates are admitted in September to a program of study extending over two consecutive academic years. MBA degree candidates must complete a required core plus 144 units of H- or G-level elective subjects. Residency for four consecutive academic terms is required. Degree candidates must also fulfill research and leadership requirements through activities in the mid-semester Sloan Innovation Period and through elective coursework.

The MBA curriculum is designed for maximum flexibility, allowing students to create an individual program best suited to their needs and career interests. During the first term, students take a sequence of core subjects with the option of one elective course. After the first term, students have a wide range of elective course choice.

Practical exposure to management takes place in the MIT Sloan School through a variety of activities. Students in the MBA Program are expected to spend the summer between their first and second years working in some activity that contributes to their understanding of and effectiveness in dealing with management problems. During the academic year, some MBA candidates work as paid research assistants for members of the faculty, or become involved with them in the consulting activities that they carry on for government, firms, and other public and private organizations. Each semester, MIT Sloan faculty members offer research workshops during the Sloan Innovation Period. In addition, many students choose topics for their master’s theses or project work that involve research in the practice of management in particular organizations, industries, or sectors. Corporate leaders are often invited to work with students, either through guest lectureships in various classes or through interaction with one of the MIT Sloan...
student organizations such as the Finance Club, the Media Tech Club, or the MIT Sloan Leadership Forum.

System Design and Management Program: Master of Science in Engineering and Management

Jointly sponsored by the School of Engineering and the MIT Sloan School, the System Design and Management (SDM) Program targets experienced engineers and product development professionals who seek to build upon their technical background and advance to positions of leadership in their careers.

The SDM program was created in 1996, in response to a critical need expressed by government and industry to provide future engineering leaders with an educational experience that combines an engineering systems perspective with the essentials of a management education. The program has focused on developing competencies in the areas of systems thinking, management skills, and leadership, and an end-to-end understanding of systems development.

SDM is offered in three formats, including a 13-month full-time on-campus program and two career-compatible 24-month programs—half-time on campus for local area commuter students and a distance delivery option via synchronous video conferencing. SDM is the only MIT degree program that can be completed primarily through distance education.

Program applicants have significant engineering and/or managerial experience, in addition to a scientific or engineering education. On average, SDM student-fellows have about 10 years of work experience. The program participants come from both private and government institutions, either as company sponsored, or as self-sponsored students. A majority of SDM students have advanced degrees in other fields, and over half come from countries other than the United States.

The SDM Program begins in January. Applications are accepted on a continuous basis, with an early notification deadline of May 15 and a final cutoff of October 15 for admission to the next cohort. For additional information, contact the SDM Program Office, Room E40-315, 617-253-1055, sdm@mit.edu, or visit the website at http://sdm.mit.edu/. See also the Engineering Systems Division section in Part 2.

Leaders for Manufacturing Program: Dual Master’s Degrees in Management and Engineering

The Leaders for Manufacturing (LFM) Program combines graduate education in engineering and management for those who aspire to leadership positions in manufacturing or operations companies with two or more years of work experience. This rigorous 24-month program combines subjects in technology and management. A required six-and-a-half-month internship provides opportunity to complete a research project on site at one of LFM’s partner companies. The internship leads to a dual-degree thesis, leading to two master’s degrees—an SM or MBA and an SM in Engineering. The program is offered jointly through the MIT Sloan School of Management and the School of Engineering master’s programs in Aeronautics and Astronautics, Biological Engineering, Chemical Engineering, Civil and Environmental Engineering, Electrical Engineering and Computer Science, Engineering Systems, Materials Science and Engineering, and Mechanical Engineering. For general requirements and application procedures, visit the LFM website at http://lfm.mit.edu.

Doctor of Philosophy

The purpose of the MIT Sloan School’s PhD program is to prepare students for careers in teaching and research or, to a lesser extent, for positions requiring advanced research and analytical capabilities. The PhD program provides the opportunity to combine in-depth work in theory with work in broadly defined “applied” or “functional” fields.

A candidate entering with a bachelor’s degree should be able to complete the program in four or five years. The first year is devoted to work in the basic disciplines of management and to preliminary work in the student’s major and minor fields. The second year is primarily devoted to the major and minor fields. Finally, two or three years are required for the doctoral dissertation.

Major and Minor Fields

Candidates must master the literature, theory, and application of a major field of concentration as well as a minor field. Successful completion of this requirement is determined by General Examinations. The major fields currently available in the MIT Sloan School are the following (although individually constructed majors are possible):

- Accounting and Control
- Financial Economics
- Information Technologies
- Institute for Work and Employment Research
- Technology, Innovation and Entrepreneurship
- Marketing
- Operations Management
- Organization Studies Group
- Strategy and International Management
- System Dynamics

PhD candidates enter the program with a clear idea in mind of a major field of concentration. An appropriate minor field is then selected—typically a theoretical discipline that provides a foundation for research in the major field. Major fields such as accounting or marketing usually have economics as a minor field, while the organizational studies group has behavioral science.

The subject requirements for the major and minor fields are not rigid. There are normal groups of subjects for the standard fields, but substitutions of other subjects and independent study are possible. Regardless of the major and minor fields chosen, a plan of study designed to prepare the student for General Examinations is worked out by the student and his or her faculty advisor(s).

The General Examinations normally are taken at the end of the second year or beginning of the third year of study, after completion of major and minor field coursework and a research paper (see below). The exact form of general exams varies and may involve written examinations, critiques of research papers, or review papers on prescribed topics. In all cases, the last stage is an oral examination.

The MIT Sloan School is committed to research, and the philosophy and structure of the PhD program reflect this professional commitment. There are two separate research requirements: the second-year research paper and the thesis.

A substantial part of the student’s work in the latter half of the first year and in the second year is devoted to an independent research project. The topic, design, and execution of the
project are left to the student, while advice and criticism are provided by a research advisor and other interested faculty. Upon completion of the project, the student prepares a document that is referred to as the "second-year paper."

The PhD dissertation consists of significant scholarly research in some area of management. Close working relationships with faculty are established early so that the thesis can be defined as a manageable project as early as possible. Candidates typically require two or three years of full-time work to complete their theses.

There is no language requirement in the MIT Sloan School’s PhD program, although in some cases the student and his or her advisor decide that further study of a foreign language is necessary if the student is to work effectively in his or her major field. This is usually true, for example, in the field of Strategy and International Management.

Teaching and Research Assistantships
All doctoral students in the MIT Sloan School are eligible to apply for the approximately 100 part-time research and teaching assistantships available each year.

Inquiries
For MBA brochures and applications, call 617-253-0449; for MBA information, 617-253-3730; and for doctoral information, 617-253-7188, or 617-253-8957. Additional information concerning graduate programs, admissions, and financial aid may be obtained from the MBA Program Office, Room E52-101, or the Doctoral Program Office, Room E60-236, MIT Sloan School of Management, 30 Memorial Drive, Cambridge, MA 02139. For Leaders for Manufacturing brochures, call 617-253-1055. Applications are available on the web at http://mitsloan.mit.edu/.

FACULTY AND STAFF
Richard Lee Schmalensee, PhD
Professor of Management and Economics
John C Head III Dean of the Sloan School of Management

Faculty and Teaching Staff

Professors
Thomas John Allen, Jr., PhD
Howard W. Johnson Professor of Management
Deborah Gladstein Ancona, PhD
Seley Distinguished Professor of Management
Dan Ariely, PhD
Luis Alvarez Renta Professor of Management
Paul Asquith, PhD
Nanyang Technological University Professor of Management
Lotte Lazarsfeld Bailyn, PhD
Professor of Management
Arnold Irwin Barnett, PhD
Professor of Management
George Eastman Professor of Management Science
Professor of Operations Research and Management
Ernst R. Berndt, PhD
Boeing Leaders for Manufacturing Professor of Management
Gabriel Richard Bitran, PhD
Nippon Telegraph and Telephone Professor of Management
Erik Brynjolfsson, PhD
George and Sandi Schussel Chair of Management Science
(On leave, fall)
John Stephen Carroll, PhD
Professor of Behavioral and Policy Sciences
John Carrington Cox, PhD
Nomura Professor of Finance
Michael A. Cusumano, PhD
Sloan Management Review Professor of Management
Steven D. Eppinger, ScD
General Motors Leaders for Manufacturing Professor of Management
Director, Center for Innovation and Product Development
Deputy Dean
Roberto M. Fernández, PhD
Chrysler Leaders for Manufacturing Professor of Management
(On leave)
Charles Harry Fine, PhD
Chrysler Leaders for Manufacturing Professor of Management
(On leave)
Robert Michael Freund, PhD
Theresa Seley Professor in Management Science
(On leave, spring)
Robert S. Gibbons, PhD
Sloan Distinguished Professor of Management
(On leave)
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caroline Ellis, MA</td>
<td>Senior Associate Editor, Sloan Management Review</td>
</tr>
<tr>
<td>Albert A. Essa, MA</td>
<td>Executive Director, Information Systems</td>
</tr>
<tr>
<td>Ray Edwin Faith, PhD</td>
<td>Manager, East Campus Computer Facility</td>
</tr>
<tr>
<td>Patricia Favreau, BA</td>
<td>Media Relations Specialist</td>
</tr>
<tr>
<td>Catherine M. Feeney, MBA</td>
<td>Associate Director of Marketing, Executive Education</td>
</tr>
<tr>
<td>Sarah C. Foote, MA</td>
<td>Assistant Director, Sloan Student Publications</td>
</tr>
<tr>
<td>Deborah Gallagher, BA</td>
<td>Director, Circulation and Marketing, Sloan Management Review</td>
</tr>
<tr>
<td>Catherine A. Gamon, MBA</td>
<td>Director, MBA Student Affairs</td>
</tr>
<tr>
<td>Rod Garcia, BS</td>
<td>Director of Program Marketing, Recruitment, and Enrollment</td>
</tr>
<tr>
<td>Diane V. Garcia-Martinez, MS</td>
<td>Director, Special Executive Programs</td>
</tr>
<tr>
<td>Janice Gardner, BA</td>
<td>Coordinator, Special Executive Programs</td>
</tr>
<tr>
<td>Virginia Gifford-Reckley</td>
<td>Information Systems Manager</td>
</tr>
<tr>
<td>Dana Hart, MEd</td>
<td>Assistant Director, Career Development</td>
</tr>
<tr>
<td>Elizabeth Hartnett, BA</td>
<td>Coordinator, Special Executive Programs</td>
</tr>
<tr>
<td>Alden Hayashi, MA</td>
<td>Senior Editor, Sloan Management Review</td>
</tr>
<tr>
<td>John Henriques, MS</td>
<td>Financial Analyst II</td>
</tr>
<tr>
<td>Maura Herson, MA</td>
<td>Assistant Director, MBA Student Affairs</td>
</tr>
<tr>
<td>Lucinda Margaret Hill, MBA</td>
<td>Director, Sloan Capital Projects</td>
</tr>
<tr>
<td>Anita L. Horn, BA</td>
<td>Systems Analyst II</td>
</tr>
<tr>
<td>Eva Huang, MS</td>
<td>Financial Analyst II</td>
</tr>
<tr>
<td>Greg Hudson</td>
<td>Systems Analyst II</td>
</tr>
<tr>
<td>Glenn Johnston, MS</td>
<td>Director, Administrative Computing</td>
</tr>
<tr>
<td>Launa Johnston</td>
<td>Coordinator, Special Executive Programs</td>
</tr>
<tr>
<td>Deirdre M. Kane, MS</td>
<td>IT Faculty Liaison</td>
</tr>
<tr>
<td>Stephanie Karkut, BA</td>
<td>Assistant Director, Undergraduate Program</td>
</tr>
<tr>
<td>Susan Kline, MA</td>
<td>Associate Director, Career Development Office</td>
</tr>
<tr>
<td>Philip Kwok, PhD</td>
<td>Special Advisor, China Management Education Programs</td>
</tr>
<tr>
<td>Patricia Martin Lacefield, BS</td>
<td>Assistant Director, Career Development Office</td>
</tr>
<tr>
<td>Shauna LaFauci, MBA</td>
<td>Assistant Director, MBA Student Affairs</td>
</tr>
<tr>
<td>Christine Leamon, BA</td>
<td>Publisher, Sloan Management Review</td>
</tr>
<tr>
<td>Ann Marie LeBlanc</td>
<td>Senior Financial Analyst</td>
</tr>
<tr>
<td>Jonathan M. Lehrich, MBA</td>
<td>Associate Director, MIT Leadership Center</td>
</tr>
<tr>
<td>Kim LePage, MBA</td>
<td>Area Officer</td>
</tr>
<tr>
<td>Cynthia Albert Link, MBA</td>
<td>Executive Director, Resource Development</td>
</tr>
<tr>
<td>Pamela Liu, BS</td>
<td>Area Officer</td>
</tr>
<tr>
<td>Grace Charlotte Locke</td>
<td>Administrative Assistant</td>
</tr>
<tr>
<td>Lucy Lui, MA</td>
<td>Director, Human Resources</td>
</tr>
<tr>
<td>Cathy Ly</td>
<td>Area Officer</td>
</tr>
<tr>
<td>John F. Maglio, SM</td>
<td>Microcomputer Network Administrator</td>
</tr>
<tr>
<td>Beth Magura, BS</td>
<td>Director, Production/Web Operations</td>
</tr>
<tr>
<td>Peter Maher</td>
<td>Coordinator, Communications</td>
</tr>
<tr>
<td>Jennifer Mapes, BA</td>
<td>Assistant Director, Sloan Fellows Program</td>
</tr>
<tr>
<td>Michael R. Mappes, BS</td>
<td>Database Analyst II</td>
</tr>
<tr>
<td>Mary E. Marshall, BA</td>
<td>Assistant Director, Sloan Fellows Program</td>
</tr>
<tr>
<td>Lisa E. Martin, BA</td>
<td>Coordinator, Educational Services</td>
</tr>
<tr>
<td>Nathaniel H. Mayes, Jr., MS</td>
<td>Senior Sloan Development Officer</td>
</tr>
<tr>
<td>Christina McCarthy</td>
<td>Webmaster</td>
</tr>
<tr>
<td>Jonathan McLaughlin, MA</td>
<td>Assistant Director, MBA Admissions</td>
</tr>
<tr>
<td>Phillip K. McMullen, MIM</td>
<td>Associate Director, Career Development</td>
</tr>
<tr>
<td>Tracy Mellor, BA</td>
<td>Coordinator, Sloan Fellows Program</td>
</tr>
<tr>
<td>Felicia Miles</td>
<td>Human Resources Coordinator</td>
</tr>
<tr>
<td>Heather Miller, BA</td>
<td>Assistant Director, Career Development</td>
</tr>
<tr>
<td>Angel Navedo, BA</td>
<td>Assistant Director, MBA Admissions</td>
</tr>
<tr>
<td>Marc O’Mansky, BA</td>
<td>Coordinator, Sloan Fellows Program</td>
</tr>
<tr>
<td>Julie Papp, MS</td>
<td>Associate Director, Career Development</td>
</tr>
<tr>
<td>Lillian R. Paratore</td>
<td>Associate Director, Sloan Annual Fund</td>
</tr>
<tr>
<td>Laurie O. Pass, BA</td>
<td>Business Director, Sloan Management Review</td>
</tr>
<tr>
<td>Barry Reckley, MS</td>
<td>Assistant Director, Minority Recruitment and Retention</td>
</tr>
<tr>
<td>Mark Riedesel, PhD</td>
<td>Associate Director, Operations and Infrastructure Services</td>
</tr>
</tbody>
</table>
Tecla Ris, MA
Coordinator, Special Executive Programs

Scott Rolph, BA
Associate Director, Communications

Stephen Sacca, SM
Director, Sloan Fellows Program

Tammy M. Santora, BS
Senior Financial Analyst

Mary Schaefer, SM
Executive Director, Leadership

Patricia Schilling, MBA
Associate Director, Custom Programs

Leanne Schnitzer
Associate Director, Alumni Relations

Margaret A. Scoppa
Facilities Manager

Robert M. Shaw, BS
Systems Analyst II

Jill Soucy, MBA
Assistant Director, Corporate Relations

Pamela Spencer, MBA
Assistant Director, Master’s Program

Maria Sterk, MA
Assistant Director, Special Executive Programs

Julia Strong, MA
Associate Director, MBA Admissions

Loren E. Van Allen, BA
Associate Director, Resource Development

Pamela Walcott, MA
Assistant Director, Educational Services

Tara Walar, MS
Associate Director, Educational Services

Joseph Webber, BA
Senior Financial Analyst

David A. Weber, SM
Director, Corporate Relations

Rochelle Weichman, MBA
Director, Custom Programs

Alan Frederick White, SM
Senior Associate Dean

Gordon White, SM
Alumni Career Advisor

Patricia White, BA
Director, Fiscal Operations

Tyrese White
Systems Analyst II

Jacqueline Wilbur, MBA
Director, Placement and Career Development,
Career Development Office

Laura Wilcox, MA
Assistant Director, MBA Student Affairs

Toby Woll, BA
Director, Blended Learning

Professors Emeriti
Sidney Stuart Alexander, PhD
Professor of Economics and Management,
Emeritus

William Filbert Bottiglia, PhD
Professor of Management and Humanities,
Emeritus

Jay W. Forrester, DEng
Germeshausen Professor of Management,
Emeritus

Howard Wesley Johnson, LLD
Special Faculty Professor of Management
Former Chairman, MIT Corporation
President, Emeritus

Robert Bruce McKersie, PhD
Professor of Management, Emeritus

J. D. Nyhart, LLB
Professor of Management and Ocean
Engineering, Emeritus

William F. Pounds, PhD
Professor of Management, Emeritus

Richard Dunlop Robinson, PhD
Professor of Management, Emeritus

Edgar H. Schein, PhD
Professor of Management, Emeritus

Eli Shapiro, PhD
Alfred P. Sloan Professor of Management,
Emeritus

Jeremy Frank Shapiro, PhD
Professor of Operations Research and
Management, Emeritus

Abraham J. Siegel, PhD
Howard W. Johnson Professor of Management,
Emeritus

Dean, Emeritus
Above all, science is elegant, beautiful, and mysterious; it ennobles the human spirit. It is a privilege—whether for a semester, four years, or a lifetime—to attempt to understand nature at its most fundamental level. In the School of Science, research and education are inextricably interwoven, and our faculty is committed to excellence in both endeavors.
Much of MIT’s uniqueness and great success rests on the fact that research and education in the sciences are at the core of the Institute. Thus, every undergraduate student at MIT learns the basic elements of chemistry, mathematics, physics, and molecular biology. The School of Science offers frontier research and educational programs in virtually all areas of contemporary science.

Science at MIT is simultaneously very abstract and very practical. Most importantly, it is always exciting. An education in science, both at the undergraduate and at the graduate level, prepares one for many careers. Students with bachelor’s degrees in science often go on to medical school, law school, business school, and other professional schools including engineering. Some, of course, also go on to pursue PhDs in their fields of specialization. Many students with PhD degrees in science or mathematics pursue distinguished careers in research and education. However, others enjoy equally satisfying careers in business, industry, and government. Many combine their PhD degrees in science with medical, law, or business degrees and are uniquely prepared to face the modern world.

New Directions
The future for science at MIT is as vast as the creative imaginations of each faculty and student, which continually mandate new academic and research directions for the School. Interests extend from the fundamental constituents of matter such as quarks and gluons to the large scale structure of the universe, from the flow of fluids in porous rocks to the flow of currents in the oceans and the atmosphere, from the molecular biology of individual neurons in the brain to the complex processes involved in language acquisition, from the mathematics underlying computer science to the fundamental concepts of logic, from the basic chemistry of copper and oxygen in high temperature superconductors to the biochemical processes involved in Alzheimer’s disease, from the microscopic structures of individual proteins to the genetics of amyotrophic lateral sclerosis.

Students at all levels and of all persuasions are invited to join in this exciting enterprise, as undergraduates or as graduates, as minors or as majors, as generalists or as specialists.

History
Science has been at the core of an MIT education since the Institute’s founding by the distinguished natural scientist, William Barton Rogers, in 1861. The earliest offerings in chemistry, geology, and general science were expanded in the 1930s to include physics, mathematics, and biology, under the leadership of Karl Taylor Compton. During his tenure and into the post-war years, the Institute saw vast growth in the physical sciences, as federal funding for basic research increased.

Life sciences attained new prominence in the 1970s and 1980s, and the Department of Biology expanded with the additions of the Center for Cancer Research and the Whitehead Institute for Biomedical Research. Recently, the Department of Brain and Cognitive Sciences expanded with the addition of the Picower Institute for Learning and Memory and the McGovern Institute for Brain Research, adding to the increased School-wide interest in the neurosciences. Today, the sciences at MIT are ranked among the best in the world, a ranking which is reflected in the number of Nobel laureates on the faculty (currently six) and among alumni of the School.

Interdepartmental Programs
The interdepartmental research centers and laboratories associated with the School of Science include:

- Center for Cancer Research
- Experimental Study Group
- Kavli Institute for Astrophysics and Space Research
- Laboratory for Nuclear Science
- Picower Institute for Learning and Memory
- Spectroscopy Laboratory

Refer to the section on Interdisciplinary Research and Study in Part 1 for detailed descriptions of these centers and labs. For a description of the Radiological Sciences Joint Doctoral Program, see the Harvard-MIT Division of Health Sciences and Technology in Part 2.

Computational and Systems Biology
The emerging field of computational and systems biology represents an integration of concepts and ideas from the biological sciences, engineering disciplines, and computer science. Recent advances in biology, including the human genome project and massively parallel approaches to probing biological samples, have created a new opportunity to focus on understanding biological problems from a systems perspective. Systems modeling and design are well established in engineering disciplines but are relatively new to biology. Advances in computational and systems biology require multidisciplinary teams with skill in applying principles and tools from engineering and computer science to solve problems in biology and medicine. To provide education in this emerging field, the Computational and Systems Biology (CSB) program integrates MIT’s world-renowned disciplines in biology, engineering, math and computer science. Graduates of the program will be uniquely prepared to develop new methods, make novel discoveries and establish new paradigms. They will also be well positioned to assume critical leadership roles in both academia and industry, where this new area is becoming increasingly important.

Publications
Brochures which describe the academic programs and research centers are available through each department; contact the appropriate academic officer directly.

Office of the Dean
Robert J. Silbey, PhD
Dean
Ronald E. Hasseltine, BA
Assistant Dean for Finance
Degrees Offered in the School of Science

Biology **Course 7**
- **SB** Biology
- **PhD** Biochemistry
- **PhD** Biological Oceanography (jointly offered with WHOI)
- **PhD** Biophysical Chemistry and Molecular Structure
- **PhD** Cell Biology
- **PhD** Developmental Biology
- **PhD** Genetics/Microbiology
- **PhD** Immunology
- **PhD** Neurobiology

Brain and Cognitive Sciences **Course 9**
- **SB** Brain and Cognitive Sciences
- **PhD** Cognitive Science
- **PhD** Neuroscience

Chemistry **Course 5**
- **SB** Chemistry
- **PhD, ScD** Biological Chemistry
- **PhD, ScD** Inorganic Chemistry
- **PhD, ScD** Organic Chemistry
- **PhD, ScD** Physical Chemistry

Computational and Systems Biology **Course CSB**
- **PhD** Computational and Systems Biology (jointly offered with the School of Engineering)

Earth, Atmospheric, and Planetary Sciences **Course 12**
- **SB** Earth, Atmospheric, and Planetary Sciences
- **SM** Earth and Planetary Sciences
- **SM** Atmospheric Science
- **SM** Geosystems
- **SM** Marine Geology and Geophysics (jointly offered with WHOI)
- **SM** Oceanography (jointly offered with WHOI)
- **PhD, ScD** Atmospheric Chemistry
- **PhD, ScD** Atmospheric Science
- **PhD, ScD** Climate Physics and Chemistry
- **PhD, ScD** Geochemistry
- **PhD, ScD** Geology
- **PhD, ScD** Geophysics
- **PhD, ScD** Oceanography (jointly offered with WHOI)
- **PhD, ScD** Planetary Sciences

Mathematics **Course 18**
- **SB** Mathematics
- **SB** Mathematics with Computer Science
- **PhD** Mathematics

Physics **Course 8**
- **SB** Physics
- **SM** Physics
- **PhD** Physics

Note: Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.

Note: Several departments also offer undesignated degrees, which lead to the Bachelor of Science without departmental designation. The curricula for these programs offer students opportunities to pursue broader programs of study than can be accommodated within a four-year departmental program.
The Department of Biology offers undergraduate, graduate, and postdoctoral training in basic biology, and in a variety of biological fields of specialization. The quantitative aspects of biology, including molecular biology, biochemistry, genetics, and cell biology, represent the core of the program. Students in the department are encouraged to acquire a solid background in the physical sciences not only to master the applications of mathematics, physics, and chemistry to biology, but also to develop an integrated scientific perspective. The various programs, which emphasize practical experimentation, combine a minimum of formal laboratory exercises with ample opportunities for research work both in project-oriented laboratory subjects and in the department’s research laboratories. Students at all levels are encouraged to acquire familiarity with advanced research techniques and to participate in seminar activities.

UNDERGRADUATE STUDY

Bachelor of Science in Biology/Course 7

The curriculum leading to the Bachelor of Science in Biology is designed to prepare students for a professional career in the area of the biological sciences. Graduates of this program are well prepared for positions in industrial or research institutes. However, experience has shown that many graduates choose to continue their education at a graduate school in order to obtain a PhD in an area such as biochemistry, microbiology, genetics, biophysics, cell biology, or physiology, followed by research or teaching in one of those areas. The undergraduate curriculum is also excellent preparation for students who wish to continue their education toward an MD, particularly if their career plans include laboratory investigations bearing on human disease.

Bachelor of Science as Recommended by the Department of Biology/Course 7-A

Course 7-A is designed for students who wish to obtain a background in biology as preparation for careers without laboratory research. Course 7-A has the same requirements as Course 7, and requires 180 units beyond the GIRs, except that it does not require a 24-unit laboratory subject. To satisfy the requirement that students complete two Communication Intensive subjects in the major, students must take 7.02 and one subject from this list of approved CI-M subjects for Course 7-A: 5.32, 5.33, 7.19, 8.13, 9.01, 9.02, 9.63, 10.26, 10.28, or 2.791/6.021/BEH.370]. Further details on the 7-A major and CI-M subjects may be obtained from the department.

Additional information regarding undergraduate academic programs, research opportunities, admissions, and financial aid may be obtained from the Biology Education Office, Room 68-120, MIT, Cambridge, MA 02139-4307, 617-253-4718, undergradbio@mit.edu.

Students should use their elective subjects for more advanced subjects in their field and for additional study in basic and advanced subjects offered in various departments.

Minor Program in Biology

The requirements for a Minor in Biology are as follows:

- 5.12 Organic Chemistry I
- 7.03 Genetics
- 7.05 General Biochemistry

 Two additional subjects from: 7.02, 7.08, J, 7.20, 7.21, 7.22, 7.23, 7.24, 7.25, 7.27, 7.28, 7.29, J, 7.31, 7.35, 7.36, and 7.37.

For a general description of the minor program, see Undergraduate Education in Part 1.

GRADUATE STUDY

The Department of Biology offers graduate work leading to the Doctor of Philosophy. Study may be pursued in the following fields of specialization.

Biochemistry is the study of enzyme catalysis, and the biochemical properties of proteins, carbohydrates, complex lipids, nucleic acids, and protein-nucleic acid complexes. Methods of analysis include gene cloning, the use of genetic variants, synthetic substrates, and transition state analogs. Specific areas of study include the chemistry of oncogenes, mechanism of RNA splicing, analysis of cytoskeletal proteins, chemistry of blood coagulation, mechanism of ion pumps and photoreceptors, and the role of complex carbohydrates in cell surface function and protein compartmentalization.

Biophysical chemistry and molecular structure focuses on studies of the principles that underlie the folding, stability, molecular design, and assembly of proteins and nucleic acids. Analysis of molecular structure includes X-ray crystallography and Nuclear Magnetic Resonance. Specific areas of concentration include the study of genetic strategies for enhancing the stability, ligand affinity, and catalytic efficiency of proteins and enzymes; pathways of protein folding; protein-nucleic acid recognition; and antigen-antibody interactions. Studies of more complex systems include the control of viral and cytoskeletal assembly.

Cell biology refers to molecular biological, genetic, and cell biological analysis of eukaryotic cells. The specific areas of research include the organization, expression, and regulation of eukaryotic genomes; structure and function of membranes and cytoskeletons; molecular basis of cellular structure, organization, proliferation, and movement; differentiation and functions of specialized cell types; and the molecular basis of various diseases.

Computational and systems biology is a very recent area of emphasis in the department that is being co-developed with the Department of Electrical Engineering and Computer Science and the Division of Biological Engineering as part of the Computational and Systems Biology Initiative (CSBI). Computational and systems biology combines biology, engineering, and computer science in a multi-disciplinary approach to the systematic analysis of complex biological phenomena. Equal emphasis is placed on computational and experimental research and on molecular and systematic views of biological function. One major role of CSBI research is to develop methods and devices that can measure, in a systematic and precise manner, the biochemical properties of large numbers of biomolecules in cells, tissues, and whole organisms. A second major CSBI goal is to build mathematical models of biological systems that link mechanistic understanding of molecular function to systems-wide knowledge of networks and interactions. Like models in mature engineering disciplines, CSBI models will capture empirical knowledge as it accumulates and will have the ability to predict experimental outcomes.

Developmental biology refers to the cellular, genetic, and molecular mechanisms responsible.
Bachelor of Science in Biology/Course 7

General Institute Requirements (GIRs)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement (two subjects can be satisfied by 5.111 or 5.112 or 3.091 and 7.012 or 7.013 or 7.014 in the Departmental Program)</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement (can be satisfied from among 5.12, 5.60, and 7.03 or 7.05 in the Departmental Program)</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement (can be satisfied by 7.02 in the Departmental Program)(i)</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree: 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Subject names below are followed by credit units, and by prerequisites if any (corequisites are indicated in italics)

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>102</td>
</tr>
<tr>
<td>5.111/5.112 Principles of Chemical Science, 12</td>
<td></td>
</tr>
<tr>
<td>5.12 Organic Chemistry I, 12, REST; 5.111*</td>
<td></td>
</tr>
<tr>
<td>5.60 Thermodynamics and Kinetics, 12, REST; 18.02, 5.111*</td>
<td></td>
</tr>
<tr>
<td>7.012 Introductory Biology,(i) 12</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>7.013 Introductory Biology,(ii) 12</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>7.014 Introductory Biology,(iii) 12</td>
<td></td>
</tr>
<tr>
<td>7.02/10.702 Introduction to Experimental Biology and Communication, 18, LAB, CI-M; 7.012*</td>
<td></td>
</tr>
<tr>
<td>7.03 Genetics, 12, REST; 7.012*</td>
<td></td>
</tr>
<tr>
<td>7.05 General Biochemistry, 12, REST; 5.12, 7.012*</td>
<td></td>
</tr>
<tr>
<td>7.06 Cell Biology, 12, 7.03, 7.05</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives
Three 12-unit subjects offered by the Department of Biology for which 7.03 and/or 7.05 are prerequisites. (Exceptions: 7.30 is eligible for a restricted elective; 7.19 cannot be used as a restricted elective.) One of the 24-unit project laboratory subjects in the department curriculum. Those currently offered are:

- 7.13 Experimental Microbial Genetics, 24, CI-M; 7.02, 7.03, 7.05
- 7.16 Experimental Molecular Biology: Biotechnology II, 24, CI-M; 7.02, 7.03, 7.05
- 7.17 Experimental Molecular Biology: Biotechnology III, 24, CI-M; 7.02, 7.03, 7.05
- 7.18 Topics in Experimental Biology, 24, CI-M; 7.02, 7.03, 7.05

Departmental Program Units That also Satisfy the GIRs: (60)

Unrestricted Electives: 78

Total Units Beyond the GIRs Required for SB Degree: 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
*Alternate prerequisites are listed in the subject description.

(i) Either 7.02 or 5.311 satisfies the Institute Laboratory Requirement. However, both or their equivalent are required in order to satisfy medical school entrance requirements.

(ii) 7.012/7.013/7.014 are intended to be first biology subjects and are not to be taken after other biology subjects.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
Entrance Requirements for Graduate Study

In the Department of Biology, the Master of Science is not a prerequisite for a program of study leading to the doctorate.

The department modifies the General Institute Requirements for admission to graduate study as follows: 18.01, 18.02 Calculus; one year of college physics; 5.12 Organic Chemistry I; professional subjects including general biochemistry, genetics, and physical chemistry. However, students may make up some deficiencies over the course of their graduate work.

Doctor of Philosophy

The General Institute Requirements for the Doctor of Philosophy are listed under Graduate Education in Part 1. In the departmental program, each graduate student is expected to acquire a solid background in four fundamental areas of biology: biochemistry, genetics, cell biology, and molecular biology. Most students take subjects in these areas during the first year. All students are required to take three subjects: 7.52 Genetics for Graduate Students, 7.51 Principles of Biochemical Analysis, and 7.50 Method and Logic in Molecular Biology. This last subject is a seminar designed specifically to introduce graduate students to in-depth discussion and analysis of topics in molecular biology.

Students also have a choice of several elective subjects, which have been designed for the entering graduate student. In addition to providing a strong formal background in biology, the first-year program serves to familiarize the students with faculty and students in all parts of the department.

Joint Program with the Woods Hole Oceanographic Institution/Course 7-W

MIT and the Woods Hole Oceanographic Institution administer a joint program in biological oceanography leading to a jointly awarded Doctor of Philosophy. The program is described at the end of Part 2.

Financial Support

Students who are accepted into the graduate program are provided with support from departmental training grants, departmental funds for teaching assistants, and research grants. In addition, some students bring NSF and other competitive fellowships. Through these sources, full tuition plus a stipend for living expenses are provided.

Students are encouraged to apply for outside fellowships for which they are eligible, such as the National Science Foundation Fellowships. Information regarding graduate student fellowships is available at most colleges from the career planning office.

Inquiries

Additional information regarding graduate academic programs, research activities, admissions, financial aid, and assistantships may be obtained from the Biology Education Office, Room 68-120, MIT, Cambridge, MA 02139-4307, 617-253-3717, gradbio@mit.edu.

Faculty and Staff

Faculty and Teaching Staff

Chris Kaiser, PhD
Professor of Biology
Head of the Department

Uttam L. RajBhandary, PhD
Lester Wolfe Professor of Molecular Biology
Associate Head of the Department

Professors

Tania Baker, PhD
Whitehead Professor of Biology
Howard Hughes Medical Institute Investigator

David Bartel, PhD
Professor of Biology
Member, Whitehead Institute
Howard Hughes Medical Institute Investigator

Stephen Bell, PhD
Professor of Biology
Howard Hughes Medical Institute Investigator

Jianzhu Chen, PhD
Professor of Biology

Sallie W. Chisholm, PhD
Mcafee Professorship in Engineering
Professor of Civil and Environmental Engineering and Biology

Martha Constantine-Paton, PhD
Professor of Biology
McGovern Institute for Brain Research Investigator

Gerald R. Fink, PhD
ACS Professor of Genetics
Member, Whitehead Institute

Alan Davis Grossman, PhD
Praecis Professor of Biology

Leonard Pershing Guarente, PhD
Novartis Professor of Biology

Nancy Haven Hopkins, PhD
Amgen Professor of Biology

H. Robert Horvitz, PhD
David H. Koch Professor of Biology
Howard Hughes Medical Institute Investigator

David Evan Housman, PhD
Ludwig Professor for Cancer Research

Richard Olding Hynes, PhD
Ludwig Professor for Cancer Research
Howard Hughes Medical Institute Investigator

Barbara Imperiali, PhD
Ellen Swallows Richards Professor of Chemistry and Biology

Vernon Martin Ingram, PhD, DSc
John and Dorothy Wilson Professor of Biochemistry

Tyler Edwards Jacks, PhD
Howard Hughes Medical Institute Investigator
Director, Center for Cancer Research

Rudolf Jaenisch, MD
Professor of Biology
Member, Whitehead Institute

Jonathan Alan King, PhD
Monty Krieger, PhD
Whitehead Professor of Molecular Genetics
Charles F. Hopewell Faculty Fellow

Eric S. Lander, PhD
Professor of Biology
Director, Broad Institute and Member, Whitehead Institute
Part 2

School of Science

Douglas Lauffenburger, PhD
Whitaker Professor of Bioengineering, Chemical Engineering and Biology
Director, Biological Engineering Division

Jacqueline Lees, PhD
Professor of Biology
Ludwig Scholar
Associate Director, Center for Cancer Research

Susan L. Lindquist, PhD
Professor of Biology
Ludwig Scholar
Associate Director, Center for Cancer Research

Harvey Franklin Lodish, PhD
Professor of Biology and Bioengineering
Member, Whitehead Institute

Paul Thomas Matsudaira, PhD
Professor of Biology and Bioengineering
Member, Whitehead Institute
Member, Center for Biomedical Engineering
Director, Whitehead Institute/MIT Bioimaging Center
Chair, Computational and Systems Biology Initiative (CSBI)

Terry L. Orr-Weaver, PhD
Professor of Biology
Member, Whitehead Institute

David Conrad Page, MD
Professor of Biology
Howard Hughes Medical Institute Investigator
Interim Director, Whitehead Institute

Mary Lou Pardue, PhD
Boris Magasanik Professor of Biology

William G. Quinn, PhD
Professor of Neurobiology

Alexander Rich, MD
William Thompson Sedgwick Professor of Biophysics

Leona Samson, PhD
Director, Center for Environmental Health Sciences
Professor of Toxicology and Biological Engineering
Ellison American Cancer Society Professor

Robert Thomas Sauer, PhD
Luria Professor of Biology

Phillip Allen Sharp, PhD
Institute Professor

Morgan H. Sheng, MBBS, PhD
Professor of Neuroscience
Investigator, Howard Hughes Medical Institute

Anthony John Sinskey, ScD
Professor of Microbiology

Hazel Louise Sive, PhD
Professor of Biology
Member, Whitehead Institute

Frank Solomon, PhD
Professor of Biology

Peter K. Sorger, PhD
Professor of Biology

Lisa Amelia Steiner, MD
Professor of Immunology

JoAnne Stubbe, PhD
Novartis Professor of Chemistry and Biology

Susumu Tonegawa, PhD
Whitehead Professor of Biology and Neuroscience
Howard Hughes Medical Institute Investigator
Director, Picower Institute for Learning and Memory

Graham Charles Walker, PhD
American Cancer Society Research Professor of Biology
Howard Hughes Medical Institute Professor

Robert Allen Weinberg, PhD
Ludwig Professor for Cancer Research
American Cancer Society Professor of Biology
Member, Whitehead Institute

Richard Allen Young, PhD
Professor of Biology
Member, Whitehead Institute

Associate Professors

Angelika Amon, PhD
Linda and Howard Stern Career Development Associate Professor of Biology
Howard Hughes Medical Institute Investigator

Christopher Burge, PhD
Whitehead Career Development Associate Professor of Biology

Frank Gertler, PhD
Associate Professor of Biology

Troy Littleton, MD, PhD
Associate Professor of Neurobiology
James W. and Patricia T. Poitras Scholar

Guosong Liu, PhD
Associate Professor of Neurobiology

Luk Van Parijs, PhD

Ivan R. Cottrell Career Development Associate Professor in Immunology

Matthew Wilson, PhD
Associate Professor of Neurobiology

Michael B. Yaffe, MD, PhD
Associate Professor of Biology

Assistant Professors

Paul Garrity, PhD
Whitehead Career Development Assistant Professor of Biology

Amy Keating, PhD
Robert Swanson Career Development Assistant Professor of Biology

Carlos Lois, MD, PhD
Assistant Professor of Neurobiology

Elly Nedivi, PhD
Assistant Professor of Neurobiology

Peter Reddien, PhD
Assistant Professor of Biology

Associate Member, Whitehead Institute

David Sabatini, PhD
Linda and Howard Stern Career Development Assistant Professor of Biology

Thomas Schwartz, PhD
Pfizer-Laubach Career Development Assistant Professor of Biology

Senior Lecturers

Har Gobind Khorana, PhD
Irving London, PhD
Annamaria Torriani, PhD

Core Biology Technical Instructors

Claudette Gardel, PhD
Michelle Mischke, PhD
Technical Instructors
Katherine Bacon Schneider, PhD
Deborah Kruzel, PhD
Megan E. Rokop, PhD

Instructor, Outreach Coordinator
Mandana Sassanfar, PhD

Research Staff

Research Scientists
Mark Alkema, PhD
Dae-Sung Choi, PhD
Nadia Danilova, PhD
Suzanne Gaudet, PhD
Janet George, PhD
Veronica Godoy, PhD
Robert Grant, PhD
Caroline Koehrer, PhD
Catherine Lee, PhD
Joseph Loureiro, PhD
Ky Lowenhaupt, PhD
Svetlana Rashkova, PhD
T. Sambandan, PhD
Annegret Schulze-Lutum, PhD
Carolyn Sevier, PhD
Eliza Vasile, PhD
Peter Weigele, PhD
Laura Willis, PhD
Zhengliang Wu, PhD
Akira Yoshii, MD

Administrative Staff
Janice Chang, PhD
Educational Administrator

Michelle Carmichael
Financial Administrator

John Fucillo
Operations Administrator

Mary Markel Murphy
Administrative Officer

Erminia Piccinonno
Human Resources Administrator

Alison Salie
Financial Officer

Professors Emeriti
David Baltimore, PhD
Professor of Biology, Emeritus

Eugene Bell, PhD
Professor of Biology, Emeritus

Gene Brown, PhD
Professor of Biochemistry, Emeritus

John Machlin Buchanan, PhD, DSc
Professor of Biochemistry, Emeritus

Arnold Lester Demain, PhD
Professor of Industrial Microbiology, Emeritus

Herman Nathaniel Eisen, MD
Professor of Immunology, Emeritus
Senior Lecturer

Maurice Sanford Fox, PhD
Professor of Molecular Biology, Emeritus

Malcolm Lawrence Gefter, PhD
Professor of Biochemistry, Emeritus

Har Gobind Khorana, PhD
Alfred P. Sloan Professor of Biology and Chemistry, Emeritus
Senior Lecturer

Jerome Ysrael Lettvin, MD
Professor of Electrical and Bioengineering and Communications Physiology, Emeritus

Irving M. London, MD
Grover M. Hermann Professor of Health Sciences and Technology, Emeritus
Professor of Biology and Medicine, Emeritus

Boris Magasanik, PhD
Jacques Monod Professor of Microbiology, Emeritus
Senior Lecturer

Sheldon Penman, PhD
Professor of Cell Biology, Emeritus

Phillips Wesley Robbins, PhD
Professor of Biochemistry, Emeritus

Robert Daniel Rosenberg, MD, PhD
Whitehead Professor of Biology, Emeritus
Professor of Medicine, Emeritus, Harvard Medical School

Paul Reinhard Schimmel, PhD
John D. MacArthur Professor of Biochemistry and Biophysics, Emeritus

Ethan Royal Signer, PhD
Professor of Biology, Emeritus

Annamaria Torriani, PhD
Professor of Biology, Emerita
Senior Lecturer
The study of mind, brain, and behavior has grown in recent years with unprecedented speed. New avenues of approach, opened by developments in the biological and computer sciences, raise the hope that human beings, who have achieved considerable mastery over the world around them, may also come closer to an understanding of themselves. The goal of the Department of Brain and Cognitive Sciences is to answer fundamental questions concerning intelligent processes and brain organization. To this end, the department focuses on four themes: molecular and cellular neuroscience, systems neuroscience, cognitive science, and computation. Several members of the department’s faculty are affiliated with two major research centers: the Picower Institute for Learning and Memory and the McGovern Institute for Brain Research.

Research in cellular neuroscience deals with the biology of neurons, emphasizing the special properties of these cells as encoders, transmitters, and processors of information. Departmental researchers apply techniques of contemporary molecular and cellular biology to problems of neuronal development, structure, and function, resulting in new understanding of the underlying basic components of the nervous system and their interactions. These studies have profound clinical implications, in part by generating a framework for the treatment of neurological and psychiatric disorders. Primary areas of interest include the development and plasticity of neuronal morphology and connectivity, the cellular and molecular bases of behavior in simple neuronal circuits, neurochemistry, and cellular physiology.

In the area of systems neuroscience, departmental investigators use a number of new approaches ranging from computation through electrophysiology to biophysics. Of major interest are the visual and motor systems where the scientific goals are to understand transduction and encoding of sensory stimuli into nerve messages, organization and development of sensorimotor systems, processing of sensorimotor information, and the sensorimotor performance of organisms. Also of major interest is neural and endocrine regulation, where the scientific goal is to understand the effects of circulating compounds on brain composition and behavior.

In computation and cognitive science, particularly strong interactions exist between the Department of Brain and Cognitive Sciences, the Computer Science and Artificial Intelligence Laboratory, and the Center for Biological and Computational Learning, providing new intellectual approaches in areas including vision and motor control, and biological and computer learning. Computational theories are developed and tested within the framework of neurophysiological, psychological, and other experimental approaches. In the study of vision and motor control, complementary experimental work includes single-cell and multiple-cell neurophysiological recording as well as functional brain imaging. In the area of learning, which is seen as central to intelligent behavior, departmental researchers along with members of the Center for Biological and Computational Learning are working to develop theories of vision, motor control, neural circuitry, and language within an experimental framework.

In cognitive science, human experimentation is combined with formal and computational analyses to understand complex intelligent processes such as language, reasoning, memory, and visual information processing. There are applications in the fields of education, artificial intelligence, human-machine interaction, and in the treatment of language, cognitive, and other disorders.

Subfields in cognitive science include psycholinguistics, comprising sentence and word processing, language acquisition, and aphasia; visual cognition, including reading, imagery, attention, and perception of complex patterns such as faces, objects, and scenes; spatial cognition; memory; and the nature and development of concepts. Another key field is the study of perception—developmental and processing approaches focus on human and machine vision, and how visual images are encoded, stored, and retrieved, with current topics that include motion analysis, stereopsis, perceptual organization, and perceptual similarity. Other research includes functional brain imaging in normal subjects as well as studies of neurologically impaired patients in an attempt to understand brain mechanisms underlying normal human sensation, perception, cognition, action, and affect.

The Bachelor of Science in Brain and Cognitive Sciences prepares students for graduate training in neuroscience, medicine, cognitive science, psychology, linguistics, philosophy, or aspects of artificial intelligence (particularly those aspects concerned with vision) as well as for further work in the area of efficient human-machine interaction.

Methods of inquiry in the brain and cognitive sciences are drawn from molecular, cellular, and systems neuroscience; cognitive and perceptual psychology; computer science and artificial intelligence; linguistics; philosophy of language and mind; and mathematics. The undergraduate program is designed to provide instruction in the relevant aspects of these various disciplines. The program is administered by an Undergraduate Officer and an Undergraduate Assistant, consulting as necessary with faculty members from these disciplines who also serve as advisors to majors, helping them select a coherent set of subjects from within the requirements, including a research requirement. Members of the faculty are available to guide the research.

Minor Program in Brain and Cognitive Sciences

The Minor in Brain and Cognitive Sciences consists of six subjects arranged in two tiers of study, intended to provide students breadth in the field as a whole and some depth in one of two areas of specialization.
Bachelor of Science in Brain and Cognitive Sciences/Course 9

General Institute Requirements (GiRs)

Science Requirement
- Humanities, Arts, and Social Sciences Requirement [three subjects can be satisfied by 9.00 and two other HASS subjects in the Departmental Program]
- Restricted Electives in Science and Technology (REST) Requirement [one subject can be satisfied by 9.01 in the Departmental Program]
- Laboratory Requirement [can be satisfied by a laboratory in the Departmental Program]

Total GIR Subjects Required for SB Degree
- 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects: 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>126–132</td>
</tr>
<tr>
<td>9.00 Introduction to Psychology, 12, HASS-D, CI-H</td>
<td></td>
</tr>
<tr>
<td>9.01 Introduction to Neuroscience, 12, REST, CI-M</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
</tr>
<tr>
<td>9.07 Statistical Methods in Brain and Cognitive Science, 12; 18.01 and 18.02*</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>6.041, 14.30, 18.05, 18.440 or any of the following Harvard courses: Statistics 100, 101, or 102 may be used to fulfill the statistics requirement</td>
<td></td>
</tr>
</tbody>
</table>

Core Subjects

Choose six subjects from three areas: cognitive science, cognitive neuroscience, and neuroscience. Any combination of subjects is permitted, but at least one subject must be chosen in a second area.

Cognitive Science
- 9.34 Perception, Knowledge, and Cognition, 9; 9.00*
- 9.37 Anigrafs, 12; 9.34*
- 9.36 Abnormal Language, 12; 24.900*
- 9.57 Language Acquisition, 12; HASS; 24.900*
- 9.59 Psycholinguistics, 12; HASS; 9.00, 24.900*
- 9.65 Cognitive Processes, 12; HASS; 9.00
- 24.900 Introduction to Linguistics, 12, HASS-D, CI-H

Cognitive Neuroscience
- 9.10 Cognitive Neuroscience, 12; 9.01
- 9.35 Sensation and Perception, 12; 8.02, 18.02*
- 9.71 Functional MRI of High-Level Vision, 12; 9.07 and 9.34 or 9.35 or 9.65 or 9.66*
- 9.36 Infant and Early Childhood Cognition, 12, HASS; 9.00

Neuroscience
- 9.03 Neural Basis of Learning and Memory, 12; 9.01
- 9.04 Neural Basis of Vision and Audition, 12; 9.01*
- 9.05 Neural Basis of Movement, 12; 9.01*
- 9.09 Cellular Neurobiology, 12; 7.05
- 9.14 Brain Structure and Its Origins, 12
- 9.25 Biochemistry and Pharmacology of Synaptic Transmission, 12; 9.01, 7.05*
- 9.16 Cellular Neurophysiology, 12; 9.01, 9.09*
- 9.18 Developmental Neurobiology, 12; 9.01, 7.012*
- 9.24 Diseases of the Nervous System, 12; 9.01
- 9.29 Introduction to Computational Neuroscience, 12; 18.03, 8.02*

Laboratory

One of the following is required:
- 9.02 Brain Laboratory, 12, LAB, CI-M; 9.01
- or
- 9.12 Experimental Molecular Neurobiology, 12, LAB, CI-M; 7.012*
- or
- 9.63 Laboratory in Cognitive Science, 12, LAB, CI-M
part

288

School of Science

For a listing of available subjects in these areas, consult the HASS Office, Room 14N-408 or the BCS Undergraduate Office, Room NE20-384, 617-253-0482.

No more than three of the subjects used to satisfy the requirements for the major in brain and cognitive sciences may be used for the minor (or concentration) in psychology.

For a general description of the minor program, see Undergraduate Education in Part 1.

Graduate Study

The Department of Brain and Cognitive Sciences offers programs of study leading to the doctoral degree in neuroscience or cognitive science.

Areas of research specialization include cellular and molecular neuroscience, systems neuroscience, computation, and cognitive science. The graduate programs are designed to prepare participants to teach and to do original research.

Doctor of Philosophy

The departmental PhD program can normally be completed within four years of full-time work, including summers. Institute requirements for the PhD are given in the section on General Degree Requirements in Part 1. Formal coursework, described below, is intended to prepare the student to pass the general examinations and do original thesis research. The written general examinations will be given in June of the second year.

All students start with a first-term intensive core subject that provides an introduction to brain and behavioral studies from the viewpoint of systems neuroscience. In the spring term, students may choose between two core subjects, one covering cellular/molecular neuroscience and one covering cognitive science. Incoming graduate students are encouraged to take all three within the first two years of study. Further coursework will be diversified to give each individual the appropriate background for research in his or her own area.

Coursework in cellular and molecular neuroscience emphasizes the current genetic, molecular, and cellular approaches to biological systems that are necessary to generate advances in neuroscience.

Training in systems neuroscience covers neuroanatomy, neurophysiology, and neurotransmitter chemistry, concentrating on the major sensory and motor systems in the vertebrate brain. Specific ties to molecular neurobiology or computation may be emphasized, depending upon the research interests of the student.

Coursework for students in computation is intended to give both an understanding of empirical approaches to the study of the vertebrate brain and animal behavior and a theoretical background for analyzing computational aspects of biological information processing.

Candidates studying cognitive science take coursework covering such topics as language processing, language acquisition, cognitive development, natural computation, neural networks, connectionist models, and visual information processing. Students also choose seminars and coursework in linguistics, philosophy, logic, mathematics, or computer science, depending on the individual student’s research program.

Graduate students begin a research apprenticeship immediately upon arrival with lab rotations in the first term, after which time advisor assignments are made based upon a match of interests. These assignments may change as a student’s goals become more focused. At the end of the first year, an advisory committee of two to four faculty members is formed. This committee monitors progress and, with membership changing as necessary, evolves into the thesis committee. Thesis research normally requires 24–36 months of full-time activity after the qualifying examinations have been passed. It is expected that the research embodied in the PhD dissertation be original and significant work, publishable in scientific journals.

Assistantships and Fellowships

Financial assistance is provided to qualified applicants in the form of traineeships, research assistantships, teaching assistantships, and a limited number of fellowships, subject to availability of funds. Prospective students are encouraged to apply for individual fellowships such as those sponsored by the National Science Foundation and the National Defense Science and Engineering Graduate Fellowship Program to cover all or part of the cost of their education. The department’s financial resources for non-US citizens are limited; international students are strongly encouraged to seek financial assistance for all or part of the cost of their education from non-MIT sources.

Inquiries

For additional information regarding teaching and research programs, contact the Graduate Office, Department of Brain and Cognitive Sciences, Room NE20-382, MIT, Cambridge, MA 02139-4307, 617-253-7403, or visit the website at http://web.mit.edu/bcs/.
FACULTY AND STAFF

Faculty and Teaching Staff
Mriganka Sur, PhD
Sherman Fairchild Professor of Neuroscience
Head of the Department

Professors
Edward H. Adelson, PhD
Professor of Visual Sciences
Mark Bear, PhD
Picower Professor of Neuroscience
Howard Hughes Medical Institute Investigator
Robert Cregar Berwick, PhD
Professor of Computational Linguistics
Emilio Bizzi, MD
Institute Professor
Stephan Lewis Chorover, PhD
Professor of Psychology
Martha Constantine-Paton, PhD
Professor of Biology
Suzanne Corkin, PhD
Professor of Behavioral Neuroscience
Robert Desimone, PhD
Professor of Neuroscience
Director, McGovern Institute for Brain Research
John D. E. Gabrieli, PhD
Grover Hermann Professor in Health Sciences and Technology and Cognitive Neuroscience
Edward A. F. Gibson, PhD
Professor of Cognitive Sciences
Ann Martin Graybiel, PhD
Walter A. Rosenblith Professor of Neuroanatomy
Alan Hein, PhD
Professor of Experimental Psychology
Susan Hockfield, PhD
Professor of Neuroscience
President, MIT
Neville Hogan, PhD
Professor of Mechanical Engineering
Nancy G. Kanwisher, PhD
Ellen Swallows Richards Professorship
Professor of Cognitive Neuroscience
Earl K. Miller, PhD
Picower Professor of Visual Neuroscience
Associate Director, Picower Institute for Learning and Memory
Tomaso Armando Poggio, PhD
Eugene McDermott Professor in the Brain Sciences and Human Behavior
Director, Center for Biological and Computational Learning
Mary Crawford Potter, PhD
Professor of Psychology
William G. Quinn, PhD
Professor of Neurobiology
Whitman Albin Richards, PhD
Professor of Psychophysics
Peter Harkai Schiller, PhD
Dorothy W. Poitras Professor in Medical Engineering and Medical Physics
Gerald Edward Schneider, PhD
Professor of Neuroscience
Wolfram Schultz, MD, PhD
Menicon Professor of Neuroscience
H. Sebastian Seung, PhD
Professor of Computational Neuroscience
Howard Hughes Medical Institute Investigator
Morgan Hwa-Tze Sheng, MD, PhD
Menicon Professor of Neurobiology
Howard Hughes Medical Institute Investigator
Jean-Jacques Slotine, PhD
Professor of Mechanical Engineering and Information Sciences
Director, Nonlinear Systems Laboratory
Susumu Tonegawa, PhD
Picower Professor of Biology and Neuroscience
Howard Hughes Medical Institute Investigator
Director, Picower Institute for Learning and Memory, MIT/Riken Center
Kenneth N. Wexler, PhD
Professor of Psychology and Linguistics
Matthew Wilson, PhD
Professor of Neurobiology
Picower Scholar
Richard Jay Wurtman, M.D.
Cecil H. Green Distinguished Professor
Professor of Neuropharmacology
Director, Clinical Research Center

Associate Professors
Michale Fee, PhD
Associate Professor of Neuroscience
J. Troy Littleton, MD, PhD
Associate Professor of Biology
Pawan Sinha, PhD
Associate Professor of Computational Science

Assistant Professors
James DiCarlo, MD, PhD
Assistant Professor of Neuroscience
Yasunori Hayashi, PhD
Assistant Professor of Neurobiology
Carlos Lois, MD, PhD
Edward J. Poitras Assistant Professor in Human Biology and Experimental Medicine
Christopher Moore, PhD
Assistant Professor of Neuroscience
Elly Nedivi, PhD
Fred and Carol Middleton Career Development Chair
Assistant Professor of Neurobiology
Aude Oliva, PhD
Assistant Professor of Cognitive Neuroscience
Laura Schulz, PhD
Assistant Professor of Cognitive Science
Joshua Tenenbaum, PhD
Paul A. Newton Career Development Professorship of Neuroscience
Assistant Professor of Cognitive Science

Visiting Faculty
Merritt Christian Brown, PhD
Visiting Professor

Senior Lecturers/Lecturers
Thomas Byrne, MD
David Caplan, MD, PhD
John Growdon, MD
Timothy J. Maher, PhD
Jeremy Wolfe, PhD
Technical Instructors
Henry Hall, SB
Patricia Harlan, SB
Carol J. Watkins, MA

Visiting Lecturers
Mary Brown Parlee, PhD

Research Staff

Senior Research Scientist
Sonal Jhaveri, PhD

Principal Research Scientist
Ruth Rosenholtz, PhD

Research Associates/Engineers/Scientists
Hu Dan, PhD
Rutledge Ellis-Behnke, PhD
Elizabeth Folkers, PhD
Gadi Geiger, PhD
Arnold Heynen, PhD
Yasuo Kubota, PhD
Brett Mensh, MD, PhD
Jitendra Sharma, PhD
Edward Tehovnik, PhD
Susan Whitfield-Gabrieli, ABD

Postdoctoral Associates/Fellows
Naveen Agnihotri, PhD
Robert Ajemian, PhD
George Alvarez, PhD
Christopher Baker, PhD
Anna Bolteus, PhD
Mehmet Cansev, MD
Andrea Caponnetto, PhD
Christie Chung, PhD
Jason Coleman, PhD
Matthew Colonnese, PhD
Jill Crittenden, PhD
Robert A. Crozier, PhD
Antonia Diogo, PhD
Anthone Dunah, PhD
Dieter Edbauer, PhD
Valerie Ego-Stengel, PhD
David J. Foster, PhD
Kelly Foster, PhD
Tadahiro Fujino, MD, PhD
Kensuke Futai, PhD
Nadine Gaab, PhD
Joanne Gibson, PhD
Naomi Hasegawa, PhD
Mariko Hayashi, PhD
Casper Hoogenraad, PhD
Chou Hung, PhD
Natasha Hussain, PhD
Jacek Jaworski, PhD
Daoyun Ji, PhD
Matthew Jones, PhD
Wolfgang Kelsch, PhD
Myung Jung Kim, PhD
Takashi Kitzukawa, PhD
Fabian Kloosterman, PhD
Konrad Koerding, PhD
Zheng Li, PhD
Zuxiang Liu, PhD
Jonathan Loewenstein, PhD
Michael Long, PhD
David Lyon, PhD
Sanjay Magavi, PhD
Michael Mangini, PhD
Jung Moa, PhD
Amanda Mower, PhD
Naveen Nagarajan, PhD
Terunaga Nakagawa, PhD
Radhakrishnan Narayanan, PhD
Mark Neuwerten, PhD
Kevin Neville, PhD
Jessica Newton, PhD
Yoshihisa Ninokura, PhD
Noa Ofen, PhD
Kenichi Okamoto, PhD
Hans Op de Beeck, PhD
Damon Page, PhD
Anitha Pasupathy, PhD
Aleskandra Perovic, PhD
Ulrich Putz, PhD
Leila Reddy, PhD
Jason Ritt, PhD
Jefferson Roy, PhD
James Schummers, PhD
Marshall Shuler, PhD
Hiroki Sugihara, PhD
Tomoko Tada, PhD
Daniela Tropea, PhD
Lei Wang, PhD
Mark Williams, PhD
Lior Wolf, PhD
Zhen Wu, PhD
Bong June Yoon, PhD
Hongbo Yu, PhD
Ying Zhang, PhD
Davide Zoccolan, PhD

Visiting Scientists/Scholars
Yuri Ivanov, PhD
Kenway Louie, PhD
Stephan Niemann, PhD
Keizo Takao, MS
Takashi Tomimaga, PhD
Sujith Vijayan, PhD
Jun Yamamoto, PhD
Masayuki Yokoyama, MS

Administrative Staff
John Armstrong, BA, MBA
Administrative Officer
Sheila Hegarty, BA
Operations and Financial Administrator
Denise Heintze, BA
Academic Administrator
Judith Rauchwarger, JD, PhD
Human Resources Administrator

Professor Emeritus
Richard Held, PhD
Professor of Experimental Psychology, Emeritus
Chemistry is the study of the nanoworld, the world of atoms and molecules spanning dimensions from one to several thousand angstroms. Chemists study the architecture of this miniature universe, explore the changes that occur, unravel the principles that govern these chemical changes, and devise ways to create entirely new compounds and materials. Past triumphs of chemistry include the synthesis of pharmaceuticals and agricultural products, while current challenges include chemical memory, solar cells, superconductors, and the solution of numerous important problems relating to health and the environment.

The Department of Chemistry offers the Bachelor of Science, Doctor of Philosophy, and Doctor of Science degrees. The department’s program of teaching and research spans the breadth of chemistry. General areas covered include biological chemistry, inorganic chemistry, organic chemistry, and physical chemistry. Some of the research activities of the department are carried out in association with the work of interdisciplinary laboratories and centers such as the Center for Materials Science and Engineering, the Harvard-MIT Division of Health Sciences and Technology, the Francis Bitter National Magnet Laboratory, the Lincoln Laboratory, the Research Laboratory of Electronics, and the Spectroscopy Laboratory.

The undergraduate program aims to provide rigorous education in the fundamental areas of chemical knowledge and experimentation. Undergraduate students are encouraged to involve themselves in the Undergraduate Research Opportunities Program (UROP) and to take graduate-level chemistry classes as well as subjects in other departments at the Institute, Harvard, or Wellesley. A Certification in Biochemistry by the American Chemical Society can be received with a bachelor’s degree for students interested in concentrating in this area.

The Department of Chemistry graduate program admits applicants for the Doctor of Philosophy and the Doctor of Science degrees. In addition to formal coursework, each student undertakes a research problem that forms the core of graduate work. Graduate and postgraduate level research is often carried out in collaboration with scientists in other facilities and interdisciplinary laboratories.

For more information, see the website at http://web.mit.edu/chemistry/www/.

UNDERGRADUATE STUDY

Bachelor of Science in Chemistry/ Course 5

The Department of Chemistry offers an undergraduate program sufficiently flexible in its electives to provide excellent preparation for careers in many different areas of chemistry. Course 5 is designed to provide an education based on science both for those who intend to go on to graduate study and for those who intend immediately to pursue a professional career in either chemistry or an allied field in which a sound knowledge of chemistry is important. Students receive thorough instruction in the principles of chemistry, supplemented by a strong foundation in mathematics, physics, biology, and the humanities. The Department of Chemistry also offers a full program in biochemistry resulting in the Certificate in Biochemistry. The departmental programs in chemistry and biochemistry are accredited by the American Chemical Society.

Unrestricted elective time allows students to extend their knowledge in areas of special interest. Those intending to do graduate work may elect subjects in the department or in other departments that give them more detailed knowledge in the areas in which they wish to specialize. Students who plan to enter industry may elect subjects that offer the fundamentals in a selected field of science, engineering, or the humanities and social sciences. Programs may also be elected that lead to simultaneous Bachelor of Science degrees in two fields of specialization.

The student’s faculty advisor can offer suggestions for elective subjects that are of value in preparation for specialization in the various broad areas of chemistry. The proper choice of electives is particularly important for students planning to continue their education in a graduate school.

Students at all levels are encouraged to undertake original research under the supervision of a member of the chemistry faculty, and students carrying out research over at least three terms have the option of preparing an undergraduate thesis.

Minor Program in Chemistry

The requirements for a Minor in Chemistry are as follows:

- 5.03 Principles of Inorganic Chemistry I
- 5.12 Organic Chemistry I
- 5.310 Laboratory Chemistry
- 5.60 Thermodynamics and Kinetics

Two additional subjects from the following:

- 5.04 Principles of Inorganic Chemistry II
- 5.07 Biological Chemistry I
- 5.08 Biological Chemistry II
- 5.13 Organic Chemistry II
- 5.32 Intermediate Chemical Experimentation
- 5.43 Advanced Organic Chemistry
- 5.61 Physical Chemistry
- 5.62 Physical Chemistry

For a general description of the minor program, see Undergraduate Education in Part 1.

Inquiries

Additional information may be obtained from the Chemistry Department, Chemistry Education Office, Room 2-204, MIT, Cambridge, MA 02139-4307, 617-253-7271.

GRADUATE STUDY

The Department of Chemistry offers the Doctor of Philosophy and Doctor of Science degrees. The subjects offered for these degrees aim to develop a sound knowledge of fundamentals and a familiarity with current progress in the most active and important areas of chemistry. In addition to studying formal subjects, each student undertakes a research problem that forms the core of graduate work. Through the experience of conducting an investigation leading to the doctoral thesis, a student learns general methods of approach and acquires training in some of the specialized techniques of research.

The areas of research in the department include organic, inorganic, physical, and biomedical chemistry. The thesis frequently involves more than one of these fields. Some of the research activities of the department are carried out in association with the work of interdisciplinary laboratories and centers such as the
Bachelor of Science in Chemistry/Course 5

General Institute Requirements (GIRs) Subjects
- Science Requirement (one subject can be satisfied by 5.111 or 5.112 in the Departmental Program) 6
- Humanities, Arts, and Social Sciences Requirement 8
- Restricted Electives in Science and Technology (REST) Requirement (one subject can be satisfied by 5.12, 5.60, or 5.61 in the Departmental Program) 2
- Laboratory Requirement (can be satisfied by 5.311 in the Departmental Program) 1

Total GIR Subjects Required for SB Degree 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program Subjects
- Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics).
- **Required Subjects** 132
 - 5.03 Principles of Inorganic Chemistry I, 12; 5.12
 - 5.07 Biological Chemistry I, 12; 5.12
 - 5.111 or 5.112 Principles of Chemical Science (1) 12
 - 5.12 Organic Chemistry I, 12, REST; 5.111*
 - 5.13 Organic Chemistry II, 12; 5.12
 - 5.32 Introductory Chemical Experimentation, 12, LAB; 5.12
 - 5.32 Intermediate Chemical Experimentation, 15, CI-M; 5.311*, 5.13, 5.60
 - 5.33 Advanced Chemical Experimentation and Instrumentation, 21, CI-M; 5.32, 5.61
 - 5.60 Thermodynamics and Kinetics, 12, REST; 18.02, 5.111*
 - 5.61 Physical Chemistry, 12, REST; 8.02, 18.02, 5.111*

- **Restricted Electives** 24
 - At least two of the following four subjects:
 - 5.04 Principles of Inorganic Chemistry II, 12; 5.03
 - 5.08 Biological Chemistry II, 12; 5.12, 5.07 or 7.05
 - 5.43 Advanced Organic Chemistry, 12; 5.13
 - 5.62 Physical Chemistry, 12; 5.60, 5.61

- **Departmental Program Units That also Satisfy the GIRs** (36)
- **Unrestricted Electives** (1) 60

Total Units Beyond the GIRs Required for SB Degree 180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
- Alternate prerequisites are listed in the subject description.
- Students who do not take 5.111 or 5.112 to fulfill the General Institute Requirement in Chemistry will have 24 units in the Departmental Program that will also satisfy the General Institute Requirements and, accordingly, will have 48 units of Unrestricted Electives instead of 60 units.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

Center for Materials Science and Engineering, the Research Laboratory of Electronics, and the Spectroscopy Laboratory, described in the section on Interdisciplinary Research and Study in Part 1. These interdisciplinary research laboratories provide stimulating interaction among the research programs of several MIT departments and give students the opportunity to become familiar with research work in disciplines other than chemistry. Detailed information on the research activities of the faculty can be found in the Directory of Graduate Research published by the American Chemical Society.

During the first term of residence, all graduate students are encouraged to select research supervisors who serve as advisors for the balance of their graduate careers. In particular, the overall program of graduate subjects is established by each student and the research supervisor. In planning this program and in establishing the thesis problem, careful consideration is given to the candidate’s academic record and professional experience, as well as to long-range objectives.

Entrance Requirements for Graduate Study

Students intending to pursue graduate work in the Chemistry Department should have excellent undergraduate preparation in chemistry. The department, however, is flexible with respect to the specific mathematics and physics preparation; the essential requirement is demonstration of ability to progress with advanced study and research in some area of special interest.

Mathematics and physics are important prerequisites for graduate work in physical chemistry or chemical physics, whereas less preparation in these areas is required for work in organic chemistry.

Applicants to the Chemistry Department are requested to submit scores from the verbal and quantitative sections of the Graduate Record Examination. Scores on the advanced examinations are optional.
Doctor of Philosophy and Doctor of Science

The Chemistry Department does not have any formal subject requirements for the doctoral degree. Each student, with the advice of a research supervisor, pursues an individual program of study that is pertinent to long-range research interests.

Written major examinations are cumulative. Separate examinations in biological, inorganic, organic, and physical chemistry are offered each month from October through May. The examinations demonstrate an understanding of the important principles of each field. Six cumulative examinations must be passed to complete the written major examination. No fixed time limit is set for completion of this requirement; however, progress is reviewed periodically. No other general written examinations are required. In particular, no qualifying or entrance examinations are given.

A comprehensive oral examination in the candidate’s major field of advanced study is held generally in the fourth term of residence. Progress in the student’s research is also examined at that time. A final oral presentation on the subject of the doctoral research is scheduled after the thesis has been submitted and evaluated by a committee of examiners.

Teaching and Research Assistantships

The department appoints a number of degree candidates as teaching assistants who are assigned either to laboratory subjects or to discussion sections of lecture subjects. Many students receive appointments to research assistantships after their first year, and departmental fellowships are also available. Financial support after the first academic year is subject to the availability of funds and provided for students who maintain a satisfactory record.

Inquiries

Correspondence about the graduate program or appointments should be addressed to the chair of the Departmental Committee on Graduate Students, Chemistry Graduate Office, Room 2-204, MIT, Cambridge, MA 02139-4307, 617-253-1845.

Faculty and Teaching Staff

Faculty and Teaching Staff

Timothy M. Swager, PhD
Professor of Chemistry
Head of the Department

Professors

Moungi G. Bawendi, PhD
Professor of Chemistry
Stephen Leffler Buchwald, PhD
Camille Dreyfus Professor of Chemistry
Sylvia Teresse Ceyer, PhD
John C. Sheehan Professor of Chemistry
MacVicar Faculty Fellow
Christopher C. Cummins, PhD
Professor of Chemistry
Rick Lane Danheiser, PhD
Arthur C. Cope Professor of Chemistry
MacVicar Faculty Fellow
John Mark Deutch, PhD, ScD
Institute Professor
Professor of Chemistry
John Martin Essigmann, PhD
William and Betsy Leitch Professor of Chemistry and Toxicology
MacVicar Faculty Fellow
Robert Warren Field, PhD
Robert T. Haslam and Bradley Dewey Professor of Chemistry
Gregory C. Fu, PhD
Professor of Chemistry
Robert G. Griffin, PhD
Professor of Chemistry
Director, Francis Bitter National Magnet Laboratory and the MIT-Harvard Center for Magnetic Resonance
Barbara Imperiali, PhD
Class of 1922 Professor of Chemistry
Professor of Biology
MacVicar Faculty Fellow
Daniel Schaeffer Kemp, PhD
Professor of Chemistry
MacVicar Faculty Fellow Emeritus
Alexander M. Klibanov, PhD
Professor of Chemistry and Bioengineering
Stephen James Lippard, PhD
Arthur Amos Noyes Professor of Chemistry
Keith Adam Nelson, PhD
Professor of Chemistry
Daniel G. Nocera, PhD
W. M. Keck Professor of Energy
Professor of Chemistry
Richard Royce Schrock, PhD
Frederick G. Keyes Professor of Chemistry
Robert James Silbey, PhD
Class of 1942 Professor of Chemistry
Dean, School of Science
MacVicar Faculty Fellow
Jeffrey Irwin Steinfeld, PhD
Professor of Chemistry
JoAnne Stubbe, PhD
Novartis Professor of Chemistry
Professor of Biology
Steven Robert Tannenbaum, ScD
Professor of Chemistry and Toxicology

Associate Professors

Jianshu Cao, PhD
Associate Professor of Chemistry
Catherine L. Drennan, PhD
Associate Professor of Chemistry
Timothy F. Jamison, PhD
Paul M. Cook Career Development Associate Professor of Chemistry
Andrei Tokmakoff, PhD
Associate Professor of Chemistry

Assistant Professors

Stuart Licht, PhD
Assistant Professor of Chemistry
Mohammad Movassaghi, PhD
Firmenich Career Development Assistant Professor of Chemistry
Sarah E. O’Connor, PhD
Latham Career Development Assistant Professor of Chemistry

Faculty and Teaching Staff

Timothy M. Swager, PhD
Professor of Chemistry
Head of the Department

Professors

Moungi G. Bawendi, PhD
Professor of Chemistry
Stephen Leffler Buchwald, PhD
Camille Dreyfus Professor of Chemistry
Sylvia Teresse Ceyer, PhD
John C. Sheehan Professor of Chemistry
MacVicar Faculty Fellow
Christopher C. Cummins, PhD
Professor of Chemistry
Rick Lane Danheiser, PhD
Arthur C. Cope Professor of Chemistry
MacVicar Faculty Fellow
John Mark Deutch, PhD, ScD
Institute Professor
Professor of Chemistry
John Martin Essigmann, PhD
William and Betsy Leitch Professor of Chemistry and Toxicology
MacVicar Faculty Fellow
Robert Warren Field, PhD
Robert T. Haslam and Bradley Dewey Professor of Chemistry
Gregory C. Fu, PhD
Professor of Chemistry
Robert G. Griffin, PhD
Professor of Chemistry
Director, Francis Bitter National Magnet Laboratory and the MIT-Harvard Center for Magnetic Resonance
Barbara Imperiali, PhD
Class of 1922 Professor of Chemistry
Professor of Biology
MacVicar Faculty Fellow
Daniel Schaeffer Kemp, PhD
Professor of Chemistry
MacVicar Faculty Fellow Emeritus
Alexander M. Klibanov, PhD
Professor of Chemistry and Bioengineering
Stephen James Lippard, PhD
Arthur Amos Noyes Professor of Chemistry
Keith Adam Nelson, PhD
Professor of Chemistry
Daniel G. Nocera, PhD
W. M. Keck Professor of Energy
Professor of Chemistry
Richard Royce Schrock, PhD
Frederick G. Keyes Professor of Chemistry
Robert James Silbey, PhD
Class of 1942 Professor of Chemistry
Dean, School of Science
MacVicar Faculty Fellow
Jeffrey Irwin Steinfeld, PhD
Professor of Chemistry
JoAnne Stubbe, PhD
Novartis Professor of Chemistry
Professor of Biology
Steven Robert Tannenbaum, ScD
Professor of Chemistry and Toxicology

Associate Professors

Jianshu Cao, PhD
Associate Professor of Chemistry
Catherine L. Drennan, PhD
Associate Professor of Chemistry
Timothy F. Jamison, PhD
Paul M. Cook Career Development Associate Professor of Chemistry
Andrei Tokmakoff, PhD
Associate Professor of Chemistry

Assistant Professors

Stuart Licht, PhD
Assistant Professor of Chemistry
Mohammad Movassaghi, PhD
Firmenich Career Development Assistant Professor of Chemistry
Sarah E. O’Connor, PhD
Latham Career Development Assistant Professor of Chemistry
Joseph P. Sadighi, PhD
Assistant Professor of Chemistry

Alice Y. Ting, PhD
Pfizer-Laubach Career Development Assistant
Professor of Chemistry

Troy Van Voorhis, PhD
Assistant Professor of Chemistry

Research Staff

Sponsored Research Technical Staff
David G. Bray, PhD
Experimental Applications Specialist

Robert J. Kennedy, III, PhD
Experimental Applications Specialist

Li Li, BS
Research Specialist

Georgianna M. Lirot, BS
Computer Network Manager

Peter Mueller, PhD
Research Scientist

Administrative Staff
John M. Defandorf, BA
Fiscal Officer

James Doughty, BS
Environmental Health and Safety Coordinator

Mircea D. Gheorghiu, PhD
Undergraduate Laboratory Director

Krzysztof Grabarek, MA
Assistant Director, Chemistry Education

Deborah A. Santoro, BS, JD
Financial Coordinator

Darlene-Marie Slagle, BA
Personnel Administrator

Richard J. Wilk, PhD
Administrative Officer II

Scott Wade
Operations/Facilities Administrator

Professors Emeriti
Robert Arnold Albert, PhD, ScD
Professor of Chemistry, Emeritus

Klaus Biemann, PhD
Professor of Chemistry, Emeritus

Alan Davison, PhD
Professor of Chemistry, Emeritus

Carl Wesley Garland, PhD
Professor of Chemistry, Emeritus

Frederick Davis Greene II, PhD, ScD
Professor of Chemistry, Emeritus

Har Gobind Khorana, PhD
Alfred P. Sloan Professor of Biology and Chemistry, Emeritus

Senior Lecturer

Irwin Oppenheim, PhD
Professor of Chemistry, Emeritus

Dietmar Seyferth, PhD
Robert T. Haslam and Bradley Dewey Professor of Chemistry, Emeritus

John Stewart Waugh, PhD
Institute Professor, Emeritus

Gerald Norman Wogan, PhD
Professor of Chemistry, Emeritus
The Department of Earth, Atmospheric, and Planetary Sciences offers the bachelor’s degree in earth, atmospheric, and planetary sciences, and master’s and doctoral degrees in earth and planetary sciences, atmospheric sciences, oceanography, and climate physics and chemistry.

Departmental programs apply physics, chemistry, and mathematics to the study of the Earth and planets in order to understand the processes that are active in the Earth’s interior, oceans, and atmosphere, as well as the interiors and atmospheres of other planets. The department also uses the basic sciences to understand the past history of the Earth and planets. By combining the past history with models of present physical and chemical processes, faculty and students work to develop an understanding of the dynamics of systems as diverse as the global climate system, regional tectonics and deformation, petroleum and geothermal reservoirs, and the solar system.

Department faculty members teach and carry out research through programs in atmospheres, oceans and climate, geosystems, geology, geobiology, geophysics, and planetary science. Specific research activities include environmental earth science, global climate change science, planetary missions, and earthquake and exploration geophysics.

Modern problems in these fields are approached by field measurements, laboratory studies, and theory. Experimental facilities for training and research are available not only in departmental laboratories such as the Earth Resources Laboratory, but also in MIT’s interdisciplinary laboratories such as the Center for Global Change Science, Kavli Institute for Astrophysics and Space Research, Lincoln Laboratory, Haystack Radio Observatory and Millstone Radar facility, and the Wallace Astrophysical and Geophysical Observatories (described in the section on Interdisciplinary Research and Study), and in cooperating institutions such as the Woods Hole Oceanographic Institution.

UNDERGRADUATE STUDY

Bachelor of Science in Earth, Atmospheric, and Planetary Sciences/ Course 12

The Earth, Atmospheric, and Planetary Sciences Department offers undergraduate preparation for professional careers in a wide range of fields in geoscience (which includes geology, geophysics, and geochemistry), physics of atmospheres and oceans, environmental science, and planetary science and planetary astronomy. Students concentrate in one of these four areas.

The curriculum for the Bachelor of Science in Earth, Atmospheric, and Planetary Sciences ensures a fundamental background through departmental core subjects and advanced study in an area of concentration that includes required subjects and restricted electives. Students are also required to take field and/or laboratory subjects, and to complete an independent research project as part of the degree requirements.

Double-Degree Programs/Five-Year Programs

Studies in physics, chemistry, biology, applied mathematics, and electrical or civil engineering are directly relevant preparation for work in earth, atmospheric, and planetary sciences. Students from these departments can arrange a program of study in Course 12 leading to a second Bachelor of Science in one of the department’s areas of concentration.

Students with strong academic records from the Departments of Earth, Atmospheric, and Planetary Sciences, Chemistry, Physics, Mathematics, Civil and Environmental Engineering, Electrical Engineering and Computer Science, or Chemical Engineering, should be able to complete a Master of Science in Earth and Planetary Sciences, in Atmospheric Sciences, or in Ocean Sciences, or the Master of Science in Geosystems professional degree, in one year of additional study, particularly if programs are arranged for this purpose from the beginning of the fourth year.

The department offers a professional Master’s Degree Program in Geosystems. This intense, quantitative program is open to highly motivated students with undergraduate degrees in geoscience, physics, chemistry, mathematics, or engineering, and can be completed in one academic year. The program prepares students for scientific and management careers in the environmental, natural resources, and technical consulting industries by providing skills in computer simulation and modeling of complex natural systems, as well as scientific inference and data analysis.

Applications for graduate enrollment in the department are considered any time after the beginning of the fourth year. Students may receive the Bachelor of Science as soon as the requirements are completed, or may elect to defer the award for simultaneous presentation with the Master of Science.

Minor Program

The requirements for a Minor in Earth, Atmospheric, and Planetary Sciences are as follows:

Core Subjects

Two subjects from:

- 12.001 Introduction to Geology
- 12.002 Physics and Chemistry of the Solid Earth
- 12.003 Physics of the Atmosphere and Ocean
- 12.004 Introduction to Planetary Science
- 12.006J Nonlinear Dynamics I: Chaos
- 12.102 Environmental Earth Science
- 12.400 The Solar System

One subject from:

- 18.03/18.034 Differential Equations
- 5.60 Thermodynamics and Kinetics

Restricted Electives

Two or more additional Course 12 subjects within one of the EAPS concentration areas, approved by the minor advisor.

and 12 units from the following:

Lab: 12.115, 12.119, 12.307, 12.410J
Field and IAP: 12.120, 12.141, 12.213, 12.214, 12.221, 12.265J, 12.310, 12.311, 12.411
Independent Study: 12.IND, 12.UR

The Earth, Atmospheric, and Planetary Sciences Department jointly offers a Minor in Astronomy with the Department of Physics (Course 8). The description of undergraduate study in Course 8 contains a detailed description and list of requirements for this minor.
Bachelor of Science in Earth, Atmospheric, and Planetary Sciences/Course 12

General Institute Requirements (GIRs)
Science Requirement
Subjects
6
Humanities, Arts, and Social Sciences Requirement
8
Restricted Electives in Science and Technology (REST) Requirement [can be satisfied from among 12.001, 12.002, 12.003, 12.004, and 18.03 or 18.034 in the Departmental Program]
2
Laboratory Requirement
1
Total GIR Subjects Required for SB Degree
17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Units
Required Subjects 114–126

Introductory Material:
Two of the following core subjects:
12.001 Introduction to Geology, 12, REST (required for concentration Area 1 and Area 4 majors)
12.002 Physics and Chemistry of the Solid Earth, 12, REST; 8.02, 18.02
12.003 Physics of the Atmosphere and Ocean, 12, REST; 8.01, 18.02; (required for concentration Area 2 and Area 4 majors)
12.004 Introduction to Planetary Science, 12, REST; 8.02, 18.03; (required for concentration Area 3 majors)
12.006J Nonlinear Dynamics I: Chaos, 12; 8.02, 18.03

One of the following mathematics subjects:
18.03 Differential Equations, 12, REST; 18.02* or 18.014
or
18.034 Differential Equations, 12, REST; 18.02* or 18.014

The following research subject:
12.TIP Thesis and Independent Study Preparation, 6

and one of the following:
12.IND Independent Study (at least 6 units), CI-M; 12.TIP
or
12.THU Undergraduate Thesis (at least 6 units), CI-M; 12.TIP (required for concentration Area 3 and Area 4 majors)

Student must complete one of the following four concentration areas:
AREA 1 Geoscience
12.005 Applications of Continuum Mechanics to Earth, Atmospheric, and Planetary Sciences, 12; 8.02, 18.02, 18.03
12.108 Structure of Earth Materials, 12; 3.091*
12.113 Structural Geology, 12; 12.001, 12.005
5.60 Thermodynamics and Kinetics, 12, REST; 18.02, 5.111*

One of the following sets of field subjects:
12.221 Field Geophysics, 6
12.222 Field Geophysics Analysis, 6; 12.221, CI-M
or
12.114 Field Geology I, 6; 12.108, 12.113*
12.115 Field Geology II, 18, LAB, CI-M; 12.113, 12.114

AREA 2 Atmospheres, Oceans, and Climate
5.60 Thermodynamics and Kinetics, 12, REST; 18.02, 5.111*
8.03 Physics III, 12, REST; 8.02*, 18.02
12.330 Fluid Physics, 12; 5.60*
12.333 Atmospheric and Ocean Circulations, 12; 12.003

Two of the following physics and mathematics subjects:
12.008 Classical Mechanics: A Computational Approach, 12; 8.01, 18.03
or
8.09 Classical Mechanics II, 12; 8.01
8.04 Quantum Physics I, 12, REST; 8.03*, 18.03*
8.07 Electromagnetism II, 12; 8.03, 18.03
18.311 Principles of Applied Mathematics, 12; 18.03*

Inquiries
Additional information may be obtained from the Department of Earth, Atmospheric, and Planetary Sciences, Education Office, Room 54-912, MIT, Cambridge, MA 02139-4307, 617-253-3381.

GRADUATE STUDY
The Department of Earth, Atmospheric, and Planetary Sciences offers opportunities for graduate study and research in a wide range of fields, as indicated by the detailed subject descriptions in Part 3. This coursework is the usual prelude to a thesis demonstrating that the student is capable of independent and creative research. A successful thesis leads to a graduate degree: a Master of Science, a Doctor of Philosophy, or a Doctor of Science in the field of specialization.

A graduate thesis may have either a theoretical, experimental, or observational focus. Modern laboratory facilities, computers, instrumentation, and extensive collections of specimens and data are available to students. Field study is an essential part of the graduate curriculum in geology, geophysics, and geochemistry, and special arrangements may be made for summer employment and field research on departmental projects and with industrial organizations and government agencies. In oceanography, sea-going observational research is an important part of the educational experience. In atmospheric science, climate studies, and oceanography, graduate study includes a mixture of theoretical and experimental studies sharing a common appreciation of the dynamics of the underlying processes.

Entrance Requirements for Graduate Study
In addition to the General Institute Requirements for admission listed in the section on Graduate Education, the department requires preparation equivalent to the curriculum for the Bachelor of Science in Earth, Atmospheric, and Planetary Sciences at MIT for graduate studies in that field. For atmospheric sciences, climate studies, meteorology, and oceanography, the most essential element is a sound preparation in mathematics and physics, supplemented if possible by some chemistry. Students taking their undergradu-
ate work at other institutions are advised to include in their programs the equivalent of the mathematics and physics contained in the MIT undergraduate curricula. If students are not fully prepared in certain of the fields or required subjects, they usually are asked to extend their studies in these areas while pursuing advanced work. The doctoral program can be entered without a Master of Science as a prerequisite.

Joint Program with the Woods Hole Oceanographic Institution

MIT and WHOI have established a program in oceanography that leads to a jointly awarded degree of Master of Science, Doctor of Philosophy, or Doctor of Science. For more information, see the program description at the end of Part 2.

Master of Science in Earth and Planetary Sciences, in Atmospheric Sciences, or in Ocean Sciences

The General Institute Requirements for the degree of Master of Science in Earth and Planetary Science, in Atmospheric Sciences, or in Ocean Sciences are described in the section on Graduate Education. An individual program of study and research is arranged to suit the special background, needs, and goals of each student. The program is worked out in detail by the student with his or her personal faculty advisor and a departmental committee. There are no foreign language requirements for the degree. Master’s students in oceanography and atmospheric sciences have access to the facilities of the joint MIT-WHOI program.

Master of Science in Geosystems

The Master of Science in Geosystems degree is open to students with undergraduate degrees in geoscience, physics, chemistry, mathematics, or engineering. The degree can be completed in one academic year and prepares students for scientific and management careers in the environmental, natural resources, and technical consulting industries by providing skills in computer simulation and modeling of complex natural systems, as well as scientific inference and data analysis. The program requires students to complete a 108-unit program consisting of nine subjects and a thesis project.

The following laboratory subject:
12.307 Weather and Climate Laboratory, LAB, CI-M, 12; 18.02, 8.01

AREA 3 Planetary Science and Planetary Astronomy
8.03 Physics II, 12, REST; 8.02*, 18.02
8.04 Quantum Physics I, 12, REST; 8.03*, 18.03*
8.044 Statistical Physics I, 12; 8.03, 18.03
12.008 Classical Mechanics: A Computational Approach, 12; 8.01, 18.03
12.421 Physical Principles of Remote Sensing, 12; 8.03

The following laboratory subject:
12.410 Observational Techniques of Optical Astronomy, 15, LAB, CI-M; 8.03

AREA 4 Environmental Science
12.007 Geobiology, 12
12.102 Environmental Earth Science, 12, REST
12.103 Strange Bedfellows: Science and Environmental Policy, 12, CI-M
12.085 Seminar in Environmental Science, 9; 12.120 and 12.103 or permission of instructor

Three subjects in one focus area:

Biology focus:
1.018J/7.30 Fundamentals of Ecology, 12, REST; 7.012*
7.03 Genetics, 12, REST; 7.012*
5.12 Organic Chemistry I, 12, REST; 5.11*

Chemistry focus:
5.03 Principles of Inorganic Chemistry I, 12; 5.12
5.12 Organic Chemistry I, 12, REST; 5.11*
5.60 Thermodynamics and Kinetics, 12, REST; 18.02, 5.11*

Earth Science focus:
12.110 Sedimentary Geology, 12; 12.001*
12.161 Surface Processes and Landscape Evolution, 12; 18.03*, 12.001
12.214 Environmental Geophysics, 12; 18.03

12 units from the following field or laboratory subjects:
5.310 Laboratory Chemistry, 12; LAB; 5.12
12.119 Analytical Technique for Studying Environmental and Geologic Samples, 12, LAB
12.103 Experimental Investigations of the Charles River, 12, LAB
12.120 Environmental Earth Science Field Course, 6; 12.001*
12.159 Sedimentary and Surficial Geology Investigations, 12; 12.110*
12.162 Geological Image Interpretations, 12; 12.001*
12.261 Techniques in Remote Sensing, 6
12.307 Weather and Climate Laboratory, 12, LAB, CI-M

Departmental Program Units That also Satisfy the GIRs (24–30)

Restricted Electives
6–27

One or two subjects selected with the approval of the faculty advisor from among EAPS concentration area electives, mathematics, and physics (24 units in Area 1, 6–12 units in Areas 2, and 24–27 units in Area 3).

AREA 1. Choose two:
12.102, 12.104, 12.109, 12.110, 12.119, 12.159, 12.162, 12.163, 12.201, 12.207, 12.214, 12.215

AREA 2. Choose one:
12.300I, 12.301, 12.306, 12.310, 12.320I

AREA 3. Choose one:
1.00, 6.001; Choose 1: 18.04, 18.05, 18.06, 18.075

AREA 4. Choose two from a focus:

Biology: 1.080, 5.07, 5.08, 5.13, 5.43, 9.20, 10.333I, 11.002I, 11.122, 12.000, 17.32
Chemistry: BE.104J, 1.080, 1.082, 5.04, 5.05, 5.13, 5.61, 5.310, 10.333, 11.002I, 11.122, 12.000, 12.300I, 17.32

Unrestricted Electives

78

Total Units Beyond the GIRs Required for SB Degree
180

No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

*Alternate prerequisites are listed in the subject description.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
Doctor of Philosophy and Doctor of Science

General Institute Requirements for the degree of Doctor of Philosophy or Doctor of Science are given in the section on Graduate Education. The department does not require candidates for the doctorate to present evidence of competence in a foreign language, but it strongly urges that candidates for the doctorate acquire intermediate competence in one or more languages. A specialized program of study and research is tailored to each student’s background, needs, and goals by the student in consultation with a faculty advisor and a departmental committee. A doctoral candidate’s program should be broad and include formal study in other departments in addition to the specialized subjects that prepare the candidate for thesis research. Thesis research normally begins immediately after successful completion of the general examination by the end of the second year. The general examination is intended to test the candidate’s aptitude and preparation for independent research.

Thesis research is closely supervised by one or more faculty members interested in and knowledgeable about the research topic, who are chosen by the student and may be members of other departments. The thesis is expected to meet high professional standards, and to be a significant original contribution to the scientific field.

Teaching and Research Assistantships

The department offers a considerable number of research and teaching assistantships each year. Research assistants work on one of the many research projects in the department, often related to the student’s thesis research. Teaching assistants assist in laboratory instruction or the preparation of teaching materials and the grading of papers.

The department also offers several fellowships beyond normal teaching and research assistantships. Selection of individuals is based on the excellence of the applicant’s record.

Inquiries

Additional information regarding academic and current research programs in the department, admission requirements, assistantship appointments, and financial aid may be obtained by writing to the Department of Earth, Atmospheric, and Planetary Sciences, Education Office, Room 54-912, MIT, Cambridge, MA 02139-4307, 617-253-3381.

Research Laboratories and Programs

Earth Resources Laboratory

The Earth Resources Laboratory (ERL) is one of the premier research laboratories in the world in the areas of applied geophysics and quantitative geology. The lab studies the spatial heterogeneity of the earth’s upper crust through geophysical imaging, geological process modeling, and the interactions between rock pore systems and migrating fluids. Laboratory activities are centered around theoretical, experimental, and observational research programs in basic science that have both industrial and academic applications. Research at the lab is supported by industry and government agencies.

ERL’s major research activities include: elastic wave propagation in complex media; characterization of reservoir properties such as fracture density, in-situ stress, and fluid mobility from seismic and well log data; turbidite depositional dynamics; field mapping of reservoir scale geologic analogs in Western Africa; electroseismic phenomena; imaging and simulation of pore-scale fluid flow; borehole acoustics; reservoir imaging from surface and borehole seismic data; GPS measurements of crustal deformation in the Eastern Mediterranean, including the North Anatolian fault system in Turkey; and geophysical monitoring of groundwater contaminant movement.

ERL’s computation environment consists of a large network of workstations and personal computers, as well as the Reservoir Science Visualization Laboratory, which includes a number of high performance workstations running data analysis and visualization software. This facility is used to enhance and expand ERL’s research activities in petroleum reservoir imaging and monitoring, environmental geophysics, and geologic mapping and remote sensing. ERL also has a wide range of experimental facilities and equipment, including a large-scale (5m by 5m) sediment dynamics tank, and Ultrasonic Laboratory for seismic imaging and borehole experiments, and field equipment for seismic, electrical, and GPR surveys.

Further information can be obtained through ERL headquarters, Room E34-462, or by calling Professor John Grotzinger at 617-253-3498.

Center for Global Change Science

The Center for Global Change Science (CGCS) is an interdepartmental organization that seeks to address long-standing scientific problems that impede the ability to accurately predict changes in the global environment. Established in 1990, the CGCS builds on the long-established MIT research and education programs in meteorology, oceanography, atmospheric sciences, climate physics, chemistry, hydrology, and satellite remote sensing carried out in the Schools of Science and Engineering. Associated CGCS faculty, staff, and student researchers come from many departments, including Earth, Atmospheric, and Planetary Sciences, Civil and Environmental Engineering, Electrical Engineering and Computer Science, Chemistry, Biology, Chemical Engineering, and the Woods Hole Oceanographic Institution. This multidisciplinary approach encourages collaboration of researchers with a wide variety of backgrounds and interests that is vital to understanding and predicting global change.

The long-term goal of the CGCS is to use theory and observations to gain an understanding of the basic processes and mechanisms controlling the global environment, and thereby to accurately predict environmental changes. The primary objective of the center involves a sustained program of basic scientific research focused on five fundamental processes in the global climate machine: convection, atmospheric water vapor, and cloud formation; oceans and ocean-atmosphere coupling; land-surface hydrology and hydrology-vegetation coupling; biogeochemistry of the greenhouse gases and reflective aerosols; and upper atmospheric chemistry and circulation. The aim is to first understand these basic processes and their potential effects on climate change, and then to incorporate them into climate and chemical prediction models.

The CGCS modeling efforts are carried out within the MIT Climate Modeling Initiative (CMI), which is a cooperative endeavor by the CGCS and the MIT Laboratory for Computer Science. Formalized in 1997 to help stimulate innovative
approaches to computation, the CMI provides a central modeling facility to CGCS faculty and students. The CMI’s goals are to better understand the evolution of climate over earth history, and the limits to climate predictability, and thereby to inform speculations about how climate may change in the future. The CMI is designed to contribute to policy studies undertaken by the MIT Joint Program on the Science and Policy of Global Change, which is a cooperative effort of the CGCS and the Center for Energy and Environmental Policy Research. Launched in 1991 to analyze potential anthropogenic global climate change and its social and environmental consequences, the Global Change Joint Program involves the CGCS in extensive collaborative efforts with faculty and student researchers in the Political Science and Economics Departments, the Sloan School of Management, the Energy Laboratory, the Center for International Studies, and the Marine Biological Laboratory at Woods Hole.

For further information, contact the CGCS office in Room 54-1312, 617-253-4902, fax 617-253-0354, cgcs@mit.edu, or the website at http://web.mit.edu/cgcs/.

George R. Wallace, Jr. Astrophysical Observatory

The George R. Wallace, Jr. Astrophysical Observatory is a versatile facility for research and teaching optical astronomy. The observatory located in Westford, Massachusetts, has two optical telescopes with 16-inch and 24-inch diameters and unique electronic instrumentation. The telescopes are used in formal instruction for student research projects, and as testbeds for instrumentation to be used with larger telescopes. Further information on the Wallace Observatory may be obtained by contacting Professor James L. Elliot, Department of Earth, Atmospheric, and Planetary Sciences, Room 54-422, MIT, Cambridge, MA 02139-4307, 617-253-6308, jle@mit.edu, or the website at http://web.mit.edu/wallace/.

Wallace Geophysical Observatory

The George R. Wallace, Jr., Geophysical Observatory is a unique research facility designed to monitor ground motions and to aid in the development and testing of new seismic and other geophysical instrumentation. It is also a key component of MIT’s five-station seismic network in New England.

Located 35 miles north of Boston in Westford, Massachusetts, the observatory has a large, multi-room underground vault and a surface control room. The vault has a controlled temperature environment and instrument piers resting directly on the basement granite. The observatory contains sensitive seismometers and instruments for monitoring ground tilts and the earth’s tidal motions. The surface building houses a work area and control and recording instruments. Data from the observatory are telemetered directly to the Earth Resources Laboratory of the Department of Earth, Atmospheric, and Planetary Sciences. The data from the observatory and the New England Seismic Network are recorded, displayed, and analyzed by three dedicated COMPAQ computers, which are also connected to workstations to facilitate data sharing and transfers. Data from the observatory along with the numerous resources of the department provide a unique facility for undergraduates, graduate students, and faculty to pursue research concerning the interior of the earth.

Further information may be obtained by contacting the director, Professor M. Nafi Toksöz, Room E34-440, MIT, Cambridge, MA 02139-4307, 617-253-7852, email nafi@erl.mit.edu.

Faculty and Staff

Faculty and Teaching Staff

Maria Zuber, PhD
Earle Griswold Professor of Geophysics and Planetary Science
Head of the Department

Professors

Richard P. Binzel, PhD
Professor of Planetary Sciences
MacVicar Faculty Fellow

Samuel A. Bowring, PhD
Breene M. Kerr Professor of Geology

Edward Allen Boyle, PhD
Professor of Ocean Geochemistry

Rafael Luis Bras, ScD
Professor of Civil and Environmental Engineering and Earth, Atmospheric, and Planetary Sciences

Bacardi and Stockholm Water Foundations Professor

Associate Director, Center for Global Change Science

Burrell Clark Burchfiel, PhD
Schlumberger Professor of Geology

James Ludlow Elliot, PhD
Professor of Planetary Astronomy and Physics

Director, George R. Wallace, Jr., Astrophysical Observatory

Kerry Andrew Emanuel, PhD
Professor of Atmospheric Science

Dara Entekhabi, PhD
Professor of Civil and Environmental Engineering and Earth, Atmospheric and Planetary Sciences

J. Brian Evans, PhD
Professor of Geophysics

Glenn Richard Flierl, PhD
Professor of Oceanography

Frederick August Frey, PhD
Professor of Geochemistry

John P. Grotzinger, PhD
Robert R. Shrock Professor of Geology

Timothy L. Grove, PhD
Professor of Geology

Bradford H. Hager, PhD
Cecil and Ida Green Professor of Earth Sciences

Thomas A. Herring, PhD
Professor of Geophysics

Kip V. Hodges, PhD
Professor of Geology

Codirector, Earth Systems Initiative

MacVicar Faculty Fellow

Richard Siegmund Lindzen, PhD
Alfred P. Sloan Professor of Meteorology

John C. Marshall, PhD
Professor of Meteorology

Bradford H. Hager, PhD
Cecil and Ida Green Professor of Earth Sciences

Alfred P. Sloan Professor of Meteorology

Mario J. Molina, PhD
Institute Professor

Professor of Chemistry and Atmospheric Chemistry, and Environmental Studies
F. Dale Morgan, PhD
Professor of Geophysics
Associate Director, Earth Resources Laboratory
Raymond Alan Plumb, PhD
Professor of Meteorology
Director, Program in Atmospheres, Oceans and Climate
Ronald George Prinn, ScD
TEPCO Professor of Atmospheric Chemistry
Director, Center for Global Change Science
Paola Malanotte Rizzoli, PhD
Professor of Physical Oceanography
Director, MIT-WHOI Joint Program
Daniel H. Rothman, PhD
Professor of Geophysics
Leigh H. Royden, PhD
Professor of Geology and Geophysics
Peter Hunter Stone, PhD
Professor of Climate Dynamics
Roger E. Summons, PhD
Professor of Geobiology
M. Nafi Toksöz, PhD
Professor of Geophysics
Director, George R. Wallace, Jr., Geophysical Observatory
Robert van der Hilst, PhD
Professor of Geophysics
Director, Earth Resources Laboratory
Kelin Whipple, PhD
Professor of Earth, Atmospheric, and Planetary Sciences
Jack Wisdom, PhD
Professor of Planetary Sciences
Carl Isaac Wunsch, PhD
Cecil and Ida Green Professor of Physical Oceanography
Julian P. Sachs, PhD
Associate Professor of Paleoclimatology
Henry and Grace Doherty Associate Professor of Ocean Utilization

Assistant Professors
Raffaele Ferrari, PhD
Assistant Professor of Dynamical Oceanography
Victor P. Starr Career Development Professorship
James Hansen, PhD
Assistant Professor of Atmospheric Sciences
David Mohrig, PhD
Assistant Professor of Geology
Cecil and Ida Green Career Development Professorship
Stephane Rondenay, PhD
Assistant Professor of Seismology
Kerr McGee Career Development Professorship
Sang-Heon Shim, PhD
Assistant Professor of Experimental Geophysics
Benjamin P. Weiss, PhD
Assistant Professor of Planetary Sciences

Adjunct Professor
Charles Marshall, PhD
Adjunct Professor of Geobiology

Visiting Professors
Yves Bernabe, PhD
Professor of Geophysics
Vernon F. Cormier, PhD
Professor of Geophysics
Martijn V. de Hoop, PhD
Professor of Geophysics

Lecturer
Lodovica Illari, PhD

Research Staff

Principal Research Scientists
Alistair Adcroft, PhD
Michael Follows, PhD
Robert W. King, Jr., PhD
Luísa T. Molina, PhD
Robert Reilinger, PhD
William Rodi, PhD
Chien Wang, PhD

Principal Research Engineer
Christopher Hill, BS

Research Engineer
Zhenya Zhu, PhD

Research Scientists
Daniel Burns, PhD
Executive Director, Earth Resources Laboratory
James Butter, PhD
Jean-Michel Campin, PhD
Nilanjana Chatterjee, PhD
Stephanie Dutkiewicz, PhD
Constantinos Evangelinos, PhD
Ming Fang, PhD
Chris Forest, PhD
Baylor Fox-Kemper, PhD
Patrick Heimbach, PhD
Helen Hill, PhD
Armando M. Howard, PhD
Jin Huang, PhD
Andrey Ivanov, PhD
Sadi Kuleli, PhD
Simon McClusky, PhD
Gregory Neuman, PhD
Jahandar Ramezani, PhD
Rama Rao, PhD
Courtney Adam Schlosser, PhD
Jeffery Scott, PhD
Andrei Sokolov, PhD
Shan Sun, PhD
Mark Willis, PhD
Xiaohui Xiao, PhD

Research Specialists
Richard Kayser, MS
Charmaine King, BS
Linda Meinke, BS
William Olszewski, PhD
Steven Silvern, PhD
Diana Spiegel, MS
Yunpeng Wang, PhD

Sponsored Research Administrative Staff
Roberta Bennett-Calorio, BCH
Helen Dietrich
Frances Goldstein, BS
Veronica Lupampa, BS
Theresa Macloon, BCH
Anne M. Slinn, MS
Postdoctoral Associates
Caroline D. M. L. Beghein, PhD
Shane Byrne, PhD
Ivana Cerovecki, PhD
Daniel J. Condon, PhD
James Crowley, PhD
David Ferreira, PhD
Gael Forget, PhD
Pavel Greenfield, PhD
Amanda Guibis, PhD
Edward Hill, PhD
Laurent Husson, PhD
Dongchul Kim, PhD
Robert Korty, PhD
W. Gregory Lawson, PhD
Wenfang Lei, PhD
Alexander E. Lobkovsky, PhD
Gordon Love, PhD
Sang Jin Lyu, PhD
Etienne Medard, PhD
Andrea Molod, PhD
Malcolm Pringle, PhD
Sandee Rekhi, PhD
Javier Santillán, PhD
Philip Sheehy, PhD
Ragothaman Sundararajan, PhD
Youshun Sun, PhD
Qian Tan, PhD
Yang Zhang, PhD

Postdoctoral Fellows
Jonathan Ajo-Franklin, PhD
Margaret Benoit, PhD
Solveig Buhring, PhD
Xander Campin, PhD
Shihong Chi, PhD
Yanek Hebting, PhD
Adam Maloof, PhD
Irina Marinov, PhD
Jun Noda, PhD
José M. Ortega-Alija, PhD
Katharina Pahnke, PhD
Rienk Smittenberg, PhD
Edmond Sze, PhD
Philippe Vernant, PhD
Zhaoxhui Zhang, PhD

Research Affiliates
Arthur Cheng, PhD
Robert Cicerone, PhD
Peter Cliff, PhD
Norman Gaut, PhD
James Hirth, PhD
Laurent Montesi, PhD
Stephen Parman, PhD
Philip Reppert, PhD
Joseph B. Walsh, PhD
Wenlu Zhu, PhD

Visiting Scientists
Michel Bouchon, PhD
Changgun Cao, PhD
Junxing Cao, PhD
Jesse Dann, PhD
Alan Faller, PhD
Julio Friedman, PhD
Julia Gamas, PhD
Levent Gulen, PhD
David Harkrider, PhD
John Hayes, PhD
Robin Kodner, PhD
Mary Krasovec, PhD
Dick Reesman, PhD
Dirk Smit, PhD
Roger Turpening, PhD

Administrative Staff
Mark Pendleton, BCH
Administrative Officer, Financial Administrator
Vicki McKenna, PhD
Education Officer
Michael Richard
Personnel Administrator

Professors Emeriti
William Francis Brace, PhD
Professor of Geology, Emeritus
Charles Claude Counselman III, PhD
Professor of Planetary Sciences, Emeritus
Edward Norton Lorenz, ScD
Professor of Meteorology, Emeritus
Theodore Richard Madden, PhD
Professor of Geophysics, Emeritus
Gordon Hemenway Pettengill, PhD
Professor of Planetary Physics, Emeritus
William F. Pinson, Jr., PhD
Associate Professor of Geology, Emeritus
Frederick A. Sanders, PhD
Professor of Meteorology, Emeritus

M. Gene Simmons, PhD
Professor of Geophysics, Emeritus
John Brelsford Southard, PhD
Professor of Geology, Emeritus
Mathematics provides a language and tools for understanding the physical world around us and the abstract world within us. MIT’s Mathematics Department is one of the strongest in the world, representing a broad spectrum of fields ranging from the traditional areas of pure mathematics such as analysis, algebra, geometry, and topology, to applied mathematics areas such as combinatorics, computational biology, fluid dynamics, theoretical computer science, and theoretical physics.

Undergraduate students may elect one of three options leading to a degree in mathematics: applied mathematics; theoretical mathematics; and general mathematics. The general mathematics option provides a great deal of flexibility and is suitable for students who want to design their own programs in conjunction with their advisors. Additionally, the Mathematics with Computer Science degree is offered for students wishing to pursue their interests in mathematics and theoretical computer science within a single undergraduate program. Nearly one-half of the graduating seniors in mathematics are double majors. Popular second majors for these students include computer science, physics, and economics.

After graduation, our students find a variety of opportunities available to them. Some go on to graduate school in mathematics, computer science, and other fields such as medicine, finance, and engineering. Many begin careers in consulting, actuarial science, software engineering, and investment banking.

At the graduate level, the department offers the PhD in mathematics where students learn to conduct original research.

For more information, see the department website at http://www-math.mit.edu/.

UNDERGRADUATE STUDY

An undergraduate degree in mathematics provides an excellent basis for graduate work in mathematics or computer science, or for employment in such mathematics-related fields as systems analysis, operations research, finance, or actuarial science.

Because the career objectives of undergraduate mathematics majors are diverse, each undergraduate’s program is individually arranged through collaboration between the student and his or her faculty advisor. Students are encouraged to explore the various branches of mathematics, both pure and applied.

Undergraduates in mathematics are encouraged to elect an upper-level mathematics seminar during the junior or senior year. The experience gained from active participation in a seminar conducted by a research mathematician is particularly valuable for a student planning to pursue graduate work. These seminars additionally provide training in communicating mathematics effectively.

Three undergraduate programs lead to the degree Bachelor of Science in Mathematics: the General Mathematics option, the Applied Mathematics option for those who wish to specialize in that aspect of mathematics, and the Theoretical Mathematics option for those who expect to pursue graduate work in pure mathematics. A fourth undergraduate program leads to the degree Bachelor of Science in Mathematics with Computer Science; it is intended for students interested in theoretical computer science.

Bachelor of Science in Mathematics/ Course 18

General Mathematics Option

This option is the one followed by most students who major in mathematics. In addition to the General Institute Requirements, the requirements consist of 18.03 Differential Equations, or 18.034 Differential Equations, and eight 12-unit subjects in Course 18 of essentially different content, including at least six advanced subjects (first decimal digit one or higher). This leaves available 84 units of unrestricted electives. The requirements are flexible in order to accommodate several categories of students: students who pursue programs that combine mathematics with a related field (such as physics, economics, or management); students who are interested in both theoretical and applied mathematics; and students who choose mathematics as a general Institute major.

Applied Mathematics Option

Applied mathematics is the mathematical study of general scientific concepts, principles, and phenomena that, because of their widespread occurrence and application, relate or unify various disciplines. The core of the program at MIT concerns the following principles and their mathematical formulations: propagation, equilibrium, stability, optimization, computation, statistics, and random processes.

Sophomores interested in applied mathematics typically survey the field by enrolling in 18.310 and 18.311 Principles of Applied Mathematics. Subject 18.310, given only in the first term, is devoted to the discrete aspects of the study and may be taken concurrently with 18.03. Subject 18.311, given only in the second term, is devoted to continuous aspects and makes considerable use of differential equations.

The subjects in Group I of the program correspond roughly to those areas of applied mathematics that make heavy use of discrete mathematics, while Group II emphasizes those subjects that deal mainly with continuous processes. Some subjects, such as probability or numerical analysis, have both discrete and continuous aspects.

Students planning to go on to graduate work in applied mathematics should also take some basic subjects in analysis and algebra.

Theoretical Mathematics Option

Theoretical mathematics (or “pure” mathematics) is the study of the basic concepts and structures that underlie the mathematical tools used in science and engineering. Its purpose is to search for a deeper understanding and an expanded knowledge of mathematics itself.

Traditionally, pure mathematics has been classified into three general fields: analysis, which deals with continuous aspects of mathematics; algebra, which deals with discrete aspects; and geometry. The undergraduate program is designed so that students become familiar with each of these areas. Students may also wish to explore other subjects such as logic, number theory, complex analysis, and subjects within applied mathematics.

The subject 18.100B Analysis I is basic to the program. Since this subject is strongly proof oriented, many students find an intermediate subject such as 18.06 Linear Algebra or 18.700 Linear Algebra useful as preparation.

The subject 18.701 Algebra I is more advanced and should not be elected until the student has had some experience with proofs (as in 18.100B or 18.700).
Bachelor of Science in Mathematics with Computer Science/Course 18-C

Mathematics and computer science are closely related fields. Problems in computer science are often formalized and solved with mathematical methods. It is likely that many important problems currently facing computer scientists will be solved by researchers skilled in algebra, analysis, combinatorics, logic and/or probability theory, as well as computer science.

The purpose of this program is to allow students to study a combination of these mathematical areas and potential application areas in computer science. Required subjects include linear algebra (18.06 or 18.700) because it is so broadly used; discrete mathematics (18.062 or 18.310) to give experience with proofs and the necessary tools for analyzing algorithms; and complex systems (6.033 or 6.170) where mathematical issues may arise. The required subjects covering complexity (18.404 or 18.400) and algorithms (18.410) provide an introduction to the most theoretical aspects of computer science.

Some flexibility is allowed in this program. In particular, students may substitute the more advanced subject 18.701 Algebra I for 18.06, and if they already have strong theorem-proving skills, may substitute 18.314 for 18.062 or 18.310.

Minor Program in Mathematics

The requirements for a Minor in Mathematics are as follows:

Six 12-unit subjects in mathematics, beyond the Institute calculus requirement, of essentially different content, including at least four advanced subjects (first decimal digit one or higher).

For a general description of the minor program, see Undergraduate Education in Part 1.

Inquiries

Inquiries regarding academic programs may be addressed to Joanne Jonsson, Undergraduate Mathematics Office, Room 2-108, MIT, Cambridge, MA 02139-4307, 617-253-2416.

Additionally, the following information sheets are available in Room 2-108 and online at http://www-math.mit.edu/undergraduate/:

What Math Subject Shall I Take?
Careers in Mathematics
Thinking of Majoring in Mathematics?

Bachelor of Science in Mathematics/Course 18

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement (one subject can be satisfied by 18.03 or 18.034 in the Departmental Program)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>The program includes a Communication Requirement of 4 subjects:</td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and</td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in the Major (CI-M).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLUS Departmental Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03 Differential Equations, 12, REST; 18.02* or 18.014 or 18.034 Differential Equations, 12, REST; 18.02* or 18.014</td>
<td>132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restricted Electives</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>To satisfy the requirements that students take two CI-M subjects, students must take one of: 18.096, 18.100C, 18.413, 18.821, 6.033, 6.111, or 8.06 and a second subject from the above list or one of: 18.104, 18.304, 18.434, 18.504, 18.704, 18.904, or 18.994.</td>
<td>96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Mathematics Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eight 12-unit subjects of different content, including at least six advanced subjects (first decimal digit one or higher).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applied Mathematics Option</th>
<th>(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.310 Principles of Applied Mathematics, 12; 18.02* or 18.311 Principles of Applied Mathematics, 12; 18.03*</td>
<td></td>
</tr>
<tr>
<td>One of the following two subjects:</td>
<td></td>
</tr>
<tr>
<td>18.04 Complex Variables with Applications, 12; 18.04* or 18.112 Functions of a Complex Variable, 12; 18.100</td>
<td></td>
</tr>
<tr>
<td>One of the following two subjects:</td>
<td></td>
</tr>
<tr>
<td>18.06 Linear Algebra, 12, REST; 18.02* or 18.700 Linear Algebra, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>Four additional Course 18 subjects from the following two groups with at least one subject from each group:</td>
<td></td>
</tr>
<tr>
<td>Group I — Probability and statistics, combinatorics, computer science</td>
<td></td>
</tr>
<tr>
<td>Group II — Numerical analysis, physical mathematics, nonlinear dynamics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theoretical Mathematics Option</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18.100B Analysis I, 12; 18.03*</td>
<td></td>
</tr>
<tr>
<td>18.301 Algebra I, 12; 18.700*</td>
<td></td>
</tr>
<tr>
<td>18.901 Introduction to Topology, 12; 18.100</td>
<td></td>
</tr>
<tr>
<td>One of the following subjects:</td>
<td></td>
</tr>
<tr>
<td>18.105 Analysis II, 12; 18.100, 18.700*</td>
<td></td>
</tr>
<tr>
<td>18.103 Fourier Analysis — Theory and Applications, 12; 18.100</td>
<td></td>
</tr>
<tr>
<td>An upper-level mathematics seminar(2) (12 units)</td>
<td></td>
</tr>
<tr>
<td>Two additional Course 18 subjects of essentially different content, with the first decimal digit one or higher (24 units)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Program Units That also Satisfy the GIRs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(12)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unrestricted Electives</th>
<th>60</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total Units Beyond the GIRs Required for SB Degree</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>No subject can be counted both as part of the 17-subject GIRs and as part of the 180 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.</td>
<td></td>
</tr>
</tbody>
</table>

Notes

*Alternate prerequisites are listed in the subject description.

(1) A list of acceptable subjects is available in Room 2-108.

(2) These seminars are 18.104, 18.504, 18.704, 18.904, and 18.994.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
Bachelor of Science in Mathematics with Computer Science/Course 18-C

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 18.03 or 18.034 and 6.001 in the Departmental Program]</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total GIR Subjects Required for SB Degree</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Communication Requirement
The program includes a Communication Requirement of 4 subjects:
2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and
2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program
Subject names below are followed by credit units, and by prerequisites if any (corequisites in italics)

<table>
<thead>
<tr>
<th>Required Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.03 Differential Equations, 12, REST; 18.02* or 18.014</td>
<td>87–90</td>
</tr>
<tr>
<td>18.034 Differential Equations, 12, REST; 18.02* or 18.014</td>
<td></td>
</tr>
<tr>
<td>6.001 Structure and Interpretation of Computer Programs, 15, REST</td>
<td></td>
</tr>
<tr>
<td>18.410 Introduction to Algorithms, 12; 6.001, 18.062*</td>
<td></td>
</tr>
<tr>
<td>18.06 Linear Algebra, 12; 18.02*</td>
<td></td>
</tr>
<tr>
<td>or 18.700 Linear Algebra, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>One subject from each of the following pairs:</td>
<td></td>
</tr>
<tr>
<td>18.062 Mathematics for Computer Science, 12; 18.01</td>
<td></td>
</tr>
<tr>
<td>or 18.310 Principles of Applied Mathematics, 12; 18.02</td>
<td></td>
</tr>
<tr>
<td>18.400 Automata, Computability, and Complexity, 12; 6.042</td>
<td></td>
</tr>
<tr>
<td>or 18.404 Theory of Computation,(s) 12; 18.062*</td>
<td></td>
</tr>
<tr>
<td>6.033 Computer System Engineering, 12; 6.004</td>
<td></td>
</tr>
<tr>
<td>or 6.170 Laboratory in Software Engineering, 15; 6.001</td>
<td></td>
</tr>
</tbody>
</table>

Restricted Electives
Four additional Course 18 subjects and two additional Course 6 subjects.
The overall program must consist of subjects of essentially different content, and must include at least five Course 18 subjects with first decimal digit one or higher.
To satisfy the requirements that students take two CI-M subjects, students must take one of: 18.096, 18.100C, 18.413, 18.821, 6.033, 6.111, or 8.06 and
A second subject from the above list or one of: 18.104, 18.304, 18.434, 18.504, 18.704, 18.904, or 18.994.

Departmental Program Units That also Satisfy the GIRs (27)

Unrestricted Electives

Total Units Beyond the GIRs Required for SB Degree

No subject can be counted both as part of the 12-subject GIRs and as part of the 183 units required beyond the GIRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes
*Alternate prerequisites are listed in the subject description.
(s) Recommended alternative.
For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
student must submit a plan of study for approval by the chairperson of the Applied Mathematics Committee. The general oral examination in applied mathematics tests the student’s competence in the area chosen for thesis research.

Teaching and Research Assistantships

Most graduate students in mathematics are supported in full or in part by teaching assistantships, fellowships, or research assistantships. This support is renewed for students who are progressing satisfactorily, so that they are supported for a total of four years.

Inquiries

Additional information regarding academic or research programs in mathematics, admissions, or financial aid, may be obtained from Linda Okun, Graduate Mathematics Office, Room 2-233, MIT, Cambridge, MA 02139-4307, 617-253-2689.

FACULTY AND STAFF

Faculty and Teaching Staff

Michael Sipser, PhD
Professor of Applied Mathematics
Head of the Department

Tomasz S. Mrowka, PhD
Professor of Mathematics
Chairman, Committee on Pure Mathematics

Rodolfo Ruben Rosales, PhD
Professor of Applied Mathematics
Chairman, Committee on Applied Mathematics

Professors

Michael Artin, PhD
Professor of Mathematics

David J. Benney, PhD
Professor of Applied Mathematics
(On leave, spring)

Bonnie A. Berger, PhD
Professor of Applied Mathematics
(On leave, fall)

Roman Bezrukavnikov, PhD
Professor of Mathematics

Hung Cheng, PhD
Professor of Applied Mathematics
(On leave)

Tobias H. Colding, PhD
Professor of Mathematics

Aise Johan de Jong, PhD
Professor of Mathematics
(On leave)

Richard Mansfield Dudley, PhD
Professor of Mathematics

Alan Edelman, PhD
Professor of Applied Mathematics

Pavel I. Etingof, PhD
Professor of Mathematics

Daniel Z. Freedman, PhD
Professor of Applied Mathematics

Michel X. Goemans, PhD
Professor of Applied Mathematics

Victor William Guillemin, PhD
Professor of Mathematics

Sigurdur Helgason, PhD
Professor of Mathematics
(On leave, spring)

David S. Jerison, PhD
Professor of Mathematics

Victor Kac, PhD
Professor of Mathematics
(On leave, spring)

Steven Kleiman, PhD
Professor of Mathematics

Daniel J. Kleitman, PhD
Professor of Applied Mathematics
(On leave, fall)

F. Thomson Leighton, PhD
Professor of Applied Mathematics
(On leave, fall)

George Lusztig, PhD
Norbert Wiener Professor of Mathematics

Arthur Paul Mattuck, PhD
Professor of Mathematics

Richard Burt Melrose, PhD
Professor of Mathematics

Haynes R. Miller, PhD
Professor of Mathematics

Hartley Rogers, Jr., PhD
Professor of Mathematics

Gerald Enoch Sacks, PhD
Professor of Mathematical Logic

Peter W. Shor, PhD
Morss Professor of Applied Mathematics

Isadore Manuel Singer, PhD
Institute Professor

Professor of Mathematics

Richard P. Stanley, PhD
Levinson Professor of Applied Mathematics

W. Gilbert Strang, PhD
Professor of Mathematics

Daniel W. Stroock, PhD
Simons Professor of Mathematics

Gang Tian, PhD
Simons Professor of Mathematics

Alar Toomre, PhD
Professor of Applied Mathematics

David Alexander Vogan, Jr., PhD
Professor of Mathematics

Associate Professors

Denis S. Auroux, PhD
Associate Professor of Mathematics
(On leave, fall)

Martin Z. Bazant, PhD
Associate Professor of Applied Mathematics

John W. Bush, PhD
Associate Professor of Applied Mathematics

Lars Hesselholt, PhD
Associate Professor of Mathematics
(On leave, spring)

Igor Pak, PhD
Associate Professor of Applied Mathematics

Gigliola Staffilani, PhD
Associate Professor of Mathematics

András Vasy, PhD
Associate Professor of Mathematics
(On leave)

Santosh S. Vempala, PhD
Associate Professor of Applied Mathematics
(On leave, fall)
Assistant Professors
Mark J. Behrens, PhD
Assistant Professor of Mathematics
Philip H. Bradley, PhD
Assistant Professor of Applied Mathematics
Steven G. Johnson, PhD
Assistant Professor of Applied Mathematics
Kiran S. Kedlaya, PhD
Assistant Professor of Mathematics
Byunghan Kim, PhD
Assistant Professor of Mathematics
(On leave)
Dmitry A. Panchenko, PhD
Assistant Professor of Mathematics
(On leave, spring)
Alexander Postnikov, PhD
Assistant Professor of Applied Mathematics
(On leave, spring)
Jason M. Starr, PhD
Assistant Professor of Mathematics
Jeff A. Viaclovsky, PhD
Assistant Professor of Mathematics
Katrin Wehrheim, PhD
Assistant Professor of Mathematics
(On leave)

Visiting Faculty
Ben Joseph Green, PhD
Professor of Mathematics
Charles Rezk, PhD
Professor of Mathematics

Senior Lecturer
John B. Lewis, PhD

Lecturer
Dionisios Margetis, PhD
Lecturer of Applied Mathematics

C.L.E. Moore Instructors
Pierre Albin, PhD
Aliaa Baraket, PhD (On leave)
Sunhi Choi, PhD
Dan Ciubotaru, PhD
Izzet Coskun, PhD
Wee Liang Gan, PhD
Marco E. Gualtieri, PhD
Matthew E. Hedden, PhD (On leave)
Nam-Gyu Kang, PhD
Kobi A. Kremnizer, PhD
Tyler Lawson, PhD
Elizabeth D. Mann, PhD
Gabriele Mondello, PhD
Brett D. Parker, PhD
Olga Plamenevskaya, PhD
Ilya Tyomkin, PhD
Chris Wendl, PhD (On leave)

Instructors in Applied Mathematics
Matthew J. Hancock, PhD
Aslan R. Kasimov, PhD
Ross A. Lippert, PhD
Jean-Christophe Nave, PhD
Per-Olof Persson, PhD
Clifford D. Smyth, PhD
Csaba Tóth, PhD

Research Staff
Senior Postdoctoral Research Associate
Catherine H. O'Neil, PhD (On leave)

Postdoctoral Research Associates
Yuxing Ben, PhD
Iordanis Kerendis, PhD
Plamen S. Koev, PhD

Administrative Staff
Camille Capozzi Carino, EdM
Personnel Coordinator
Paula F. Duggins, MA
Administrative Officer
Sonia Franklin-Sparrock
Financial Coordinator
Joanne E. Jonsson, BS
Academic Administrator
Tivon N. Luker
Systems Coordinator
Linda E. Okun, MA
Graduate Student Administrator
Dennis L. Porche, BA
Assistant to the Department Head

Professors Emeriti
Herman Chernoff, PhD
Professor of Applied Mathematics, Emeritus
Harvey Philip Greenspan, PhD
Professor of Applied Mathematics, Emeritus
Kenneth Myron Hoffman, PhD
Professor of Mathematics, Emeritus
Louis Norberg Howard, PhD
Professor of Applied Mathematics, Emeritus
Daniel Marinus Kan, PhD
Professor of Mathematics, Emeritus
Bertram Kostant, PhD
Professor of Mathematics, Emeritus
Chia-Chiao Lin, PhD
Institute Professor, Emeritus
Professor of Applied Mathematics, Emeritus
Willem V. R. Malkus, PhD
Professor of Applied Mathematics, Emeritus
James Raymond Munkres, PhD
Professor of Mathematics, Emeritus
Richard Donald Schafer, PhD
Professor of Mathematics, Emeritus
George Brinton Thomas, Jr., PhD
Professor of Mathematics, Emeritus
The Department of Physics offers undergraduate, graduate, and postgraduate training, with a wide range of options for specialization.

The emphasis of both the undergraduate curriculum and the graduate program is on understanding the fundamental principles that appear to govern the behavior of the physical world, from phenomena in the small-scale domain of subatomic particles to the large-scale structure of the universe, spanning a spatial range stretching from 10⁻¹⁸ m to 10²⁶ m. At each level of structural organization, active and exciting areas of investigation abound. Topics range from the basic constituents of matter (elementary particles), atomic and nuclear structure, through thermonuclear plasmas, physics at extremely low temperatures or extremely high pressures, to the evolution of stars, the large-scale structure of the universe, and the mystery of gravity.

The department has extensive facilities for experimental research, as described in the section on graduate study. Many of these are accessible to interested undergraduates in the context of the Undergraduate Research Opportunities Program. Students are encouraged to enrich their curriculum by taking advantage of opportunities Program. Students are encouraged to take the theoretical and experimental requirements of their junior year. A thesis proposal must be prepared before registering for thesis units and by Add Date of the fall term of the senior year. In order to introduce students to the research activities in the department, undergraduate physics colloquia are occasionally scheduled.

A relatively large amount of elective time usually becomes available during the fourth year and can be used effectively in a variety of ways, in physics or in other subjects. For further information, contact Professor Thomas J. Greytak.

Physics with Electrical Engineering 8-A Program

This program, offered in cooperation with the Department of Electrical Engineering and Computer Science, is designed for students who wish to supplement the regular physics curriculum with intensive study in the field of electrical engineering. Students completing this program receive the degree of Bachelor of Science in Physics and a letter from both participating departments certifying successful completion of the program.

The program should be of particular interest to students who wish to broaden their career options after receiving the bachelor’s degree and to those who plan graduate work in experimental physics. Students acquire a thorough foundation in both the theory and application of analog and digital electronic systems.

To receive certification, a student must complete the following subjects in addition to the required subjects in the regular physics program. This program requires a total of 183 units beyond the GIRs.

6.001 Structure and Interpretation of Computer Programs
6.002 Circuits and Electronics
6.003 Signals and Systems
6.012 Microelectronic Devices and Circuits
8.07 Electromagnetism II

Depending upon career objectives, a student may wish to take 6.111 Introductory Digital Systems Laboratory.

Bachelor of Science in Physics/ Course 8-B

The Course 8-B program is designed for students who wish to develop a strong background in the fundamentals of physics and then build on this foundation as they prepare for career paths that may not involve a graduate degree in physics. In the past, many students have found an understanding of the basic concepts of physics and an appreciation of the physicist’s approach to problem solving an excellent preparation for careers in business, law, medicine, or engineering. This option should be even more attractive today in light of the growing spectrum of nontraditional, technology-related career opportunities.

The 8-B program begins with the core subjects 8.01, 8.02, 8.03, 8.04, and 8.04. Students round out their foundation material with either an additional quantum mechanics subject, 8.05, or a subject in relativity, 8.20 or 8.03. There is an experimental requirement of 8.13 or, with the approval of the department, a laboratory subject of similar intensity in another department, an experimental research project or senior thesis, or an experimentally oriented summer externship. An exploration requirement consists of one elective subject in physics.
Bachelor of Science in Physics/Course 8

<table>
<thead>
<tr>
<th>General Institute Requirements (GIRs)</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 8.03 or 8.04 and 18.03 or 18.034 in the Departmental Program]</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Requirement [satisfied by 8.13 or 8.14 in the Departmental Program]</td>
<td>1</td>
</tr>
</tbody>
</table>

Total GIR Subjects Required for SB Degree: 17

Communication Requirement
The program includes a Communication Requirement of 4 subjects:

- 2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H);
- 2 subjects designated as Communication Intensive in the Major (CI-M).

PLUS Departmental Program

<table>
<thead>
<tr>
<th>Subject names below are followed by credit units, and by prerequisites if any (corequisites are indicated in italics and subjects given only in the Independent Activities Period are indicated as IAP).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
</tr>
<tr>
<td>8.03 Physics III, 12, REST; 8.02* or 8.02</td>
</tr>
<tr>
<td>18.03 Differential Equations, 12, REST; 18.02 or 18.014</td>
</tr>
<tr>
<td>or 18.034 Differential Equations, 12, REST; 18.02 or 18.014</td>
</tr>
<tr>
<td>8.03 Relativity, 12; 8.01, 18.02</td>
</tr>
<tr>
<td>8.04 Quantum Physics I, 12, REST; 8.07* or 8.07*</td>
</tr>
<tr>
<td>8.04 Statistical Physics I, 12; 8.03, 18.04</td>
</tr>
<tr>
<td>8.05 Quantum Physics II, 12; 8.04</td>
</tr>
<tr>
<td>8.06 Quantum Physics III, 12, CI-M; 8.05</td>
</tr>
<tr>
<td>8.13 Experimental Physics I, 18, LAB, CI-M; 8.04</td>
</tr>
<tr>
<td>8.14 Experimental Physics II, 18, LAB; 8.05, 8.13</td>
</tr>
<tr>
<td>8.78U Thesis (12 units)(1)</td>
</tr>
</tbody>
</table>

Restrict Electives

One subject given by the Department of Mathematics beyond 18.03 (12 units)

Two additional subjects offered by the department, including at least one of the following: 8.07, 8.08, and 8.09(2)

Departmental Program Units That also Satisfy the GIRs

(36)

Unrestricted Electives

48

Total Units Beyond the GIRs Required for SB Degree

180

Notes

- Alternate prerequisites are listed in the subject description.
- A thesis of 12 units is required. Not more than 30 units of thesis credit may be included in the minimum of 180 units beyond the General Institute Requirements required for the SB degree.
- Subject descriptions identify subjects that cannot be used for this purpose. For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.

All 8-B students must complete a focus requirement—three subjects forming one intellectually coherent unit in some area (not necessarily physics), subject to the approval of the department and separate from those used by the student to satisfy the HASS requirement. Possible areas of focus include astronomy, biology, computational physics, law, medicine, nanotechnology, history of science, science and technology policy, philosophy, and science teaching. Some students may choose to satisfy their experimental and exploration requirements in the same area as their focus; others may opt for greater breadth by choosing other fields for these requirements.

The Physics Department recommends that 8-B students satisfy the departmental portion of the Communication Requirement by taking two of the following: 8.06, 8.13, 8.225J, or 8.287J. The department may accept substitutions for either or both of these subjects by CI-M subjects from other departments if they form a natural part of the student’s individual 8-B program.

Students who wish to pursue this degree should inform their departmental advisor of this choice during their sophomore year in order to have enough time to design a complete program. Specific plans for the experimental and focus requirements require the written approval of the department’s 8-B coordinator.

Minor Program

The Minor in Physics provides a solid foundation for the pursuit of a broad range of professional activities in science and engineering. The requirements for a Minor in Physics are 18.03 or 18.034, plus any five Course 8 subjects beyond the General Institute Requirements.

Students should submit a completed Minor Application Form to the Physics Education Office, Room 4-352. The Physics Department’s minor coordinator is Brian Canavan. For more information on minor programs, see Undergraduate Education in Part 1.

The Minor in Astronomy, offered jointly with the Department of Earth, Atmospheric, and Planetary Sciences, covers the observational and theoretical foundations of astronomy. The minor requires seven subjects as follows:
Astronomy, Mathematics, and Physics

Required subjects: 8.03, 8.281/12.402, 18.03 or 18.034

Astrophysics

Choose one: 8.284, 8.286, 8.292/12.330

Planetary Astronomy

Choose one: 12.004, 12.008

Observations

8.287/12.410

Independent Project

Choose one: 8.UR, 8.ThU, 12.UR, 12.ThU, 12.411

Four of the subjects used to satisfy the requirements for the astronomy minor may not be used to satisfy any other minor or major.

Inquiries

Additional information concerning degree programs and research activities may be obtained by writing to Professor Thomas J. Greytak or to the Physics Education Office, Room 4-352, MIT, Cambridge, MA 02139-4307, 617-253-4841.

GRADUATE STUDY

The Physics Department offers programs leading to the degrees of Master of Science in Physics, Doctor of Philosophy, and Doctor of Science.

Entrance Requirements for Graduate Study

Students intending to pursue graduate work in physics should have as a background the equivalent of the requirements for the Bachelor of Science in Physics from MIT. However, students may make up some deficiencies over the course of their graduate work.

Master of Science in Physics

The requirements for the Master of Science in Physics are the General Institute Requirements listed under Graduate Education in Part 1. The master’s thesis must represent a piece of independent research work in any of the fields described below, and must be carried out under the supervision of a department faculty member. No fixed time is set for the completion of a.

Bachelor of Science in Physics/Course 8-B

<table>
<thead>
<tr>
<th>General Institute Requirements (GiRs)</th>
<th>Subjects</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Requirement</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Humanities, Arts, and Social Sciences Requirement</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives in Science and Technology (REST) Requirement [can be satisfied by 8.03 or 8.04 and 18.03 or 18.034 in the Departmental Program]</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Laboratory Requirement</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total GiR Subjects Required for SB Degree</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>The program includes a Communication Requirement of 4 subjects:</td>
<td></td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in Humanities, Arts, and Social Sciences (CI-H); and</td>
<td></td>
</tr>
<tr>
<td>2 subjects designated as Communication Intensive in the Major (CI-M).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLUS Departmental Program</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Subjects</td>
<td>75–78</td>
</tr>
<tr>
<td>8.03 Physics III, 12, REST; 8.03*, 18.02</td>
<td></td>
</tr>
<tr>
<td>8.03 Differential Equations, 12, REST; 18.02 or 18.014 or 18.034 Differential Equations, 12, REST; 18.02 or 18.014</td>
<td></td>
</tr>
<tr>
<td>8.04 Quantum Physics I, 12, REST; 8.03*, 8.03* 8.04 Quantum Statistics Physics I, 12, 8.03, 18.03</td>
<td></td>
</tr>
<tr>
<td>One of the following subjects: 8.05 Quantum Physics II, 12; 8.04 or 8.20 Introduction to Special Relativity, 9, REST; 8.01, 18.01 or 8.033 Relativity, 12; 8.01, 18.02</td>
<td></td>
</tr>
<tr>
<td>8.13 Experimental Physics I, 18, LAB, CI-M; 8.04 or a laboratory subject of similar intensity in another department, or an experimental research project or senior thesis, or an experimentally oriented summer externship</td>
<td></td>
</tr>
<tr>
<td>Restricted Electives</td>
<td>48</td>
</tr>
<tr>
<td>At least one subject given by the Physics Department in addition to those listed above (12 units)(i) Three subjects forming one intellectually coherent unit in some area, not necessarily in physics, subject to the approval of the Physics Department (36 units)</td>
<td></td>
</tr>
<tr>
<td>Departmental Program Units That also Satisfy the GiRs (24)</td>
<td></td>
</tr>
<tr>
<td>Unrestricted Electives</td>
<td>78–81</td>
</tr>
<tr>
<td>Total Units Beyond the GiRs Required for SB Degree</td>
<td>180</td>
</tr>
</tbody>
</table>

No subject can be counted both as part of the 17-subject GiRs and as part of the 180 units required beyond the GiRs. Every subject in the student’s departmental program will count toward one or the other, but not both.

Notes

*Alternate prerequisites are listed in the subject description.

(i) Subject descriptions identify subjects that cannot be used for this purpose.

For an explanation of credit units, or hours, please refer to the Subject Key in Part 3 of this Bulletin.
The Center for Theoretical Physics houses a fairly large group of theorists including professional staff, postdoctoral fellows, senior visitors, and graduate students engaged in research in theory. Opportunities for communication and collaboration are maximized within the center; lively interaction among the many specialists in the various areas of interest is characteristic of this MIT group and is one of the major sources of the center’s strength.

Much of the research in the department is carried out as part of the work of various interdisciplinary laboratories and centers, including the Laboratory for Nuclear Science, Research Laboratory of Electronics, Spectroscopy Laboratory, Center for Materials Science and Engineering, Kavli Institute for Astrophysics and Space Research, Francis Bitter Magnet Laboratory, Microsystems Technology Laboratories, Plasma Science and Fusion Center, and the Program on Sciences and Technology and International Security. These facilities, most of which are described under Interdisciplinary Research and Study in Part 1, provide close relationships among the research activities of a number of MIT departments and give students opportunities for contact with research carried out in disciplines other than physics.

Inquiries
Additional information on degree programs, research activities, admissions, financial aid, teaching and research assistantships may be obtained by writing to Professor Thomas J. Greytak, Room 6-109, MIT, Cambridge, MA 02139-4307, 617-253-6818.

Doctor of Philosophy and Doctor of Science
Candidates for the Doctor of Philosophy or Doctor of Science are expected to enroll in those basic graduate subjects that prepare them for the general examination, which must be passed no later than in the seventh term after initial enrollment. No specific subjects of study are prescribed, except for the requirement of two subjects in the candidate’s doctoral research area and two subjects outside the candidate’s field of specialization (breadth requirement). Half of the breadth requirement may be satisfied through a departmentally approved industrial internship. The doctoral thesis must represent a substantial piece of original research, carried out under the supervision of a department faculty member.

The Physics Department faculty members offer subjects of instruction and are engaged in research in a variety of fields in experimental and theoretical physics. This broad spectrum of activities is organized in the divisional structure of the department, presented below. Graduate students are encouraged to contact faculty members in the division of their choice to inquire about opportunities for research, and to pass through an apprenticeship (by signing up for Special Problems in Graduate Physics) as a first step toward an engagement in independent research for a doctoral thesis.

Research Divisions

The Astrophysics Division of the department has a varied program of instrument development and ground-based and satellite observations across the entire electromagnetic spectrum, with principal emphasis on the radio, optical, and x-ray bands. Theoretical work emphasizes high energy phenomena, stellar evolution, galactic structure, solar oscillations, and cosmology. Other areas of study include interplanetary and astrophysical plasmas, gravitational radiation, and the cosmic microwave background. See also the listing for Haystack Observatory in the section on Interdisciplinary Research and Study in Part 1.

The chief emphasis of Nuclear and Particle Theory research at the Center for Theoretical Physics is on understanding the fundamental particles of nature, as revealed by their interactions and by their decay, and on the characteristic quantum modes of motion systems composed of strongly interacting particles such as atomic nuclei. Work is also conducted on theoretical astrophysics as well as on the properties of other forms of matter. In all of this research, close contact is maintained with experimentalists, both within MIT and elsewhere.

Research activities in the Division of Nuclei and Particles include the broad fields of nuclear reaction and heavy ion physics, intermediate-energy nuclear structure physics, and high-energy fundamental particle physics. The experimental research in these areas is based on MIT’s 1 GeV Bates Linear Accelerator and on the accelerators at Brookhaven National Laboratory, the Fermi National Accelerator Laboratory in Batavia, Illinois, the Stanford Linear Accelerator, CERN (Geneva), the electron-positron collider at DESY (Hamburg, Germany), and the Gran Sasso underground laboratory at Frascati (Italy). Further information appears in the section on Interdisciplinary Research and Study in Part 1 under Laboratory for Nuclear Science.

The large and dynamic program in Condensed Matter, Atomic, and Plasma Physics provides students with a wide spectrum of research opportunities. Current topics in condensed matter include electron transport and critical phenomena in one, two, and three dimensions, mesoscope physics, and high temperature superconductivity. Atomic physics in the division involves ultra-high resolution laser spectroscopy, the trapping and cooling of atoms with lasers, and Bose-Einstein condensation. There are strong plasma programs in magnetically confined fusion and free electron lasers. Several faculty are applying the techniques of modern physics to current problems in medicine and biology. Extensive facilities are available on campus for the preparation and characterization of advanced materials and for work with high magnetic fields, low temperatures, and sub-micron structures. Scattering studies are being carried out at the Advanced Proton Source at Argonne National Laboratory and the NIST Center for Neutron Research in Gaithersberg, Maryland.

The chief emphasis of Nuclear and Particle Physics is on understanding the fundamental particles of nature, as revealed by their interactions and by their decay, and on the characteristic quantum modes of motion systems composed of strongly interacting particles such as atomic nuclei. Work is also conducted on theoretical astrophysics as well as on the properties of other forms of matter. In all of this research, close contact is maintained with experimentalists, both within MIT and elsewhere.

Inquiries
Additional information on degree programs, research activities, admissions, financial aid, teaching and research assistantships may be obtained by writing to Professor Thomas J. Greytak, Room 6-109, MIT, Cambridge, MA 02139-4307, 617-253-6818.

Doctor of Philosophy and Doctor of Science
Candidates for the Doctor of Philosophy or Doctor of Science are expected to enroll in those basic graduate subjects that prepare them for the general examination, which must be passed no later than in the seventh term after initial enrollment. No specific subjects of study are prescribed, except for the requirement of two subjects in the candidate’s doctoral research area and two subjects outside the candidate’s field of specialization (breadth requirement). Half of the breadth requirement may be satisfied through a departmentally approved industrial internship. The doctoral thesis must represent a substantial piece of original research, carried out under the supervision of a department faculty member.

The Physics Department faculty members offer subjects of instruction and are engaged in research in a variety of fields in experimental and theoretical physics. This broad spectrum of activities is organized in the divisional structure of the department, presented below. Graduate students are encouraged to contact faculty members in the division of their choice to inquire about opportunities for research, and to pass through an apprenticeship (by signing up for Special Problems in Graduate Physics) as a first step toward an engagement in independent research for a doctoral thesis.

Research Divisions

The Astrophysics Division of the department has a varied program of instrument development and ground-based and satellite observations across the entire electromagnetic spectrum, with principal emphasis on the radio, optical, and x-ray bands. Theoretical work emphasizes high energy phenomena, stellar evolution, galactic structure, solar oscillations, and cosmology. Other areas of study include interplanetary and astrophysical plasmas, gravitational radiation, and the cosmic microwave background. See also the listing for Haystack Observatory in the section on Interdisciplinary Research and Study in Part 1.

The chief emphasis of Nuclear and Particle Physics is on understanding the fundamental particles of nature, as revealed by their interactions and by their decay, and on the characteristic quantum modes of motion systems composed of strongly interacting particles such as atomic nuclei. Work is also conducted on theoretical astrophysics as well as on the properties of other forms of matter. In all of this research, close contact is maintained with experimentalists, both within MIT and elsewhere.

Inquiries
Additional information on degree programs, research activities, admissions, financial aid, teaching and research assistantships may be obtained by writing to Professor Thomas J. Greytak, Room 6-109, MIT, Cambridge, MA 02139-4307, 617-253-6818.

Doctor of Philosophy and Doctor of Science
Candidates for the Doctor of Philosophy or Doctor of Science are expected to enroll in those basic graduate subjects that prepare them for the general examination, which must be passed no later than in the seventh term after initial enrollment. No specific subjects of study are prescribed, except for the requirement of two subjects in the candidate’s doctoral research area and two subjects outside the candidate’s field of specialization (breadth requirement). Half of the breadth requirement may be satisfied through a departmentally approved industrial internship. The doctoral thesis must represent a substantial piece of original research, carried out under the supervision of a department faculty member.

The Physics Department faculty members offer subjects of instruction and are engaged in research in a variety of fields in experimental and theoretical physics. This broad spectrum of activities is organized in the divisional structure of the department, presented below. Graduate students are encouraged to contact faculty members in the division of their choice to inquire about opportunities for research, and to pass through an apprenticeship (by signing up for Special Problems in Graduate Physics) as a first step toward an engagement in independent research for a doctoral thesis.

Research Divisions

The Astrophysics Division of the department has a varied program of instrument development and ground-based and satellite observations across the entire electromagnetic spectrum, with principal emphasis on the radio, optical, and x-ray bands. Theoretical work emphasizes high energy phenomena, stellar evolution, galactic structure, solar oscillations, and cosmology. Other areas of study include interplanetary and astrophysical plasmas, gravitational radiation, and the cosmic microwave background. See also the listing for Haystack Observatory in the section on Interdisciplinary Research and Study in Part 1.

The chief emphasis of Nuclear and Particle Physics is on understanding the fundamental particles of nature, as revealed by their interactions and by their decay, and on the characteristic quantum modes of motion systems composed of strongly interacting particles such as atomic nuclei. Work is also conducted on theoretical astrophysics as well as on the properties of other forms of matter. In all of this research, close contact is maintained with experimentalists, both within MIT and elsewhere.

Inquiries
Additional information on degree programs, research activities, admissions, financial aid, teaching and research assistantships may be obtained by writing to Professor Thomas J. Greytak, Room 6-109, MIT, Cambridge, MA 02139-4307, 617-253-6818.
FACULTY AND STAFF

Faculty and Teaching Staff
Marc Aaron Kastner, PhD
Donner Professor of Science
Head of the Department

Thomas John Greytak, PhD
Professor of Physics
Associate Head for Education
MacVicar Faculty Fellow

Professors
Raymond C. Ashoori, PhD
Professor of Physics

Ulrich Justus Becker, PhD
Professor of Physics
(On leave)

John Winston Belcher, PhD
Professor of Physics
Class of 1960 Faculty Fellow
MacVicar Faculty Fellow
(On leave, fall)

George Bernard Benedek, PhD
Alfred H. Caspary Professor of Physics and Biological Physics

William Bertozzi, PhD
Professor of Physics

Edmund W. Bertschinger, PhD
Professor of Physics

Wit Busza, PhD
Francis L. Friedman Professor of Physics
MacVicar Faculty Fellow

Claude Roger Canizares, PhD
Bruno Rossi Professor of Physics
Associate Provost

Min Chen, PhD
Professor of Physics

Bruno Coppi, PhD
Professor of Physics

Mildred Spiewak Dresselhaus, PhD
Professor of Electrical Engineering and Physics
Institute Professor

James Ludlow Elliot, PhD
Professor of Earth, Atmospheric and Planetary Sciences and Physics
Director, George R. Wallace, Jr. Astrophysical Observatory

Edward Henry Farhi, PhD
Professor of Physics
Director, Center for Theoretical Physics

Michael Stephen Feld, PhD
Professor of Physics
Director, George R. Harrison Spectroscopy Laboratory

Peter H. Fisher, PhD
Professor of Physics

Daniel Freedman, PhD
Professor of Applied Mathematics and Physics

Alan Harvey Guth, PhD
Victor F. Weisskopf Professor of Physics

Jacqueline N. Hewitt, PhD
Professor of Physics
Director, Center for Space Research

Erich Peter Ippen, PhD
Elihu Thomson Professor of Electrical Engineering and Physics

Roman Wladimir Jackiw, PhD
Jerrold Zacharias Professor of Physics

Robert Loren Jaffe, PhD
Professor of Physics

Otto and Jane Morningstar Professor of Science
MacVicar Faculty Fellow

John Dimitris Joannopoulos, PhD
MacVicar Faculty Fellow

Paul Christopher Joss, PhD
Professor of Physics

Mehran Kardar, PhD
Professor of Physics

Wolfgang Ketterle, PhD
John D. MacArthur Professor of Physics

Stanley Benedict Kowalski, PhD
Professor of Physics
(On leave, spring)

Patrick A. Lee, PhD
William and Emma Rogers Professor of Physics

Leonid S. Levitov, PhD
Professor of Physics

Walter Hendrik Gustav Lewin, PhD
Professor of Physics
(On leave, spring)

J. David Litster, PhD
Professor of Physics

June Lorraine Matthews, PhD
Professor of Physics
Director, Laboratory for Nuclear Science

Richard G. Milner, PhD
Professor of Physics
Director, Bates Linear Accelerator Center

Ernest J. Moniz, PhD
Cecil and Ida Green Distinguished Professor of Physics
Codirector, Laboratory for Energy and the Environment

John William Negele, PhD
William A. Coolidge Professor of Physics
(On leave, fall)

Miklos Porkolab, PhD
Professor of Physics
Director, Plasma Science and Fusion Center

David Edward Pritchard, PhD
Cecil and Ida B. Green Professor of Physics
Associate Director, Research Laboratory for Electronics

Krishna Rajagopal, PhD
Professor of Physics
(On leave)

Saul Alan Rappaport, PhD
Professor of Physics

Robert Page Redwine, PhD
Professor of Physics

Paul Schechter, PhD
William A. M. Burden Professor of Astrophysics
(On leave, spring)

H. Sebastian Seung, PhD
Professor of Computational Neuroscience and Physics

Washington Taylor IV, PhD
Class of 1942 Career Development Professor
Professor of Physics
(On leave)
Part 2

School of Science

Samuel C. C. Ting, PhD
Thomas Dudley Cabot Professor of Physics

Xiao-Gang Wen, PhD
Professor of Physics
(On leave, fall)

Frank Wilczek, PhD
Herman Feshbach Professor of Physics

Boleslaw Wyslouch, PhD
Professor of Physics

Richard Kumeo Yamamoto, PhD
Professor of Physics

Xiao-Gang Wen, PhD
Professor of Physics
(On leave, fall)

Frank Wilczek, PhD
Herman Feshbach Professor of Physics

Boleslaw Wyslouch, PhD
Professor of Physics

Richard Kumeo Yamamoto, PhD
Professor of Physics

Barton Zwiebach, PhD
Professor of Physics

Associate Professors

Deepto Chakrabarty, PhD
Associate Professor of Physics

Isaac Chuang, PhD
Associate Professor of Media Arts and Sciences,
and Physics

Amihay Hanany, PhD
Associate Professor of Physics
(On leave, fall)

Christoph M. E. Paus, PhD
Associate Professor of Physics

Gunther Roland, PhD
Associate Professor of Physics

Max Tegmark, PhD
Associate Professor of Physics
(On leave, spring)

Alexander van Oudenaarden, PhD
W. M. Keck Career Development Associate
Professor in Biomedical Engineering

Vladan Vuletic, PhD
Lester Wolfe Associate Professor of Physics
Alfred P. Sloan Research Fellow

Assistant Professors

Adam Burgasser, PhD
Assistant Professor of Physics

Scott Michael Burles, PhD
Assistant Professor of Physics

Joseph Formaggio, PhD
Assistant Professor of Physics

Leonardo Giusti, PhD
Assistant Professor of Physics

Eric Hudson, PhD
Assistant Professor of Physics

Class of 1958 Career Development Chair
(On leave, spring)

Scott Hughes, PhD
Class of 1956 Career Development Assistant
Professor of Physics

Erotkritos Katsavounidis, PhD
Assistant Professor of Physics

Bruce Knuteson, PhD
Assistant Professor of Physics
(On leave, fall)

Young Sang Lee, PhD
Assistant Professor of Physics
(On leave, spring)

Hong Liu, PhD
Assistant Professor of Physics

Alfred P. Sloan Research Fellow
(On leave, fall)

Nergis Mavalvala, PhD
Cecil and Ida Green Career Development
Assistant Professor of Physics

Leonid Mirny, PhD
Assistant Professor of Health Sciences and
Technology and Physics

Steven Nahn, PhD
Assistant Professor of Physics

Kate Scholberg, PhD
Mitsui Career Development Chair Assistant
Professor of Physics
(On leave)

Gabriella Sciolta, PhD
Assistant Professor of Physics
(On leave, spring)

Marin Soljacic, PhD
Assistant Professor of Physics

Iain W. Stewart, PhD
Assistant Professor of Physics

Alfred P. Sloan Research Fellow

Bernd Surrow, PhD
Assistant Professor of Physics

Senthil Todadri, PhD
Assistant Professor of Physics

Alfred P. Sloan Research Fellow
(On leave, fall)

Senior Lecturers

Peter Dourmashkin, PhD
Alan Lazarus, PhD
George S. F. Stephans, PhD
Edwin F. Taylor, PhD

Lecturers

David Kaiser, PhD
Scott Sewell, PhD

Research Staff

Senior Research Scientists

Thomas William Donnelly, PhD
Earl S. Marmar, PhD
Frank E. Taylor, PhD
Richard J. Temkin, PhD

Research Associates

Aleksey Lomakin, PhD
Jayanti Pande, PhD

Technical Instructors

Markos Hankin, BS
Andrew Neely, BS
Adam Reynolds, BS
William Sanford, BS

Administrative Staff

Carol Breen
Communications/Pappalardo Fellowship
Program Administrator

Brian E. Canavan, MEd
Academic Administrator

Elizabeth Chadis, BA
Development Officer

Kathy Krysiak, JD, SPHR
Human Resources and Academic Affairs
Administrator

Sean P. Robinson, PhD
Space and Renovation Manager

Barry Sheehan, MA
Financial Administrator
Heather G. Williams, MA
Administrative Officer

Professors Emeriti
Michel Baranger, PhD
Professor of Physics, Emeritus

Ahmet Nihat Berker, PhD
Professor of Physics, Emeritus

Aron Myron Bernstein, PhD
Professor of Physics, Emeritus

Robert J. Birgeneau, PhD
Professor of Physics, Emeritus

Hale Van Dorn Bradt, PhD
Professor of Physics, Emeritus

Bernard Flood Burke, PhD
Professor of Physics, Emeritus

George Whipple Clark, PhD
Professor of Physics, Emeritus

Eric Richard Cosman, PhD
Professor of Physics, Emeritus

Peter Theodore Demos, PhD
Professor of Physics, Emeritus

Thomas H. Dupree, PhD
Professor of Physics, Emeritus

Harald A. Enge, PhD
Professor of Physics, Emeritus

Anthony Philip French, PhD
Professor of Physics, Emeritus

Jerome Isaac Friedman, PhD
Institute Professor, Emeritus

Professor of Physics, Emeritus

Jeffrey Goldstone, PhD
Professor of Physics, Emeritus

Lee Grodzins, PhD
Professor of Physics, Emeritus

Kerson Huang, PhD
Professor of Physics, Emeritus

Robert Inslee Hulsizer, Jr., PhD
Professor of Physics, Emeritus

Karl Uno Ingard, PhD
Professor of Aeronautics and Astronautics and
Physics, Emeritus

Ali Javan, PhD
Professor of Physics, Emeritus

Arthur Kent Kerman, PhD
Professor of Physics

John Gordon King, PhD
Francis Friedman Professor of Physics, Emeritus

Vera Kistiakowsky, PhD
Professor of Physics, Emerita

Daniel Kleppner, PhD
Lester Wolfe Professor of Physics, Emeritus

George Fred Koster, PhD
Professor of Physics, Emeritus

Benjamin Lax, PhD
Professor of Physics, Emeritus

Earle Leonard Lomon, PhD
Professor of Physics, Emeritus

Francis Eugene Low, PhD
Institute Professor, Emeritus

Professor of Physics, Emeritus

Stanislaw Olbert, PhD
Professor of Physics, Emeritus

Louis Shreve Osborne, PhD
Professor of Physics, Emeritus

Irwin Abraham Pless, PhD
Professor of Physics, Emeritus

Lawrence Rosenson, PhD
Professor of Physics, Emeritus

Malcom Woodrow Pershing Strandberg, PhD
Professor of Physics, Emeritus

Laszlo Tisza, PhD
Professor of Physics, Emeritus

Rainer Weiss, PhD
Professor of Physics, Emeritus

Peter Adalbert Wolff, PhD
Professor of Physics, Emeritus

Physics Industry Forum

James Edward Young, PhD
Professor of Physics, Emeritus
The Whitaker College of Health Sciences and Technology provides an academic and administrative focus for the development of health-related activities at the Institute.
In 1977, MIT established the Whitaker College of Health Sciences and Technology to provide an academic and administrative focus for the development of health-related activities at the Institute.

Many faculty members involved in the educational and research programs of Whitaker College hold joint appointments in the College and in other Schools, departments, and interdisciplinary laboratories at MIT. The director of Whitaker College is Alice P. Gast, Robert T. Halsam professor of chemical engineering, vice president for research and associate provost.

Whitaker College includes the Center for Environmental Health Sciences, the Clinical Research Center, the Harvard-MIT Division of Health Sciences and Technology (HST), and the Division of Comparative Medicine. Refer to the section on Interdisciplinary Research and Study in Part I for descriptions of the first two centers.

There are several graduate programs in the College. HST offers various graduate degree options that focus on different aspects of engineering and the biomedical sciences:

- The program in Medical Engineering and Medical Physics leads to the PhD or ScD degree from MIT or the Harvard Faculty of Arts and Sciences.
- The Medical Sciences program leads to the MD degree from Harvard Medical School.
- Both the Radiological Sciences Joint Program and the Speech and Hearing Bioscience and Technology Program lead to the PhD or ScD degree from MIT.
- The Biomedical Enterprise Program leads to the SM in Health Sciences and Technology through HST or the SM in Management of Technology through the Sloan School of Management.
- The Master of Engineering in Biomedical Engineering is offered in conjunction with the MIT Biological Engineering Division.
- The Medical Informatics Training Program offers predoctoral and postdoctoral options from MIT and Harvard.
- The Clinical Investigator Training Program trains postdoctoral physicians in patient-oriented research. Fellows in this program have the option to pursue a Master of Medical Sciences degree from Harvard.

Division of Comparative Medicine

The Division of Comparative Medicine has three basic missions: education, research, and the provision of comprehensive animal husbandry, clinical, and diagnostic services for all research animals at MIT. The division serves as the centralized animal resource on campus and provides the necessary expertise for investigators conducting biomedical research using animal models.

Division staff members educate the MIT research community in the biology and use of research animals as models for biomedical research. The division provides online training materials for researchers working with animals as well as one-on-one training based on individual requirements. Division members teach graduate-level courses in the Biological Engineering Division and provide mentorship for graduate students.

With an NIH-funded postdoctoral training program for veterinarians specializing in biomedical research, the major long-range goal of the research at the division is to develop animal models or in vitro systems that are pertinent to biomedical research. The division is internationally recognized for characterizing new *Helicobacter* species and studying the relationship of *Helicobacter* to diseases that are prevalent throughout the world.

Faculty and Teaching Staff

Alice P. Gast
Robert T. Halsam Professor of Chemical Engineering
Vice President for Research and Associate Provost
Director, Whitaker College of Health Sciences and Technology

Administrative Staff

Barbara Engel, MFA
Administrative Officer

Thomas M. Quinn, BS
Facilities Officer

Degrees Offered in the Whitaker College of Health Sciences and Technology

<table>
<thead>
<tr>
<th>Health Sciences and Technology</th>
<th>Course HST</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>Biomedical Informatics</td>
</tr>
<tr>
<td>MD</td>
<td>Medical Sciences (degree from Harvard Medical School)</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Biomedical Engineering</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Electrical and Medical Engineering</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Health Sciences and Technology</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Mechanical and Medical Engineering</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Medical Engineering</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Medical Physics</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Radiological Sciences</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Speech and Hearing Bioscience and Technology</td>
</tr>
</tbody>
</table>

Note: Many departments make it possible for a graduate student to pursue a simultaneous master’s degree.
Founded more than 30 years ago, the Harvard-MIT Division of Health Sciences and Technology (HST) is one of the oldest and largest biomedical engineering and physician-scientist training programs in the United States and the longest-standing collaboration between Harvard and MIT.

HST’s unique interdisciplinary educational program brings engineering as well as the physical and biological sciences from the scientist’s bench to the patient’s bedside. Conversely, it brings clinical insight from the patient’s bedside to the laboratory bench. In this way, HST students are trained to have deep understanding of engineering, physical sciences, and the biological sciences, complemented with hands-on experience in the clinic or in industry; and they become conversant with the underlying quantitative and molecular aspects of medicine and biomedical science. Within the division, more than 400 graduate students work with eminent faculty and affiliated faculty members from throughout the MIT and Harvard communities.

In addition to its outstanding record of accomplishment for research in human health care, HST educational programs are distinguished by three key elements:

- A strong quantitative orientation
- Required hands-on experience in a clinical or industry setting
- A focused interdisciplinary research project

HST offers eight multidisciplinary graduate degree options:

- MD
- Medical Engineering and Medical Physics Concentrations include:
 - Bioinformatics and integrative genomics
 - Biomedical imaging and bio-optics
 - Cellular and molecular bioengineering/biophysics
 - Biomechanics and biofluidics
 - Systems physiology
 - Bioinstrumentation and devices
 - Regenerative biomedical technologies
- Speech and Hearing Bioscience and Technology
- Radiological Sciences Joint Program
- Biomedical Enterprise Program
- Biomedical Informatics
- Clinical Investigator Training Program
- Master of Engineering in Biomedical Engineering

MASTER’S PROGRAMS

Biomedical Enterprise Program

Launched in 2002 as a collaboration with the MIT Sloan School of Management, HST’s Biomedical Enterprise Program (BEP) is designed for individuals with business experience and a strong foundation in science and engineering. BEP prepares students for leadership roles in the transfer of new technologies from concept through product development to clinical adoption in the context of existing companies or newly established ventures.

Acknowledging that medical innovations in laboratory research and clinical care benefit society only when they become commercially marketable products and services, BEP offers a unique curriculum that leverages the strengths of HST, MIT Sloan, Harvard Medical School (HMS), and the affiliated hospitals. BEP students take preclinical and engineering courses alongside HST’s MD and PhD students, and business courses with other MIT Sloan students. They participate in unique integrative courses designed to address the specific needs of starting, growing, and managing a biomedical enterprise. These courses were developed and are taught by a team of HST and Sloan faculty, including several local entrepreneurs. Also included in the curriculum is a hands-on hospital-based clinical experience that pairs students with physician-scientists and provides insight into the hospital environment and patient care.

BEP offers two dual-degree options for individuals who need training in both management and science, and a one-year degree option for business executives who already have a graduate degree in management. The dual-degree option leads to an MBA or SM degree from MIT Sloan and an SM degree from HST. The single-degree option leads to the SM degree from HST.

Master of Engineering in Biomedical Engineering

The Master of Engineering in Biomedical Engineering (MEBE) is offered jointly by HST and the Biological Engineering Division. This program aims to educate students at the interface between engineering and biology or medicine, preparing them for leadership positions in the medical products, pharmaceutical, and biotechnology industries. The MEBE program is a five-year program leading to a bachelor’s degree in a science or engineering discipline and a Master of Engineering in Biomedical Engineering. The bioengineering (BE) track, emphasizing a unification of engineering and biology, operates under the auspices of the Biological Engineering Division. The medical engineering (ME) track emphasizes engineering applications in systems physiology and clinical medicine and is offered under the auspices of HST. It is of particular value to students interested in applying biomedical engineering to the basic understanding of disease processes in the post-genomic era, and is designed for individuals desiring a medical and clinical focus in their careers.

While the two MEBE tracks have a similar overall structure and academic demands, students in the ME track take subjects that enable them to apply engineering expertise to problems in the medical and clinical sciences. In contrast, the BE track is based on subjects that view biological systems from an engineering perspective, using biology as one of the foundational sciences for engineering, along with physics, chemistry, and mathematics. Admission to the MEBE program requires candidates to demonstrate adequate quantitative and engineering credentials through coursework, usually as part of an undergraduate degree program. Students interested in applying to the MEBE program should submit a standard MIT graduate application by the end of their junior year. Detailed program objectives and the requirements for each track are listed under the Biological Engineering Division in Part 2. Additional information can be obtained by contacting Professor Roger Mark at 617-253-7818 (ME track) or Professor Roger Kamm at 617-253-5330 (BE track).

Master of Health Sciences and Technology

HST offers a general master’s degree program that can be coupled to other degree programs, such as the MD degree described below. To accommodate a wide range of student interests, the curriculum for the Master of Health Sciences and Technology degree is determined by agree-
ment between the student and his or her advisor. There are no specific requirements other than the Institute requirement for 66 subject units and a thesis. In each case, the Institute requirement for the master’s degree must be satisfied. Further information can be obtained from HST’s Office of Academic Affairs, Room E25-518, telephone 617-258-7084.

DOCTORAL PROGRAMS

Medical Engineering and Medical Physics

The doctoral program in Medical Engineering and Medical Physics (MEMP) provides a thorough grounding in a classical discipline of engineering or physics together with extensive preparation in human biology, basic medical science, clinical medicine, and the role of technology in patient care.

The MEMP curriculum has four major components: an intensive graduate program in a science or engineering department that includes electives in biomedical engineering subjects; a series of subjects in biomedical sciences taken together with the HST MD students, which promotes understanding of the fundamental biological processes in cells, tissues, and organs; specialized clinical training, which prepares the student to conduct effective research in patient-care environments and to thoroughly understand the process of medical decision making and the role of science technology in health-care delivery; and doctoral thesis research on a fundamentally important problem in medical engineering or medical physics. The five-to-seven-year program leads to the PhD or ScD degree awarded by MIT, or the PhD degree awarded by the Harvard Faculty of Arts and Sciences.

MEMP graduates are well qualified as engineers or physicists and have extensive knowledge of the medical sciences. This enables them to engage in productive and independent investigations at the interface of technology and medicine. This technology-medicine interface represents a continuum that extends from the molecular level to the whole-organism level. Accordingly, students may select from two distinct curricular sequences: cellular and molecular medicine or systems physiology and medicine. Students in the systems physiology and medicine track are introduced to clinical medicine and become involved in the assessment and management of human disease. Students in the cellular and molecular medicine track receive in-depth training and experience in cellular and molecular biology, emphasizing the impact of modern biology on biomedical engineering. In both tracks, students learn important clinical skills and acquire a deep understanding of clinical care and medical decision-making processes.

Additionally, there are optional tracks within the MEMP program that focus on particular areas, such as neuroimaging or bioinformatics. The Bioinformatics and Integrative Genomics (BIG) program trains talented quantitative scientists in the biology, engineering, and information sciences used in genomic applications. The program features a core curriculum that focuses on engineering, biology, bioinformatics, computer science, and probability theory. A month-long introductory hands-on genomics laboratory is also an essential component of the curriculum.

MEMP applicants with undergraduate degrees in engineering or physics must apply simultaneously for admission to HST and to a graduate department at MIT or Harvard. Additional information about applying to MEMP may be obtained by contacting Ms. Catherine Modica, MIT, Room E25-518, Cambridge, MA 02139, 617-253-2307, cmmodica@mit.edu.

Medical Sciences

HST’s Medical Sciences Program leads to the MD degree from Harvard Medical School. It is oriented toward students with a strong interest and background in quantitative science, especially in the biological, physical, engineering, and chemical sciences. The subjects in human biology developed for this curriculum represent the joint efforts of life scientists, physicians, physical scientists, and engineers from the faculties of Harvard and MIT.

The programs of study are designed to meet the interests and needs of the individual student. The student is encouraged to pursue advanced study in areas of interest that may complement the subjects offered in the division. Such study may be undertaken as part of the MD degree requirements or may be pursued in a program that combines the MD with a master’s or doctoral degree. HST students join the students of the regular Harvard Medical School curriculum in the clinical clerkships.

Because HST is committed to educating physicians who have a deep understanding of the scientific basis of medicine and who are well equipped for an interdisciplinary research career, HST encourages students in the MD curriculum to devote time to research and requires a thesis for completion of the degree. Many MD students, however, desire even more research training than is possible during the standard four-year MD curriculum. For such students, one option is to pursue a formal PhD program in addition to an MD program. Another option expands the MD program to five or more years in order to include a major research training component. This option may lead to a master’s degree in health sciences and technology in addition to the MD degree.

The general requirements for a master’s degree at MIT are given under Graduate Education in Part 1. The subject requirements must be in addition to the minimum number of units required for the MD degree. Subjects may be chosen in scientific, technical, or clinical areas relevant to the student’s research area. Thesis research may be conducted at MIT, Harvard, or at Harvard-affiliated teaching hospitals. The completed thesis must be approved by the thesis supervisor and submitted to HST’s MD Graduate Committee. The master’s thesis simultaneously fulfills the thesis requirement for HST’s MD degree. The two degrees are not formally linked; the MD degree is not a prerequisite for the master’s degree.

Further details on the Medical Sciences Program and application forms may be obtained from the Office of Admissions, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115. Applications must be submitted by October 15 of the year before desired matriculation. For further information, candidates can contact HST’s medical sciences admissions coordinator at hst-md-admissions@mit.edu.

Radiological Sciences Joint Program

The Radiological Sciences Joint Program (RSJP) offers a unique integration of engineering and physical sciences education with research opportunities in a broad spectrum of biomedical research laboratories. The RSJP doctoral program is administered in collaboration with MIT’s
Speech and Hearing Bioscience and Technology

HST’s doctoral program in Speech and Hearing Bioscience and Technology (SHBT), formerly Speech and Hearing Sciences, prepares students with an undergraduate background in science or engineering to have a broad acquaintance with the field of speech and hearing, and to develop specialized knowledge that focuses on a particular approach in research. The only program of its type in the country—and the only doctoral training program funded in this area by the National Institutes of Health—SHBT is designed to develop research scientists who can apply the concepts and methods of the physical and biological sciences to basic and clinical problems in speech and hearing using innovative research. No other research training program provides the multidisciplinary depth and breadth offered by SHBT. The four-plus-year program leads to a PhD in speech and hearing bioscience and technology from MIT. SHBT’s more than 50 participating faculty members represent 10 academic departments from Harvard and MIT, with research facilities at MIT, Harvard University, Harvard Medical School and affiliated teaching hospitals, and the Massachusetts Eye and Ear Infirmary (MEEI). The small class size of this unique program (seven to eight students per class year) ensures personalized and high-quality training by a diverse and dedicated faculty from the two institutions.

SHBT’s curriculum provides an effective method of training researchers by introducing the physical and biological bases of speech and hearing mechanisms involved in the communications process. While SHBT seeks to develop research scientists rather than clinical practitioners, there is a strong emphasis on providing students with exposure to clinical problems, approaches, and techniques. Graduates are thoroughly prepared for successful careers in basic and applied research in industry, universities, or government laboratories involved with biological and synthetic communication systems.

Typically, a student’s first two years in the program are devoted to coursework, which is supplemented by significant exposure to various research projects. Courses in the first year assume familiarity with calculus and differential equations, college-level physics, probability and statistics, and biology. The core curriculum covers the anatomical, acoustical, physiological, perceptual, and cognitive basics, as well as the clinical approaches to speech and hearing problems. The early introduction of important concepts in acoustics, anatomy, and physiology provides a solid base from which to pursue individual research interests. Early in the curriculum, students are introduced to various research laboratories that use different approaches to solving speech and hearing problems. This involvement in research provides an immediate application of classroom subjects. Students work with research advisors to develop a thorough understanding of basic concepts and tools in their fields of concentration. Later, students participate in subjects that require them to apply basic concepts to clinical problems and scientific research. Throughout the curriculum, special attention is devoted to developing personal integrity, scientific values, and scholarly practice. With faculty guidance, each student plans a concentration tailored to the student’s particular interest.

By the end of their second year, students identify an area of professional interest and choose a research project that forms the basis for their doctoral thesis. SHBT research in the speech and hearing sciences focuses on the biological and physical mechanisms underlying human communication by spoken language. The processes addressed by these sciences include the physical acoustics of sound and the perceptual neurophysiological bases of hearing, as well as the linguistic, cognitive, and motor levels of processing by talkers and listeners.

Applicants to the program should have a bachelor’s degree in physical science, biology, psychology, linguistics, communication sciences and disorders, engineering, computer science, or a related field. Superior analytical skills are strongly recommended for all applicants. Additional information may be obtained by contacting Dr. M. Christian Brown, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, 617-573-9635, mcb@epl.meei.harvard.edu.
PREDOCTORAL AND POSTDOCTORAL PROGRAMS

Biomedical Informatics Program

Biomedical informatics is concerned with the cognitive, information-processing, and communication tasks of medical practice, education, and research. It includes the information sciences and technology needed to support those tasks. The field is intrinsically interdisciplinary, drawing together all traditional medical disciplines, the science and technology of computing, biostatistics, epidemiology, decision sciences, and health care policy and management. In addition to a focus on clinical practice, additional areas of emphasis are in bioinformatics, and in informatics related to health services research.

HST’s predoctoral and postdoctoral training program in biomedical informatics offers fellowships to qualified US citizens or permanent residents. Several training options are offered: the Master of Science in Biomedical Informatics from HST; the PhD in Medical Computer Science from MIT’s Department of Electrical Engineering and Computer Science; the PhD in Health Decision Science in the Department of Health Policy and Management at the Harvard School of Public Health; and research fellowship training at biomedical informatics laboratories in Boston-area hospitals carried out in conjunction with the HST Biomedical Informatics Master’s Program. The master’s program is available only to HST-enrolled medical students or to students who already have advanced training in the health sciences (e.g., a doctoral degree in medicine, dentistry, nursing, veterinary medicine, clinical psychology, or a PhD in a medical relevant field such as physiology).

The combined training program offers several opportunities for education, research, and interaction among the various training sites. Course offerings at MIT and Harvard, as well as a variety of seminars, journal clubs, and other opportunities to exchange information, provide all trainees with opportunities to learn about the work at various laboratories and affiliated institutions, as well as the broader field of biomedical and health informatics.

Predoctoral fellowship applicants must concurrently apply for admission to MIT or a Harvard doctoral degree program. Postdoctoral applicants typically have at least one year and preferably three years of clinical residency before beginning their fellowship. For more information about the Biomedical Informatics Training Program, contact Dr. Robert A. Greenes, Decision Systems Group, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, greenes@harvard.edu.

Clinical Investigator Training Program

The Clinical Investigator Training Program (CITP) trains postdoctoral physicians from various clinical disciplines in the techniques and processes used in patient-oriented research. Trainees develop expertise in clinical investigation while participating in an extensive educational program. The two-year program is a cooperative effort between HST, Beth Israel Deaconess Medical Center, and Pfizer, Inc. The curriculum allows trainees to develop direct experience in performing clinical investigation while, simultaneously through didactic course work, providing a strong foundation in computational and statistical sciences, biomedical ethics, the principles of clinical pharmacology, in vitro and in vivo measurement techniques, and various aspects of the drug development process. The fellowship program consists of a primary project and core curriculum, plus an elective curriculum and a project elective. Although not required, fellows may choose to pursue a Master of Medical Sciences degree from Harvard Medical School in conjunction with CITP. The degree is awarded at the end of the two-year period upon successful completion of didactic coursework, a research project, a thesis or thesis equivalent, and a qualifying examination. CITP is open to physicians who have completed the clinical requirements for Board eligibility in their chosen specialty or subspecialty. For more information or to obtain an application, contact the CITP program coordinator, Karen Walsh, MIT, Room E18-435, 617-258-5921, kwalsh@mit.edu.

Inquiries

Additional information on degree programs, admissions, and financial aid can be obtained from HST’s Office of Academic Affairs, MIT Room E25-518, 617-258-7084.

FACULTY AND STAFF

Faculty and Teaching Staff

Joseph V. Bonventre, MD, PhD
Robert H. Ebert Professor of Medicine and Health Sciences and Technology, HMS, BWH
Director and Master, MD Program

Martha L. Gray, PhD
Edward Hood Taplin Professor of Medical and Electrical Engineering, MIT
Director

Lee Gehrke, PhD
Hermann von Helmholtz Professor of Health Sciences and Technology, MIT, HMS
Associate Director for Faculty

Richard N. Mitchell, MD, PhD
Associate Professor of Pathology and Health Sciences and Technology, HMS, BWH
Associate Master for MD Program

Professors

R. R. Anderson, MD
Professor of Dermatology, HMS, MGH

George B. Benedek, PhD
Alfred H. Caspary Professor of Physics and Biological Physics and Health Sciences and Technology, MIT

Louis D. Broida, PhD
Henry Ellis Warren Professor of Electrical Engineering and Health Sciences and Technology, MIT

Thomas N. Byrne, MD
Visiting Clinical Professor of Neurology and Health Sciences and Technology, HMS, MGH

Richard J. Cohen, MD, PhD
Whitaker Professor in Biomedical Engineering, MIT

Ernest G. Cravalho, PhD
Professor of Mechanical Engineering and Health Sciences and Technology, MIT

Elazer R. Edelman, MD, PhD
Thomas D. and Virginia W. Cabot Professor of Health Sciences and Technology, MIT
John D. E. Gabrieli, PhD
Grover Hermann Professor of Health Sciences and Technology and Professor of Brain and Cognitive Sciences, MIT

Robert A. Greene, MD, PhD
Professor of Radiology and Health Sciences and Technology, HMS, BWH

David E. Housman, PhD
Ludwig Professor of Biology, MIT

Robert D. Howe, PhD
Gordon McKay Professor of Engineering, Harvard University

Robert S. Langer Jr., ScD
Kenneth J. Germeshausen Professor of Chemical and Biomedical Engineering and Health Sciences and Technology, MIT

M. C. Liberman, PhD
Professor of Otology and Laryngology and Health Sciences and Technology, HMS, MEEI

Roger G. Mark, MD, PhD
Distinguished Professor in Health Sciences and Technology and Electrical Engineering and Computer Science, MIT

Bruce R. Rosen, MD, PhD
Professor of Radiology, HMS, MGH

Robert H. Rubin, MD
Gordon and Marjorie Osborne Professor of Health Sciences and Technology, HMS, HST, Professor of Medicine, HMS, BWH

Frederick J. Schoen, MD, PhD
Professor of Pathology and Health Sciences and Technology, HMS, BWH

Brian Seed, PhD
Professor of Genetics, HMS, MGH

Daniel C. Shannon, MD
Professor of Pediatrics and Health Sciences and Technology, HMS, MGH

Anthony J. Sinskey, ScD
Professor of Biology and Health Sciences and Technology, MIT

Kenneth N. Stevens, ScD
Clarence J. Lebel Professor of Electrical Engineering and Health Sciences and Technology, MIT

Peter Szolovits, PhD
Professor of Computer Science and Engineering and Health Sciences and Technology, MIT

Mehmet Toner, PhD
Professor of Surgery, HMS, MGH

Richard J. Wurtman, MD
Cecil H. Green Distinguished Professor of Neuropharmacology and Health Sciences and Technology, MIT

Martin L. Yarmush, MD, PhD
Helen Andrus Benedict Professor of Surgery (Biological Chemistry and Molecular Pharmacology), HMS, MGH

Laurence R. Young, ScD
Apollo Program Professor of Astronautics and Health Sciences and Technology, MIT

Associate Professors
Sangeeta N. Bhatia, MD, PhD
Associate Professor of Health Sciences and Technology and Associate Professor of Electrical Engineering and Computer Sciences, MIT

Brett Bouma, PhD
Associate Professor of Dermatology, HMS, MGH

Emery N. Brown, MD, PhD
Associate Professor of Anaesthesia and Health Sciences and Technology, HMS, MGH

Deborah Burstein, PhD
Associate Professor of Radiology and Health Sciences and Technology, HMS, BIDMC

W. H. Churchill Jr., MD
Associate Professor of Medicine and Health Sciences and Technology, HMS, BWH

David E. Cohen, MD, PhD
Associate Professor of Medicine and Health Sciences and Technology, HMS, BWH

Bertrand Delgutte, PhD
Associate Professor of Otology and Laryngology and Health Sciences and Technology, HMS, MEEI

Donald K. Eddington, PhD
Associate Professor of Otology and Laryngology, HMS, MEEI

Dennis M. Freeman, PhD
Associate Professor of Electrical Engineering, EECS, MIT

Robert E. Hillman, PhD
Associate Professor of Surgery, HMS, MGH

Isaac S. Kohane, MD, PhD
Lawrence J. Henderson Associate Professor of Pediatrics and Health Sciences and Technology, HMS, CHB

Lucía Ohno-Machado, MD, PhD
Associate Professor of Radiology, HMS, BWH

John J. Rosowski, PhD
Associate Professor of Otology and Laryngology, HMS, MEEI

Lee H. Schwamm, MD
Associate Professor of Neurology, HMS, MGH

Christopher A. Shera, PhD
Associate Professor of Otology and Laryngology, HMS, MEEI

A. G. Sorensen, MD
Associate Professor of Radiology, HMS, MGH

Assistant Professors
Elfar Adalsteinsson, PhD
Graduate Program Director for Electrical Engineering and Computer Sciences, MIT

Martha Bulyk, PhD
Assistant Professor of Health Sciences and Technology and Assistant Professor of Electrical Engineering and Computer Sciences, MIT

Hugh M. Herr, PhD
Assistant Professor in Media Arts and Sciences and Health Sciences and Technology, HMS, BWH

Steve G. Massaquoi, MD, PhD
Assistant Professor of Electrical Engineering and Health Sciences and Technology, MIT

Jennifer R. Melcher, PhD
Assistant Professor of Otology and Laryngology, HMS, MEEI
Leonid A. Mirny, PhD
Samuel A. Goldblith Career Development
Assistant Professor of Health Sciences and Technology and Physics, MIT

Daniel K. Sodickson, MD, PhD
Assistant Professor of Medicine, HMS, BIDMC

Collin M. Stultz, MD, PhD
Assistant Professor of Health Sciences and Technology and Assistant Professor of Electrical Engineering and Computer Science, MIT

Shamil R. Sunyaev, PhD
Assistant Professor of Medicine and Health Sciences and Technology, HMS, BWH

Visiting Professor
Jiefu Huang, MD

Faculty Teaching Staff
Frank L. Douglas, MD, PhD
Executive-in-Residence, Sloan School of Management, MIT

Jagesh V. Shah, PhD
Lecturer on Systems Biology, HMS

Senior Lecturers
Stephen K. Burns, PhD
Teodoro F. Dagi, MD
Howard L. Golub, MD, PhD
Stanley N. Lapidus
George M. Milne, PhD
Reynold Spector, MD

Lecturers
Laurence I. Alpert, MD
David J. Edell, PhD
Edwin H. Gilland, PhD
Julie E. Greenberg, PhD
Shai N. Gozani, MD, PhD
Linda C. Hemphill, MD
Susanne Klingenstein, PhD
J. Christian Kryder, MD
Robert P. Marini, DVM
Andrew J. Oxenham, PhD

Visiting Lecturers
Elizabeth R. Myers, PhD
Jonathan J. Rosen, PhD

Research Staff

Senior Research Scientist
James C. Weaver, PhD

Principal Research Scientists
Jane-Jane Chen, PhD
Lisa E. Freed, MD, PhD
Chi-Sang Poon, PhD

Research Scientists
Yuri B. Chernyak, PhD
Kichang Lee, PhD
Glover W. Martin, PhD
Gregory T. Martin, PhD
Gang Song, PhD
Donald A. Stewart, PhD

Research Engineers
Gari D. Clifford, PhD
Catherine L. Dunn
Michelle L. Farley
George B. Moody
Jill Renée Pelavin

Research Associates
Adam R. Groothuis, BS, MS
Ann M. Lees, MD
Philip Seifer, MS

Research Specialist
Tarek M. Shazly

Research Fellows
Michael D. Blechner, MD
Carl R. Blesius, MD
Jaime Chang, MD
Sara E. Dempster, PhD
Zebadiah M. Kimmel, MD
Thomas A. Lasko, MD
Michael E. Matheny, MD
Mark A. Meyer, MD
Mugur A. Roz, MD, PhD
Pankaj Sarin, MD
Alicia O. Scott-Wright, MD
Jennifer Y. Sun, MD
Stanley Trepetin, MA
Cecily J. Wolfe, PhD
Erxi Wu, PhD
Adrian H. Zai, MD, PhD

Visiting Research Fellow
Esteban J. Pino Quiroga, MSc

Postdoctoral Associates
Dirk R. J. Albrecht, PhD
Hirofumi Aoki, PhD
Alexander D. Augst, PhD
Mercedes Balcells-Camps, PhD
Armenak H. Bantikyan, PhD
Mingyu Cheng, PhD
David T. Eddington, PhD
Axel T. Esser, PhD
David S. Ettenson, PhD
Brian A. Janz, MD
Alireza Khademhosseini, PhD
Grigory Kolesov, PhD
Jesse S. Little, PhD
Sijin Liu, PhD
Michelle T. McGuire, PhD
Heiko Methe, MD
Li Yuan Mi, PhD
Vienna L. Reichert, PhD
Michael Slutsky, PhD
Evgeny Ter-Ovanesyan, PhD
Zlatko Vasilkoski, PhD
Yunguo Yu, PhD

Postdoctoral Fellows
Sharon Gerecht-Nir, PhD
Elliot E. Hui, PhD
Jessica Lang Kosa, PhD
Janne Østvang, PhD
Lisa D. Schlehuber, PhD
Shai Y. Schubert, PhD
A. Rami Tzafriri, PhD
Gregory H. Underhill, PhD

Technical Assistants
Giladokht Hashemi, BA
Shawna M. MacDonald, BA
Michele P. Miele, BS
Gee K. Wong
Wanting Zhao, BA
Visiting Scientists
Swarnalatha R. Bheemreddy, MD
Robert G. Dennis, PhD
Omid C. Farokhzad, MD
T. R. Gowrishankar, PhD
Pedro E. Huertas, MD, PhD
Chiang J. Li, MD
Mamoru Nanasato, MD, PhD
Andrew T. Reisner, MD
Viswanathan Sasisekharan, PhD

Helen M. Nugent, PhD
Matthew A. Nugent, PhD
Sahil Parikh, MD
Chung-Kang Peng, PhD
Guy Rachmuth
Eyal S. Ron, PhD
John T. Santini, PhD
Tali Sheskin-Bilenca, MSc
Daniel A. Sidney, PhD
Daniel I. Simon, MD
Costas Strouthos, PhD
Kenneth S. Szajda, PhD
Richard J. Thomas
David S. Tuch, PhD
Matthew Walker, PhD
David S. Walton, MD
Kenneth G. Weaver
Frederick G. P. Welt, MD
Karen A. Westerman, PhD
Chan-Hyun Youn, PhD
Wei Zong, PhD

Ronald P. Smith
Manager, Academic Records
Betsy Tarlin, BA
Director, External Relations
Marsha K. Warren, MA
Coordinator, Biomedical Enterprise Program

Professors Emeriti
Walter H. Abelmann, MD
Professor of Medicine, Emeritus, HMS
Director, Alumni Affairs
Nelson Y. S. Kiang, PhD
Eaton-Peabody Professor of Health Sciences and Technology, Emeritus
Irving M. London, MD
Professor of Medicine, Emeritus, HMS
Professor of Biology, Emeritus, MIT

Visiting Scholars
Alice A. Chen
Christopher J. Flaim
Raúl C. Gomila Quiñones, BS
Todd J. Harris
Salman R. Khetani
Jessica Petriillo, BA
Sheli R. Radoshitzky
Dina Uzri
Geoffrey A. von Maltzahn
Brett G. Zani

Research Affiliates
Omar T. Abdala, MEng
Ivan A. Adzhubey, PhD
Moshe Alam, MEng
R. Gregory Allen, MS
Antonis A. Armoundas, PhD
Larry Brown, ScD
Raymond C. Chan, PhD
Hongming Chen, ScD
Michael T. Chin, MD, PhD
Jean M. Connelly
Haim Danenberg, MD
Julian D. Down, PhD
Nicola Elvassore, PhD
Larry J. Eschelman, PhD
Wen-Hua Fan, PhD
Jay A. Fishman, MD
Jennifer A. Healey, PhD
Isaac C. Henry, BS
Terry O. Herndon
Syed F. A. Hossainy, PhD
Franc Jager, MSc
Michael Jonas, MD
David A. Lavan, PhD
Erin B. Lavik, ScD
Eileen Ann Lonergan
Mark A. Lovich, MD, PhD
Jennifer E. McDonald
Ramakrishna Mukkamala, PhD

Administrative Staff
Domingo B. Alarejos, BS
Graduate Administrator
H. Frederick Bowman, PhD
Senior Academic Administrator
Melinda G. Cerny, MST
Project Manager, Internet Learning in HST
Bernd A. Comjean, BS
Fiscal Officer
Patricia A. Cunningham, BA
Manager, HST Headquarters at HMS
Deirdre A. Dow-Chase, BA
Special Assistant
Bernadette C. Fendrock, MBA
Director, Program Development for Biomedical Enterprise Program
Terry L. Gadde, MFA
Director, Administration and Personnel
Julie E. Greenberg, PhD
Director, Education and Academic Affairs
Sarah Griffith, MS
Manager, Educational Initiatives
Irene Huang, BS
Grants and Research Administrator
MIT and the Woods Hole Oceanographic Institution on Cape Cod offer joint doctoral degrees in oceanography and doctoral, professional, and master’s degrees in oceanographic engineering. These graduate programs draw from the faculty and staff of both institutions. Students accepted to the Joint Program have access to the extensive intellectual and physical resources available for advanced study at both Woods Hole and MIT.
MIT and the Woods Hole Oceanographic Institution (WHOI) on Cape Cod offer joint doctoral degrees in oceanography and doctoral, professional, and master’s degrees in oceanographic engineering.

Graduate study in oceanography encompasses virtually all of the basic sciences as they apply to the marine environment: physics, chemistry, geology, geophysics, and biology. Applied ocean science and engineering allows for concentration in the major engineering fields of civil and environmental, mechanical, and electrical engineering.

The graduate programs administered by joint MIT/WHOI committees draw from the faculty and staff of both institutions. Students accepted to the Joint Program have access to the extensive intellectual and physical resources available for advanced study at both Woods Hole and MIT.

The Joint Program involves several departments at MIT—Earth, Atmospheric, and Planetary Sciences and Biology in the School of Science; and Civil and Environmental Engineering, Electrical Engineering and Computer Science, and Mechanical Engineering, in the School of Engineering.

Financial aid, offered as research assistantships or fellowships to most entering graduate students, is sufficient to cover tuition and fees and provide a stipend. Upon admission, students register in the appropriate MIT department and at WHOI simultaneously, and are assigned academic advisors at each institution. Because the Joint Program is not affiliated with any one particular MIT department, students who wish to be considered for the program must indicate their intent on the front of their applications.

Research at WHOI is devoted to using the basic sciences and engineering to gain a better understanding of the marine environment. Some 200 scientists and engineers and a support staff of about 600 work in laboratories located in the Village of Woods Hole and on the nearby Quisset Campus. Another 75 people operate three research vessels (ranging from 177 to 279 feet in length), the deep-diving submersible ALVIN, and smaller coastal vessels. WHOI also has remotely-operated research vehicles and autonomous underwater vehicles. Computer services provided within WHOI include links to other institutions and to national networks.

A videoconference system between MIT and Woods Hole provides interactive transmission for classes. Specialized research facilities include the National Ocean Sciences Accelerator Mass Spectrometry Facility and the North-East Regional Ion Microprobe Facility. The library facilities shared with the Marine Biological Laboratory are supplemented by collections of the Northeast Fisheries Center of the National Marine Fisheries Service and the US Geological Survey’s Office of Marine Resources Branch of Atlantic Geology, all located in Woods Hole. The village is situated on the southwest corner of Cape Cod, about 80 miles from Boston.

Subjects, seminars, and opportunities for research participation are offered at both MIT and WHOI. Place of residence is determined by the student’s selected program of study and research interests, and transportation is provided between institutions. Students have the opportunity to participate in oceanographic cruises during graduate study.

The faculty of MIT, together with the WHOI scientific staff, offer a wide variety of formal and informal subjects in various aspects of oceanography and areas directly applicable to ocean science and engineering; both faculties are equally involved in all levels of instruction. The subjects are supplemented by numerous seminars, directed studies, and cross-registration privileges with Harvard, Brown, and the Boston University Marine Program. Complete listings can be found in the subject descriptions of each individual department.

Physical Oceanography
Physical oceanography is the study of the physics of the ocean. Its central goal is to describe and explain the complex motions of the ocean. Principal research areas include general circulation, air-sea interaction, shelf dynamics, mesoscale processes, and small-scale processes. The Department of Earth, Atmospheric, and Planetary Sciences offers programs in physical oceanography with WHOI, which lead to the Doctor of Science or Doctor of Philosophy degree.

Chemical Oceanography
Chemical oceanographers study the chemical composition of the marine environment and the processes that have produced the present composition of sea water and sediments. Principal research areas include water column geochemistry, sedimentary geochemistry, seawater-basalt interactions, and atmospheric chemistry. The Departments of Earth, Atmospheric, and Planetary Sciences and Civil and Environmental Engineering offer programs with WHOI in chemical oceanography and marine geochemistry. These programs lead to the Doctor of Science or Doctor of Philosophy.

Marine Geology and Geophysics
The goal of Marine Geology and Geophysics is to understand the physical and chemical processes that determine the structure and evolution of the ocean basins and their margins. Research is being conducted in a wide range of specialties including micropaleontology, paleoceanography, petrology and volcanic processes, seismology, gravity, magnetics, heat flow, sediment dynamics, and isotope geology. The Department of Earth, Atmospheric, and Planetary Sciences at MIT offers programs with WHOI in marine geology and geophysics which lead to the Doctor of Science or Doctor of Philosophy.

Biological Oceanography
Biological oceanography seeks to describe and understand the biological processes which are active in the marine and bordering environments. The research of biological oceanographers is diverse, including ecology, toxicology, biochemistry, animal behavior and physiology, and molecular biology. The programs in biological oceanography are coordinated by the Department of Biological and WHOI, and may involve research in other MIT departments such as the Department of Civil and Environmental Engineering. The programs lead to the Doctor of Science or Doctor of Philosophy.

Applied Ocean Science and Engineering
Applied ocean science and engineering involves the application of physics and the engineering sciences to the study of oceanic processes and the design of instruments, systems, and structures required to observe, measure, and work in the ocean. The Departments of Civil and Environmental Engineering, Electrical Engineering and Computer Science,
Mechanical Engineering offer joint programs with WHOI in oceanographic engineering. The programs lead to the master’s degree, engineer’s degree, Doctor of Science, or Doctor of Philosophy.

Inquiries
Application for admission to the Joint Program in Oceanography and Applied Ocean Science and Engineering with the Woods Hole Oceanographic Institution should be made on the MIT graduate application form, which may be obtained from the director of admissions at MIT or from the Academic Programs Office at WHOI. Requests for further information may be addressed to the MIT/WHOI Joint Program, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, 508-289-2219, or to the MIT Joint Program Office, Room 54-911, Cambridge, MA 02139-4307, 617-253-7544. More information is available on the website at http://web.mit.edu/mit-whoi/www/.

Degrees Offered in the Joint Program

<table>
<thead>
<tr>
<th>Oceanography and Applied Ocean Science and Engineering</th>
<th>Engineer’s Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineers</td>
<td></td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Biological Oceanography</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Chemical Oceanography</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Marine Geology and Geophysics</td>
</tr>
<tr>
<td>ScD, PhD</td>
<td>Physical Oceanography</td>
</tr>
</tbody>
</table>

Note: With the exception of engineering, the SM is only available as an interim degree for doctoral candidates or for those who leave the program before the completion of the doctoral degree.